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Abstract1

In this thesis, we will be examining different classes of discrete and integral transforms.2

We start with a general class of integral transforms which include those logarithmic sep-3

arable kernels. Transforms with logarithmic separable kernels include the Fourier trans-4

form, the Laplace transform and the Mellin transform. The shifting and convolution prop-5

erties for this class of transforms are examined, and sufficient conditions which guarantee6

the existence of the convolution formula will be given. It will be shown that a subclass of7

these integral operators are injective and an inversion formula will be presented on some8

class of continuously differentiable functions. We will apply these results to second-order9

differential equations to obtain new analytical solutions to these equations and compare10

these to a numerical solution.11

A class of discrete and integral transforms which are a subclass of those with logarith-12

mic separable kernels will also be analysed. We will examine a weighted L1 space which13

is related to our class of transforms. An appropriate codomain for our class of transforms14

as well as the continuity of our class of transforms will be determined. The shifting and15

convolution properties will be examined, with a focus on discrete transforms, and we will16

show the convolution operation is a binary relation on the appropriate weighted L1 space.17

We will state conditions which makes the discrete operators in this class injective, then we18

will show our weighted L1 space is a Banach algebra. It will be shown that these weighted19

L1 space corresponding to integral operators do not have a unit. It will also be highlighted20

through an example that a weighted L1 space corresponding to a discrete operator in out21

class may have a unit.22

Further properties of the convolution formula will be determined. We will provide23

conditions on the support of the convolution of two functions as well as show the convo-24

lution of two functions is continuous given certain integrability conditions. The convolu-25

tion formula is then extended to distributions, and certain differentiability conditions on26

the convolution of a distribution and a function will be obtained. It will be shown that27

the weighted L1 spaces which correspond to integral operators can be embedded into a28

unital Banach algebra, namely the complex Borel measures. We show that the weighted29

L1 space is a nonmaximal ideal in the complex Borel measures.30

The content of this thesis is related to my work that has appeared in [36], [37] and31

[38].32

iii
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Chapter 11

Introduction2

1.1 Discrete and integral transforms3

1.1.1 General results4

Discrete and integral transforms have an intrinsic relationship with difference and dif-5

ferential equations, respectively. Conditions in which transforms of functions exist are6

crucial when applying transforms to these types of equations. In terms of determining the7

existence of general discrete transforms, a proof was given in Schur [88] which assumes8

the kernel is positive and decreasing in both of its variables. Provided these assump-9

tions hold, the transform is defined on the space of square summable sequences. It is10

assumed in [88] that the image of the transform is a set of sequences, and the transform11

is assumed to be multiplication of a sequence by an infinite matrix. Given similar as-12

sumptions, and defining a discrete transform on lp, an upper bound for the transform was13

shown in Hardy et al. [48]. In the specific case when the kernel represents the Hilbert14

matrix, the Hilbert double series theorem, shown in Weyl [102], shows that the discrete15

transform corresponding to the Hilbert matrix is defined on the space of square summable16

functions. A simple proof which shows the Hilbert matrix is bounded can be found in17

Choi [21]. Furthermore, Choi showed the exact value of the norm of the Hilbert matrix is18

π .19

It should be noted that a large class of discrete transforms exists. If one has a separa-20

ble Hilbert space and a Bessel sequence in the Hilbert space, then the matrix containing21

all possible inner products of the elements in the Bessel sequence define a bounded linear22

operator on l2(N) (see Shapiro & Shields [92]). Another class of infinite matrices which23

induce a discrete transform is the class of the so-called Toeplitz matrices. These are matri-24

ces which are constant along diagonals which are parallel to the main diagonal. Suppose25

H2 is the space of square integrable functions whose Fourier coefficients vanish for nega-26

tive integers. Let P be the projection of L2[0,2π] to H2 and let φ be a bounded measurable27

function on L2[0,2π]. The Toeplitz operator induced by φ is the map which sends f to28

1



1.1. DISCRETE AND INTEGRAL TRANSFORMS 2

P(φ · f ). The Toeplitz operators induce a class of Toeplitz matrices (see Halmos [46]).1

As for existence of integral transforms, various results hold for transforms defined2

on arbitrary measure spaces. If a kernel is square-integrable on the product space in3

which the kernel is defined on, then the kernel defines a bounded integral operator be-4

tween function spaces. Such an operator is known as a Hilbert-Schmidt operator (see5

Halmos & Sunder [47]). Given the underlying measures are finite, and that the kernel is6

bounded, it is guaranteed the integral operator is a Hilbert-Schmidt operator. Such oper-7

ators contributed significantly to the classical theory of integral equations. We have that8

every Hilbert-Schmidt operator is a compact operator. So given the Hilbert-Schmidt oper-9

ator is defined on a Hilbert space, the integral operator can be approximated by a sequence10

of operators whose members have finite rank.11

The Schur Lemma can be applied to transforms whose kernels are defined on arbitrary12

σ -finite measure spaces. More specifically, assume the kernel of the transform is a locally13

integrable function on the product space. Consider the function which is equal to the14

integral of the absolute value of the kernel with respect to its first variable. Consider15

another function which is defined in a similar manner, with the difference being that16

the kernel is integrated with respect to its second variable. Furthermore, suppose these17

two functions are bounded. Now consider an integral operator whose kernel satisfies the18

previously stated properties and is defined on a set of bounded functions with compact19

support. Then the corresponding integral operator maps between two Lp spaces where the20

p in the domain and range are identical (see Grafakos [40]). The proof in [40] relies on21

the Riesz-Thorin Interpolation Theorem. Furthermore, the Schur Lemma was generalised22

by Grafakos & Torres [41] to a multilinear version defined on a product space where the23

kernel consists of n+1 variables. Some conditions in which a multilinear integral operator24

is defined on the product of weighted Lp spaces are outlined in Cwikel & Kerman [26].25

A special case of the Schur Lemma is highlighted. Let the kernel of a transform be26

defined such that its modulus is square integrable with respect to each of its variables27

separately, that is to say k(·,x) ∈ L2(X) and k(x, ·) ∈ L2(X). Suppose once the kernel has28

been integrated, the new function is bounded almost everywhere. Then the kernel defines29

a bounded integral operator on L2(X) to itself (see Conway [25]). This is highlighted as30

it shows that an integral operator is a map between Hilbert spaces, and the proof only31

requires an application of Hölder’s inequality.32

1.1.2 Fourier series and the Fourier transform33

By focusing on specific discrete and integral transforms, more results about the conditions34

which guarantee a given transform exists can be determined. A classical example of an35

integral transform is the Fourier transform. The Hilbert spaces of square summable and36

square integrable functions are prevalent in the theory of general discrete and integral37
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transforms. The square integrable functions are especially important when studying the1

Fourier transform. One fundamental result which holds for the Fourier transform is the so-2

called Plancherel Theorem [77]. Explicitly, the Plancherel Theorem states that the Fourier3

transform extends to an isomorphism from L2 to itself. An example of where this result4

has been used is in the derivation of Heisenberg’s inequality (see Folland & Sitaram [33]).5

In physical terms, Heisenberg’s inequality states that the product of the variance of the6

momentum and the variance of the position is bounded below by some positive constant7

[50].8

Additionally, the Fourier transform has also found applications to classical physics.9

Recall that the Schwartz functions are the class of smooth functions which vanish faster10

than every polynomial as the modulus of its argument approaches infinity. Assuming11

the solution to the heat equation is initially of the Schwartz class, the Fourier transform12

can be applied to the heat equation which converts a partial differential equation into an13

ordinary differential equation (see Folland [34]). Solving the ordinary differential equa-14

tion, then applying the inverse Fourier transform gives a solution to the heat equation15

where the spatial variable can be taken to be an n dimensional variable and time is con-16

sidered to be strictly positive. Another concept which is intrinsic to the study of integral17

transforms is the convolution of the two functions. This is essentially an operation such18

that the Fourier transform acts as an algebra homomorphism where the convolution is the19

underlying product.20

An analogue of the Fourier transform exists when continuous functions are converted21

to discrete functions. Given a function f is square integrable on the interval [0,2π], the22

Fourier transform f̂ is defined on the integers. An explicit formula for f̂ at the nonzero23

integer n is the standard inner product of f with the complex exponential whose period is24

inversely proportional to n. The Fourier transform of f at n = 0 is simply the average of25

the function f scaled by 2π . Using the theory of the Lebesgue integral, it can be shown26

that the Fourier transform, which maps the periodic function f to the function f̂ defined on27

the integers, is an isometry. The Fourier series of f at x is the limit of a linear combination28

of the functions n 7→ e−2πinx whose coefficients are f̂ (n). Also, the Fourier series of f29

can be shown to converge to the underlying function f in the square integrable sense.30

However, stronger conditions are required to show the Fourier series converges pointwise31

to its underlying function. It was shown in Du Bois-Reymond [29] that a function f can32

be simultaneously continuous and have a Fourier series which diverges at some point. An33

example of such a function can be found in Bary [12].34

As alluded to previously, the Fourier transform is defined on the so-called Schwartz35

functions. It is a well-known result that the Fourier transform is an isomorphism from36

the Schwartz class to itself. This allows for the Fourier transform to be extended to the37

Fréchet space of tempered distributions (see Schwartz [89]). It is noted that Sobolev38

spaces impose a level of smoothness on integrable functions. The introduction of tem-39
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pered distributions, as well as the Fourier and inverse Fourier transform on these spaces,1

allow for a generalisation of Sobolev spaces. The inhomogeneous Sobolev space is pre-2

cisely this generalisation and is defined for arbitrary real numbers. This new definition3

coincides with the usual definition for the Sobolev space when s is a nonnegative integer4

(see Grafakos [40]). A particular class of Sobolev spaces is shown to be related to the5

fractional Laplacian operator in Di Nezza et al. [28].6

The theory of the Fourier transform can be extended to locally compact abelian (LCA)7

groups. Analysis on locally compact groups was first proposed by Weil [101]. One con-8

cept which is essential for extending the Fourier transform to LCA groups is the existence9

of the Haar measure, which is a nontrivial, translation invariant, Borel measure on lo-10

cally compact groups. The proof of the existence of such a measure was first presented11

by Haar [43] under the assumption that the locally compact group was second countable.12

Several constructions of such a measure are possible. In Halmos [44], the construction of13

a Haar measure is possible through the use of an outer measure. In Rudin [85], an outline14

of a proof is given when the underlying group is an LCA group where the Reisz-Markov-15

Kakutani Theorem is applied. It is also shown in Rudin [85] that two Haar measures on16

the same group are scalar multiples of each other, and this is shown by an application of17

Fubini’s theorem. This uniqueness result holds for locally compact topological groups,18

and a proof involving measures which are equal on Baire sets is presents in Halmos [44].19

A proof which shows the existence of a Haar measure independent of the Axiom of Choice20

can be found in Cartan [19].21

A character of an LCA group G is a continuous homomorphism from G to the unit22

circle in the complex plane. The set of characters of G forms an abelian group Ĝ which is23

denoted by the dual group. This allows for the Fourier transform to be extended to LCA24

groups, as for any f ∈ L1(G), the Fourier transform of f , denoted by f̂ , is defined on the25

space Ĝ such that f̂ (γ) is equal to the integral of f multiplied by the complex conjugate26

of the character γ . Here, integration is over the group G and with respect to a Haar27

measure on G. Some results which translate to Fourier analysis on LCA groups include28

the Plancherel Theorem for LCA groups. Furthermore, a convolution product exists on29

L1(G) which makes L1(G) a Banach algebra. The Fourier transform of the convolution of30

two functions is the product of the Fourier transforms of the underlying functions. Results31

concerning Fourier analysis on local fields can be found in Taibleson [95]. Further results32

about the Fourier transform on LCA groups can be found in Folland [35], as well as33

Hewitt & Ross [52].34

1.1.3 Beyond the Fourier transform35

The study of the Fourier transform was the genesis of the study of more general inte-36

gral transforms. An integral transform which is related to the Fourier transform is the37
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Mellin transform (see Marichev [68]). Sufficient conditions for when it is possible to in-1

vert the Mellin transform of a function can be found in Titchmarsh [97]. The standard2

representation of the inverse Mellin transform varies from the inverse Fourier transform3

as it involves a contour integral. There are other results which vary between the Fourier4

and the Mellin transform. An example of this is in the Mellin-Parseval identity, where a5

weighted integral of the underlying function is shown to be an integral of the transformed6

function. One integral is over the nonnegative real numbers whereas the other integral is7

a contour in the complex place (see Yakubovich & Luchko [104]).8

Despite its relations to the Fourier transform, the first use of the Mellin transform9

was by Riemann and was used to study the zeta function (see Poularikas [81]). One such10

application of the Mellin transform is to solve Laplace’s equation on a wedge shaped11

region (see Davies [27]). Further uses of the Mellin transform can be seen in its util-12

ity when solving Euler-Cauchy differential equations (see Misra & Lavoine [70]). It is13

possible to extend the Mellin transform to distributions. A set of test functions for these14

distributions can be taken to be the space of all functions defined on the positive real axis15

such that they are infinitely differentiable and which vanish as its argument approaches16

zero or infinity [81]. An application of this can be found in Zemanian [106] where the17

Dirichlet problem is solved on a wedge where the boundary condition is considered to be18

a generalised function.19

The Mellin transform has been used to derive certain Leibniz-type rules for frac-20

tional calculus operators (see Luchko & Kiryakova [66]). The Mittag-Leffler function21

is a fundamental tool in the fractional calculus. It has been shown that the multi-index22

Mittag-Leffler function is equal to a scaled Mellin-Barnes-type contour integral. That is23

to say, the multi-index Mittag-Leffler function is equal to the inverse Mellin transform of24

a specified function (see Paneva-Konovska & Kiryakova [76]).25

Another transform which is related to the Fourier transform is the Laplace trans-26

form. For the Laplace transform of a function to exist, it suffices to show that the27

function is piecewise continuous and of exponential order. Applications of the Laplace28

transform to ordinary differential equations with constant coefficients can be found in29

Carslaw & Jaeger [18]. This particular transform has found applications in physics and30

engineering. One such example is when determining the current and charge of a condenser31

at a given time. A system of linear differential equations governs this process where the32

coefficients are constant. Due to the relations between the current and the charge, it is33

possible to convert the system of equations into a single second-order differential equa-34

tion. However, using the Laplace transform eliminates the need for this substitution (see35

Irving & Mullineux [54]). It is shown in Widder [103] that if the transform of a function36

is identically zero and the underying function is continuous, then the underlying function37

is identically zero. This can be used to invert the Laplace transform given the underlying38

function is known a-priori. A formula for the inverse of the Laplace transform which39
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involves the use of contour integrals was obtained by Bromwich [16].1

The Laplace transform finds applications in the fractional calculus. The computation2

of the Laplace transform of the Riemann-Liouville fractional derivative, the Caputo frac-3

tional derivative as well as the Grünwald-Letnikov fractional derivative can be found in4

Podlubny [78]. The reason is due to the fact that the Riemann-Liouville fractional integral5

is the so-called Laplace convolution of a function with some scaled power function. A6

generalisation of the Laplace transform has also found use in the fractional calculus. More7

specifically, the Laplace-type H-transform maps the multi-index Mittag-Leffler function8

to the reciprocal of a linear complex function where the linear function has leading coef-9

ficient 1 and constant term −1 (see Kiryakova [62]). Furthermore, in [62], a generalised10

fractional differential operator is introduced where the multi-index Mittag-Leffler func-11

tion is an eigenfunction of the introduced differential operator. This is analogous to how12

the exponential function is an eigenfunction of the first-order derivative. Furthermore, the13

Laplace transform maps the exponential function to the same function the Laplace-type14

H-transform maps the multi-index Mittag-Leffler function.15

One transform which arises through the study of the two-dimensional Fourier trans-16

form in polar coordinates is the Hankel transform. Here, the kernel involves the Bessel17

functions. It can be shown that the two-dimensional Fourier transform of a circular sym-18

metric function is the Hankel transform of order zero (see Poularikas [81]). Here, circular19

symmetry means the function of two variables depends only on the radius of the inputs.20

The Hankel transform is an example of a self-invertible operator given the underlying21

function is analytic in some region in the complex place containing the nonnegative real22

line. A proof of this is given by Davies [27] and the proof is attributed to MacRobert.23

The proof involves the Lommel’s integral which can be found in Watson [99], where the24

Lommel’s integral involves two cylinder functions. Certain orthogonality conditions for25

Bessel functions hold which traditionally show that the formula for the inverse Hankel26

transform holds (see Ponce de Leon [80]). The purpose of [80] is to prove the existence27

of the inverse Hankel transform without the use of the orthogonality conditions. This is28

due to the fact that the inverse Hankel transform is traditionally used to derive the or-29

thogonality relations, and this causes circular reasoning. It has been discussed previously30

that certain integral transforms map certain differential operators to polynomial equations.31

The Hankel transform is similar in this regard. More specifically, the Hankel transform32

maps the Bessel differential operator to a monomial in one variable of order two. This33

differential operator can also be obtained from the Laplacian operator in polar coordinates34

by applying separation of variables (see Poularikas [81]).35

The previous integral transforms mentioned all involved functions defined on some36

subset of the Euclidean space. In Cameron & Martin [17], they defined a generalised37

integral transform on a set of functionals. More specifically, the set of functionals in38

question is the set of all complex-valued continuous functions defined on the interval39
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[0,T ], where T > 0, which vanish at the origin. The Fourier-Wiener transform is an ex-1

ample of such a transform. Here, the integral is taken with respect to the Wiener measure.2

The Fourier-Wiener transform has been generalised with the introduction of certain pa-3

rameters by Lee [65]. In Chung & Tuan [23], the special Gaussian process, introduced in4

Chung et al. [22], was used to define a generalised integral transform and a generalised5

convolution product of functionals defined on the set of continuous, complex-valued func-6

tions on [0,T ] which vanish at the origin.7

Several transforms have been introduced which have the purpose of generalising var-8

ious other transforms. For example, an integral transform called the Sumudu transform9

was introduced in Watugala [100] with the purpose of solving differential equations. The10

Natural transform was introduced by Khan & Khan [61] and this was shown to be re-11

lated the Laplace and Sumudu transforms. Following this, duality relations were shown12

between the Natural transform and the Fourier, Laplace, Sumudu and Mellin transforms13

(see Shah et al. [91]). A further generalisation of the Natural transform was introduced in14

Jafari [56]. The class of integral transforms introduced in [56] includes the Natural trans-15

form, the Aboodh transform (see Aboodh [1]) and the Elzaki transform (see Elzaki [31].)16

The transform in [56] introduced formulas which can be applied to initial value prob-17

lems where the underlying differential equation was linear with variable coefficients. The18

transform is also applied to different Volterra integral equations, as well as fractional in-19

tegral equations involving the Riemann-Liouville fractional integral. Further applications20

of this class of integral transforms have been explored in Meddahi et al. [69].21

Generalisations of classes of integral transforms have been made which vary to that22

presented in [56]. An example of this is the introduction of the L2-transform, which has23

been analysed by Yürekli & Sadek [105]. The L2-transform of f at s is the half of the24

Laplace transform of the function t 7→ f (
√

t) evaluated at s2. An inversion formula for this25

transform involves contour integration and this expression was shown to be an inversion26

formula in Aghili et al. [3]. Coupled with this, it was shown in Aghili & Ansari [5] that27

the L2-transform maps a certain differential operator to a polynomial. Furthermore, a28

convolution product is presented in this article. Applications of these results are found29

in solving a system of fractional partial differential equations. Further properties of the30

L2-transform can be found in Aghili & Zeinali [4].31

The L2-transform can be further generalised by the LA-transform which was intro-32

duced by Aghili & Ansari [6], which also includes the Laplace and Mellin transform as33

special cases. Once again, it is shown that the LA-transform maps a first-order differen-34

tial operator to a polynomial in the transform parameter. A formula which satisfies the35

convolution property is introduced in this paper and another formula is shown to invert36

the LA-transform. The LA-transform does not include the Fourier transform. This is due37

to the fact that integration in the LA-transform is taken over the positive real numbers.38

However, there exists a class of transforms which are similar to those which fall under39
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the LA-transform. It was shown that the FA-transform includes the Fourier transform1

and maps the same differential operator considered in [6] to a complex polynomial (see2

Aghili & Ansari [2]).3

Another method which has been employed with the purpose of generalising a class4

of discrete and integral transforms can be found in Futcher & Rodrigo [37]. Here, a class5

of discrete and integral transforms whose kernels are logarithmic-separable are shown to6

have a convolution formula. For each transform in this class, there is a corresponding7

L1 space such that the transform is defined and the convolution product is a binary map8

on the weighted L1 space. By only considering integral transforms, a class of integral9

transforms was analysed in Futcher & Rodrigo [36]. It was shown that the class of trans-10

forms in [36] is injective on the intersection of the corresponding L1 space and the set of11

continuous functions. The integral transforms were applied to a subclass of second-order12

linear differential equations with variable coefficients to derive new analytical solutions.13

Furthermore, these solutions appear to be the only solutions which exist for this class of14

differential equations.15

1.1.4 Convolutions16

As alluded to previously, convolution is formally a binary operation which is defined on a17

set of functions. Such products have been found in many areas of mathematics including,18

but not limited to, Fourier analysis, functional analysis, differential equations, number19

theory and probability theory.20

With regards to Fourier analysis, the convolution of the Nth Dirichlet kernel and a21

function f is a partial sum of the Fourier series of f (see Stein & Shakarchi [94]). This22

becomes helpful when determining the pointwise convergence of the partial sums of a23

Fourier series. Given a function f is differentiable at a point x, the use of the Dirichlet24

kernel as well as the Riemann-Lebesgue Lemma gives information about the convergence25

of the Fourier series of f at x.26

The use of the Fourier convolution is prevalent in functional analysis as the L1 space27

on the n-dimensional Euclidean space is a Banach algebra where the convolution is the28

underlying product (see Rudin [86]). The convolution is present in a proof of the Fourier29

inversion formula as it can be shown that, for a specific function hλ , the convolution of a30

bounded and continuous function f with hλ converges pointwise to f as λ approaches 0.31

This limit can also be shown to be the inverse Fourier transform of f . Furthermore, the32

convolution formula can be used to show that the space L1 ∩L2 is dense in L2. This gives33

the well-known Plancherel Theorem which states that the Fourier transform extends to a34

unitary map on L2 (see Rudin [84]).35

The Fourier convolution and Fourier transform have found applications to topological36

vector spaces, namely to Fréchet spaces. It is well known that the space L1 has no unit.37
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The convolution product can be extended to distributions in several ways. It is possible to1

convolve distributions with smooth functions with compact support such that the resulting2

object is a smooth function. Otherwise, we can define the convolution such that the inputs3

are the same, however the output is instead a distribution. These two definitions are4

equivalent on an appropriate space of functions.5

In regards to differential equations, the Mellin convolution product is present in the6

solution to the Black & Scholes [14] partial differential equation solved by Rodrigo & Ma-7

mon [83]. The existence of a solution where the payoff, the terminal condition, is an8

arbitrary function is made possible through the use of a convolution formula. It is not9

obvious that the usual solution derived by Black & Scholes for the European call and put10

options can be unified under a single formula. However, the Mellin convolution makes11

this possible. Another advantage of the formula presented in [83] is the fact that the pay-12

off functions are not restricted to those of a call or a put option. Furthermore, the standard13

Black & Scholes equation is often solved where the interest-rate, the dividend yield and14

the volatility are constant. In [83], by using the Mellin transform and the Mellin convolu-15

tion, a solution for the partial differential equation could be derived where the interest rate16

and volatility were assumed to be positive, continuous functions of time and the dividend17

yield was assumed to be a nonnegative function of time.18

Such appearances of a convolution formula in number theory occur due to the so-19

called Dirichlet convolution which is defined on a class of sequences. This product, also20

known as the Dirichlet product, provides an elementary proof of the Möbius Inversion21

Theorem (see Ireland & Rosen [53]). This, in turn can be used to provide an expression22

for the value of Euler’s totient function for every natural number. Another use of the23

Dirichlet convolution formula is the fact that it can construct multiplicative functions.24

That is, functions which satisfy the homomorphism property given the underlying integers25

which are being multiplied together are relatively prime. It can be shown if two arithmetic26

functions are multiplicative, then the Dirichlet convolution of these two functions is a27

multiplicative function (see Apostol [9]).28

In regards to probability theory, the Fourier convolution extends to measures. In-29

cluded in this, the Fourier transform also extends to measures, and the Fourier transform30

of a measure is often called the characteristic function of the probability measure. It can31

be shown that if two probability measures have the same characteristic functions, then the32

underlying measures are equal. We can gain information on a characteristic function that33

is not obvious when analysing the measure directly. For example, it can be shown that34

if a sequence of characteristic functions converges pointwise to a characteristic function,35

then the underlying sequence of probability measures converges weakly to the probabil-36

ity measure corresponding to the limiting characteristic function (see Billingsley [13]).37

In fact, it is shown that the converse is true. That is to say, a sequence of measures con-38

verges weakly to a measure if and only if it is the corresponding sequence of characteristic39
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functions converges pointwise to the Fourier transform of the limiting measure. Further-1

more, certain statements about independent random variables can instead be written in the2

language which involves convolutions of distribution functions (see Lamperti [64]).3

Convolutions have been studied for their own interest. One such concept which uni-4

fies several convolution formulas is the so-called ϕ-convolution which was analysed by5

Nhan et al. [75]. More specifically, the Fourier and Mellin convolution formulas over6

the n-dimensional Euclidean space are special cases of the ϕ-convolution formula. Un-7

like many other convolution operations, the ϕ-convolution has been studied without an8

associated discrete or integral transform. In this paper, several inequalities of convolu-9

tions on Lp spaces were presented. Such results determined in the paper were applied to10

the Bernoulli-Euler beam equation, which is a fourth-order differential equation which11

measures the vertical deflection of an infinite beam. Further applications of convolution12

products and Lp norm inequalities can be found in Nhan & Duc [73].13

The ϕ-convolution can be thought of as a generalisation of the Fourier convolution.14

A new convolution formula was obtained by Saitoh [87] which involves functions belong-15

ing to different weighted Lp spaces where p is held constant. Applications of Hölder’s16

inequality and Fubini’s Theorem are used to derive this inequality. The inequality has17

been applied in various ways. In Nhan & Duc [74], this inequality as well as further in-18

equalities are presented and then applied to the heat and wave equations. Further convo-19

lution inequalities have been derived which do not consider the Fourier convolution as the20

underlying product. The Mellin convolution product is considered in Nhan & Duc [72].21

Here, suppose that one is given two weight functions ρ1 and ρ2, and another weight func-22

tion ρ which is related to the Mellin convolution of the ρ j functions where j ∈ {1,2}.23

Assume Fj ∈ Lp(ρ j), then the Mellin convolution is in Lp(ρ) and the Lp(ρ) norm of the24

convolution of the Fj functions is bounded by the multiplication of the Lp(ρ j) norm of the25

Fj functions. Castro & Saitoh [20] introduced several convolutions which included dif-26

ferent kinds of translations, as well as complex conjugation of the underlying functions.27

The proofs of these new convolution inequalities was based off the theory of reproduc-28

ing kernels (see Aronszajn [10]). Further inequalities were derived in Jain & Jain [57].29

A combination of these convolution formulas, as well as the ϕ-convolution is given in30

Duc & Nhan [30], and a proof involving the sum of these convolution formulas and an31

upper bound for the norm of this sum is presented.32

1.2 Discrete transforms: an alternative approach33

It was hinted at previously that discrete transforms are considered mappings from se-34

quences to sequences. More specifically, a discrete transform maps functions defined on35

countable spaces to functions defined on countable spaces. For our purposes, we will con-36

sider discrete transforms to be operators which map functions defined on countable spaces37
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to functions defined on some uncountable subset of the complex plane. More specifically,1

the types of discrete transforms we will analyse will be analogous to either a Z-transform2

or a generalised Dirichlet series.3

1.2.1 Z-transform4

The Z-transform is a discrete transform which takes functions defined on the integers to5

a function defined on some subset of the complex plane. The subset of the plane the6

transformed function is defined on is often considered to be an open ball, the complement7

of a closed ball or an annulus. For example, when considering the Z-transform of a causal8

function, that is a function that is zero when its argument is less than zero, then the set in9

which the transformed function is defined on can be taken to be the complement of some10

ball in the complex plane (see Poularikas [81]).11

In terms of applications, the Z-transform has been used to determine the solution12

to linear difference equations with periodically time-varying coefficients (see Jury [58]).13

This includes the class of linear difference equations with constant coefficients. Despite14

being a linear operator, the Z-transform has found applications in nonlinear difference15

equations. Jury & Pai [60] applied the Z-transform to a certain class of nonlinear differ-16

ence equations. More specifically, the nonlinear difference equations could be written as17

a linear and a nonlinear component which was autonomous. The nonlinear component18

contains terms of the dependent variable of degree two and higher. Furthermore, the dif-19

ference equation which the Z-transform was applied to in [60] was assumed to have an20

asymptotically stable equilibrium point and the nonlinear component was assumed to be21

analytic in its variables around the equilibrium point. In regards to difference equations,22

the Z-transform has found further applications when determining the solution to linear23

difference-differential equations and the so-called double Z-transformation has been ap-24

plied to partial difference equations (see Jury [59]).25

A relationship between the Laplace transform and the Z-transform can be found in26

Grove [42]. Similarly to how the Laplace transform finds applications in probability27

theory in the moment generating function, the Z-transform appears in probability theory28

through the concept of a generating function. Examples of generating functions can be29

found in Knuth [63]. Through the use of a substitution, the Z-transform can be shown to30

be almost identical to the discrete-time Fourier transform.31

The Z-transform has also found applications in the analysis of electrical signals. It32

was shown in Lynn [67] that a linear time-invariant system can be represented by a linear,33

autonomous difference equation which consists of two dependent variables. The inverse34

transform is helpful when given a transfer function, which is the ratio of the Z-transform35

of the output signal to the Z-transform of the input signal. The transfer function is exactly36

the Z-transform of the impulse response. In [67], an example of a transfer function of37
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order two is given and the inverse Z-transform is applied to this function to obtain an1

equation for the signal in the original time domain.2

1.2.2 Dirichlet series3

The Dirichlet series is a way to transform sequences to complex functions that has found4

many uses in number theory. As mentioned previously, its use provides an elementary5

proof of the Möbius Inversion Theorem. Existence conditions for the Dirichlet series are6

well known. For example, it can be shown if the Dirichlet series exists for a complex7

number s, then the Dirichlet series exists for every complex number in the plane such that8

its real part is greater than or equal to Re(s) (see Hardy [49]). In [49], further properties9

are shown about the region in which a given Dirichlet series is defined on. Examples10

include the constant σ such that the series converges when the real part of its argument is11

greater than σ and diverges when the real part is less than σ . This is under the assumption12

that the Dirichlet series does not converge everywhere. A proof showing that two Dirichlet13

series are equal in a half plane implies the two underlying sequences are equal can be14

found in Serre [90].15

A special case of the Dirichlet series are the L-functions, which are the Dirichlet16

series of a character modulo k. Given the character is the Dirichlet character modulo17

1, the character function is the constant one function, then the L-function reduces to the18

well-known Riemann zeta function. It is possible to write the L-functions as a linear19

combination of Hurwitz zeta functions (see Apostol [9]). The L-functions have found20

applications in number theory. Suppose one is given any two nonnegative integers n and21

m such that their greatest common divisor is 1. Through the use of the L-functions, it can22

be shown that an infinite amount of primes occur in the arithmetic progression with initial23

term n and common difference m (see Ireland & Ross [53]). Applying techniques from24

complex analysis, it is possible to apply an analytic continuation to the L-functions such25

that they are defined on the negative integers. Simple techniques which give an analytic26

continuation of the Riemann zeta function can be found in Goss [39]. The L-function27

evaluated at the negative integers are directly related to the generalised Bernoulli numbers28

(see Iwasawa [55]). More specifically, given a natural number n and a Dirichlet character,29

the Dirichlet L-function associated with the Dirichlet character evaluated at (1−n) is the30

ratio of the nth generalized Bernoulli number associated with the Dirichlet character to31

−n.32

1.3 Structure of the thesis33

The purpose of the work in this thesis is to examine a class of discrete and integral trans-34

forms with logarithmic separable kernels. Some integral transforms which have logarith-35
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mic separable kernels include the Fourier transform, the Laplace transform and the Mellin1

transform. We show that various concepts associated with the Fourier transform which2

have been thoroughly studied have analogous versions for any integral transform with a3

logarithmic separable kernel. Topics such as the convolution formula also extend to dis-4

crete transforms with logarithmic separable kernels, which we analyse in this thesis. The5

work presented here provides an alternative framework for deriving general results about6

a class discrete and integral transforms.7

In Chapter 2, we introduce the prerequisites which are required to understand the8

work in this thesis. We start with introducing the Axiom of Choice in set theory and9

derive some of its implications which turn out to be equivalent to the Axiom of Choice.10

Further concepts introduced are the Fourier transform which is done with the purpose of11

introducing the reader to integral transforms as well as convolution products. Further-12

more, we present the required topology and measure theory background which includes13

Fréchet spaces, distributions, complex measures and the total variation of a measure. We14

finish the section by introducing a new class of discrete and integral transforms as well as15

a type of weighted Lp space which will become particularly important in Chapters 4 and16

5.17

In Chapter 3, we analyse a more general class of integral transform than that defined18

in Chapter 2. The so-called shifting and convolution properties are introduced and a link is19

shown between the two through formal calculations. The shifting property is established20

for the purposes of simplifying computations when transforming the convolution of two21

functions. Conditions are presented which show when the convolution of two functions22

exists almost everywhere. Moreover, conditions which guarantee the convolution of two23

functions is continuous are given. Sufficient conditions in which the integral operators are24

injective are given and a proof is derived. Furthermore, by restricting the class of integral25

transforms, we give a proof of an inversion formula for our class of integral transforms.26

An application is given to second-order differential equations and our analytical solutions27

are compared to numerical results derived using software.28

In Chapter 4, the class of discrete and integral transforms that was formulated in29

Chapter 2 is analysed. We start by proving certain properties of the range of the discrete30

and integral operators. Such properties include the transformed functions being bounded31

and continuous given the underlying function is an element of the weighted L1 space32

given in Chapter 2. As the shifting property also extends to discrete transforms, we sub-33

stantiate that the shifting property is related to the convolution property and sufficient34

conditions are given such that the shifting property is satisfied. Following this, the con-35

volution operation is shown to be a binary operation on the weighted L1 space. Examples36

of convolution formulas for specific transforms are given. It is then established that the37

discrete operators defined are injective on the weighted L1 space introduced in Chapter 2.38

This is then used to give an elementary proof that the convolution operation satisfies the39
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properties of a commutative ring given the corresponding transform is discrete. Another1

proof showing that the convolution operation is commutative, associative and distributes2

over the addition is given when the underlying transform is an integral transform. The3

results are all unified when it is shown that the weighted L1 space introduced in Chapter 24

is a commutative Banach algebra and the discrete and integral transforms are continuous5

homomorphisms between Banach algebras.6

In Chapter 5, further properties of the convolution are determined, specifically in7

the case where the underlying transform is an integral transform. This includes deriving8

properties of the support of the convolution of two functions, as well as showing the con-9

volution is a binary operation on the set of continuous functions with compact support.10

The convolution operation is then extended to distributions. We define our general convo-11

lution formula between a distribution and a smooth function with compact support to be12

a function whose domain is some set depending on the underlying function with compact13

support. Basic properties of this new function are shown including the function being14

defined on an open set and the function being smooth. Certain properties of our class of15

integral transforms are highlighed and these are used to define our integral transforms on16

distributions. The set of complex Borel measures is analysed in this chapter. The convo-17

lution is then defined between two measures. It is shown that the set of Borel measures18

is a commutative Banach algebra where the convolution is the underlying product. It will19

be shown that the inclusion map from our weighted L1 space to the set of complex Borel20

measures is a homomorphism, and the image of this inclusion map is an ideal in the set21

of complex Borel measures. We show how the set of Borel measures provides a way of22

embedding the weighted L1 space into an algebra which contains a unit, namely the Dirac23

measure at a specific point.24

In Chapter 6 we offer some concluding remarks, as well as state various further areas25

where our results can be applied. This includes the work in Chapter 3, where the class26

of transforms can be applied to certain integral equations. An alternative definition of27

an integral transform of a distribution is given, and a justification for this new definition28

is presented. An example where the Fourier convolution is applied to probability theory29

are highlighted here, and a potential area where our analysis of complex Borel measures30

could be applied is discussed.31



Chapter 21

Preliminaries and fundamental2

information3

It is assumed the reader is familiar with the basic principles of analysis, such as various ε-4

δ arguments, uniform continuity, pointwise convergence, uniform convergence, Cauchy5

sequences and Riemann integration. We make the further assumption that the reader is6

familiar with abstract measure spaces, as well as integration with respect to measures,7

particularly the Lebesgue and the counting measures. Certain concepts in measure the-8

ory that are assumed knowledge include the Monotone Convergence Theorem and the9

Dominated Convergence Theorem, as such they will not be explicitly stated here. How-10

ever, we will introduce various ideas in measure theory which the author believes are less11

well-known. It is expected the reader is familiar with concepts in complex analysis. These12

concepts include general facts about holomorphic functions, contour integraion, Cauchy’s13

Integral Formula, and Morera’s Theorem. While the reader has certainly been introduced14

to set theory, for the sake of completeness, we will recall some set theoretic properties.15

2.1 Set theory16

It is assumed that the reader has seen elementary set theory. The concepts introduced here17

will become relevant when discussing nets in Section 2.3.1 and when showing nonmea-18

surable sets exists in Section 2.5.1. First, some terminology is introduced to make sense19

of expressions of the form {Xα}α∈A.20

Definition 1. Let X be a nonempty collection of sets. An indexed family of sets is the21

image of a surjective function g : A → X, known as the indexing function. Here, A is22

called the index set. Given g(α) = Xα , we will denote the range of g by {Xα}α∈A.23

The above definition lets us write a nonempty collection of sets X as {Xα}α∈A given24

we can define a surjective function from some set A to X. As this is always possible if25

we let A = X and let g be the identity function, we will from now on write a nonempty26

15
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collection of sets as {Xα}α∈A. For the sake of clarity we inform the reader that the work1

in this thesis is based off the assumption that the Axiom of Choice is true.2

Assumption (the Axiom of Choice). The Cartesian product of a nonempty collection of3

nonempty sets is nonempty.4

In mathematical notation, this means that if A is nonempty and Xα is nonempty for5

every α ∈ A, then6

∏
α∈A

Xα (2.1)

is nonempty. Recall that when A infinite, the Cartesian product of a nonempty collection
of sets is defined to be the set of all functions of the form

x : A →
⋃

α∈A

Xα

such that x(α) ∈ Xα for every α ∈ A.7

There are several formulations of the Axiom of Choice. The reason for starting with8

this assumption is that this axiom is easier to comprehend as opposed to other formula-9

tions. We will use an equivalent formulation of this axiom in this thesis.10

Proposition 2. Suppose the Axiom of Choice is true. Then for any nonempty set X, there11

exists a function f : P(X)\{ /0}→ X such that f (Y )∈Y for every Y ∈P(X)\{ /0}, where12

P(X) denotes the power set of X.13

Proof. Let g : P(X)\{ /0}→P(X)\{ /0} be the identity function. This turns {Y}Y∈P(X)\{ /0}

into an indexed family of sets. By the Axiom of Choice, the Cartesian product of these
sets is nonempty. That is, there exists a function

f : P(X)\{ /0}→
⋃

S∈P(X)\{ /0}
S

such that f (Y ) ∈Y for every Y ∈ P(X)\{ /0}. As the union of all nonempty subsets of X14

is just X , this completes the proof.15

Definition 3. A function defined as in Proposition 2 is known as a choice function on X .16

We note that if Y is a subcollection of sets in P(X) \ { /0}, then f |Y is a function17

defined on Y such that f (Y ) ∈ Y for every Y ∈ Y. While it will not be proven here, it18

should be highlighted that Proposition 2 is equivalent to the Axiom of Choice. It can19

be shown that Proposition 2 implies that Zorn’s Lemma is true, which in turn implies20

the Well Ordering Principle is true (see Halmos [45]). That is, if Zorn’s Lemma is true,21

then every set X can be equipped with a total order such that every subset of X has a22

smallest element. It is straightforward to show the Well Ordering Principle implies the23
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Axiom of Choice. Indeed, if {Xα}α∈A is an indexed family of sets, where A and each1

Xα is nonempty, observe that ∪α∈AXα can be well ordered. Let x be a function defined2

on A such that x(α) is the smallest element of Xα . As this is a well-defined function, we3

have that the Cartestian product of {Xα}α∈A is nonempty. From here, we can see that the4

Axiom of Choice is equivalent to Proposition 2.5

We highlight for the benefit of the reader that the Axiom of Choice becomes relevant6

when defining our weighted L1 space in Section 2.6. The relevance will occur because we7

will only consider Borel functions in our weighted L1 space. This is due to the fact that the8

Axiom of Choice is used to show the existence of non-measurable sets. In fact, the Axiom9

of Choice is required to show the existence of sets which are not Lebesgue measurable10

(see Solovay [93]). Moreover, Solovay showed that the Axiom of Countable Choice, to-11

gether with the other axioms of Zermelo-Fraenkel set theory do not posses the necessary12

assumptions to create a non Lebesgue measurable set. Furthermore, if sets which are not13

Lebesgue measurable exist, then it is possible to show that the composition of Lebesgue14

measurable functions is not necessarily Lebesgue measurable. Since our new convolution15

formula will consist of the product of several functions, one of these underlying func-16

tions consists of the composition of two functions, we restrict the functions which will be17

transformed and convolved to Borel functions.18

The Axiom of Choice also becomes relevant when we discuss the topological pre-19

requisites. More specifically, when nets are introduced, a choice function will be used20

to define a net which converges. This serves the purpose of giving the reader a concrete21

example of a net which does not reduce to a sequence.22

2.2 The Fourier transform23

Definition 4. The Fourier transform is an operator taking f to the function F{ f}, where
F{ f} is defined by

F{ f}(ω) =
∫
Rn

e−2πi⟨ω,x⟩ f (x)dλ (x).

Here, we impose that ω ∈ Rn and ⟨·, ·⟩ is the standard inner product on Rn.24

Let λ denote the Lebesgue measure on Rn. It is straightforward to show that f being25

a function in L1(λ ) is a sufficient condition for F{ f} to exist almost everywhere on Rn.26

Definition 5. We say a function f vanishes at infinity if for every ε > 0, the set27

{x : | f (x)| ≥ ε} (2.2)

is compact.28

Example 6. Let f : [1,∞)→ R be defined by f (x) = 1/x. Fix ε > 0. If ε > 1, then the
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set in (2.2) is empty. Suppose 0 < ε ≤ 1, we have{
x ∈ [1,∞) :

1
x
≥ ε

}
=

[
1,

1
ε

]
.

So f is a function which vanishes at infinity.1

It should be noted for f ∈ L1(λ ), we have F{ f} ∈ C0(Rn;C), where C0(Rn;C)2

denotes the space of all complex-valued, continuous functions defined on Rn which vanish3

at infinity.4

Definition 7. The inverse Fourier transform is an operator F−1 defined by the following
formula

F−1{ f}(x) =
∫
Rn

e2πi⟨ω,x⟩ f (ω)dλ (ω).

It is important to note that the space L1(λ ) is not closed under multiplication. If we
let f be the function defined by f (x) = x−1/2χ (0,1)(x), then f ∈ L1(λ ). The function χE

is the characteristic function on E and is defined pointwise by

χE(x) =

{
1 if x ∈ E,

0 if x /∈ E.

However, f 2 is defined by f (x)2 = x−1χ (0,1)(x) which is not in L1(λ ). We require a new5

operation, which varies from addition, which is a binary relation on L1(λ ).6

Definition 8. Suppose that f ,g ∈ L1(λ ). The Fourier convolution of f and g is defined7

by8

( f ∗g)(x) =
∫
Rn

f (x−u)g(u)dλ (u). (2.3)

It is a well-known result that L1(λ ) is a commutative Banach algebra (see Rudin
[84]). We remind the reader that a Banach algebra is a Banach space that is also an
algebra whose elements satisfy the following

|| f g|| ≤ || f || · ||g||.

Part of showing L1(λ ) is a Banach algebra is showing the convolution operation is a9

binary relation on L1(λ ). This is evident from the fact that u 7→ f (x−u)g(u) is Lebesgue10

measurable due to the Lebesgue measure being a translation invariant measure. A proof11

involving Fubini’s Theorem shows that the formula in (2.3) exists almost everywhere12

on Rn (see Rudin [84]). It is worth pointing out that this is the most we can say for a13

general f and g in L1(λ ). We can not guarantee that the formula in (2.3) is defined almost14

everywhere on Rn. To see why this distinction is important, we will present an example15

from Apostol [8].16
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Example 9. Let n = 1 and consider the following functions

f (x) =
1√
x
χ (0,1)(x), g(x) =

1√
1− x

χ (0,1)(x).

An elementary computation shows that∫
R

f (x)dλ (x) = 2,
∫
R

g(x)dλ (x) = 2.

Now, if we convolve f and g and evaluate this function at x = 1, then this yields

( f ∗g)(1) =
∫
R

1√
1−u

χ (0,1)(1−u)
1√

1−u
χ (0,1)(u)dλ (u)

=
∫ 1

0

1
1−u

dλ (u). (2.4)

Note that the integral in (2.4) is not finite. Hence f ∗g does not define a complex-valued1

function on the whole of R.2

We also note that the Fourier transform is an isomorphism between the algebra L1(λ )

and some subalgebra of C0(Rn;C). More specifically, the Fourier convolution is defined
such that for every f ,g ∈ L1(λ ), we have

F{ f ∗g}= F{ f}F{g}.

It is important to recognise that the Fourier transform is also an algebra isomorphism from3

L1(Rn,B,λ ) to some subalgebra of C0(Rn;C), where B denotes the Borel σ -algebra on4

Rn. This will be important when examining a broader class of discrete and integral trans-5

forms and weighted L1 spaces in which these transforms are defined on. More specificaly,6

in Chapter 4, a convolution formula will be presented which makes sense given the un-7

derlying functions are Borel measurable. However, the formula may not be defined if the8

functions being convolved are Lebesgue measurable.9

The Fourier transform has other elegant properties, for example, it is a unitary map10

on L2(λ ). That is, F : L2(λ )→ L2(λ ) is a bijection which preserves the inner product.11

One other important property is that the Fourier transform is an isomorphism from the12

collection of Schwartz functions to itself. The Schwartz functions are specifically the13

class of infinitely differentiable functions which vanish faster than any polynomial. We14

introduce our class of discrete and integral transforms in Section 2.6, and then extend the15

integral transforms to distributions in Section 5.2. It will then be highlighted the elegance16

of a transform being an automorphism on some space. That is, the transform being an17

isomorphism where the domain and range are the same space.18
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2.3 Topological prerequisites1

We assume the reader is already familiar with concepts such as topological spaces, con-2

tinuous maps between topological spaces, sequences and compactness. We now introduce3

the topological prerequisites which become vital when studying distributions in Chapter4

5.5

2.3.1 Nets6

Definition 10. A directed set is a set A with a binary relation ⪯ which has the following7

properties:8

(i) x ⪯ x for every x ∈ A;9

(ii) For every x,y,z ∈ A, if x ⪯ y,y ⪯ z then x ⪯ z;10

(iii) For every x,y ∈ A, there exists z ∈ A such that x ⪯ z and y ⪯ z.11

It is important to recognise the need for assumption (iii). If the assumption were12

relaxed to say that for every x ∈ A there is a y ∈ A such that x ⪯ y, then y = x suffices.13

Also, it will be convenient to use the notation y ⪰ x which is equivalent to x ⪯ y.14

We now introduce the concept of a net, which generalises the concept of a sequence.15

Definition 11. A net in a topological space X is a mapping x : A → X from a directed set16

into X , where we often denote the term x(i) by xi.17

Much like in the case for sequences, we will sometimes denote a net by its range. We18

say a net x = {xa} converges to x0 if for every open set U containing x0, there exists b ∈ A19

such that a ⪰ b implies xa ∈ U . We now highlight how convergent nets are a nontrivial20

generalisation of convergent sequences.21

Example 12. Let A be the collection of all open subsets of R that contain 0. We will22

order A by reverse inclusion. That is to say for a,b ∈ A, a ⪰ b if and only if a ⊆ b. By the23

typical rules of set theory, A is a directed set. Now, by the Axiom of Choice, there exists24

a choice function on R, and we will denote its restriction to A by x. We will show this net25

converges to 0.26

Let U be an open set containing 0. By definition, we have U ∈ A. Let V ∈ A such27

that V ⪰U , or equivalently, V ⊆U . The function x is the restriction of a choice function28

to A, so x(V ) = xV ∈ V ⊆ U . This shows for every open set U containing 0, there exists29

b =U ∈ A such that V ⪰U implies xV ∈U . Hence the net x converges to 0.30

This concept is an appropriate generalisation of sequences in a topological space.31

This is apparent as if f : X → Y is a map between topological spaces and {xa} is any net32

in X which converges to x0, then { f (xa)} converges to f (x0) if and only if f is continuous33
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at x0. We show that it is not necessarily true if xn → x implies f (xn) → f (x) for every1

sequence {xn}, then f is continuous.2

Let f : X → Y be a map where U ⊂ X is open if and only if X\U is countable. We
assume X is an uncountable set. Let the topology on Y be the power set on Y . Now,
let Y = X and f (x) = x. Let {xn} be a sequence in X which converges to x. Since
{xn} converges in x, it is necessary that {xn} is eventually constant. If we assume it is
not eventually constant, then X\Im(xn)∪{x} is an open set which contains x and no xn

whenever xn ̸= x. We note that this set is open due to the fact that Im(xn) is a countable
set. Therefore, we must have that {xn} is eventually constant. Because of this, we deduce
that

f (xn) = xn → x = f (x).

That is, for every sequence {xn} which converges to x, the sequence { f (xn)} converges
to f (x). Consider the preimage of the set {x} under f . That is, the set

f−1({x}) = {x}

which is not open in X . Therefore f is not continuous despite being sequentially continu-3

ous.4

We will now show if for every net {xa} which converges to x, the net { f (xa)} con-5

verges to f (x), then f is continuous at x. We state for the sake of clarity that for a set6

S ⊆ X , So is the union of all open sets U such that U ⊆ S and S is the intersection of all7

closet set C such that S ⊆C.8

We will establish the contrapositive, that is, if f : X → Y is not continuous at x then9

there exists a net {xi} which converges to x such that f (xi) ̸→ f (x). Since f is not continu-10

ous at x, there exists a neighbourhood U of f (x) such that f−1(U) is not a neighbourhood11

of x. So x /∈ ( f−1(U))o which implies x ∈ f−1(Y\U). Observe it is not possible that12

x ∈ f−1(Y\U), as this would imply that f (x) /∈ U . So x is an accumulation point of13

f−1(Y\U). Let A be the directed set of all neighbourhoods of x ordered by reverse inclu-14

sion. Consider any net defined on A which sends V ∈A to a point in (V\{x})∩ f−1(Y\U).15

It is evident that {xV} is a net in f−1(Y\U) which converges to x. However, f (xV ) /∈U ,16

so f (xV ) ̸→ f (x).17

2.3.2 Topological vector spaces18

In the previous section, we introduced open sets. For the sake of revision, we introduce19

the concepts of a ‘neighbourhood base’ and a ‘first-countable topological space’.20

Definition 13. Let X be a topological space. A neighbourhood base at a point x ∈ X is a21

collection N (x) of open sets such that22

(i) V ∈ N (x) implies x ∈V ;23
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(ii) for every open set U containing x, there exists V ∈ N (x) such that V ⊆U .1

Example 14. Let P(X) be the collection of all subsets of some nonempty set X , turning2

X into a topological space. If N (x) is the collection of all sets containing x, then N (x)3

is a neighbourhood base at x. Another neighbourhood base at x is the set {{x}}.4

Definition 15. A topological space X is first-countable if for every point x ∈ X , there5

exists a countable neighbourhood base at x.6

Example 16. Consider the standard topology on R and fix x ∈ R. Define

N (x) =
{

B
(

x;
1
n

)
: n ∈ N

}
,

where B(x;ε) = {y ∈ R : |y − x| < ε}. By the definition of N (x), every V ∈ N (x)7

contains x. Now, for every open set U containing x, there exists some ε > 0 such that8

B(x;ε) ⊆ U . By choosing N ∈ N such that N > 1/ε , we guarantee that the inclusion9

B(x;1/N)⊆ B(x;ε)⊆U holds. Hence N (x) is a neighbourhood base for x. Therefore R10

is a first-countable space.11

Definition 17. A topological vector space is a vector space over a field such that the maps12

of addition and scalar multiplication are continuous.13

Definition 18. Let V be a vector space over a field F, where F is either R or C. A14

seminorm is a map p : V → [0,∞) which satisfies the following properties:15

(i) p(x+ y)≤ p(x)+ p(y) for every x,y ∈V ;16

(ii) p(cx) = |c|p(x) for every x ∈V,c ∈ F.17

Suppose that P is a family of seminorms. Then we define the topology on V to be18

that where the sets19

Ux,p,ε = {y ∈V : p(y− x)< ε} (2.5)

are a subbasis for the topology given p ∈ P and ε > 0. Any vector space with this20

topology is a topological vector space.21

Example 19. Let S : V ×V → V be defined by S(x,y) = x + y. Fix (x0,y0) ∈ V ×V

and let W be a neighbourhood of S(x0,y0) = x0 + y0. There exists some set Ux0+y0,p,ε

such that Ux0+y0,p,ε ⊆ W . Observe that Ux0,p,ε/2 ×Uy0,p,ε/2 is an open set in V ×V . If
(x,y) ∈Ux0,p,ε/2 ×Uy0,p,ε/2, we have

p((x+ y)− (x0 + y0))≤ p(x− x0)+ p(y− y0)< ε.

That is to say
S(Ux0,p,ε/2 ×Uy0,p,ε/2)⊆Ux0+y0,p,ε ⊂W.
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To summarise, for every neighbourhood W of S(x0,y0), there exists a neighbourhood U1

of (x0,y0) such that S(U) ⊆ W . So S is continuous at (x0,y0). As (x0,y0) ∈ V ×V was2

arbitrary, we deduce that S is continuous on V ×V.3

Now, suppose that V is a vector space over F and let T : V →V be defined by T (v) =

cv, where c ∈ F. Consider the case where c ̸= 0. Fix x0 ∈V and let W ⊆V be an open set
such that cx0 ∈ W . Since W is an open set, there exists some open set Ucx0,p,ε such that
Ucx0,p,ε ⊆W . Observe that x0 ∈Ux0,p,ε/|c|. Let x ∈Ux0,p,ε/|c|, we deduce that

p(T (x)−T (x0)) = p(cx− cx0)≤ |c|p(x− x0)< ε.

So T (Ux0,p,ε/|c|)⊆Ucx0,p,ε ⊆W . If c= 0, then T is a constant map. Hence T is continuous4

and V is a topological vector space.5

The concept of ‘completeness’ extends to topological vector spaces.6

Definition 20. A net {xa} in a topological vector space V is called a Cauchy net if the net7

x : A×A →V defined by x(a,b) = xa−xb converges to 0, where (a1,b1)⪯ (a2,b2) if and8

only if a1 ⪯ a2 and b1 ⪯ b2.9

We now prove a result which reduces the problem of determining if all Cauchy nets10

converge in a space to checking if all Cauchy sequences converge in a space.11

Theorem 21. Let V be a first-countable topological vector space in which all Cauchy12

sequences in V converge in V . Then every Cauchy net in V converges in V .13

Proof. Let {xa − xb} be a Cauchy net in V . Let {N0, j : j ∈ N} be a countable neighbour-14

hood base for the point 0, where N0, j+1 ⊆ N0, j for every j ∈N. Then for every N0,n, there15

exists (a′,b′) ∈ A×A such that (â, b̂) ⪯ (a,b) implies xa − xb ∈ N0,n. Choose k(n) ∈ A16

such that a′ ⪯ k(n) and b′ ⪯ k(n), which is possible as A is a directed set. Since x is a17

Cauchy net, for every a,b ⪰ k(n) the following holds:18

xa − xb ∈ N0,n. (2.6)

By the way the neighbourhood base for 0 has been constructed, the inclusion N0,m ⊆ N0,n19

holds for every n < m. Moreover, the previous discussion showed that we can define a20

sequence k : N→ A such that k(n) ⪯ k(m) for n < m and if a,b ⪰ k(n) then (2.6) holds.21

From here we see that if n,m ≥ M, then22

xk(n)− xk(m) ∈ N0,M. (2.7)

So the sequence that we have constructed, {xk(n)}, is a Cauchy sequence in V . Therefore23

{xk(n)} converges to some value x ∈V . Now, let U be an open set containing x. Since the24

maps (x0,y0) 7→ x0 + y0 and x0 7→ (x0,y0) are continuous, it follows that the translation25
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map τx : V → V , where τx(y) = x+ y, is continuous. Since τ−1
x = τ−x, the map τx is a1

homeomorphism. This implies that τ−x(U) =U − x is an open set which contains 0.2

We know that the addition map is continuous. A consequence of this is that the set
{(a,b) ∈V ×V : a+b ∈U −x} is open. So there are open sets in V containing 0, say W1,
W2 such that

W1 ×W2 ∈ {(a,b) ∈V ×V : a+b ∈U − x}.

This implies that W1 +W2 ⊆ U − x. As W1 and W2 are open sets which contain 0, there
exists M ∈ N such that N0,M ⊆ W1 ∩W2. Since N0,M + x is an open set containing x and
{xk(n)} converges to x, there exists M′ ∈N such that n ≥ M′ implies xk(n) ∈ N0,M +x. This
in turn gives us xk(n)−x ∈ N0,M for n ≥ k(M′). Choose R = max{M,M′}. For a ⪰ k(R),it
is evident from (2.6) and (2.7) that

xa = (xa − xk(R))+(xk(R)− x)+ x ∈ N0,M +N0,M + x.

Since the inclusion N0,M +N0,M + x ⊆ W1 +W2 + x ⊂ U holds, it follows a ⪰ k(R) then3

xa ∈ U . Recall that U was an arbitrary set containing x, so the net {xa} converges to x.4

This completes the proof.5

The previous result was essential due to the fact that a topological vector space is6

complete when all Cauchy nets converge. In Chapter 5, a first-countable topological7

vector space will be utilised and certain continuous functions will be defined which are8

related to these spaces. When considering if a sequence is continuous on a first-countable9

topological vector space, it is sufficient to determine if the sequential characterisation of10

continuity is satisfied, as opposed to using any arbitrary net.11

Suppose that P = {pm : m∈N}, that is to say, P is a countable family of seminorms.
The finite intersection of the sets

{x ∈V : pm(x− y)< 1/n}

form a countable neighbourhood base for y ∈V . If we denote12

Ux,m,ε = {y ∈V : pm(x− y)< ε} (2.8)

then it is sufficient to show that every set of the form

k⋂
j=1

Ux j,m j,ε j

which contains x also contains a finite intersection of sets of the form Ux,m,1/n. Choose n j
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such that 1/n j < ε j − pm j(x− x j). Then for y ∈Ux,m j,1/n j , there holds

pm j(y− x j)≤ pm j(y− x)+ pm j(x− x j)< ε j.

From here, we see that1

k⋂
j=1

Ux,m j,1/n j ⊆
k⋂

j=1

Ux j,m j,ε j . (2.9)

Hence the finite intersection of sets of the form Ux,m j,1/n j form a neighbourhood base for2

the topology of V at x. Therefore, with this topology, V is a first-countable topoogical3

vector space.4

2.3.3 The weak∗ topology5

Let V be a vector space over a field F, where F is either the real or complex numbers. We6

define the dual of V by V ∗ = Hom(V,F), where Hom(V,F) is the space of all linear maps7

from V to F. We highlight if V is a Banach space over F, the dual of V is instead defined8

by V ∗ = B(V,F). That is, the space of all bounded linear maps from V to F.9

Suppose now that V is a vector space. Consider the space V̂ of all maps x̂ : V ∗ → F,10

defined by x̂( f ) = f (x) for every f ∈ V ∗. We note that V̂ ⊆ (V ∗)∗. It is now possible to11

define the topology of pointwise convergence. The weak∗ topology on V ∗ is the weakest12

topology such that all maps in V̂ are continuous. We now show that this is the topology13

of pointwise convergence.14

Fix a net { fa} in V ∗. Assume { fa} converges to f . Since each x̂ is continuous, it
is evident that x̂( fa) → x̂( f ) for every x̂ ∈ V̂ . Therefore fa(x) → f (x) for every x ∈ V .
Now, suppose fa(x)→ f (x) for every x ∈ V . Let U be an open set containing f . By the
definition of the topology on V ∗, there exists x1, ...,xn ∈ V and open sets U1, ...,Un ⊆ F
such that

n⋂
i=1

x̂i
−1(Ui)⊆U.

Each Ui contains f (xi). Let ai be defined such that a ⪰ ai implies fa(xi)→ f (xi) for every15

i. Choose α such that α ⪰ ai for every i. We have that a ⪰ α implies fa ∈U . Therefore16

fa → f .17

Therefore, fa → f if and only if fa(x)→ f (x) for every x ∈V .18

2.3.4 Fréchet spaces19

For convenience we define N0 = N∪{0}. Fréchet spaces are introduced for the purpose20

of defining distributions. The Fréchet spaces we examine here will become relevant in21

Chapter 5. Particularly throughout Section 5.2.22
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Definition 22. A Fréchet space is a complete Hausdorff topological vector space whose1

topology is generated by countably many seminorms.2

By the previous discussion, every Fréchet space is first-countable, hence Theorem 213

applies. This simplifies calculations when considering continuous functions defined on4

Fréchet spaces. We give an example of a Fréchet space which will be of importance to us.5

Let I ⊊R be an open interval. We say a set is σ -compact if it is the countable union of6

compact sets. Since I is homeomorphic to the σ -compact set (−π/2,π/2), it follows that7

that I is σ -compact. If we redefine I such that I = [a,b) or I = (a,b], then I is once again8

σ -compact. We retain the assumption that I ⊊R. Recall that X◦ and X denote the interior9

and the closure of the set X respectively. As I is a locally compact Hausdorff space, there10

exists a sequence of compact sets {Fm} which are subsets of I such that Fm ⊆ F◦
m+1 for11

every m ∈ N and12

I =
∞⋃

m=1

F◦
m. (2.10)

Consider the space C∞
c (I;C) of all functions f : I → C which have compact support13

and are infinitely differentiable on I. Note that for every f ∈C∞
c (I;C), f and its derivatives14

of all orders are bounded. If F ⊆ I, we denote the space C∞
c (I,F ;C) to be all functions15

f ∈ C∞
c (I;C) where supp( f ) ⊆ F . Now, let F be a compact set. Consider the function16

|| · ||(n,m) : C∞
c (I,F ;C) → [0,∞) defined by17

|| f ||(n,m) = sup
x∈F∩Fm

| f (n)(x)|. (2.11)

For every (n,m) ∈ N0 ×N, the function || · ||(n,m) is a norm. So it is also a seminorm. We
let P = {|| · ||(n,m) : n ∈ N0,m ∈ N} and define the topology on C∞

c (I,F ;C) to be the one
generated by finite intersections of sets of the form U f ,(n,m),ε , where

U f ,(n,m),ε = {g ∈C∞
c (I,F ;C) : || f −g||(n,m) < ε}.

We guarantee the topology is not only generated by countably many seminorms, but it is
also Hausdorff. We see this by letting f ,g ∈C∞

c (I,F ;C), where f ̸= g. Then there exists
m ∈ N such that

supp( f )∪ supp(g)⊆ Fm ∩F.

By letting

ε =
|| f −g||(0,m)

2
> 0,

it is apparent that the open sets U f ,(0,m),ε and Ug,(0,m),ε are disjoint. We now show that for18

every compact F ⊆ I, the collection C∞
c (I,F ;C) is a Fréchet space.19

Theorem 23. Let F ⊆ I be a compact set. Then the space C∞
c (I,F ;C) is complete.20
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Proof. If inf(F) = supp(F), then C∞
c (I,F ;C) consists of the zero function which is com-

plete. So we may assume inf(F) ̸= supp(F). Let { f j} be a sequence in C∞
c (I,F ;C) which

is Cauchy. So for every ε > 0 and (n,m) ∈ N0 ×N, there exists N ∈ N such that i, j ≥ N

implies
fi − f j ∈U0,(n,m),ε .

This is equivalent to saying1

sup
x∈F∩Fm

|| f (n)i (x)− f (n)j (x)||= || fi − f j||(n,m) < ε. (2.12)

This shows that the sequence { f (n)j } is uniformly Cauchy on Fm, hence converges uni-
formly to some continuous function g(n,m) on Fm. Let gn : F → R be the function defined

by gn(x) = g(n,m)(x) when x ∈ F ∩Fm. The sequence { f (n)j } converges to gn uniformly on

F . For every n ∈N0, since supp( f (n)j )⊆ F for every j, we see that supp(gn)⊆ F . We will
show { f j} converges to some g ∈C∞

c (I,F ;C), where g(x) = g0(x) for x ∈ F and g(x) = 0
whenever x ∈ I\F . We define si = inf(F) and ss = sup(F). Fix ε ′ > 0. Choose N ∈ N
such that j ≥ N implies for every x ∈ F ,

| f (n)j (x)−gn(x)|<
ε ′

3
, | f (n−1)

j (x)−gn−1(x)|<
ε ′

2(ss − si)
.

From here the following holds for every x ∈ F ,∣∣∣∣gn−1(x)−gn−1(si)−
∫ x

si

gn(t)dt
∣∣∣∣

≤ |gn−1(x)− f (n−1)
j (x)|+ | f (n−1)

j (si)−gn−1(si)|+
∣∣∣∣∫ x

si

f (n)j (t)−gn(t)dt
∣∣∣∣< ε

′.

Since gn−1 is the integral of a continuous function, gn−1 is continuously differentiable2

on F . A simple induction proof from here shows that g ∈ C∞
c (I,F ;C). Therefore, the3

sequence { f j} converges to g in C∞
c (I,F ;C).4

2.4 Distributions5

We start by defining what it means for a sequence to converge in C∞
c (I,U ;R) where U ⊆ I6

is an open set. A sequence { f j} ⊆ C∞
c (I,U ;R) converges in C∞

c (I,U ;R) if there exists7

a compact set F ⊆ I such that for every j ∈ N, the supports of f j are subsets of F and8

f j → f in C∞
c (I,F ;R). Using this, it is possible to define continuity of a linear functional9

on C∞
c (I,U ;C). Let L : C∞

c (I,U ;C)→ C be a linear map. We call the map L continuous10

if for every compact F ⊆U , the map L|C∞
c (I,F ;R) is continuous. An (I,U)-distribution is a11

continuous linear functional on C∞
c (I,U ;C). We denote the space of (I,U)-distributions12
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by D ′(I,U ;C). We simply refer to these functionals as distributions when the underlying1

sets are clear. There will be times when L may denote either a function or a distribution.2

When L denotes a function, we will denote the function evaluated at the real number x as3

L(x). When L denotes a distribution, we will denote the distribution L evaluated at g by4

L[g].5

2.4.1 Linear maps on L1
loc(I,U)6

Recall the space L1
loc(I,U) of locally integrable functions denotes the space of all Les-

besgue measurable functions defined on I which are integrable on every bounded subset
F of U . We note that every f ∈ L1

loc(I,U) defines a distribution. More specifically, the
following holds for every g ∈C∞

c (I,U ;C)∫
I
| f (t)g(t)|dt ≤ ||g||∞

∫
supp(g)

| f (t)|dt < ∞.

Therefore, if f is a locally integrable, then we define f ∈ D ′(I,U ;C) by

f [g] =
∫

I
f (t)g(t)dt.

Now, assume U,V ⊆ I are open and X is a vector space such that X ⊆ L1
loc(I,U). Consider

two linear maps L : X → L1
loc(I,V ) and L̃ : C∞

c (I,V ;C)→C∞
c (I,U ;C), where∫

I
(L f )(t)g(t)dt =

∫
I

f (t)(L̃g)(t)dt.

Then we may extend the map to distributions. That is, L : D′(I,U ;C)→D′(I,V ;C), where

(L f )[g] = f [L̃(g)].

2.4.2 Fourier convolution of distributions and bump functions7

A similar theory of distributions is known for the real line. The Fourier convolution of
a distribution with a smooth function with compact support is defined using a similar
method to that when extending a linear map L : L1

loc(R,U)→ L1
loc(R,V ) to distributions.

We define a bump function to be the set of all smooth functions on R which have com-
pact support. In this subsection, when we say distribution we mean a continuous linear
functional on C∞

c (R;C), where continuity is defined in a similar way to that which was
introduced previously. A classic example of such a function is given by

f (x) =

e−
1

1−x2 if |x|< 1,

0 if |x| ≥ 1.
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We wish to define the Fourier convolution of a distribution and a function as a function1

defined on some open set. Before we define this, we introduce the set2

Vg = {x ∈ R : x− y ∈U for every y ∈ supp(g)}. (2.13)

We will eventually define the convolution involving distributions on Vg3

Theorem 24. Let g ∈C∞
c (R,U ;C), where U ⊆ R is an open set. Then Vg is an open set.4

Proof. Fix x ∈ Vg. As x− y ∈ U for every y ∈ supp(g), we may choose for every y ∈
supp(g) a number εy > 0 such that B(x − y;εy) ⊆ U . Throughout this proof, we will
frequently use the following facts

B(x+ y;ε) = B(x;ε)+ y, B(−x;ε) =−B(x;ε).

Observe that since B(x− y;εy) ⊆ U for every y ∈ supp(g), it is evident that B(y;εy) ⊆
−U + x for every y ∈ supp(g). A trivial consequence of this is

B
(

y;
εy

2

)
⊆−U + x.

Since {B(y;εy/2)} is an open cover of supp(g), there exists {y1, ...,yn} such that

supp(g)⊆
n⋃

i=1

B
(

yi;
εyi

2

)
⊆−U + x.

Now, let ε = min{εyi/2 : i = 1, ...,n}. Fix z ∈ supp(g) and let r ∈ B(z;ε). As z ∈ supp(g),
there exists i such that z ∈ B(yi;εyi/2). We have

|yi − r| ≤ |yi − z|+ |z− r|<
εyi

2
+ ε < εyi.

Recall that r ∈ B(z;ε) was arbitrary. A consequence of this is that B(z;ε) ⊆ B(yi;εyi).
Since z ∈ supp(g) was arbitrary, it can be seen that for every z ∈ supp(g):

B(z;ε)⊆
n⋃

i=1

B(yi;εyi)⊆−U + x.

This implies for every z ∈ supp(g),5

B(x;ε)− z ⊂U. (2.14)

Thus B(x;ε)⊆Vg. This completes the proof.6

Due to Theorem 24 it is possible to define the convolution of a distribution on the set7

of bump functions and a bump function in a natural way. Observe first if f ∈ L1
loc(R,U)8
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and g ∈C∞
c (R,U ;C), we have that the Fourier convolution exists everywhere on R. More1

specifically, if x ∈Vg, then2

( f ∗g)(x) =
∫
R

f (x− y)g(y)dy. (2.15)

By making a substitution, the convolution formula is equivalent to∫
R

f (y)g(x+ y)dy =
∫
R

f (y)(g◦ τx)(y)dy,

where τx is the translation map τx(y) = x+ y. From here, we see that if f ∈ D′(R,U ;C)
and g ∈C∞

c (R,U ;C), we may define the convolution of f and g as follows

( f ∗g)(x) = f [g◦ τx],

where f ∗ g is defined on Vg. A similar process will be used to define convolutions of3

distributions and smooth functions with compact support.4

As mentioned previously, the Fourier transform maps the space of Schwartz functions
to itself. As such we may define the Fourier transform on tempered distributions, which
are continuous linear functionals on S . If f is a tempered distribution, we define F{ f}
by

F{ f}[g] = f [F{g}].

For the sake of clarity, we highlight the importance that a tempered distribution is defined
on a space P, where F (P) ⊆ P. A classical example of a tempered distribution is the
Dirac distribution δa, where δa[ f ] = f (a). Observe that if f is a distribution with compact
support, then we may identity F{ f} with a C∞ function g, where g(ω) = f [x 7→ e−2πiωx].
This gives us

F{δa}(ω) = δa[x 7→ e−2πiωx] = e−2πiωa.

We note that this is the typical expression one derives for the Fourier transform of the
Dirac delta function when the following property is used∫

Rn
f (t)δa(t)dt = f (a).

2.5 Measure theory prerequisites5

2.5.1 Nonmeasurable sets6

In this subsection, the discussion regarding the Axiom of Choice becomes relevant. It is7

a well-known fact that if M denotes the Lebesgue measurable sets on R, then B, which8

denotes the Borel σ -algebra on R, is a proper subset of M . We will now prove that M is9
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a proper subset of the power set of R.1

Theorem 25. Let λ be the Lebesgue measure on R and let E ∈ M , where λ (E) > 0.2

Then there exists F ⊆ E such that F /∈ M .3

Proof. We will establish the contrapositive, that is, if every subset of a Lebesgue mea-4

surable set E is measurable, then λ (E) = 0. The proof will be similar to that given in5

Rudin [84]. Consider the quotient group R/Q and let f be a choice function on R. Let6

S = f (R/Q), so f (x+Q) ∈ x+Q for every x ∈ R. From elementary group theory, we7

have that the cosets of Q in R form a partition of R, so S contains one and only one8

element of each coset of Q in R. We now prove two properties of S:9

(P1) If p,q ∈Q are distinct, then (p+S)∩ (q+S) = /0;10

(P2) For every x ∈ R, x ∈ p+S for some p ∈Q.11

Let x ∈ (p+ S)∩ (q+ S), where p ̸= q. There exists y,z ∈ S with y ̸= z such that12

a = p+y = q+z. This implies that p−q = z−y ∈Q. Recall that S contains one and only13

one element from each coset of Q in R, and since y− z ∈ Q, it holds that y and z belong14

to the same coset, therefore y = z. Hence (p+S)∩ (q+S) = /0 and (P1) is proven.15

Now, fix x ∈ R. There exists a coset of Q in R which x lies in, say, x ∈ y+Q. Let16

z = f (y+Q) ∈ y+Q. As x and z lie in the same coset, we have x− z ∈ Q. We now see17

that if p = x− z, then x = (x− z)+ z ∈ p+S. Hence (P2) is true.18

Let r ∈Q and examine the subset Fr = E ∩ (r+S) of E. Let K ⊆ Fr be compact and
define the set

G =
⋃

p∈Q∩[0,1]
(p+K).

As G is bounded, G is a set of finite Lebesgue measure. Observe that K ⊆ Fr ⊆ r+S. This
implies that p+K ⊆ (p+ r)+S. By (P1),

(p+K)∩ (q+K)⊆ (p+ r+S)∩ (q+ r+S) = /0

for p ̸= q. Hence G is given by

λ (G) = ∑
r∈Q∩[0,1]

λ (K + r) = ∑
r∈Q∩[0,1]

λ (K),

as λ is translation invariant. Using the fact that G has finite measure, the only possible
value for λ (K) is 0. As K was an arbitrary compact subset of Fr, this gives us λ (Fr) = 0.
Observe by (P2) that

E = E ∩

(⋃
r∈Q

r+S

)
=
⋃

r∈Q
Fr.

Therefore λ (E)≤ ∑r∈Qλ (Fr) = 0. This completes the proof.19
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2.5.2 Complex measures1

Definition 26. A complex measure on a measurable space (X ,Ω) is a map µ : Ω → C2

satisfying the following properties:3

• µ( /0) = 0;4

• For every {En}∞
n=1 ⊆ Ω, where Ei ∩E j = /0 for i ̸= j, we have

µ

(
∞⋃

n=1

En

)
=

∞

∑
n=1

µ(En).

Recall if µ is a signed measure, then by the Jordan Decomposition Theorem,

µ = µ
+−µ

−,

where µ+ and µ− are mutually singular, positive measures. If f ∈ L1(µ) = L1(µ+)∩
L1(µ−), then we define the integral of f with respect to µ by∫

X
f dµ =

∫
X

f dµ
+−

∫
X

f dµ
−.

Now, suppose µ is a complex measure, that is, µ = µr + iµi, where µr and µi are real-
valued measures. If f ∈ L1(µ) = L1(µr)∩L1(µi), we define the integral of f with respect
to µ by ∫

X
f dµ =

∫
X

f dµr + i
∫

X
f dµi.

We now show an important result which will be crucial throughout our work.5

Lemma 27. Let µ,ν be measures on X, where ν ≪ µ and µ is a positive measure. Let6

f = dν/dµ . For every g ∈ L1(ν) and f g ∈ L1(µ), the following equality holds7 ∫
X

gdν =
∫

X
g f dµ. (2.16)

Proof. Observe for every E ∈ Ω, the measure ν can be represented as an integral as
follows ∫

E
1dν = ν(E) =

∫
E

f dµ.

A consequence of this is that the equation in (2.16) holds whenever g is a simple function.
Now, suppose g ∈ L1(ν) and let sn be a sequence of functions which converge pointwise
to g almost everywhere on X and |sn| ≤ |g|. By the Dominated Convergence Theorem,
the integral of g with respect to ν can be written as a limit. Namely∫

X
g dν =

∫
X

gdν
+
r −

∫
X

gdν
−
r + i

∫
X

gdν
+
i − i

∫
X

gdν
−
i



2.5. MEASURE THEORY PREREQUISITES 33

= lim
n→∞

(∫
X

sn dν
+
r −

∫
X

sn dν
−
r + i

∫
X

sn dν
+
i − i

∫
X

sn dν
−
i

)
= lim

n→∞

∫
X

sn dν

= lim
n→∞

∫
X

sn f dµ.

As |sn f | ≤ |g f | almost everywhere on X , another application of the Dominated Conver-
gence Theorem gives us∫

X
gdν = lim

n→∞

∫
X

sn dν = lim
n→∞

∫
X

sn f dµ =
∫

X
g f dµ.

This completes the proof.1

2.5.3 Total variation of measures2

We introduce another concept which will help us define a space in which a class of integral
transforms is defined on. If µ is a complex measure, the total variation of µ : Ω → [0,∞)

is the measure |µ|, where

|µ|(E) = sup

{
∞

∑
n=1

|µ(En)| : {En}∞
n=1 are pairwise disjoint and

∞⋃
n=1

En = E

}
.

It is easy to see that this expression guarantees that the total variation of a measure exists3

for every complex measure. However, it can be difficult to compute the specific value of4

the total variation of a measure from this formula. We introduce other functions on Ω and5

show these are equivalent. Define the maps µ̃ , µ on X in the following way:6

• µ̃(E) = sup
{∣∣∣∣∫E

f dµ

∣∣∣∣ : | f | ≤ 1
}

;7

• If dµ = f dν where ν is a positive measure, then dµ = | f |dν .8

Observe the set function µ is well defined. Suppose f1 dν1 = f2 dν2 and let ν = ν1 +ν2.9

By Lemma 27, the following equation holds10

f1
dν1

dν
= f2

dν2

dν
. (2.17)

Using the fact that the Radon-Nikodym derivative of ν j with respect to ν is nonnegative,
we deduce that

| f1|
dν1

dν
=

∣∣∣∣ f1
dν1

dν

∣∣∣∣= ∣∣∣∣ f2
dν2

dν

∣∣∣∣= | f2|
dν2

dν
.
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This gives us | f1|dν1 = | f2|dν2. To guarantee the existence of µ , observe that µ ≪ |µ|.1

Also, an important property of this function is2

|µ(E)|=
∣∣∣∣∫E

f d|µ|
∣∣∣∣≤ ∫E

| f |d|µ|= µ(E) (2.18)

for every E ∈ Ω. This implies µ ≪ µ . A consequence of the Radon-Nikodym theorem is

f dν = dµ =
dµ

dµ
dµ =

dµ

dµ
| f |dν .

From here, we see that |dµ/dµ| = 1 almost everywhere with respect to µ . A similar3

calculation shows that |dµ/d|µ||= 1 almost everywhere with respect to |µ|.4

Theorem 28. The functions |µ|, µ̃ and µ are equivalent.5

Proof. We will show |µ| ≤ µ̃ ≤ µ ≤ µ̃ ≤ |µ|. Let {En}∞
n=1 be a partition of E. We define

the function f almost everywhere on X by

f (x) =
∞

∑
n=1

|µ(En)|
µ(En)

χEn
(x).

For the sake of clarity we highlight some abuse of notation. If one of the En in the partition
of E is a set of measure 0, then we define f (x) = 1 for every x∈En. Fix x∈E, observe that
x ∈ En for some n ∈ N. Furthermore, x belongs to only one set in the collection {En}∞

n=1.
If x ∈ Em where µ(Em) = 0, then f (x) was defined to be 1, so | f (x)|= 1. Suppose x ∈ Em

given µ(Em) ̸= 0. A straightforward calculation gives us

| f (x)|=

∣∣∣∣∣ ∞

∑
n=1

|µ(En)|
µ(En)

χEn
(x)

∣∣∣∣∣
=

∣∣∣∣ |µ(Em)|
µ(Em)

χEm
(x)
∣∣∣∣

= 1.

Therefore | f | ≤ 1, where 1 denotes the constant function taking every value to the number
1. A straightforward computation gives us∣∣∣∣∫E

f dµ

∣∣∣∣=
∣∣∣∣∣ ∞

∑
n=1

∫
E

|µ(En)|
µ(En)

χEn
dµ

∣∣∣∣∣= ∞

∑
n=1

|µ(En)|.

From here, we see that |µ|(E) ≤ µ̃(E) for every E ∈ Ω. Observe that for every | f | ≤ 1
almost everywhere with respect to µ , the following inequality holds∣∣∣∣∫E

f dµ

∣∣∣∣= ∣∣∣∣∫E
f

dµ

dµ
dµ

∣∣∣∣≤ ∫E

∣∣∣∣ dµ

dµ

∣∣∣∣ dµ = µ(E).
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This implies µ̃(E) ≤ µ(E). Now, let f = dµ/dµ , that is, the complex conjugate of g

where dµ = gdµ . This gives us∣∣∣∣∫E
f dµ

∣∣∣∣= ∣∣∣∣∫E

dµ

dµ

dµ

dµ
dµ

∣∣∣∣=
∣∣∣∣∣
∫

E

∣∣∣∣ dµ

dµ

∣∣∣∣2 dµ

∣∣∣∣∣= µ(E).

Therefore µ(E)≤ µ̃(E). Finally, the following holds for every | f | ≤ 1 on E∣∣∣∣∫E
f dµ

∣∣∣∣= ∣∣∣∣∫E
f

dµ

d|µ|
d|µ|

∣∣∣∣≤ ∫E

∣∣∣∣ f dµ

d|µ|

∣∣∣∣ d|µ| ≤ |µ|(E).

Hence µ̃ ≤ |µ| on Ω.1

Because of this theorem, we will denote µ = |µ| and will mainly focus on this repre-2

sentation for the measure |µ|. We will now show a property which helps identify functions3

which are integrable with respect to complex measures.4

Proposition 29. If µ is a complex measure, then L1(µ) = L1(|µ|).5

Proof. Fix f ∈ L1(µ). It is apparent from the definition of the space L1(µ) that6 ∫
X
| f |dµ

+
r +

∫
X
| f |dµ

−
r +

∫
X
| f |dµ

+
i +

∫
X
| f |dµ

−
i < ∞. (2.19)

Observe the fact that |µ| ≤ |µr|+ |µi|. A consequence of this and the above inequality is7

that f ∈ L1(|µ|). So L1(µ) ⊆ L1(|µ|). Now, since µ ≪ |µ|, it follows that µr ≪ |µ| and8

µi ≪ |µ|. This in turn implies µ+
r ,µ−

r ,µ+
i ,µ−

i ≪ |µ|, which shows that L1(|µ|)⊆ L1(µ).9

This completes the proof.10

2.5.4 The complex Borel measures11

The space of complex Borel measures on I where I = [a,b) or I = (a,b] is denoted by12

M(I). We let Cc(I;C) be the space of all complex-valued, continuous functions on I which13

have compact support. The purpose of this section is to introduce the necessary tools to14

show that M(I) is a Banach space under an appropriate norm. We start by introducing a15

theorem about linear maps on normed vector spaces which can be found in Reed & Simon16

[82]. As a proof does not follow the statement of this theorem in [82], we will present a17

proof here.18

Theorem 30. Let T : V → W be a bounded linear map between two real or complex,19

normed vector spaces, where W is complete. Then T can be extended to a bounded linear20

map which is defined on the completion of V and maps to W. Moreover, this extension is21

unique.22
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Proof. Let V be the completion of V . We will assume V and W are complex vector spaces.
Let x ∈ V\V , and let {xn} ⊆ V be a sequence such that xn → x. As T is continuous, we
have that {T (xn)} is a Cauchy sequence in W , so T (xn) → y for some y ∈ W . Define
T (x) = y. We will start by showing that T is well defined. That is, if {xn} and {x′n}
are two sequences which converge to x, then {T (xn)} and {T (x′n)} converge to the same
value. Observe that

||T (xn)−T (x′n)||W ≤ ||T || · ||xn − x′n||V ≤ ||T ||(||xn − x||V + ||x− x′n||V ).

From here, it is straightforward to show that {T (xn)} and {T (x′n)} converge to the same1

value. Hence this extension is well defined.2

We will now show that T is linear. Let x,y ∈ V and let α,β ∈ F. Let {xn} and {yn}
be sequences in V such that xn → x and yn → y. The definition of T gives us

T (αxn +βyn)→ T (αx+βy) and αT (xn)+βT (yn)→ αT (x)+βT (y).

Since T (αxn+βyn) = αT (xn)+βT (yn) for every n and by uniqueness of limits we have3

that T is linear on V .4

We will now show that T is bounded. Fix ε > 0. For x ∈ V such that ||x||V ≤ 1, it
follows that

||T (x)||W = ||T (x)−T (xn)+T (xn)||W ≤ ||T (x)−T (xn)||W + ||T (xn)||W ,

where {xn} is a sequence in V which converges to x. By choosing n to be significantly
large, we obtain the following upper bound on the norm of T (x)

||T (x)||W < ε + ||T ||(1+ ε).

As ε was an arbitrary positive number, the inequality ||T (x)||W ≤ ||T || holds for all5

||x||V ≤ 1. So T satisfies the properties of the theorem.6

Finally, we will show uniqueness. Let T1 and T2 be two extensions of T satisfying the
statements of the theorem. For any {xn} in V which converges to x ∈V , the continuity of
the maps T1 and T2 show that

T1(x) = lim
n→∞

T1(xn) = lim
n→∞

T2(xn) = T2(x).

Hence the map T is unique.7

We introduce the concept of ‘Radon measures’ for the sake of the next theorem.8

Definition 31. A Radon measure on I is a Borel measure µ that is finite on all compact
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sets, which satisfies the following

µ(E) = inf{µ(U) : U is open and E ⊂U}

for all Borel sets E ⊆ I, and

µ(U) = sup{µ(K) : K is compact and K ⊂U}

for all open sets U ⊆ I.1

Theorem 32. (The Riesz Representation Theorem) Let Λ be a positive linear functional

on Cc(I;C). That is, Λ( f )≥ 0 for every f ≥ 0. Then there is a unique Radon measure µ

on I such that for all f ∈Cc(I;C), the following formula holds

Λ( f ) =
∫

I
f dµ.

The proof for this theorem can be found in Folland [32]. Due to its technical nature,2

the proof is not presented here.3

Several other facts about linear functionals are relevant for our analysis. More specif-
ically, if Λ is a real linear functional on C0(I;R), then there exist positive linear func-
tionals Λ± on C0(I;R) such that Λ = Λ+−Λ−. Now, if Λ ∈ C0(I;C), then Λ( f + ig) =
ΛR f + iΛRg, where ΛR is the restriction of Λ to C0(I;R). Since ΛR : C0(I;R) → C is
linear over R, then

Λr =
ΛR+ΛR

2
and Λi =

ΛR−ΛR
2i

are real linear functionals, and ΛR = Λr + iΛi. As such, the linear functional Λ is a linear
combination of positive linear functionals defined on C0(I;R). Note that every continu-
ous linear functional L on C0(I;R) can be restricted to a continuous linear functional on
Cc(I;R). Recall by the Riesz Representation Theorem that

L( f ) =
∫

I
f dµ,

for some unique Radon measure on I and for all f ∈Cc(I;R). By Theorem 30, the func-
tional L may be extended continuously to all of C0(I;R). This gives us

L( f ) =
∫

I
f dµ

for all f ∈C0(I;R). It is true that every complex Borel measure on I is a complex Radon4

measure on I. So it holds that for every complex linear functional Λ on C0(I;C), there5
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exists µ which is a complex Borel measure such that for every f ∈C0(I;C), we have1

Λ( f ) =
∫

I
f dµ. (2.20)

From now on, we will denote the complex linear functional Λ in (2.20) by Λµ . We define
the norm on M(I) as follows

||µ||M(I) = |µ|(I).

Recall if V is a Banach space over F, where F is either the real or complex numbers,2

then the dual of V is defined by V ∗ = B(V,F). The following theorem has been proven in3

Folland [32], where I is replaced with an arbitrary locally compact Hausdorff space.4

Theorem 33. The map µ 7→ Λµ is an isometric isomorphism from M(I) to C0(I;C)∗.5

Using the above theorem, we can finally show that M(I) is a Banach space.6

Theorem 34. The space of all complex Borel measures M(I) is complete.7

Proof. As C0(I;C)∗ = B((C0(I;C),C) and C are complete, the space C0(I;C) is com-
plete. Let {µn} be a Cauchy sequence in M(I). Since the map µ → Λµ is an isometry,
the sequence {Λµn} is a Cauchy sequence in C0(I;C)∗. As such, Λµn → L for some
L ∈C0(I;C)∗. Using the fact that µ 7→ Λµ is an isomorphism, there exists ν ∈ M(I) such
that L = Λν . This yields

||µn −ν ||M(I) = ||Λµn −Λν ||.

Taking n to be sufficiently large shows that µn → ν . Hence M(I) is complete.8

2.5.5 Fourier convolution of measures9

It is possible to generalise the Fourier convolution of two functions by extending it to the
concept to measures. We denote by M(Rn) the collection of complex Borel measures on
Rn. For any µ , ν ∈ M(Rn), we define the Fourier convolution of µ and ν by

(µ ∗ν)(E) =
∫
Rn

∫
Rn

χE(x+ y)dµ(x)dν(y).

On the set of complex Borel measures on Rn, the norm is given by

||µ||= |µ|(Rn)

which turns M(Rn) into a Banach space. By considering the underlying product on M(Rn)

to be the convolution, it is evident that M(Rn) is a commutative Banach algebra. We also
have that the embedding which takes f ∈ L1(λ ) to the measure defined by f dλ is a
Banach algebra homomorphism, where λ is the Lebesgue measure. It should be noted
that the set of all measures of the form f dλ , where f ∈ L1(λ ) is an ideal in M(Rn).
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Included in this, we can extend the Fourier transform to complex Borel measures. For
µ ∈ M(Rn), define F{µ} : Rn → C as the map which has the pointwise formula

F{µ}(ω) =
∫
Rn

e−2πi⟨ω,x⟩ dµ(x).

It is not too difficult to show that F{µ ∗ν}= F{µ}F{ν}.1

2.6 A new class of discrete and integral transforms2

Now that the preliminaries have been introduced, we apply some of the knowledge to3

create a new class of discrete and integral transforms. In this section, we will also define4

a space in which the discrete and integral operators are defined on.5

We begin by properly defining an integral transform. Let I be an open interval which
is a subset of R. An integral transform is a linear operator K which takes a function f to
a complex function K { f}, where K { f} is defined pointwise by

K { f}(s) =
∫

I
K(x,s) f (x)dx,

where s ∈ J ⊂C. We refer to K as the kernel of the transform. Currently, the kernel of the6

transform is rather general. We impose some restrictions which allow for the transforms7

to have interesting properties. We say a kernel K is logarithmic separable if K(x,s) =8

K1(x)K2(s) or K(x,s) = K2(s)K1(x). Given K(x,s) = K1(x)K2(s), we impose that Im(K1) ⊆9

(0,∞). Note that formally, the logarithm of K is the product of two functions whose10

underlying variables are independent of each other. Furthermore, we will assume K2(s) =11

s−w, where w is some fixed complex number. That is to say, we will assume the kernel12

is of two types, namely13

(i) K(x,s) = K1(x)s−w;14

(ii) K(x,s) = (s−w)K1(x).15

Further assumptions will be imposed on K1 such that the formulas are well defined and16

satisfy well-behaved properties.17

Let card(I) = ℵ0 and suppose I is a set which is bounded below but not bounded18

above. A discrete transform is an operator K which inputs a function f and outputs19

some function K { f} : J → C where20

K { f}(s) = ∑
x∈I

K(x,s) f (x). (2.21)

For our purposes, we will assume K is bounded on I × J if K is either a discrete or21

integral transform and f is defined such that the sum in (2.21) converges absolutely.22
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Currently, we do not have a space in which, given a function belongs to this space,
the transform of said function exists. We will first introduce some more concepts which
will help us define such a space. Let λ be the Lebesgue measure if I is an interval and let
λ be the counting measure if card(I) = ℵ0. We introduce the measure µ̃s defined by

µ̃s(E) =
∫

E
|K(x,s)|dλ (x),

where s ∈ J and E is a Borel set on I. We will consider kernels where

sup
s∈J

µ̃s(I)< ∞.

Now, we define the measure µ̃s by1

µs(E) =
∫

E

K(x,s)
|K(x,s)|

dµ̃s(x), (2.22)

given that K(x,s) ̸= 0. If the kernel is of type (ii) and s = w, we define µs as the trivial2

measure.3

Observe that the total variation of µs is simply the measure µ̃s by Theorem 28. From4

now on we will denote µ̃s by the measure |µs|. An alternative respresentation of a discrete5

or integral transform of a function is6

A { f}(s) =
∫

I
f (x)dµs(x) (2.23)

given x 7→ f (x)K(x,s) ∈ L1(I,B,λ ). This is sufficient due to the fact that for every s ∈ J,∫
I
| f |d|µs|=

∫
I
| f (x)||K(x,s)|dλ (x)< ∞.

It can be seen that similar calculations to that which were present in Lemma 27 justify7

the above statement. Using the fact that L1(µs) = L1(|µs|), we have that A { f} exists on8

J. By an abuse of notation, we will consider the function A { f} to have domain J or J9

whenever it is convenient for us.10

Now, we introduce the following weighted L1 space11

L1(I,Ω, |µs|) =
{

f : I → R :
∫

I
| f (t)|d|µs|(t)< ∞

}
, (2.24)

where Ω is simply a σ -algebra on I such that µs defines a measure on I. We observe that
if f ∈ L1(I,Ω, |µs|), then the transform of f exists. Also, observe if

f ∈
⋂
s∈J

L1(I,Ω, |µs|),
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then A { f} exists on J. It is now important for us to consider some more conditions on1

the kernels and the regions J.2

2.6.1 Kernels of type (i)3

When considering integral transforms, we will only consider kernels which are of type4

(i). This is to avoid the use of a complex logarithm. There are three main assumptions we5

will place on integral transforms. These are:6

• The function K1 is strictly monotonic on I;7

• The image of I under K1 satisfies K1(I)⊆ (0,1) or K1(I)⊆ (1,∞);8

• If K1(I)⊆ (0,1) then K1(b−) = 0 and if K1(I)⊆ (1,∞) then K1(b−)a = ∞.9

Due to the fact that K1 is continuous, it is evident that K1(I) is connected. All of the10

assumptions we have imposed guarantee that the product of any two elements in K1(I) is11

another element in K1(I). This will become significant when we consider the convolu-12

tion of two functions which correspond to the so-called A -transform. Furthermore, the13

assumption on the range of K1 guarantees that x 7→ log(K1(x)) is monotonic and does not14

change sign.15

Now, consider discrete transforms whose kernel is of type (i). Given

I = {ri : i ∈ N and ri < ri+1 for every i ∈ N},

we assume K1 has the same properties mentioned previously, with the exception that16

K1(I)⊆ (0,1] or K1(I)⊆ [1,∞). Also, given b = ∞ , the value K1(b−) is computed using17

a discrete limit.18

Currently, we have not imposed any structure on the set J. For type (i) kernels, we19

define20

J = {s ∈ C : c < Re(s)< d}, (2.25)

for some values c,d ∈ R such that J is a proper subset of the complex plane. Observe for21

both discrete and integral transforms of type (i), we have that x 7→ log(K1(x)) does not22

change sign on I. We also have |K1(x)s−w|= eRe(s−w) log(K1(x)). If log(K1(·)) is nonnega-23

tive on I, then we see that s 7→ eRe(s−w) log(K1(x)) increases as the real part of s increases.24

Since |K| is bounded on I × J, we deduce that, for a fixed x ∈ I, that K(x, ·) achieves25

a maximum on the line Re(s) = d, where d < Re(w). We note that since log(K1(·))26

does not change sign on I, it is evident that the modulus of the kernel of our transform27

achieves a maximum on any point on the line Re(s) = d. By a similar calculation, given28

that K1(I) ⊆ (0,1], it follows that |K(x, ·)| achieves a maximum on the line Re(s) = c29

aWe define K1(b) = K1(b−).
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for every x ∈ I where c > Re(w). What is important to note is that |K(x, ·)| achieves its1

maximum on ∂J for every x ∈ I.2

2.6.2 Kernels of type (ii)3

When a transform has a kernel of type (ii), we will only be working with the case when4

A is a discrete transform. We will assume once again that K1 is strictly monotonic. One5

variation between the assumptions for these types of kernels is the behaviour at ∞. We6

will assume K1(∞) =−∞ or K1(∞) =∞. Much like for type (i) kernels, we will assume K17

does not change sign on I. Furthermore, we will assume K1 is an integer valued function.8

We have two cases to consider.9

Suppose K1(∞) = ∞. Consider the set J = Br(w) = {s ∈C : |z−w|< r}, where r < 1.
We have for every x ∈ I,

|(s−w)K1(x)|= |s−w|K1(x) < rK1(x).

As x ∈ I was arbitrary, the function |K(x, ·)| achieves its maximum on ∂J for every x ∈ I.
Now, given K1(−∞) = ∞ and J = C\Br(w), we have for every x ∈ I,

|(s−w)K1(x)|= |s−w|K1(x) < rK1(x).

Once again, the modulus of K(x, ·) achieves a maximum on ∂J for each value x.10

2.6.3 Properties of L1(I,B, |µ|)11

We can now find an alternative formulation for the space L1(I,B, |µ|), where B is the12

Borel σ -algebra on I.13

Proposition 35. Let K be a kernel of either type (i) or type (ii), then we have

L1(I,B, |µ|) =

{
f : (I,B, |µ|)→ C : sup

s∈J

∫
I
| f (x)|d|µs|(x)< ∞

}
.

Proof. Fix f ∈ L1(I,B, |µ|). Let s̃ be a value in ∂J such that |K(x,s)| ≤ |K(x, s̃)| for every
(x,s) ∈ I × J. We have∫

I
| f (x)||K(x,s)|dλ (x)≤

∫
I
| f (x)||K(x, s̃)|dλ (x).

An application of the Monotone Convergence Theorem gives us∫
I
| f (x)|d|µs|(x)≤

∫
I
| f (x)|d|µs̃|(x).
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This, in turn, implies

sup
s∈J

∫
I
| f (x)|d|µs|(x)≤

∫
I
| f (x)|d|µs̃|(x)< ∞,

which shows that

L1(I,B, |µ|)⊆

{
f : (I,B, |µ|)→ C : sup

s∈J

∫
I
| f (x)|d|µs|(x)< ∞

}
.

Now, suppose f is a Borel function such that the supremum of the integral of | f (·)||K(·,s)|
taken over s ∈ J is finite. Clearly, for every s ∈ J, we have∫

I
| f (x)|d|µs|(x)≤ sup

s∈J

∫
I
| f (x)|d|µs|(x)< ∞.

Hence f ∈ L1(I,B, |µ|) and this completes the proof.1

It is easy to see that if s̃ ∈ ∂J such that |K(x, s̃)| is maximised for every x ∈ I, then
L1(I,B, |µ|) = L1(I,B, |µs̃|). From here, we see that our L1 space is a special case of a
general L1 space, where the norm on L1(I,B, |µ|) is defined by

|| f ||µ = max
s∈∂J

∫
I
| f (x)|d|µs|(x).



Chapter 31

A general class of integral transforms2

and an expression for their convolution3

formulas4

3.1 Assumptions on the kernel5

We make the following assumptions regarding the kernel K of the integral transform A :6

(A1) For every u∈ I, there exists an open interval Ju ⊆ I and a C1 function ψ : Ju×I →R,7

strictly monotonic in the first argument, such that8

K(ψ(x,u),s) =
K(x,s)
K(u,s)

, (x,u) ∈ Ju × I. (3.1)

(A2) For every u ∈ I, we have ψ(Ju,u) = I.9

Note that we assume throughout that K(·,s) ∈C(I) and is never zero.10

Example 36. Consider the Laplace transform, where K(x,s)= e−sx and I =(0,∞). Choose11

Ju =(u,∞)⊆ I and ψ(x,u)= x−u for every (x,u)∈ Ju×I. Then D1ψ(x,u)= 1> 0 where12

D j denotes the partial derivative with respect to the variable in the jth position. It is easy13

to see that (3.1) is satisfied. Similarly, ψ(Ju,u) = (0,∞) = I. Hence (A2) is satisfied.14

Example 37. For the Mellin transform, where K(x,s) = xs−1 and I = (0,∞), let Ju =15

(0,∞) and ψ(x,u) = x/u. We have D1ψ(x,u) = 1/u > 0 so ψ is strictly monotonic in the16

first argument and (3.1) holds. Also (A2) is satisfied since ψ(Ju,u) = (0,∞) = I.17

Example 38. For

K(x,s) =
1

(1+ x)s , I = (0,∞),

taking
Ju = (u,∞), ψ(x,u) =

x−u
1+u

44
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shows that (A1) and (A2) are verified since D1ψ(x,u) = 1/(1+ u) > 0. Note that this1

kernel is similar to the Laplace transform kernel as, if we extend I to include 0, then2

K(0,s) = 1, K(x,s) → 0 as x → ∞ and K(·,s) is strictly decreasing given s > 0, but the3

decay at infinity is algebraic.4

Example 39. Next we look at an integral transform when I is a bounded interval. Let

K(x,s) =
(

1− x
1+ x

)s

, I = (0,1).

Choose

Ju = (u,1), ψ(x,u) =
x−u

1− xu
, D1ψ(x,u) =

1−u2

(1− xu)2 > 0.

From here it is easy to show that (A1) and (A2) are satisfied.5

Example 40. For
K(x,s) = e−s(x2−1), I = (1,∞),

the choice
Ju = (u,∞), ψ(x,u) =

√
1+ x2 −u2

verifies (A1) and (A2).6

We have yet to determine conditions for when the A -transform exists. We denote by
L1(I,K(·,s)) the weighted L1(I) space consisting of all functions f : I → C such that∫

I
|K(x,s)|| f (x)|dx < ∞.

It is easy to see that f ∈L1(I,K(·,s)) is a sufficient condition for the existence of A { f}(s).7

Henceforth we will assume that f ∈ L1(I,K(·,s)).8

3.2 Shifting property9

Assuming (A1) and (A2), we now show that the following shifting property holds10

A { f (ψ(·,u))D1ψ(·,u)χJu
(·)}(s) = K(u,s)A { f}(s), u ∈ I. (3.2)

Let z = ψ(x,u), so that dz = D1ψ(x,u)dx. Then

A { f (ψ(·,u))D1ψ(·,u)χJu
(·)}(s)

=
∫

Ju

K(x,s)
K(u,s)

K(u,s) f (ψ(x,u))D1ψ(x,u)dx
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= K(u,s)
∫

Ju

K(ψ(x,u),s) f (ψ(x,u))D1ψ(x,u)dx

= K(u,s)
∫

I
K(z,s) f (z)χ

ψ(Ju,u)(z)dz.

But ψ(Ju,u) = I, which yields

A { f (ψ(·,u))D1ψ(·,u)χJu
(·)}(s) = K(u,s)

∫
I
Ks(z) f (z)dz

= K(u,s)A { f}(s).

Remark 41. There is a similar shifting property which holds for the Fourier cosine trans-1

form but it is different from (3.2) since the function to be transformed appears more than2

once on the right-hand side. Nevertheless, (3.2) encapsulates the shifting properties for3

the Fourier, Laplace and Mellin transforms.4

Example 42. From Example 36 we recover the well-known shifting property∫
∞

0
e−sx f (x−u)χ (u,∞)(x)dx = e−su

∫
∞

0
e−sx f (x) dx

for the Laplace transform.5

Example 43. Continuing with Example 39, the shifting property reads

∫ 1

0

(1− x
1+ x

)s
f
( x−u

1− xu

) 1−u2

(1− xu)2 χ (u,1)(x)dx =
(1−u

1+u

)s ∫ 1

0

(1− x
1+ x

)s
f (x)dx.

3.3 Convolution definition and property6

We again assume that (A1) and (A2) hold. Define the convolution of two functions f :7

I → C and g : I → C by8

( f ∗g)(x) =
∫

I
f (ψ(x,u))g(u)D1ψ(x,u)χJu

(x)du, (3.3)

provided it exists.9

Example 44. For Example 37, the expression in (3.3) simplifies to

( f ∗g)(x) =
∫

∞

0

1
u

f
(x

u

)
g(u) du,

which is the Mellin convolution formula.10

Example 45. For the kernel of Example 38, the convolution definition (3.3) becomes

( f ∗g)(x) =
∫

∞

0

1
1+u

f
(x−u

1+u

)
g(u)χ (u,∞)(x)du



3.3. CONVOLUTION DEFINITION AND PROPERTY 47

=
∫ x

0

1
1+u

f
(x−u

1+u

)
g(u) du.

The substitution z = (x−u)/(1+u) leads to

( f ∗g)(x) =
∫ x

0

1
1+ z

g
(x− z

1+ z

)
f (z) dz

=
∫

∞

0

1
1+ z

g
(x− z

1+ z

)
f (z)χ (z,∞)(x)dz = (g∗ f )(x),

i.e. the convolution operator is commutative.1

Example 46. For the kernel of Example 39, the equation in (3.3) is

( f ∗g)(x) =
∫ 1

0

1−u2

(1− xu)2 f
( x−u

1− xu

)
g(u)χ (u,1)(x)du

=
∫ x

0

1−u2

(1− xu)2 f
( x−u

1− xu

)
g(u)du.

Letting z = (x−u)/(1− xu), we see that

( f ∗g)(x) =
∫ x

0

1− z2

(1− xz)2 g
( x− z

1− xz

)
f (z)dz

=
∫ 1

0

1− z2

(1− xz)2 g
( x− z

1− xz

)
f (z)χ (z,1)(x)dz = (g∗ f )(x)

and again the convolution operator is commutative.2

Remark 47. We will show later that if f and g are both uniformly continuous on every3

bounded subinterval of I, then the convolution operator is in fact commutative with some4

extra assumptions.5

We claim that if an integral transform has a shifting property, then it has a convolution6

property. The idea for this proof was inspired by Davies [27], where the formula for7

the convolution was shown to satisfy the convolution property by using the operational8

notation as opposed to standard calculus techniques. It should be noted that while the9

proof here is based off the one presented in [27], to the authors’ knowledge there is no10

proof showing this holds for a general transform (such as one where (A1) and (A2) are11

satisfied) in the literature.12

It was shown in Section 3.2 that the shifting property (3.2) is true for kernels that13

satisfy (A1) and (A2). We wish to show that the shifting property (3.2) implies the con-14

volution property15

A { f ∗g}(s) = A { f}(s)A {g}(s). (3.4)
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Indeed, the convolution definition (3.3) gives

A { f ∗g}(s) =
∫

I
K(x,s)

∫
I

f (ψ(x,u))g(u)D1ψ(x,u)χJu
(x)dudx

=
∫

I

∫
I
K(x,s) f (ψ(x,u))g(u)D1ψ(x,u)χJu(x)dudx.

Assuming that the interchange of the order of integration is valid, we obtain with the help
of (3.2) that

A { f ∗g}(s) =
∫

I
g(u)

∫
I
K(x,s) f (ψ(x,u))D1ψ(x,u)χJu

(x) dxdu

=
∫

I
g(u)A { f (ψ(·,u))D1ψ(·,u)χJu

(·)}(s)du

=
∫

I
g(u)K(u,s)A { f}(s)du

= A { f}(s)A {g}(s),

which proves the claim. The above argument shows that we only need to compute a1

one-dimensional integral to derive a convolution formula given that the shifting property2

holds. This helps in determining a formula which satisfies the convolution property for3

a given class of integral transforms. More specifically, we take the expression which4

satisfies the shifting property, multiply it by g(u) and then integrate the new expression5

over I with respect to u.6

3.4 Existence of the convolution integral7

Up until now our calculations were purely formal, e.g. we assumed that the convolution8

integral (3.3) exists. We will introduce a lemma which will help determine the existence9

of the convolution formula.10

Lemma 48. Suppose that Ju = (ξ1(u),ξ2(u)), where ξ1 < ξ2 on I and satisfy exactly one11

of the three following properties:12

(E1) Both ξ1 and ξ2 are continuous functions from I to I.13

(E2) One of the functions is continuous from I to I and the other function is a constant14

function from I to its closure I ⊆ R.15

(E3) Both functions are constant from I to I.16

Then the function (x,u) 7→ χJu
(x) is M ⊗M -measurable.17

Proof. We state for the sake of clarity that

M ⊗M = σ(A×B : A,B ∈ M ).
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That is, M ⊗M is the smallest σ -algebra which contains all Lebesgue measurable rect-
angles which are subsets of I. We will prove the case when ξ1 and ξ2 are continuous from
I to I. We show that Ju× I is an M ⊗M -measurable set, where Ju = (ξ1(u),ξ2(u)). Fix
(x0,u0) ∈ (ξ1(u0),ξ2(u0))× I. As (ξ1(u0),ξ2(u0)) is an open set, we have the following
inequality for some ε > 0

Figure 3.1: Visualisation of the set Ju × I = (ξ1(u),ξ2(u))× I, where a is finite.

ξ1(u0)+ ε < x0 < ξ2(u0)− ε.

By our hypothesis, the function ξ1 is continuous, so there exists δ1 > 0 such that for every
u ∈ I and |u− u0| < δ1 implies |ξ1(u)− ξ1(u0)| < ε. Similarly, there exists δ2 > 0 such
that for every u ∈ I and |u−u0|< δ2 implies |ξ2(u)−ξ2(u0)|< ε. Take δ = min{δ1,δ2}.
If |u−u0|< δ , we have

|ξ1(u)−ξ1(u0)|< ε, |ξ2(u)−ξ2(u0)|< ε,

which in turn implies

ξ1(u0)− ε < ξ1(u)< ξ1(u0)+ ε, ξ2(u0)− ε < ξ2(u)< ξ2(u0)+ ε.

This can be rewritten as for every u ∈ (u0 −δ ,u0 +δ ), the following inclusion holds

(ξ1(u0)+ ε,ξ2(u0)− ε)⊆ (ξ1(u),ξ2(u)).
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Consider the set

(ξ1(u0)+ ε,ξ2(u0)− ε)× (u0 −δ ,u0 +δ )⊆ (ξ1(u),ξ2(u))× I.

Now let
r =

1
2

min{δ , |x0 − (ξ1(u0)+ ε)|, |x0 − (ξ2(u0)− ε)|}.

We state for the sake of clarity that the graph in Figure 3.2 is similar to that in Figure 3.1.

Figure 3.2: Illustration of the ball of radius r around the point (x0,u0).

However, in Figure 3.2, the focus is placed on the region

(ξ1(u0)+ ε,ξ2(u0)− ε)× (u0 −δ ,u0 +δ ).

The magenta line in Figure 3.2 is a line of radius 2r, and is included to highlight why the
value of r was chosen. That is, r is chosen to be half of the smallest distance between the
two vertical lines and the two horizontal lines seen in Figure 3.2. We then have

B((x0,u0);r)⊆ (ξ1(u0)+ ε,ξ2(u0)− ε)× (u0 −δ ,u0 +δ )⊆ (ξ1(u),ξ2(u))× I = Ju × I.

As the point (x0,u0) was arbitrary, we have that Ju × I is an open set.1

Now recall B is the Borel σ -algebra on the interval I. It is clear from this definition2

that the σ -algebra B ⊗B contains all the rectangles in R2 which are subsets of I × I.3

Since any open set in R2 can be expressed as a countable union of rectangles (see Tao4
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[96]), the same is true for open subset of I × I. Therefore every open subset of I × I is in1

B ⊗ B.2

Now, let h : I × I → R be the function defined by

h(x,u) = χJu
(x).

Let U be an open subset of R, we have

h−1(U) = {(x,u) ∈ I × I : h(x,u) ∈U}

= {(x,u) ∈ Ju × I : h(x,u) ∈U}

∪{(x,u) ∈ (I × I)\(Ju × I) : h(x,u) ∈U}.

If (x,u) ∈ Ju × I, then h(x,u) = 1, else h(x,u) = 0. This gives us

h−1(U) = {(x,u) ∈ Ju × I : 1 ∈U}∪{(x,u) ∈ (I × I)\(Ju × I) : 0 ∈U}.

Observe that

{(x,u) ∈ Ju × I : 1 ∈U}=

 /0 if 1 /∈U ,

Ju × I if 1 ∈U ,

and

{(x,u) ∈ (I × I)\(Ju × I) : 0 ∈U}=

 /0 if 0 /∈U ,

(I × I)\(Ju × I) if 0 ∈U .

It is clear that /0 ∈ B⊗B. Since (I × I)\(Ju × I) is the complement of the set Ju × I, we3

deduce that (I × I)\(Ju × I) ∈ B⊗B. As h−1(U) is the union of two sets in B⊗B for4

every open set U ⊆ R, we conclude that h is M ⊗M -measurable.5

A similar proof can be used which shows that Lemma 48 is true when the functions6

ξ1 and ξ2 satisfy the assumptions in (E2) or (E3). The next theorem gives sufficient7

conditions for the convolution integral to exist.8

Theorem 49 (Existence of the convolution integral). Suppose that f belongs to L1(I,K(·,s))∩9

C(I) and g ∈ L1(I,K(·,s)). Furthermore, suppose that Ju = (ξ1(u),ξ2(u)), where ξ1 < ξ210

on I and satisfy exactly one of the three properties stated in Lemma 48. Then f ∗g defined11

in (3.3) exists almost everywhere on I and f ∗g ∈ L1(I,K(·,s)).12

Proof. Consider the measure space (I×I,M ⊗M ,λ ×λ ), where λ denotes the Lebesgue
measure restricted to I. First we show that the function defined by

(x,u) 7→ K(x,s) f (ψ(x,u))g(u)D1ψ(x,u)χJu
(x)

= K(ψ(x,u),s) f (ψ(x,u))K(u,s)g(u)D1ψ(x,u)χJu
(x) (3.5)
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is M ⊗M -measurable. For definiteness, assume that D1ψ(x,u)> 0; the case D1ψ(x,u)<

0 can be proved similarly. For each (x,u) ∈ I × I, define

h1(x,u) = K(ψ(x,u),s) f (ψ(x,u))χJu
(x), h2(x,u) = K(u,s)g(u)χJu

(x)

h3(x,u) = D1ψ(x,u)χJu
(x).

Note that K(·,s) · f and K(·,s) ·g are M -measurable since f ,g ∈ L1(I,K(·,s)). The func-
tion h1 is either a constant function or the composition of the continuous function K(·,s) · f

with the measurable function ψ . Fix U ⊆ R, where U is open. We have

h−1
1 (U) = {(x,u) ∈ Ju × I : h1(x,u) ∈U}

∪{(x,u) ∈ (I × I)\(Ju × I) : h1(x,u) ∈U}

= {(x,u) ∈ Ju × I : K(ψ(x,u),s) f (ψ(x,u)) ∈U}

∪{(x,u) ∈ (I × I)\(Ju × I) : 0 ∈U}.

Recall the proof in Lemma 48 showed that Ju × I is an open set. So BJu×I ⊆ BI×I =

B⊗B. This implies

{(x,u) ∈ Ju × I : K(ψ(x,u),s) f (ψ(x,u)) ∈U} ∈ B⊗B.

Similarly, by Lemma 48 we have that {(x,u) ∈ (I × I)\(Ju × I) : 0 ∈ U} ∈ B⊗B. We1

deduce that h1 is M ⊗M -measurable. A similar argument shows that h2 and h3 are2

M ⊗M -measurable. Thus the function defined in (3.5) is M ⊗M -measurable.3

Next we consider the integral∫
I

∫
I
|K(x,s) f (ψ(x,u))g(u)D1ψ(x,u)χJu

(x)|dxdu

=
∫

I

∫
Ju

|K(x,s)|| f (ψ(x,u))||g(u)|D1ψ(x,u)dxdu.

Using (A1), we have∫
I

∫
Ju

|K(x,s)|| f (ψ(x,u))||g(u)|D1ψ(x,u)dxdu

=
∫

I

∫
Ju

|K(ψ(x,u),s)||K(u,s)|| f (ψ(x,u))||g(u)|D1ψ(x,u)dxdu.

Letting z = ψ(x,u) and dz = D1ψ(x,u)dx, we see that∫
I

∫
Ju

|K(ψ(x,u),s)|| f (ψ(x,u))||K(u,s)||g(u)|D1ψ(x,u)dxdu

=
∫

I

∫
ψ(Ju,u)

|K(z,s)|| f (z)||K(u,s)||g(u)|dzdu
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=
∫

I

∫
I
|K(z,s)|| f (z)||K(u,s)||g(u)|dzdu,

which follows from (A2). Therefore∫
I

∫
I
|K(x,s) f (ψ(x,u))g(u)D1ψ(x,u)χJu

(x)|dxdu

=

[∫
I
|K(u,s)||g(u)|du

][∫
I
|K(z,s)|| f (z)|dz

]
,

which is finite since f ,g ∈ L1(I,K(·,s)). By an application of one form of Fubini’s Theo-
rem [51], we deduce that the function

u 7→ K(x,s) f (ψ(x,u))g(u)D1ψ(x,u)χJu
(x)

is in L1(I) for almost all t ∈ I, i.e. f ∗ g exists almost everywhere on I. Moreover, the
function

x 7→
∫

I
K(x,s) f (ψ(x,u))g(u)D1ψ(x,u)χJu

(x)du

= K(x,s)
∫

I
f (ψ(x,u))g(u)D1ψ(x,u)χJu

(x)du

is in L1(I). Thus we conclude that f ∗g ∈ L1(I,K(·,s)).1

We note that due to the set Ju × I being some arbitrary open set in I × I, it appears2

difficult to determine the existence of the formula which satisfies the convolution property3

on the whole interval I. By making some further assumptions, we can show the formula4

is continuous.5

Theorem 50. Suppose the convolution formula (3.3) exists on the interval I. Impose the6

following conditions:7

(C1) The functions f and g are uniformly continuous on every bounded subinterval of I.8

(C2) The functions ψ and D1ψ are uniformly continuous on every bounded subset of9

Ju × I.10

(C3) Let Ju ∈ {(a,ξ2(u)),(ξ1(u),b)}, where ξ1 and ξ2 are strictly monotonic increasing,11

continuous functions from I to I such that ξ1(I) = I and ξ2(I) = I.12

(C4) If Ju = (a,ξ2(u)), assume b is finite, and if Ju = (ξ1(u),b), assume a is finite.13

Then f ∗g as defined in (3.3) is continuous on I.14

Proof. Fix ε > 0. We will consider the case when Ju = (ξ1(u),b). Based on the as-
sumptions for ξ1, its inverse ξ

−1
1 exists and since ξ1(I) = I, we have that χ(ξ1(u),b)(x) =
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χ(a,ξ−1
1 (x))(u). We will show the convolution formula is continuous at c for an arbi-

trary c ∈ I. Now, there exists δ1 > 0 such that [c − δ1,c + δ1] ⊂ I. Using (C1), g

is uniformly continuous on both (a,ξ−1
1 (c)] and [c − δ1,c + δ1], so that g is bounded

on (a,ξ−1
1 (c)]∪ [c − δ1,c + δ1], say |g| ≤ M1 for some constant M1 > 0. By the as-

sumption of uniform continuity of f ◦ ψ and D1ψ in (C1) and (C2), for every fixed
x ∈ [c−δ1,c+δ1] we have that the functions f (ψ(x, ·)) and D1ψ(x, ·) are uniformly con-
tinuous on [ξ−1

1 (c−2δ1),ξ
−1
1 (x)) (by choosing δ1 small enough such that c−2δ1 ∈ I, we

guarantee the interval [ξ−1
1 (c− 2δ1),ξ

−1
1 (x)) is well defined and nonempty). From here

we can see that, for every fixed x ∈ [c−δ1,c+δ1] the functions f (ψ(x, ·)) and D1ψ(x, ·)
are bounded on [ξ−1

1 (c−2δ1),ξ
−1
1 (x)). So the functions f ◦ψ and D1ψ are bounded on

the set
[c−δ1,c+δ1]× [ξ−1

1 (c−2δ1),ξ
−1
1 (x)).

Figure 3.3: Visualisation of the set [c−δ1,c+δ1]× [ξ−1
1 (c−2δ1),ξ

−1
1 (x)).

For the sake of clarity, say | f ◦ψ| ≤ M2 and |D1ψ| ≤ M3 for some constants M2,
M3 > 0. By the assumptions of uniform continuity, the function ( f ◦ψ) ·D1ψ is uniformly
continuous on every bounded subset of Ju × I. So there exists δ2 > 0 such that if S is a
bounded subset of Ju × I, then if (x1,u1),(x2,u2) ∈ S such that |(x1,u1)− (x2,u2)| < δ2

we have

| f (ψ(x1,u1))D1ψ(x1,u1)− f (ψ(x2,u2))D1ψ(x2,u2)|<
ε

4M1[ξ
−1
1 (c)−a]

.
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Now, ξ1 is a strictly monotonic continuous function defined on an interval I as assumed
in (C3). It can be shown that ξ

−1
1 is continuous on I. So if |x− c|< δ3 then

|ξ−1
1 (x)−ξ

−1
1 (c)|< ε

4M1M2M3
.

Let δ = min{δ1,δ2,δ3}. We see that if |x− c|< δ , then

|( f ∗g)(x)− ( f ∗g)(c)|=
∣∣∣∣∫I

f (ψ(x,u))g(u)D1ψ(x,u)χ (a,ξ−1
1 (x))(u)du

−
∫

I
f (ψ(c,u))g(u)D1ψ(c,u)χ (a,ξ−1

1 (c))(u)du
∣∣∣∣

=

∣∣∣∣∣
∫

ξ
−1
1 (x)

a
f (ψ(x,u))g(u)D1ψ(x,u)du

−
∫

ξ
−1
1 (c)

a
f (ψ(c,u))g(u)D1ψ(c,u)du

∣∣∣∣∣ .
Suppose c ≤ x. Using the Triangle Inequality, we have

|( f ∗g)(x)− ( f ∗g)(c)|

≤
∫

ξ
−1
1 (x)

ξ
−1
1 (c)

| f (ψ(x,u))g(u)D1ψ(x,u)|du

+
∫

ξ
−1
1 (c)

a
|g(u)|| f (ψ(x,u))D1ψ(x,u)− f (ψ(c,u))D1ψ(c,u)|du

≤
∫

ξ
−1
1 (x)

ξ
−1
1 (c)

M1M2M3 du+
∫

ξ
−1
1 (c)

a

ε

4[ξ−1
1 (c)−a]

du.

The above expression makes sense as a is finite by (C4). From here we can see that1

|( f ∗ g)(x)− ( f ∗ g)(c)| ≤ ε/2 < ε . Similar calculations can be made for the case when2

x < c. By modifying the argument, analogous techniques can also be employed when3

Ju = (a,ξ2(u)). This proves that f ∗g is continuous on I.4

3.5 Injective nature of A5

Here we will provide a proof of the injective nature of the operator A under certain
conditions, namely when the kernel K is logarithmic separable. Due to the fact that the
convolution exists almost everywhere on I, there is no guarantee that this is the only
formula which satisfies the convolution property. In fact, suppose that there is a set E ⊆ I

of measure zero and the convolution exists and is not zero on E. If we were to define the
convolution to be zero on E, then we would have two formulas which are clearly different
but both satisfy the convolution property. This is not just true in terms of the convolution
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formula, however, as if we have two functions f = g almost everywhere on I, then we
will have A { f}(s) = A {g}(s). This gives us an indication on what extra condition we
need in order to construct a class of functions where the transform of those such functions
exists and is unique. Recall from Chapter 2 that K is logarithmic separable if it can be
expressed as

K(x,s) = K1(x)K2(s)

for some functions K1 = K1(x) and K2 = K2(s). Here we impose that Im(K1)⊆ (0,∞).1

Example 51. We have K1(x) = e−x and K2(s) = is for the Fourier transform, K1(x) = e−x
2

and K2(s) = s for the Laplace transform, and K1(x) = x and K2(s) = s−1 for the Mellin3

transform.4

Example 52. The kernel of Example 38 is logarithmic separable with

K1(x) = 1+ x, K2(s) =−s.

Example 53. The kernel of Example 39 is logarithmic separable with

K1(x) =
1− x
1+ x

, K2(s) = s.

Remark 54. For a logarithmic separable kernel, (A1) is replaced by5

(A1)’ For every u ∈ I, there exist an open interval Ju ⊆ I and a C1 function ψ : Ju× I →R,6

strictly monotonic in the first argument, such that7

K1(ψ(x,u)) =
K1(x)
K1(u)

, (x,u) ∈ Ju × I. (3.6)

Note that K2 is arbitrary, and (A2) remains unchanged.8

We first prove a lemma which will aid us in showing when A is injective.9

Lemma 55. Let Ks be a logarithmic separable kernel, i.e.

log(K(x,s)) = K1(x)K2(s), K2(s) = c1s+ c0,

where c0,c1 ∈ C and c1 ̸= 0, such that K1 ∈ C1(I) is strictly monotonic and botha K1(a)

and K1(b) are finite. Suppose that

f̂ (s) = A { f}(s) =
∫

I
K(x,s) f (x)dx

aHere and throughout this chapter, for a function f defined on (a,b) we let

f (a) = lim
x→a+

f (x) and f (b) = lim
x→b−

f (x).
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exists for all Re(s)> s0 for some s0 ∈ R. Assume also that f is continuous on I, and that1

there exists P > 0 such that2

f̂ (s0 +nP) = A { f}(s0 +nP) = 0, n = 0,1,2, . . . . (3.7)

Then f (x) = 0 for all x ∈ I.3

Proof. We introduce the auxiliary function

g(x) =
∫ x

a
K(u,s0) f (u) du.

It is easy to see that g(a) = 0. Similarly, by (3.7) we have g(b) = A { f}(s0) = 0 if we
take n = 0. As such we conclude that g vanishes at the endpoints of I. We now consider
the transform of f , namely

A { f}(s0 +nP) =
∫

I
K(x,s0 +nP) f (x)dx

=
∫

I
K1(x)c1(s0+nP)+c0 f (x)dx

=
∫

I
K(x,s0)ec1nP log(K1(x)) f (x)dx.

Here we used the fact that K2 is an affine function of s. We assume that K′
1(x) > 0 since

the case K′
1(x)< 0 can be similarly handled. Applying integration by parts and recalling

that g vanishes at the endpoints of I gives us

A { f}(s0 +nP) =
[
K1(x)c1nPg(x)

]
I
− c1nP

∫
I
g(x)K1(x)c1nP−1K′

1(x)dx

=−c1nP
∫

I
g(x)K1(x)c1nP−1K′

1(x)dx

=−n
∫

I
g(x)K1(x)c1(n−1)PK1(x)c1P−1c1PK′

1(x)dx.

We introduce a map which takes the interval I to (0,1). This is achieved by making the
substitutions

u =
K1(x)c1P −K1(b)c1P

K1(a)c1P −K1(b)c1P , du =
K1(x)c1P−1c1PK′

1(x)
K1(a)c1P −K1(b)c1P dx,

K1(x)c1P = [K1(a)c1P −K1(b)c1P]u+K1(b)c1P,

x = h(u) = K−1
1

({
[K1(a)c1P −K1(b)c1P]u+K1(b)c1P}1/c1P

)
,

to obtain the equivalent expression

0 = A { f}(s0 +nP)
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= n[K1(a)c1P −K1(b)c1P]
∫ 1

0
g(h(u))

{
[K1(a)c1P −K1(b)c1P]u+K1(b)c1P}n−1

du.

By using the binomial expansion, the integrand can then be written as a linear combination
of the moments of the auxiliary function, i.e.

0 = n[K1(a)c1P −K1(b)c1P]

×
∫ 1

0
g(h(u))

n−1

∑
j=0

(
n−1

j

)
[K1(b)c1P]n−1− j[K1(a)c1P −K1(b)c1P] ju j du

= n
n−1

∑
j=0

(
n−1

j

)
[K1(b)c1P]n−1− j[K1(a)c1P −K1(b)c1P] j+1

∫ 1

0
u jg(h(u))du.

We want to show that the integral term causes the equation to be zero. For this we apply
the Principle of Complete Mathematical Induction to show that the moments of g◦h are
always trivial. Now, by invoking Theorem 9 in Chapter 13 of [103], we deduce that
g(h(u)) = 0 for all u ∈ (0,1). Thus g(x) = 0 for all x ∈ I, i.e.∫ x

a
K(u,s0) f (u) du = 0.

An application of the Fundamental Theorem of Calculus implies that K(x,s0) f (x) = 0 for1

all x ∈ I. Because of this we have that f (x) = 0 for all x ∈ I since K(x,s0) never vanishes2

by assumption.3

The above lemma has some interesting consequences, one of which is that for a loga-4

rithmic separable kernel where K2 is a linear function of s, A cannot map f to a trigono-5

metric function given f is continuous. It is apparent that f needs to be continuous in6

order for this proof to work. By simply assuming that f ∈ L1(I,K(·,s)), then the proof7

only shows that f = 0 almost everywhere on I, which will become important when show-8

ing that A is injective. While it has not yet been proven directly that the operator A9

is injective, the difficult part has been completed. An application of the previous result10

provides a simple proof below that A is injective.11

Theorem 56. Let K be a logarithmic separable kernel, i.e.

K(x,s) = K1(x)K2(s), K2(s) = c1s+ c0,

where c0,c1 ∈ C and c1 ̸= 0, such that K1 ∈ C1(I) is strictly monotonic and both K1(a)12

and K1(b) are finite. If f : I →C and g : I →C are continuous and A { f}(s) = A {g}(s)13

for all Re(s)> s0 for some s0 ∈ R, then f (x) = g(x) for all x ∈ I.14

Proof. Define h by h = f −g on I. A simple computation shows that A {h}(s) = 0 for all15

s > s0. Lemma 55 gives h(x) = 0, or f (x) = g(x), for all x ∈ I.16
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Corollary 57. Let K be a logarithmic separable kernel, i.e.

K(x,s) = K1(x)K2(s), K2(s) = c1s+ c0,

where c0,c1 ∈C and c1 ̸= 0, such that K1 ∈C1(I) is strictly monotonic and both K1(a) and1

K1(b) are finite. If f : I → C and g : I → C are in the set L1(I,K(·,s)) and are uniformly2

continuous on every bounded subinterval of I, then f ∗ g = g ∗ f given they exist on the3

whole set I.4

Proof. Observe the following calculation

A { f ∗g}(s) = A { f}(s)A {g}(s) = A {g}(s)A { f}(s) = A {g∗ f}(s).

Then f ∗g = g∗ f follows from the previous theorem.5

3.6 Inversion formulas6

Now that it has been shown that A is injective when K(x,s) = K1(x)K2(s) (where K1 ∈7

C1(I) is strictly monotonic and K2 is a linear function of s), it makes sense to determine a8

formula for the inverse transform. It may have been possible to do so previously, however,9

the proof of uniqueness guarantees that if one formula can be determined, then this is10

sufficient as all other forms are equivalent. An example of where multiple formulas of11

an inverse exist is that of the Laplace transform. As seen in Widder [103], the inverse12

formula can be represented as the limit of an integral over the positive real line, whereas13

the classical formula determined by Bromwich involves an integral over a contour in the14

complex plane. For the sake of consistency, we will present the inverse A -transform as a15

contour integral.16

Theorem 58. Fix x ∈ I, and assume the following:17

(I1) Suppose that f ∈ L1(I,K(·,(µ − c2)/c1))∩C1(I), where µ ∈ R, c1,c2 ∈ C, c1 ̸= 018

and K(x,s) = K1(x)c1s+c2 .19

(I2) The function K1 is monotonic increasing in t and K1 ∈C1(I).20

(I3) We have [ f (b)K1(b)]/K′
1(b) · [K1(b)/K1(x)]µ = 0.21

(I4) The quantity [ f (a)K1(a)]/K′
1(a) · [K1(a)/K1(x)]µ is finite.22

(I5) The function t 7→ d
dt

{
f (t)K1(t)

K′
1(t)

[
K1(t)
K1(x)

]µ}
is in L1(I).23

Then the following formula holds24

f (x) =
c1K′

1(x)
2πiK1(x)

lim
T→∞

∫ µ−c2+iT
c1

µ−c2−iT
c1

K1(x)−(c1s+c2)A { f}(s)ds, (3.8)
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where T ∈ R.1

Proof. Define an auxillary function F by2

F(x) =
1
2
+

1
π

Si(x), Si(x) =
∫ x

0

sin(y)
y

dy. (3.9)

Let {Tn} be a real-valued, positive sequence which diverges to ∞. Obverse that the ex-
pression

c1K′
1(x)

2πiK1(x)

∫ µ−c2+iTn
c1

µ−c2−iTn
c1

K1(x)−(c1s+c2)A { f}(s)ds

can be written as the following iterated integral

c1K′
1(x)

2πiK1(x)

∫ µ−c2+iTn
c1

µ−c2−iTn
c1

∫
I
K1(x)−(c1s+c2)K1(t)c1s+c2 f (t)dt ds.

Using the definition of an integral over the complex plane, the expression can be written3

as follows4

K′
1(x)

2πK1(x)

∫ Tn

−Tn

∫
I
K1(x)−(µ+iω)K1(t)µ+iω f (t)dt dω. (3.10)

We have that the following functions

(t,ω) 7→ K1(x)−(µ+iω), (t,ω) 7→ K1(t)µ+iω , (t,ω) 7→ f (t),

are all continuous on I × [−Tn,Tn] and therefore are measurable on the same domain. By
the assumption (I1), we can show that A { f} is continuous on its domain. Furthermore, a
similar proof to that in Proposition 93 shows that, due to the assumption in (I1), A { f} is
holomorphic for Re(c1s+ c2) ≥ µ . As such the contour integral in (3.8) is well defined.
Because of this, we have that the integral of the function

ω 7→
∣∣∣∣K1(x)−(µ+iω)A { f}

(
µ − c2 + iω

c1

)∣∣∣∣
over [−Tn,Tn] is finite. So, by Fubini’s Theorem, we may interchange the order of

integration in the expression (3.10), which gives us

K′
1(x)

2πK1(x)

∫
I

f (t)
∫ Tn

−Tn

[
K1(t)
K1(x)

]µ+iω

dω dt

=
K′

1(x)
2πK1(x)

∫
I

f (t)
∫ Tn

−Tn

e(µ+iω)[log(K1(t))−log(K1(x))] dω dt

=
K′

1(x)
K1(x)

∫
I

f (t)eµ[log(K1(t))−log(K1(x))] sin(Tn[log(K1(t))− log(K1(x))])
π[log(K1(t))− log(K1(x))]

dt
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=
K′

1(x)
K1(x)

∫
I

f (t)K1(t)
K′

1(t)

[
K1(t)
K1(x)

]µ d
dt

[F(Tn[log(K1(t))− log(K1(x))])] dt,

where F is given in (3.9). We note that the Si function is defined on R, with finite limits1

as the argument approaches ±∞. Using this, as well as (I3) and (I4), we may apply2

integration by parts and the expression for the above integral is equal to3

−
K′

1(x)
K1(x)

f (a)K1(a)
K′

1(a)

[
K1(a)
K1(x)

]µ

F(Tn[log(K1(a))− log(K1(x))]) (3.11)

−
K′

1(x)
K1(x)

∫
I
F(Tn[log(K1(t))− log(K1(x))])

d
dt

{
f (t)K1(t)

K′
1(t)

[
K1(t)
K1(x)

]µ}
dt.

It can be shown that there exists some constant M > 0 such that |F(x)| ≤ M for every x ∈
R. This combined with the fact that the integrand in (3.11) is measurable for every n ∈ N
allows us to apply Lebesgue’s Dominated Convergence Theorem. We also introduce an
auxillary function given by

H(x) = lim
T→∞

F(T x) =


0 if x < 0,

1/2 if x = 0,

1 if x > 0.

As we used an arbitrary sequence {Tn} which diverges to ∞, we may replace the limit
with a continuous limit. This gives us

c1K′
1(x)

2πiK1(x)
lim

T→∞

∫ µ−c2+iT
c1

µ−c2−iT
c1

K1(x)−(c1s+c2)A { f}(s)ds

=−
K′

1(x)
K1(x)

∫
I
H(log(K1(t))− log(K1(x)))

d
dt

{
f (t)K1(t)

K′
1(t)

[
K1(t)
K1(x)

]µ}
dt

=−
K′

1(x)
K1(x)

∫
(x,b)

d
dt

{
f (t)K1(t)

K′
1(t)

[
K1(t)
K1(x)

]µ}
dt.

Finally, an application of the Fundamental Theorem of Calculus gives us

c1K′
1(x)

2πiK1(x)
lim

T→∞

∫ µ−c2+iT
c1

µ−c2−iT
c1

K1(x)−(c1s+c2)A { f}(s)ds = f (x).

4

The proof here only considered the case when K1 is a monotonic increasing function.5

For the sake of clarity, we present an expression for the inverse transform which accounts6

for the case when K1 is monotonic decreasing. Furthermore, we impose the following7

conditions:8
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• We have [ f (b)K1(b)]/K′
1(b) · [K1(b)/K1(x)]µ is finite.1

• The quantity [ f (a)K1(a)]/K′
1(a) · [K1(a)/K1(x)]µ = 0,2

given K1 is monotonic decreasing. Then the inverse transform of A is given by3

f (x) =±
c1K′

1(x)
2πiK1(x)

lim
T→∞

∫ µ−c2+iT
c1

µ−c2−iT
c1

K1(x)−(c1s+c2)A { f}(s)ds, (3.12)

where the negative sign is used when K1 is monotonic decreasing.4

3.7 The differential operator D5

Now that conditions for the uniqueness of our transform have been presented, as well as6

an inversion formula and a convolution formula, an application of integral transforms with7

logarithmic separable kernels arises. Due to the introduction of our transform, a closed-8

form solution can now be derived for certain types of second-order differential equations9

which, to the author’s knowledge, could not be solved previously.10

As before, suppose that K is logarithmic separable, i.e. K(x,s) = K1(x)K2(s) and11

K′
1(x) ̸= 0 for x ∈ I. We will assume K1(I) ⊆ (0,1). Define the linear differential opera-12

tor D by13

D f (x) =
d
dx

[
K1(x)
K′

1(x)
f (x)

]
. (3.13)

We claim that14

A {D f}(s) =
[
K1(x)K2(s)K1(x)

K′
1(x)

f (x)
]

I
−K2(s)A { f}(s). (3.14)

Integrating by parts, we see that

A {D f}(s) =
∫

I
K1(x)K2(s) d

dx

[
K1(x)
K′

1(x)
f (x)

]
dx

=
[
K1(x)K2(s)K1(x)

K′
1(x)

f (x)
]

I
−
∫

I

K1(x)
K′

1(x)
f (x)

d
dx

[
K1(x)K2(s)

]
dx.

Since we have
K1(x)
K′

1(x)
d
dx

[
K1(x)K2(s)

]
= K2(s)K1(x)K2(s),

the equation (3.14) holds. Similarly, if D2 f = D(D f ), integrating by parts and using
(3.14), we obtain

A {D2 f}(s) =
[
K1(x)K2(s)K1(x)

K′
1(x)

D f (x)−K2(s)K1(x)K2(s)K1(x)
K′

1(x)
f (x)

]
I

+[K2(s)]2A { f}(s). (3.15)
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We are now ready to solve a family of nonhomogeneous, second-order differential1

equations of the form2

αD2 f (x)+βD f (x)+ γ f (x) = g(x), x ∈ I = (a,b), (3.16)

where α,β ,γ ∈R and α > 0 without loss of generality. Furthermore, we assume g∈C(I).
Suppose that [

K1(x)K2(s)K1(x)
K′

1(x)
f (x)

]
I
= 0, (3.17)[

K1(x)K2(s)K1(x)
K′

1(x)
D f (x)−K2(s)K1(x)K2(s)K1(x)

K′
1(x)

f (x)
]

I
= 0.

Due to the generality of our framework, it is not straightforward to examine the asymptotic
behaviour at the endpoints of I. A classic example is the Mellin transform where, for
Re(s)> 1 the kernel goes to ∞ when x → ∞. Similarly, for Re(s)< 1, the kernel goes to 0
as x → ∞. The existence of the transform also depends on the behaviour of the underlying
function, which increases the complexity of analysing a general underlying function at
the endpoints of I. To ensure generality, we assume that (3.17) holds to avoid varying
behaviour like what happens with the Mellin transform. Applying the A -transform

A { f}(s) =
∫

I
K1(x)K2(s) f (x)dx

to (3.16) gives

α[K2(s)]2 f̂ (s)−βK2(s) f̂ (s)+ γ f̂ (s) = ĝ(s), f̂ (s) = A { f}(s), ĝ(s) = A {g}(s),

which implies

f̂ (s) =
ĝ(s)

α[K2(s)]2 −βK2(s)+ γ
.

If we can find a function G = G(x) (“Green’s function”) such that

Ĝ(s) = A {G}(s) = 1
α[K2(s)]2 −βK2(s)+ γ

,

f̂ (s) = Ĝ(s)ĝ(s) and the convolution property would imply that the solution of (3.16) is3

f (x) = (G∗g)(x) =
∫

I
G(ψ(x,u))g(u)D1ψ(x,u)χJu(x)du, (3.18)

where ψ is such that K1(ψ(x,u)) = K1(x)/K1(u) in accordance with (A1)’.4

As we are free to choose K2, provided that it is a linear function of s, let us assume
that K2(s) = s for simplicity so as to be able to apply the inversion formula (3.12). The
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Re(s)

Im(s)

µ

CR

Figure 3.4: Visualisation of the contour used to evaluate the inverse of A { f}(s).

problem reduces to inverting

Ĝ(s) =
1

αs2 −β s+ γ
.

For definiteness, we assume that K′
1(t)> 0 and let us use the inversion formula (3.12) to

find G(x). Then ψ satisfies

K1(ψ(x,u)) = K1(x)/K1(u) or ψ(x,u) = K−1
1 (K1(x)/K1(u)).

We need to evaluate the integral

G(x) =
K′

1(x)
2πi

∫
µ+i∞

µ−i∞

K1(x)−s−1

αs2 −β s+ γ
ds =

K′
1(x)

2απi

∫
µ+i∞

µ−i∞

K1(x)−s−1

(s− s1)(s− s2)
ds,

where

s1 =
β −

√
β 2 −4αγ

2α
, s2 =

β +
√

β 2 −4αγ

2α
.

The above contour integral can be expressed as1

G(x) = lim
R→∞

K′
1(x)

2απi

[∫
ΓR

K1(x)−s−1

(s− s1)(s− s2)
ds−

∫
CR

K1(x)−s−1

(s− s1)(s− s2)
ds

]
, (3.19)
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where Γ = [µ − iT,µ + iT ]∪CR and T =
√

R2 −µ2 (see Figure 3.4). Such techniques
in solving integrals in the complex plane have been used in solid mechanics (see Boley
& Chao [15]). Our aim is apply the Residue Theorem (see Conway [24]). The second
term in (3.19) can be shown to tend to zero using the Estimation Lemma. The first term
in (3.19) tends to K′

1(x)/α multiplied by the sum of the residues of

h(s) =
K1(x)−s−1

(s− s1)(s− s2)
.

Note that α(s1 − s2) =−
√

β 2 −4αγ . Moreover,

K1(x)−s1−1 −K1(x)−s2−1

= K1(x)−β/(2α)−1
{

K1(x)
√

β 2−4αγ/(2α)−K1(x)−
√

β 2−4αγ/(2α)
}

= 2K1(x)−β/(2α)−1 sinh
(√

β 2 −4αγ

2α
log(K1(x))

)
.

We now need to consider the sign of the discriminant β 2 −4αγ .1

3.7.1 β 2 −4αγ > 02

In this case s1 and s2 are simple poles of h(s) and

Res(h(s);s1) = lim
s→s1

(s− s1)h(s) =
K1(x)−s1−1

s1 − s2

Res(h(s);s2) = lim
s→s2

(s− s2)h(s) =−K1(x)−s2−1

s1 − s2
.

Then

G(x) =
K′

1(x)
α

{
K1(x)−s1−1

s1 − s2
− K1(x)−s2−1

s1 − s2

}
=−

K′
1(x)√

β 2 −4αγ
2K1(x)−β/(2α)−1 sinh

(√
β 2 −4αγ

2α
log(K1(x))

)
=− 2√

β 2 −4αγ
K′

1(x)K1(x)−β/(2α)−1 sinh
(√

β 2 −4αγ

2α
log(K1(x))

)
.

3.7.2 β 2 −4αγ < 03

The same argument works as in the previous case. Since
√

β 2 −4αγ = i
√

4αγ −β 2 and
sinh(iz) = i sin(z), we obtain

G(x) =− 2√
4αγ −β 2

K′
1(x)K1(x)−β/(2α)−1 sin

(√4αγ −β 2

2α
log(K1(x))

)
.
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3.7.3 β 2 −4αγ = 01

This time s = s1 = s2 is a pole of order 2 of h(s); hence

Res(h(s);s1) = lim
s→s1

1
1!

d
ds

[
(s− s1)

2h(s)
]

=− lim
s→s1

K1(x)−s−1 log(K1(x))

=−K1(x)−β/(2α)−1 log(K1(x)).

Thus
G(x) =−

K′
1(x)
α

K1(x)−β/(2α)−1 log(K1(x)).

It should be noted that we assumed K1 was strictly monotonic increasing. If it is2

the case that K1 is a strictly monotonic decreasing function, then we simply multiply the3

Green’s function by −1. Furthermore, we highlight that we let K2 be the identity function.4

This needs to be considered when examining numerical results.5

3.8 Examples and numerical simulations6

We present some concrete examples and compare our analytical solutions to the numeri-7

cal solutions. Numerical calculations were implemented in MATLAB. More specifically,8

we used “ode45” to solve these differential equations numerically. The following ex-9

amples are solutions to differential equations in which a unique solution can be shown10

to exist (see Zill [107]). After comparing these differential equations to those given in11

Polyanin & Zaitsev [79], it seems that analytical solutions to these differential equations12

have not been found. The coefficients α , β and γ in each example are chosen such that13

each case of the Green’s function is used.14

Example 59. Consider the case when the solution is defined on the interval I = (1,∞).15

Let K1(x) = e1/x−x and Ju = (u,∞). The general differential equation in (3.16) reduces to16

17

α
d
dx

[
x2

x2 +1
d
dx

(
x2

x2 +1
f (x)

)]
−β

d
dx

(
x2

x2 +1
f (x)

)
+ γ f (x) = g(x), (3.20)

whose exact solution is given in (3.18), where

ψ(x,u) =
1
2

{√[1
x
− x−

(1
u
−u
)]2

+4−
[1

x
− x−

(1
u
−u
)]}

.

From Figure 3.5 it can be seen that there appears to be no significant difference be-18

tween the numerical and analytical solutions. This provides evidence that, given the right19

conditions, the solution to the differential equation in (3.16) is the unique solution. Ob-20

serve that for our choice of g, we have that g ∈ L1((1,∞)), so g ∈ L1((1,∞),x 7→ es(1/x−x))21
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Figure 3.5: A plot of the solution to (3.20) when α = 2, β = −3, γ = 1, f (1) = 0,

f ′(1) = 0, g(x) =
1

1+ x2 .

for every s ∈ C with Re(s) > 1. Due to the value of β being negative, it is to be ex-1

pected that the solution to this differential equation vanishes as x approaches ∞. The2

numerical results appear to give a reasonable evidence for this belief. This gives an em-3

pirical justification for the solution to this differential equation belonging to the space4

L1((1,∞),x 7→ es(1/x−x)).5

Example 60. Consider the case when the solution of the differential equation is defined on6

the interval I = (1,∞). Let K1(x) = e−(x2−1). The differential equation in (3.16) simplifies7

to8

α
d
dx

[
1
2x

d
dx

(
1
2x

f (x)
)]

−β
d
dx

(
1
2x

f (x)
)
+ γ f (x) = g(x), (3.21)

where
ψ(x,u) =

√
1+ x2 −u2.

From Figure 3.6 it can once again be seen that the numerical solution appears to9

closely approximate the analytical solution. The discrepancy in the numerical and ana-10

lytical solutions can be attributed to the oscillations which are not handled very well in11

MATLAB. We observe the oscillatory behaviour of the function, which is to be expected12

due to the presence of the sine function. We state for the sake of clarity that since K1 is13

a monotonic decreasing function, in this case the Green’s function is multiplied by −1.14

Despite the oscillatory behaviour of the solution, the maximum relative error of the an-15
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Figure 3.6: A plot of the solution to (3.21) when α = 2, β = −1, γ = 6, f (1) = 0,
f ′(1) = 0, g(x) = log(x).

alytical solution and the numerical solution is approximately 0.0015. Furthermore, this1

occurs around x = 1.09. The relative errors at specified points can be found in Table 3.1.2

The relative error appears to be largest around the initial value for x. Based on the domain3

that we have restricted, the solution appears to diverge as its argument approaches infinity.4

x f (x) (analytical) f (x) (numerical) Relative error
1.045 3.2035×10−5 3.1991×10−5 0.0014
1.051 4.6925×10−5 4.6873×10−5 0.0015
1.942 0.14071859 0.14070198 1.1799×10−5

2.249 0.11005336 0.11003224 1.9194×10−5

2.476 0.14715522 0.14720036 3.0679×10−4

3.011 0.17031870 0.17033485 9.4846×10−5

3.91 0.22830278 0.22828523 7.6874×10−5

4.293 0.24484085 0.24482939 4.6823×10−5

5.377 0.28082541 0.28082523 6.3182×10−7

6.554 0.31361967 0.31362256 9.2059×10−6

7.739 0.34128029 0.34128010 5.7910×10−7

Table 3.1: Tabulated results showing numerical values.

Example 61. Consider the case when K1(x) = tan(x− π/4) and the differential equa-5

tion is defined on the finite interval I = (0,π/4). Let Ju = (u,π/4). Substituting in the6
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appropriate values, the differential equation in (3.16) is seen to be equivalent to1

α
d
dx

[
tan(x)
sec2(x)

d
dx

(
tan(x)
sec2(x)

f (x)
)]

−β
d
dx

(
tan(x)
sec2(x)

f (x)
)
+ γ f (x) = g(x). (3.22)

Based on our choice of K1, we have

ψ(x,u) = π/4− arctan
(

tan(π/4− x)
tan(π/4−u)

)
.

Figure 3.7: A plot of the solution to (61) when α = 1, β = 2, γ = 1, f (1) = 0, f ′(1) = 0,
g(x) = x.

One thing to note about the solution is that it appears to approach ∞ as its argument2

approaches π/4. This is to be expected due to the presence of the reciprocal of the K13

function which is present in the Green’s function. The analytical and numerical solutions4

in Figure 3.7 are plotted on the interval (0,π/4−0.1]. The relative error of the analytical5

solution and the numerical solution at x = π/4−0.1 is approximately 0.0105. However,6

when the analytical and numerical solutions are calculated on the interval (0,π/4−0.01],7

then the relative error at x = π/4− 0.001 is approximately 0.084. This highlights the8

need for the analytical solution and gives evidence for the usefulness of our new class of9

integral transforms.10



Chapter 41

Unifying discrete and integral2

transforms through the use of a Banach3

algebra4

Recall that a weighted L1 space was introduced in Chapter 2 as well as a class of discrete5

and integral transforms. Furthermore, the space J was restricted to two different kinds6

of connected regions in the complex plane. The weighted L1 space is known to be a Ba-7

nach space. The results in this chapter will be to show that, under a type of convolution8

product which is similar to the ϕ-convolution, the space L1(I,B, |µ|) is a Banach alge-9

bra. We also show that the corresponding discrete and integral transforms defined on the10

aforementioned spaces are continuous homomorphisms between normed algebras.11

4.1 Examples of our discrete and integral transforms12

We start by introducing several transforms which are well known in the literature.13

Example 62. Let K be a kernel which is of type (ii). Suppose K1(n) = −n and w = 0.
The kernel becomes K(n,s) = s−n. If we choose I = N0, our arbitrary transform reduces
to the well-known Z-transform. Namely

A { f}(s) =
∞

∑
n=0

s−n f (n),

where we let J = C\Br(0) for some r > 1.14

Example 63. By choosing I = (0,∞), K1(x) = e−x and w = 0, we obtain the Laplace
transform which is given by

A { f}(s) =
∫

∞

0
e−sx f (x)dx,

70
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Figure 4.1: The region J = C\Br(0).

where J = {s ∈ C : Re(s)> 1}. Note that the map s 7→ e−sx is continuous on J for every1

x ∈ I.

Figure 4.2: The region J = {s ∈ C : Re(s)> 1}.

2

It is highlighted that the constant function can be transformed in both Examples 623

and 63, which is the purpose of choosing the space J.4

Example 64. We consider a kernel of the first kind where K1(n) = 1/n and w = 0. More
specifically, we have K(n,s) = n−s. Based on the way I is defined, the maximal domain
for this potential transform is I = N given K1(n) > 0. We also let J be any strip in the
complex plane such that J lies on the right of the line Re(s) = 1. By doing this, we see
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that the well-known Dirichlet series falls within our class of transforms. Namely, we have

A { f}(s) =
∞

∑
n=1

1
ns f (n).

If f (n) = 1 for every n ∈N then A { f}(s) = ζ (s), where ζ is the Riemann zeta function.1

As stated in the introduction, the Dirichlet series has found applications to number2

theory. More specifically, the L-functions are related to the Bernoulli numbers which we3

will introduce for the reader’s interest. A Dirichlet character modulo m is a function4

χ : Z→ C\{0} which satisfies the following properties:5

• χ(n+m) = χ(n), ∀n ∈ Z;6

• χ(nk) = χ(n)χ(k), ∀n,k ∈ Z;7

• χ(n) ̸= 0 if and only if gcd(n,m) = 1.8

If χ is a Dirichlet character modulo m, the L-functions associated to χ are given by

L(s,χ) =
∞

∑
n=1

χ(n)
ns = A {χ}(s).

We now examine some lesser-known transforms which also fall in our class.9

Example 65. Another discrete transform which falls into our class has a kernel of type
(i) where K1(n) = e−n and w = 0. We can choose I to be any bounded subset of N0.
However, we let I = N0. So we have

A { f}(s) =
∞

∑
n=0

e−sn f (n).

One thing which should be noted is the large class of sequences whose transform exist10

when K(n,s) = e−sn and J lies in the part in the complex plane where the real part is11

positive.12

Example 66. We will present another example where I is an interval. Consider I = (0,1),
K1(x) = (1−x)/(1+x) and w = 0. This example was stated in Chapter 3, and in Futcher
& Rodrigo [36]. The transform is of the form

A { f}(s) =
∫ 1

0

(
1− x
1+ x

)s

f (x)dx.

Example 67. Another integral transform which falls in our proposed class of transforms
is the one which transforms functions defined on the interval I = (1,∞), where K1(x) =
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e−(x2−1) and w = 0. This gives us

A { f}(s) =
∫

∞

1
e−s(x2−1) f (x)dx.

This transform was analysed in Chapter 3. It was shown that this transform could be used1

to determine the closed-form solution to a second-order linear differential equation.2

It is apparent from these examples that this class of transforms unifies the Laplace3

transform and the Dirichlet series. Another way in which these two concepts are linked is4

that they are both special cases of the Laplace-Stieltjes transform (see Apostol [7]). The5

Laplace-Stieltjes transform of f is precisely the integral of the function x 7→ e−sx with6

respect to the integrator function f over [0,∞). We highlight that there are transforms7

which can not be written as Laplace-Stieltjes transforms, however they fall in our class of8

transforms due to the generality of the kernel.9

4.2 Continuity and the codomain of A10

We can now impose some restrictions for the codomain for A given an appropriate do-11

main of functions.12

Theorem 68. Let A be either a discrete or integral transform, where K is logarithmic13

separable and is of either type (i) or type (ii). If f ∈ L1(I,Ω, |µ|), then A { f} ∈C(J).14

Proof. It is noted that, for each fixed x ∈ I, the function

s 7→ K(x,s) f (x)

is continuous. Furthermore, based on the assumptions on our class of transforms, we have

| f (x)||K(x,s)| ≤ | f (x)||K(x, s̃)|= g(x)

for every x ∈ I and s ∈ J. Here, we assume that s̃ ∈ ∂J has been chosen appropriately.
We note that g ∈ L1(I,Ω,λ ), where λ is is the Lebesgue measure if the transform is an
integral transform and the counting measure in the case when the transform is discrete. So
,if we let {s j} be a sequence in J which converges to some s0, by Lebesgue’s Dominated
Convergence Theorem, we have

A { f}(s0) =
∫

I
f (x)dµs0(x)

=
∫

I
K(x,s0) f (x)dλ (x)

= lim
j→∞

∫
I
K(x,s j) f (x)dλ (x)
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= lim
j→∞

A { f}(s j).

As s0 was an arbitrary point in J, we conclude that A { f} is continuous on J.1

The previous theorem shows that the codomain of A may be taken to be the set
of continuous functions on J. We may now think of the operator A as the map A :
L1(I,Ω, |µ|)→C(J). The previous proof was inspired by Bartle [11], who considered the
integrand to be a general real-valued function of two variables. The variable in which the
integration was taken over was an arbitrary set whereas the other variable belonged to a
closed interval over the real line. We now establish some general properties of this class
of transforms. We state for clarity that the norm on BC(J) is defined by

||F ||BC(J) = sup
s∈J

|F(s)|,

where BC(J) is the set of all complex-valued, bounded and continuous functions on J.2

Note that despite the fact that the transform of a function is only defined on an open set3

J, A { f} is continuous on J given it is defined by the formula in (2.23). This will help us4

with the following proposition.5

Proposition 69. Let f ∈ L1(I,Ω, |µ|) be defined such that f ≥ 0 almost everywhere on I,6

then ||A { f}||BC(J) = || f ||µ .7

Proof. Let {s j} be a sequence in J such that s j → s̃, where s̃ ∈ ∂J which has the following8

properties:9

• For every x ∈ I, K(x, s̃) is real;10

• For every (x,s) ∈ I × J we have |K(x,s)| ≤ K(x, s̃).11

By the way J is defined for each type of transform, such a sequence exists. Fix f ∈
L1(I,Ω, |µ|). Observe that for every s ∈ J,

|A { f}(s)|=
∣∣∣∣∫I

K(x,s) f (x)dλ (x)
∣∣∣∣

≤
∫

I
K(x, s̃)| f (x)|dλ (x)

= max
s∈∂J

∫
I
| f |d|µs|. (4.1)

Hence, for every f ∈ L1(I,Ω, |µ|), we have ||A { f}||BC(J) ≤ || f ||µ . Now, consider the
sequence defined previously. An undemanding calculation yields

max
s∈∂J

∫
I
| f |d|µs|= A { f}(s̃) = lim

j→∞
A { f}(s j),
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since f is nonnegative almost everywhere. So, for every ε > 0, there exists a point sN

such that

max
s∈∂J

∫
I
| f |d|µs|< |A { f}(sN)|+ ε

≤ sup
s∈J

|A { f}(s)|+ ε,

which implies
|| f ||µ ≤ ||A { f}||BC(J).

This completes the proof.1

The above proposition shows that each of our discrete and integral operators is an2

isometry on some subset of L1(I,Ω, |µ|). This also gives information about the continuity3

of A as a map between normed vector spaces.4

Corollary 70. The operator A : L1(I,Ω, |µ|)→ BC(J) is continuous.5

Proof. Let f ∈ L1(I,Ω, |µ|) be such that || f ||µ = 1. By the previous theorem we have6

that ||A { f}||BC(J) ≤ 1, thus ||A || ≤ 1. Since the operator A is bounded, it is therefore7

continuous.8

4.3 Convolution and shifting formulas for A9

Let K : I × J → C be a logarithmic separable kernel of type (i) and let K1 ∈ C1(I) if I is10

an interval . We define the convolution operation as follows11

( f ∗g)(x) =
∫

I
f (ψ(x,u))g(u)χJu

(x)(Dψ)(x,u)dλ (u), (4.2)

where Ju = K−1
1 (K1(I)K1(u)) =

{
K−1

1 (K1(x)K1(u)) : x ∈ I
}

. Also, λ is the Lebesgue
measure or the counting measure depending on the context. The function ψ : Ju × I → I

is defined by

ψ(x,u) = K−1
1

(
K1(x)
K1(u)

)
,

with Dψ = D1ψ , where D1ψ denotes the first partial derivative with respect to the first12

argument if I is an interval and Dψ ≡ 1 if I = {ri : i ∈ N}. By the assumption that13

K1(I) ⊆ (0,1) or K1(I) ⊆ (1,∞), combined with the value of K1(b), we guarantee that14

Ju ⊆ I in the case where I is an interval. This follows from the following facts that K115

is continuous and I is a connected subspace of R, which implies that K1(I) is connected.16

We also have that the spaces (0,1) and (1,∞) are closed under multiplication.17

While these conditions on K1 are sufficient for this to be true in the case where A is an18

integral transform, in the discrete case, we impose the further property that K1(I)K1(u)⊆19
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K1(I). Another convenient property is that ψ(Ju,u) = I, which is a consequence of the1

assumptions we have imposed.2

Consider the case when the kernel is of type (ii). Here we let ψ(x,u) = K−1
1 (K1(x)−3

K1(u)) and Ju = K−1
1 (K1(I) + K1(u)). We further impose the condition that K1(u) +4

K1(I)⊆ K1(I). We will now show that ψ(Ju,u) = I.5

Fix x ∈ ψ(Ju,u). By the definition of ψ(Ju,u), there exists some n ∈ Ju such that x =

K−1
1 (K1(n)−K1(u)). Since n ∈ Ju, it holds that n = K−1

1 (K1(m)+K1(u)) for some m ∈ I.
This is equivalent to K1(n) = K1(m)+K1(u). This gives us x = K−1

1 (K1(m)+K1(u)−
K1(u)) = m ∈ I. Hence ψ(Ju,u) ⊆ I. Now, suppose y ∈ I. It follows that K−1

1 (K1(y)+

K1(u)) ∈ Ju. We then have

y = K−1
1 (K1(K−1

1 (K1(y)+K1(u)))−K1(u))

= ψ(K−1
1 (K1(y)+K1(u)),u) ∈ ψ(Ju,u).

Hence I = ψ(Ju,u).6

We observe that with how we have defined I and K1, we guarantee that the set Ju is7

nonempty. It is helpful to derive the shifting property before we analyse the convolution8

property. Recall that B denotes the σ -algebra of all the Borel measurable sets on I. Note9

that in the case when I is countable, the Borel σ -algebra is exactly the power set of I.10

Theorem 71. Let K be a logarithmic separable kernel. Let A be in our proposed class11

of transforms. If f ∈ L1(I,B, |µ|), then12

A {x 7→ f (ψ(x,u))χJu
(x)(Dψ)(x,u)}(s) = K(u,s)A { f}(s). (4.3)

Proof. We will first consider the case where A is an integral transform. First we need to13

show that14

x 7→ f (ψ(x,u))χJu
(x)(Dψ)(x,u) (4.4)

is Borel measurable. As K1 : I → R is a continuous injective map, by the Invariance of15

Domain Theorem, K1(I) is open and K1 : I → K1(I) is a homeomorphism (see Munkres16

[71]). This implies that Ju is open, as such the Borel σ -algebra on Ju is a subset of B. To17

show (4.4) is measurable, let U ⊆R be an open set. The preimage of U under the function18

defined in (4.4) is19

{x ∈ Ju : f (ψ(x,u))(Dψ)(x,u) ∈U}
⋃
{x ∈ I \ Ju : 0 ∈U}. (4.5)

The set of all values in the intersection of Ju and the set defined in (4.5) is in B. This
is evident due to the fact that the composition of Borel measurable functions is Borel
measurable (see Rudin [84]) combined with the fact that products of measurable functions
are measurable. Similarly, the intersection of I \ Ju and the set in (4.5) is either the empty
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set or the the set I \ Ju itself. As both of these are closed, we see that the function in (4.4)
is measurable. Taking the transform of (4.4) gives us∫

Ju

f (ψ(x,u))(D1ψ)(x,u)K1(x)s−w dλ (x).

Note that since we stated that A is an integral transform, the kernel is of the form
K1(x)s−w. Making the substitution t = K−1

1 (K1(x)/K1(u)), we have that the above in-
tegral is given by ∫

K−1
1 (K1(Ju)/K1(u))

f (t)K1(K−1
1 (K1(t)K1(u)))s−w dλ (t).

Observe that I = K−1
1 (K1(Ju)/K1(u)). So the above integral is given by∫

I
f (t)K1(u)s−wK1(t)s−w dλ (t).

Writing the integral in terms of the integral transform gives us K(u,s)A { f}(s).1

2

We will now assume I is countable. As B is the power set, the function in (4.4) is
Borel measurable. Once again taking the transform of the function in (4.4) gives us

∑
x∈Ju

f (ψ(x,u))K(x,s).

Here the kernel can be of either type (i) or type (ii). We observe that Dψ ≡ 1. Making the
substitution m = ψ(x,u) changes the above expression to

∑
m∈ψ(Ju,u)

f (m)K(φ(m,u),s),

where φ(·,u) is the inverse of the function ψ(·,u). It is straightforward to show that φ(·,u)
exists as ψ(·,u) is a composition of invertible functions. The sum above is over the set
I. One can show that if the kernel is of either type (i) or (ii), we have K(φ(m,u),s) =

K(m,s)K(u,s). So the A -transform of the function x 7→ f (ψ(x,u))χJu
(x)(Dψ)(x,u) can

be simplified to

∑
m∈I

f (m)K(m,s)K(u,s).

It is easy to see the above expression can be written as K(u,s)A { f}(s). This completes3

the proof.4

There are well-known examples of integral transforms which have a so-called shift-5

ing property, such as the Fourier transform and the Mellin transform. While our class of6

transforms do not include these, we attain more generality by including discrete trans-7
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forms. The Fourier and Mellin transforms were considered in [36] as well as in Chapter1

3. Other examples of integral transforms with a shifting property include the Fourier sine2

and cosine transforms. Furthermore, integral transforms which have a shifting property3

and are logarithmic separable include the Fourier transform and the Mellin transform. We4

will now give some examples of some discrete transforms which have a shifting property.5

Example 72. We see that the transform in Example 65 has a shifting property. Since
K1(n) = e−n, the image of N0 under K1 is given by K1(N0) = {e−n : n ∈ N0}. For every
K1(m), it is evident that

K1(m)K1(N0) = {e−(m+n) : n ∈ N0}

⊆ {e−n : n ∈ N0}= K1(N0).

Hence ψ(Ju,u) ⊂ N0 and a formula which satisfies the shifting property exists for this6

transform. Observe that Jm = {n+m : n ∈ N0} and, substituting in the appropriate func-7

tions, the formula which satisfies the shifting property is defined on n ∈ N0 and given by8

9

n 7→ f (n−m)χJm
(n). (4.6)

Note that the function f is defined on nonnegative integers. We highlight the term f (n−10

m) is undefined for n<m. However, by abuse of notation, we ensure the above expression11

is zero when n < m.12

Example 73. We now present the shifting property for the Z-transform. The following13

function gives us the well-known shifting formula for the Z-transform14

n 7→ f (n−m)χm+N0
(n), (4.7)

where m+N0 = {m+n : n ∈ N0}.15

The convolution operation is an operation on some class of functions such that the for-16

mula A { f ∗g}= A { f}A {g} holds. It is straightforward to show this holds by making17

some formal calculations. We will now show the formula in (4.2) exists almost every-18

where on I.19

Theorem 74. Suppose that f ,g ∈ L1(I,B, |µ|). Then f ∗g exists almost everywhere on I20

and f ∗g ∈ L1(I,B, |µ|).21

Proof. Fix s ∈ J such that K(x,s) ̸= 0 for every x ∈ I. The case when I is an interval22

has already been proven in Futcher & Rodrigo [36]. However, we will modify the proof23

slightly to ensure further generality. Consider the measure space (I × I,B⊗B,λ ×λ ),24

where λ is the Lebesgue measure. We only need to show that the function defined by25

(x,u) 7→ K1(x)s−w f (ψ(x,u))g(u)χJu
(x)(Dψ)(x,u) (4.8)
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is B⊗B-measurable. Fix U ⊆R to be open. The preimage of the function in (4.8) is the
union of the two following sets

{(x,u) ∈ Ju × I : K1(x)s−w f (ψ(x,u))g(u)(Dψ)(x,u) ∈U}, (4.9)

{(x,u) ∈ (I × I)\ (Ju × I) : 0 ∈U}.

Since the function (x,u) 7→ ψ(x,u) is continuous, it is a Borel function on Ju× I, similarly1

for the function (x,u) 7→ (Dψ)(x,u). Using the fact that the composition of Borel maps is2

Borel, it follows that the function in (4.8) is Borel measurable on Ju×I. So the intersection3

of the preimage of the function in (4.8) with the set Ju × I, which we will call S, is in the4

Borel σ -algebra on Ju × I. As Ju × I ⊆ I × I is open, the set S is in the Borel σ -algebra5

on I × I. Because I is separable, the Borel σ -algebra on I × I is equal to B ⊗B (see6

Folland [32]). From here it is straightforward to see that the union of the sets in (4.9)7

is in B ⊗B. As U is an arbitrary open set, we conclude that the function in (4.8) is8

B⊗B-measurable. From here the proof is the same as that in Futcher & Rodrigo [36].9

We will now present the case when I is countable. Fix s ∈ J, we will be working
with the measure space (I × I,B⊗B,λ ×λ ), where λ is the counting measure on I. As
B⊗B is the smallest σ -algebra containing all the measurable rectangles, it follows that
B⊗B = P(I × I). As such the function defined by

(n,m) 7→ K(n,s) f (ψ(n,m))g(m)χJm
(n)

is B⊗B-measurable. Now, consider the iterated integral∫
I

∫
I
|K(n,s) f (ψ(n,m))g(m)χJm

(n)|dλ (n)dλ (m) (4.10)

= ∑
m∈I

∑
n∈I

|K(n,s) f (ψ(n,m))g(m)|χJm
(n). (4.11)

Making the same substitution that was used in Theorem 71, that is, letting j = ψ(n,m),
and by renaming variables, the above expression is simplified to

∑
m∈I

|K(m,s)||g(m)|∑
n∈I

|K(n,s)|| f (n)|=
∫

I
|g|d|µs|

∫
I
| f |d|µs|

≤ ||g||µ · || f ||µ . (4.12)

Hence we deduce that the iterated integral in (4.10) is finite. By Fubini’s Theorem (see
Hewitt & Stromberg [51]) the function f ∗g defined by

( f ∗g)(n) = ∑
m∈I

f (ψ(n,m))g(m)χJm
(n)
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exists almost everywhere on I due to the fact that K(n,s) ̸= 0 for every n∈ I. Furthermore,1

since the inequality in (4.12) holds for every s∈ J, it follows that f ∗g∈ L1(I,B, |µ|).2

We note that it is possible to take the transform of f ∗ g due to the fact that if f ,g ∈3

L1(I,B, |µ|), then so too is f ∗ g. We observe that the proof in Futcher & Rodrigo [36]4

shows that f ∗g exists almost everywhere on I and that f ∗g ∈ L1(I,M , |µ|) where M is5

the collection of all Lebesgue measurable sets which are subsets of I. The proof assumes6

that f is continuous, but it suffices to assume f is a Borel function given we restrict7

the σ -algebra to Borel sets on I. Also, it is evident by Fubini’s Theorem (see Hewitt8

& Stromberg [51]) that if both f and g are Borel maps, then f ∗ g is also a Borel map.9

Using this and the previous theorem, the convolution operation is a binary operation ∗ :10

L1(I,B, |µ|)×L1(I,B, |µ|)→ L1(I,B, |µ|) defined by (4.2).11

Here, we will look at some examples where the convolution operation is commutative.12

Example 75. Consider the transform in Example 64. The convolution formula is given
by

( f ∗g)(n) =
∞

∑
m=1

f
( n

m

)
g(m)χmN(n),

where mN= {mn : n ∈ N}. If we make the substitution r = n/m, the sum is equivalent to

( f ∗g)(n) = ∑
n/r∈N

f (r)g
(n

r

)
χN(r).

If we let Sn = {n/k : k ∈ N}, then the convolution formula is given by

( f ∗g)(n) = ∑
r∈Sn∩N

f (r)g
(n

r

)
= ∑

r∈N
f (r)g

(n
r

)
χSn

(r).

As we have χSn
(r) = χ rN(n), it is apparent that

( f ∗g)(n) =
∞

∑
r=1

g
(n

r

)
f (r)χ rN(n) = (g∗ f )(n).

Note that the transform in Example 64 can be considered the discrete Mellin trans-
form. While the function K1 is defined in a similar way despite their respective domains,
we highlight that a characteristic function appears in the this convolution formula. It
should also be noted that the term 1/m does not appear in the above sum which is taken
over m. A fact of significant importance is that this agrees with the convolution for the
Dirichlet series stated in Apostol [9]. So we may write the sum present in the convolution
formula as a sum over all the values of m which divide n. Namely

( f ∗g)(n) = ∑
m|n

f
( n

m

)
g(m).
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Example 76. We will now analyse the convolution formula for the transform described
in Example 65. The formula is given by

( f ∗g)(n) =
∞

∑
m=0

f (n−m)g(m)χm+N0
(n).

Now we make the substitution r = n−m, which gives us

( f ∗g)(n) = ∑
n−r∈N0

f (r)g(n− r)χN0
(r).

Define Sn = {n− k : k ∈ N0}, the convolution formula is given by

( f ∗g)(n) = ∑
r∈Sn∩N0

g(n− r) f (r)

= ∑
r∈N0

g(n− r) f (r)χSn
(r).

Since we have χSn
(r) = χ r+N0

(n), we deduce that ( f ∗g)(n) = (g∗ f )(n).1

We will soon see that under further conditions the convolution operator is both com-2

mutative and associative. We now impose a further condition. If I is an interval, let3

K1(a) = 1. Before we do this we will introduce a new property.4

4.4 Proof of the injectivity of A5

Note that when I is an interval, the kernel is of the form K1(x)s−w. Consider the case
when Re(s−w) > 0 for every s ∈ J. Since the function 1 ∈ L1(I,Ω, |µ|), we must have
K1(a) = 1 and K1(b) = 0, where

K1(a) = lim
x→a+

K1(x).

This is due to the fact that the kernel must be bounded in I × J.6

We see that if J is defined such that Re(s−w)< 0 for every s ∈ J, then K1(a) = 1 and7

K1(b) = ∞. It has been shown in Futcher and Rodrigo [36] that if A { f} ≡ 0 on the space8

J = {s ∈ C : Re(s) > c} for some fixed c > Re(w), and if f ∈ L1(I,Ω, |µ|)∩C(I), then9

f ≡ 0. Because the case when A is an integral transform has already been considered in10

[36], we will focus on the case when A is discrete.11

Theorem 77. Let f ∈ L1(I,Ω, |µ|), where A is a discrete transform and the kernel is of12

type (i). If A { f}(s) = 0 for every s ∈ J where J = {s ∈ C : Re(s) > c} for some fixed13

c > Re(w), then f ≡ 0.14
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Proof. We first highlight that with the way the kernel and J are defined, K1 is monotonic
decreasing. We will use mathematical induction to show that if A { f} ≡ 0 then f ≡ 0.
Let {s j} be a sequence of points in J such that the real part Re(s j) approaches ∞. Now,
consider the functions g j, where g j(n) = f (n)K(n,s j) and g, where g is defined by

g(n) = lim
j→∞

g j(n).

Since |g j| ≤ | f (·)||K(·, s̃)|, for some fixed s̃ ∈ ∂J, and | f (·)||K(·, s̃)| is integrable, we
apply Lebesgue’s Dominated Convergence Theorem to the sequence of functions defined
by K1(r1)

−s j+wg j(·), where r1 is the smallest element in the set I. We deduce that

0 = lim
n→∞

K1(r1)
−s j+wA { f}(s j)

= lim
j→∞

∫
I

[
K1(n)
K1(r1)

]s j−w

f (n)dλ (n)

= lim
j→∞

∫
I
K1(r1)

−s j+wg j(n)dλ (n),

where λ is the counting measure. Moving the limit inside the integral gives us

0 =
∫

I
lim
j→∞

K1(r1)
−s j+wg j(n)dλ (n).

Note that the integrand above is given by ( f (r1),0,0, ...). Therefore f (r1) = 0. Now,
assume f (ri) = 0 for every 1 ≤ i ≤ k. Using this, we will show that f (rk+1) = 0. By a
similar argument shown previously, applying Lebesgue’s Dominated Convergence Theo-
rem to K1(rk+1)

−s j+wg j(·) gives us

0 =
∫

I
lim
j→∞

K1(rk+1)
−s j+wg j(n)dλ (n).

The above integral is equal to f (rk+1). Hence f ≡ 0.1

The previous proof assumed the kernel was of type (i). A similar proof of the injectiv-
ity of the transform A holds if K(t,s) = K1(t)s−w where K1 is strictly monotonic increas-
ing on the domain I and we choose J = {s ∈ C : Re(s) < d} for some fixed d < Re(w).
From now on, when we work with kernels of type (i), we let J = {s ∈ C : Re(s) > c} or
J = {s ∈ C : Re(s)< d}. When the kernel is of type (ii), and if A { f} ≡ 0 on J for some
f ∈ L1(I,Ω, |µ|), then we have

∞

∑
i=1

f (ri)(s−w)K1(ri) = 0.

since f ∈ L1(I,Ω, |µ|). The above series converges absolutely on J. Suppose that C :
[0,2π]→ J is the function defined by C(t) = w+ εeit . Fix j ∈ N. Multiplying the above
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function by the function s 7→ (s−w)−K1(r j)−1 and then integrating the new function over
the closed contour C gives us

∞

∑
i=1

∫
C

f (ri)

(s−w)K1(r j)−K1(ri)+1
ds = 0.

Recall that

∫
C

1
(s−w)K1(r j)−K1(ri)+1

ds =

{
2πi if i = j,

0 if i ̸= j.

The above computation shows that f (r j) = 0. As j is arbitrary, we conclude that f ≡ 0.1

From here, a simple proof of an inversion formula for transforms of the form2

A { f}(s) = ∑
x∈I

(s−w)K1(x) f (x), (4.13)

where K1 is an integer-valued function which does not change sign. As the sum in (4.13)
converges uniformly on compact subsets of J, we see that the function A { f} is holo-
morphic when f ∈ L1(I,B, |µ|). Let C be a contour in J whose interior contains w. A
straightforward computation yields

∫
C

A { f}(s)
(s−w)K1(x)+1

ds =
∫

C
∑
t∈I

(s−w)K1(t)−K1(x)−1 f (t)ds.

Since the series in (4.13) converges uniformly, we may interchange the summation and3

the integral, which gives us4

f (x) =
1

2πi

∫
C

A { f}(s)
(s−w)K1(x)+1

ds. (4.14)

By letting A be a discrete transform, and using the injectivity of A , it is straight-5

forward to show certain properties of the convolution operation. These properties are6

associativity, commutativity, and distributivity of the convolution operation with respect7

to addition.8

4.5 The Banach algebra L1(I,B, |µ|)9

We will consider the case when A is a discrete transform and combine the three properties10

stated previously into one theorem. While the three properties hold when A is an integral11

transform, the proof is more complicated and will be shown later.12

Theorem 78. Let A : L1(I,B, |µ|)→ BC(J) be a discrete transform, where J is defined
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such that A is injective. Then for every f ,g,h ∈ L1(I,B, |µ|), we have

f ∗g = g∗ f , f ∗ (g∗h) = ( f ∗g)∗h, f ∗ (g+h) = f ∗g+ f ∗g.

Proof. By Theorem 74 we can convolve any functions in L1(I,B, |µ|). We will use
the commutativity, associativity and distributivity properties of the product for complex-
valued functions. A simple calculation yields

A { f ∗g}= A { f}A {g}= A {g}A { f}= A {g∗ f}.

Which used the commutativity of complex-valued functions. We also have

A { f ∗ (g∗h)}= A { f}A {g∗h}= A { f}A {g}A {h}

A {( f ∗g)∗h}= A { f ∗g}A {h}= A { f}A {g}A {h},

which used the fact that multiplication of complex-valued functions is associative. Fur-
thermore, the distributative properties of complex functions gives us

A { f ∗ (g+h)}= A { f}A {g}+A { f}A {h}

= A { f ∗g}+A { f ∗h}= A { f ∗g+ f ∗h}.

Since A { f ∗ g} = A {g ∗ f}, A { f ∗ (g ∗ h)} = A {( f ∗ g) ∗ h} and A { f ∗ (g+ h)} =1

A { f ∗g+ f ∗h}, applying the injectivity of A gives us the desired results.2

We note that the previous proof would not work if A is an integral transform as3

we require the underlying functions to be continuous. We will now show these three4

properties are true when A is an integral transform. For convenience, we will only present5

the case when K1 is monotonic increasing, and K1(a) = 1, K1(b) = ∞.6

Proposition 79. Let f ,g ∈ L1(I,B, |µ|). Given I is an interval and K1 satisfies the prop-7

erties stated previously, then f ∗g = g∗ f .8

Proof. Observe that since χJu
(x) = χ (a,x)(u), we have9

( f ∗g)(x) =
∫
(a,x)

f (ψ(x,u))g(u)D1ψ(x,u)du. (4.15)

If y = ψ(x,u), then u = ψ(x,y) and

∂y
∂u

=−D1ψ(x,u)
D1ψ(x,y)

.
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Making this substitution gives us

( f ∗g)(x) =
∫
(a,x)

f (y)g(ψ(x,y))D1ψ(x,y)dy = (g∗ f )(x).

1

Theorem 80. The space L1(I,B, |µ|) is associative under ∗.2

Proof. Let x be a value such that ( f ∗(g∗h)), (( f ∗g)∗h) and (| f |∗(|g|∗ |h|)) are defined
at x. It should be noted that the set of all x where at least one of the following previously
defined functions does not exist is a null set. We have

( f ∗ (g∗h))(x) =
∫

I
f (ψ(x,u))χ (u,b)(x)D1ψ(x,u)

×
∫

I
g(ψ(u,y))χ (y,b)(u)D1ψ(u,y)h(y)dydu

=
∫

I

∫
I

f (ψ(x,u))χ (u,b)(x)D1ψ(x,u)g(ψ(u,y))χ (y,b)(u)

×D1ψ(u,y)h(y)dudy

=
∫
(a,x)

∫
(y,x)

f (ψ(x,u))D1ψ(x,u)g(ψ(u,y))D1ψ(u,y)h(y)dudy.

For the sake of clarity we highlight that we can reverse the order of integration due to the
fact that (| f | ∗ (|g| ∗ |h|))(x) is finite. If we let z = ψ(u,y), we have

∂ z
∂u

= D1ψ(u,y),

which implies

( f ∗ (g∗h))(x) =
∫ x

a

∫
ψ(x,y)

a
f (ψ(ψ(x,y),z))g(z)h(y)

×D1ψ(x,K−1
1 (K1(y)K1(z)))dzdy.

For the purpose of being thorough we repeat the definition that

ψ(x,u) = K−1
1 (K1(x)/K1(u)) .

In the above expression for f ∗ (g ∗ h), we used the fact that ψ(x,K−1
1 (K1(y)K1(z))) =

ψ(ψ(x,z),y). Because the identity

D1ψ(x,K−1
1 (K1(y)K1(z))) = D1ψ(ψ(x,y),z)D1ψ(x,y)
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holds, the function f ∗ (g∗h) evaluated at x can be manipulated as follows

( f ∗ (g∗h))(x) =
∫ x

a

∫
ψ(x,y)

a
f (ψ(ψ(x,y),z))g(z)h(y)

×D1ψ(ψ(x,y),z)D1ψ(x,y)dzdy

=
∫ x

a

∫
ψ(x,y)

a
f (ψ(ψ(x,y),z))g(z)D1ψ(ψ(x,y),z)dz

×h(y)D1ψ(x,y)dy

=
∫ x

a
( f ∗g)(ψ(x,y))h(y)D1ψ(x,y)dy

= (( f ∗g)∗h)(x).

As this is true for almost all x ∈ I, it follows that ( f ∗ (g ∗ h)) and (( f ∗ g) ∗ h) are in the1

same equivalence class. Hence the convolution operation is associative.2

Proposition 81. Let f ,g,h ∈ L1(I,B, |µ|), then f ∗ (g+h) = f ∗g+ f ∗h.3

Proof. Fix x ∈ I such that ( f ∗g)(x) and ( f ∗h)(x) exist. By definition, we have ( f ∗g+

f ∗h)(x) = ( f ∗g)(x)+( f ∗h)(x), which gives us

( f ∗g+ f ∗h)(x) =
∫

I
f (ψ(x,u))g(u)χJu

(x)D1ψ(x,u)du

+
∫

I
f (ψ(x,u))h(u)χJu

(x)D1ψ(x,u)du

=
∫

I
f (ψ(x,u))(g+h)(u)χJu

(x)D1ψ(x,u)du

= ( f ∗ (g+h))(x).

This is true almost everywhere on I. Therefore f ∗ (g+h) = f ∗g+ f ∗h.4

We note that since the convolution operation ∗ is commutative, the following equation5

( f + g) ∗ h = f ∗ h+ g ∗ h holds. It is straightforward to show that for any α ∈ C that6

(α f )∗g = f ∗ (αg) = α( f ∗g). Because of this, we only need to show one other property7

to conclude L1(I,B, |µ|) is a Banach algebra.8

Theorem 82. Let f ,g ∈ L1(I,B, |µ|). Then || f ∗g||µ ≤ || f ||µ · ||g||µ .9

Proof. We will start by assuming I is countable and prove the case when I is an interval
later. The following holds for every s ∈ J∫

I
| f ∗g|d|µs| ≤

∫
I

∫
I
|K(x,s)|| f (ψ(x,m))||g(m)|χJm

(x)dλ (x)dλ (m)

= ∑
m∈I

∑
x∈Jm

|K(x,s)|| f (ψ(x,m))||g(m)|,
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where λ is the counting measure. By introducing the substitution

n = K−1
1 (K1(x)K1(m)),

and using the fact that K(K−1
1 (K1(x)K1(m)),s) = K(n,s)K(m,s), we have∫

I
| f ∗g|d|µs| ≤ ∑

m∈I
|K(m,s)|∑

n∈I
|K(n,s)|| f (n)||g(m)|

=
∫

I
|g|d|µs|

∫
I
| f |d|µs|

≤ || f ||µ · ||g||µ .

As this is true for any s ∈ J, the following inequality holds

||A {| f ∗g|}||BC(J) = sup
s∈J

∫
I
| f ∗g|d|µs|

≤ || f ||µ · ||g||µ .

By Proposition 69, the inequality || f ∗g||µ ≤ || f ||µ ·||g||µ holds for every f ,g∈L1(I,B, |µ|).1

2

Now, suppose I is an interval. The computation is similar to that in the countable
case. We see that∫

I
| f ∗g|d|µs| ≤

∫
I

∫
Ju

|K(x,s)|| f (ψ(x,u))||g(u)|D1ψ(x,u)dλ (x)dλ (u)

≤
∫

I

∫
Ju

K(x, s̃)| f (ψ(x,u))||g(u)|D1ψ(x,u)dλ (x)dλ (u)

=
∫

I
A {| f (ψ(·,u))|D1ψ(·,u)}(s̃)|g(u)|dλ (u).

An application of the shifting property gives us∫
I
| f ∗g|d|µs|=

∫
I
|K(t, s̃)|| f (t)|dλ (t)

∫
I
|K(u,s)||g(u)|dλ (u)

≤ || f ||µ · ||g||µ .

This holds true for every s ∈ J. Using Proposition 69 once again shows || f ∗ g||µ ≤3

|| f ||µ · ||g||µ .4

We have thus shown that L1(I,B, |µ|) is a Banach algebra using the new convolution5

formula we have defined. When I is an interval, this space shares some properties with6

the typical Banach algebra L1(λ ) under the standard addition of functions and Fourier7

convolution for the product. One other similarity which arises is the fact that our Banach8

algebra contains no unit when I is an interval.9
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Proposition 83. Let I be an interval, then the space L1(I,B, |µ|) contains no unit.1

Proof. Suppose the space contains a unit v and we will derive a contradiction. Let f ∈
L1(I,B, |µ|) be defined such that it is positive almost everywhere on I. We know such a
function exists because the constant function 1 is in L1(I,B, |µ|). Observe that

v∗ f = f which implies A {v}A { f}= A { f}.

This yields
(A {v}−1)A { f}= 0.

Let z be a value such that K(x,z) is positive for every x ∈ I. Suppose J is extended to a
half of the plane. More specifically, let J = {s ∈ C : Re(s)> c}. We introduce the set

Ĵ = {s ∈ C : s = z+ t for some t ∈ [0,∞)}.

It is evident that A { f}(s)> 0 for every s ∈ Ĵ. Hence A {v} ≡ 1 on Ĵ. Now, let {s j} ⊆ Ĵ

be a sequence of points such that Re(s j) → ∞. As A {v}(s j) is finite for every j, and
v∈L1(I,B, |µ|), we can apply Lebesgue’s Dominated Convergence Theorem which gives
us

0 =
∫

I
lim
j→∞

K1(x)s j−wv(x)dx

= lim
j→∞

∫
I
K1(x)s j−wv(x)dx

= lim
j→∞

A {v}(s j) = 1.

Which is a contradiction. Hence L1(I,B, |µ|) has no unit when I is an interval.2

The above proposition does not hold when A is a discrete transform. This is due to3

the fact that there are examples where L1(I,B, |µ|) has a unit.4

Example 84. Let A be the Z-transform. Consider the function δ0 : N0 → R defined by
δ0(0) = 1 and δ0(n) = 0 for n ∈ N. For every f ∈ L1(I,B, |µ|), it holds that

(δ0 ∗ f )(n) =
∞

∑
m=0

δ0(m−n) f (m)χm+N0
(n).

Using the fact that δ0(m−n) = 0 for m ̸= n gives us

(δ0 ∗ f )(n) = δ (n−n) f (n)χn+N0
(n) = f (n).

Hence δ0 ∗ f = f for every f ∈ L1(I,B, |µ|).5
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We would still like to give some conditions which guarantee that L1(I,B, |µ|) is a1

Banach algebra without a unit when A is a discrete transform. More specifically, when2

K is a kernel of type (ii). This proof was suggested by an anonymous referee.3

Proposition 85. Let K be a kernel of type (ii). That is to say K(x,s) = (s−w)K1(x), where4

K1 is an integer-valued function which does not change sign. If K1(x) ̸= 0 on I, then5

L1(I,B, |µ|) is nonunital.6

Proof. Let f ∈ L1(I,B, |µ|) be any nonzero function and suppose L1(I,B, |µ|) contains
a unit v. Since

v∗ f = f ,

it is straightforward to show that

(A {v}(s)−1)A { f}(s) = 0

for every s ∈ J. Since f is not zero and A is injective, A { f} is not zero. By the iden-7

tity theorem, it follows that A { f}(s) is nonzero for almost all s ∈ J. This implies that8

A {v}(s) = 1 almost everywhere on J.9

Now, let C be a closed contour in J which contains w. Using the formula in (4.14),
we have

v(x) =
1

2πi

∫
C

A {v}(s)
(s−w)K1(x)+1

ds

=
1

2πi

∫
C

1
(s−w)K1(x)+1

ds.

Here we have used the fact that A {v}(s) = 1 almost everywhere on J. Since C is homo-10

topic to a circle, an application of the Cauchy integral formula yields v(x) = 0, which is a11

contradiction.12



Chapter 51

Generalised convolutions on2

distributions and measures3

In the previous chapter it was shown that L1(I,B, |µ|) is a nonunital Banach algebra. We
introduce several concepts in this chapter. Several miscellaneous theorems which did not
fit in Chapter 3 or Chapter 4 are included in this chapter. Furthermore, we extend the
convolution product to distributions and measures. Before we do this, we change some
of the assumptions which were present in the previous chapters. One such assumption is
that, given K1 : I →R is defined such that K1(I) = (0,1) or K1(I) = (1,∞), we assume that
the domain of K1 can be extended continuously such that K1(I) = (0,1] or K1(I) = [1,∞).
As such, we will no longer require I to be an open interval. Instead we let I\{K−1

1 (1)}
be open and I = [a,b) or I = (a,b]. We still require I to be a subset of R. For the sake of
simplifying the notation, we impose

Î = I\{K−1
1 (1)}.

Recall that Ju = K−1
1 (K1(I)K1(u)). Based on the assumptions we have made, this gives

two possible options for Ju. Namely:

Ju = (a,u], Ju = [u,b).

Previously we assumed that K1(I) ⊆ (0,1) or K1(I) ⊆ (1,∞). Hence we have placed4

further restrictions on our class of transforms. Furthermore, we will focus on integral5

transforms, while making few comments on discrete transforms.6

Despite the restrictions we have imposed, there are plenty of transforms which fall in7

our class.8

It appears that some abuse of notation needs to be clarified. More specifically, in the
case

K1(x) =
sin(x)

x
.
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K1(x) I Î J
e−x [0,∞) (0,∞) {s ∈ C : Re(s)> 1}

1/(1+ x2) [0,∞) (0,∞) {s ∈ C : Re(s)> 1}
(1− x)/(1+ x) [0,1) (0,1) {s ∈ C : Re(s)> 0}

tan(x) (0,π/4] (0,π/4) {s ∈ C : Re(s)> 0}
1/(c+ x) [1− c,∞) (1− c,∞) {s ∈ C : Re(s)> 2}
e−(x2−1) [1,∞) (1,∞) {s ∈ C : Re(s)> 1}
x/ex−1 [0,∞) (0,∞) {s ∈ C : Re(s)> 1}

1/cosh(x) [0,∞) (0,∞) {s ∈ C : Re(s)> 1}
e1/x−x [1,∞) (1,∞) {s ∈ C : Re(s)> 1}

x (0,1] (0,1) {s ∈ C : Re(s)> 0}
sin(x)/x [0,π) (0,π) {s ∈ C : Re(s)> 0}

e1−1/[1−(x−c)2] [c,c+1) (c,c+1) {s ∈ C : Re(s)> 0}
xn +1/xn+1 +1 [1,∞) (1,∞) {s ∈ C : Re(s)> 1}

log(x) (1,e] (1,e) {s ∈ C : Re(s)> 0}
xxx

(0,1] (0,1) {s ∈ C : Re(s)> 0}

Table 5.1: Examples of transforms in our proposed class.

We see that in this case, K1 is defined on Î but not on I. We have implicitly defined K1

such that
K1(0) = lim

x→0+

sin(x)
x

.

It is apparent that the last example is a contrived example. While it appears interesting it1

is not obvious that the function is monotonic on (0,1). We will demonstrate this now.2

The function K1 : (0,1) → R defined by K1(x) = xxx
is positive on (0,1). A conse-

quence of this is that log(K1(x)) = xx log(x) is defined for every x ∈ (0,1). We deduce
that

K′
1(x)

K1(x)
= xx−1 + log(x)xx[log(x)+1].

The following inequality is true for all x ∈ (0,1)

K′
1(x)

K1(x)
> xx {1+ log(x)[log(x)+1]} .

Observe that xx > 0 on (0,1) and log(x)2 + log(x)+1 = 0 if and only if

x ∈
{

e−1/2−i
√

3/2,e−1/2+i
√

3/2
}
,

so log(x)2 + log(x)+ 1 does not change sign on (0,1). As log(e−1)2 + log(e−1)+ 1 >3

0, this implies that K1 is strictly monotonic increasing on I = (0,1). It is obvious that4

K1(1) = 1, we will also show that K1(0+) = 0. Fix ε ∈ (0,1). It is a fact that the only5

stationary point of the function x 7→ xx is at x = e−1 and is a minimum. It is obvious that6
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00 = 11 = 1. From here, we see that xx ∈ (0,1) given x ∈ (0,1). Now let x < ε2
1

xx > 0 =⇒ xx log(ε2)> xx log(x). (5.1)

Now, recall that
2 < e < 4 which implies

1
4
< e−1 <

1
2
.

This gives us
1
2

log
(

1
4

)
< e−1 log(e−1).

Thus (e−1)e−1
> 1/2 and thus xx > 1/2 for every x ∈ (0,1). Using this, we can find an

upper bound on the inequality in (5.1)

xx log(x)<
1
2

log(ε2).

Which implies 0 < xxx
< ε . What we have shown is for every ε ∈ (0,1),

0 < x < ε
2 implies xxx

< ε.

Therefore K1(0+) = 0.2

Now that some examples have been presented, we show that the standard convolu-3

tion formula we have been working with in Chapters 3 and 4 is a binary operation on4

L1(I,B, |µ|). We need to take some care with how we have defined I.5

Proposition 86. Let f ,g ∈ L1(I,B, |µ|). Then f ∗g exists almost everywhere on I.6

Proof. It suffices to show that the function h : I × I → R defined by

h(x,u) = f (ψ(x,u))g(u)D1ψ(x,u)χJu
(x)

is measurable. The following proof works for for I = [a,b), which implies Ju = [u,b). A
similar proof holds when I = (a,b]. The set (I × I)\(Ju × I) is [a,u)× I since Ju = [u,b).
It is straightforward to show that Ju × I ∈ B⊗B. Now, let U ⊆ R be open. Observe that

h−1(U) = {(x,u) ∈ Ju × I : x ̸= u, u ̸= a and f (ψ(x,u))g(u)D1ψ(x,u) ∈U}

∪{(x,u) ∈ Ju × I : u = a and f (ψ(x,u))g(u)D1ψ(x,u) ∈U}

∪{(x,u) ∈ Ju × I : x = u and f (ψ(x,u))g(u)D1ψ(x,u) ∈U}

∪{(x,u) ∈ (I × I)\(Ju × I) : 0 ∈U}. (5.2)

Using the fact that the set of all (x,u) ∈ Ju × I such that x ̸= u and u ̸= a is an open subset
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of Î × Î, it can be seen that the following sets are in B⊗B

{(x,u) ∈ Ju × I : x ̸= u, u ̸= a and f (ψ(x,u))g(u)D1ψ(x,u) ∈U}

{(x,u) ∈ (I × I)\(Ju × I) : 0 ∈U}.

Now, consider the function π2 : I × I → I where π2(x,u) = u, u ̸= a and p : I → R is
defined by

p(u) = f (ψ(u,u))g(u)D1ψ(u,u).

Observe that the set in (5.2) consisting of all points in Ju × I where x = u is equivalent to
the set

{(x,u) ∈ I × I : x = u}∩{(x,u) ∈ I × I : p(π2(x,u)) ∈U}.

The line x = u is clearly in BR⊗BR being a rotation of the real line, so the above set is
B⊗B-measurable. A similar process shows that the set

{(x,u) ∈ Ju × I : f (ψ(a,u))g(u)D1ψ(a,u) ∈U}∩ ({a}× I)

is B⊗B-measurable. We conclude that h is measurable on I × I. From here, the proof1

that the convolution formula exists is similar to that in Theorem 49.2

We are now ready to analyse further properties of the convolution formula.3

5.1 Continuity of the convolution of two functions4

In this section, we present sufficient conditions in which the convolution (4.2) of two5

functions is continuous. While a general statement has been proven in Futcher & Ro-6

drigo [36], this can be hard to check if f , g and K1 meet all the requirements. Here, we7

give easily verifiable conditions which guarantee the convolution is continuous. First,8

we give some conditions on the underlying space where the convolution of two functions9

does not vanish on.10

Lemma 87. Suppose that the function f ∗g exists on I. Let S be the closure of the set

{K−1
1 (K1(x)K1(u)) ∈ I : x ∈ supp( f ),u ∈ supp(g)}.

Then supp( f ∗g)⊆ S.11

Proof. Fix x ∈ I \S. If u ∈ supp(g) then there are two possible options. Given x /∈ Ju, then

f (ψ(x,y))g(u)D1ψ(x,u)χJu
(x) = 0.
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Now, if x ∈ Ju, then it follows that ψ(x,u) /∈ supp( f ). If ψ(x,u) ∈ supp( f ) and u ∈
supp(g), then x ∈ S which contradicts our assumption that x /∈ S. Since ψ(x,u) /∈ supp( f ),
it is evident that

f (ψ(x,u))g(u)D1ψ(x,u)χJu
(x) = 0.

Now, if u /∈ supp(g), then it is straightforward to show that the integrand of the convolution1

formula is zero. This implies ( f ∗ g)(x) = 0. Hence x /∈ supp( f ∗ g). This completes the2

proof.3

Example 88. Consider when K1(x) = 1/cosh(x) and let f and g be the functions defined
by

f (x) = 3(x−4)χ [4,6)(x)+3(8− x)χ [6,8](x), g(x) =
√

1− (x−6)2χ [5,7](x).

Observe that

S = [arccosh(cosh(4)cosh(5)),arccosh(cosh(7)cosh(8))].

It is clear that f and g have compact support. The results in Figure 5.1 give a visual4

representation of what to expect from Lemma 87. The numerical simulation shows that5

the convolution of f and g when considering this kernel is similar to that of a Gaussian6

function, which appears to be a coincidence.7

Figure 5.1: A visualisation of supp( f ∗g)⊆ S where K1(x) = 1/cosh(x).
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Example 89. Consider when f (x) = χ (2,4)(x) and g(x) = χ (6,8)(x). It is obvious that1

f and g have compact support. When we let K1(x) = e−(x2−1), it can be shown that2

S = [
√

39,
√

79]. Once again, the illustration in Figure 5.2 shows that the support of f ∗g3

lies within the set S.

Figure 5.2: A visualisation of supp( f ∗g)⊆ S where K1(x) = e−(x2−1).

4

It is easily shown that if f ,g ∈ Cc(I;C), then f ∗ g exists almost everywhere on I. It
was defined in Chapter 2 that a function vanishes at infinity if for every ε > 0, the set

{x ∈ I : | f (x)| ≥ ε}

is compact. Recall the space

C0(I;C) = { f : I → C| f vanishes at infinity}.

A consequence of the next theorem is that the space Cc(I;C) is closed under convo-5

lution assuming some further conditions on ψ .6

Theorem 90. Suppose both ψ and D1ψ are uniformly continuous on every bounded7

subset of Ju × I, D1ψ is bounded on Ju × I and let p and q be conjugate exponents. If8

f ∈ Lp(I,B,λ ) and g ∈ Lq(I,B,λ ), then f ∗g ∈C0(I;C).9

Proof. For the sake of concreteness, we state that |D1ψ(x,u)| ≤M for every (x,u)∈ Ju×I.
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Suppose f ,g ∈Cc(I;C). We know that f ∗g exists almost everywhere on I. We note that

|( f ∗g)(x)| ≤
∫

Ĵx

| f (ψ(x,u))||g(u)||D1ψ(x,u)|dλ (u),

where
Ĵx = ψ(x, I) =

{
K−1

1

(
K1(x)
K1(y)

)
: y ∈ I

}
.

An application of Hölder’s inequality gives us

|( f ∗g)(x)| ≤
(∫

Ĵx

| f (ψ(x,u))|p|D1ψ(x,u)|dλ (u)
)1/p

×
(∫

Ĵx

|g(u)|q|D1ψ(x,u)|dλ (u)
)1/q

≤ M1/q
(∫

I
| f (u)|p dλ (u)

)1/p(∫
I
|g(u)|q dλ (u)

)1/q

.

By our assumptions, we therefore have that f ∗g is defined everywhere on I. The integral1

in the convolution then reduces to an integral over the support of g. As f ,g ∈ Cc(I;C),2

the proof that f ∗g is continuous follows similarly to that in Futcher & Rodrigo [36]. Due3

to the slight differences, we will present a brief proof here.4

Consider the case where Ju = [u,b). Fix c ∈ I. Observe that each of the functions f ,
g, ψ and D1ψ are uniformly continuous on bounded subset of Ju × I. Suppose x ≥ c. As
D1, f and g, are bounded, the function (x,u) 7→ f (ψ(x,u))g(u)D1ψ(x,u) is bounded, say

| f (ψ(x,u))g(u)D1ψ(x,u)| ≤ M.

For every ε > 0, there exists δ̂ > 0 such that

|x− c|< δ̂ =⇒ | f (ψ(x,u))g(u)D1ψ(x,u)− f (ψ(c,u))g(u)D1ψ(c,u)|< ε

4(c−a)
,

for every u ∈ [a,c]. Now, let δ = min{δ̂ ,ε/4M}, we obtain an estimate on the distance
between ( f ∗g)(x) and ( f ∗g)(c) as follows

|( f ∗g)(x)− ( f ∗g)(c)| ≤
∫ x

c
| f (ψ(x,u))g(u)D1ψ(x,u)|du

+
∫ c

a
| f (ψ(x,u))g(u)D1ψ(x,u)

− f (ψ(c,u))g(u)D1ψ(c,u)|du

≤ ε

4M
(x− c)+

ε

4
< ε.

So ( f ∗ g) is continuous. Since (x,y) 7→ K−1
1 (K1(x)K1(y)) is continuous, the set S as

defined in Lemma 87 is compact given f ,g ∈ Cc(I;C). By Lemma 87, it is evident that
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f ∗ g ∈ Cc(I;C). Now, suppose f ∈ Lp(I,B,λ ) and g ∈ Lq(I,B,λ ). As Cc(I) is dense
in both of these spaces, there exists sequences { fn}, {gn} ⊂ Cc(I) such that fn → f and
gn → g. Note that the kernel of the associated transforms is bounded, as such it follows
that Lp(I,B,λ ) ⊆ Lp(I,B, |µ|). Recall that |µs̃| is a finite measure, where s̃ ∈ ∂J such
that |µs|(I) is maximised, so Lp(I,B, |µ|) ⊆ L1(I,B, |µ|). As such all functions in the
following calculation are elements of the Banach algebra L1(I,B, |µ|). We deduce that

||( fn ∗gn)− ( f ∗g)||∞ ≤ || fn ∗ (gn −g)||u + ||( fn − f )∗g||u.

The previous calculation involving Hölder’s inequality gives us

||( fn ∗gn)− ( f ∗g)||∞ ≤ M|| fn||Lp(λ )||gn −g||Lq(λ )+M|| fn − f ||Lp(λ )||g||Lq(λ ).

From here, we can see that fn ∗ gn → f ∗ g uniformly on I, which implies that f ∗ g ∈1

C0(I;C).2

We note that this proof focuses on when I is an interval. Some comments are now3

highlighted when I is a countable set which satisfies the assumptions stated in Futcher &4

Rodrigo [37]. We note some other interesting properties. Using a similar method as in5

Folland [32], it can be shown that Lp(I,B, |µ|) ⊆ Lq(I,B, |µ|), where 1 ≤ p < q ≤ ∞.6

Since |µ| is also a finite measure, it is clear that Lq(I,B, |µ|) ⊆ Lp(I,B, |µ|). Be-7

cause of this, this leads to interesting consequences such as the fact that the members8

of Lp(I,B, |µ|) are exactly the set of bounded functions on I. Also, the set of bounded9

functions on I is a Hilbert space. We now give examples of transforms and their corre-10

sponding convolution formulas which are continuous due to satisfying Theorem 90. We11

will show the convolution formula vanishes at infinity explicitly.12

Example 91. Consider the Laplace transform. That is, let I = [0,∞), J = {s ∈C : Re(s)>
ε > 0}, K1(x) = e−x, p = q = 2 and w = 0. It is apparent that Ju = [u,∞) and

( f ∗g)(x) =
∫ x

0
f (x−u)g(u)du, ψ(x,u) = x−u, D1ψ(x,u) = 1.

Let f (x) = g(x) = e−x. A straightforward calculation yields

( f ∗g)(x) = xe−x

which tends to zero as x tends to ∞. Hence, f ∗g vanishes at infinity.13

Example 92. For K1(x) = 1/(1+ x) and I = [0,∞). We consider the functions f (x) =

xχ [0,1](x) and g(x) = e−x. Let p= q= 2 and w= 0. We have that Ju = [u,∞). Substituting
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all of this into the appropriate formulas gives

( f ∗g)(x) =
∫ x

0
f
(

x−u
1+u

)
g(u)
1+u

du, ψ(x,u) =
x−u
1+u

, D1ψ(x,u) = K1(u).

Fix x > 1. The convolution formula simplifies to

( f ∗g)(x) =
∫ x

ψ(x,1)

x−u
(1+u)2 e−u du.

As the function u 7→ 1/(1+u)2 is positive on [ψ(x,1),x) and is less than 1, we deuce that

( f ∗g)(x)≤
∫ x

ψ(x,1)
(x−u)e−u du ≤

∫ x

ψ(x,1)
xe−u du.

A simple computation gives us

0 ≤ ( f ∗g)(x)≤ x
eψ(x,1)

− x
ex .

Using the fact that ψ(x,1) = (x−1)/2, it is evident that ( f ∗g)(x)→ 0 as x → ∞.1

Before we extend our convolution formula to distributions, we further restrict the2

codomain of A , where A is in our class of transforms. We show that A maps L1(I,B, |µ|)3

to the space of holomorphic functions on J, which we denote by H(J).4

Proposition 93. If A is either a discrete or integral transform, and f ∈ L1(I,B, |µ|),5

then A { f} ∈ H(J).6

Proof. Fix f ∈ L1(I,B, |µ|). Let γ : [c,d] → J be a straight line segment between two
points in J. We have

∫ d

c

∫
I
|K(x,γ(t))|| f (x)||γ ′(t)|dλ (x)dt ≤

∫ d

c

∫
I
|K(x, s̃)|| f (x)||γ ′(t)|dλ (x)dt,

where s̃ is a point on the boundary of J which maximises K(x, ·) for each x ∈ I. Further-
more, choose s̃ such that K(x, s̃) is real for each x ∈ I. This gives us

∫ d

c

∫
I
|K(x,γ(t))|| f (x)||γ ′(t)|dλ (x)dt ≤ A {| f |}(s̃)

∫ d

c
|γ ′(t)|dt < ∞.

So, we may apply Fubini’s theorem given γ is a straight line segment in J. This also holds
given γ([c,d]) is a finite union of straight line segments in J . Now, let ∆ be a triangular
path in some open ball B(s0,ε)⊂ J. It follows that∫

∆

A { f}(s)ds =
∫

I

∫
∆

K(x,s) f (x)dsdλ (x)

=
∫

I
f (x)

∫
∆

K(x,s)dsdλ (x).
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For every x ∈ I, it is evident that s 7→ K(x,s) is holomorphic on J. This gives us∫
∆

K(x,s)ds.

Now, since A { f} is continuous on B(s0,ε) by Theorem 68 and satisfies the following∫
∆

A { f}(s)ds = 0,

we have by Morera’s theorem (see Conway [24]) that A { f} ∈ H(B(s0,ε)). As B(s0,ε)1

was an arbitrary ball in J, we conclude that A { f} ∈ H(J).2

Proposition 94. Let A be either a discrete or integral transform and suppose x 7→
log(K1(x)) f (x) ∈ L1(I,B, |µ|). If the kernel is of type (i) then

d
ds

A { f}(s) = A {x 7→ log(K1(x)) f (x)}(s),

where differentiation is occurring in the complex plane.3

Proof. Since the function A { f} is holomorphic on J, it is differentiable on R∩ J. Now,
the function t 7→ K1(x)t−w f (x) is differentiable for almost all x ∈ I. A straightforward
computation yields ∣∣∣∣ ∂

∂ t
[K1(x)t−w f (x)]

∣∣∣∣= | log(K1(x))K1(x)t−w f (x)|

≤ | log(K1(x))K1(x)s̃−w f (x)|.

Using the fact that x 7→ log(K1(x)) f (x) ∈ L1(I,B, |µ|), it follows that A { f} is differen-
tiable, in the real sense, on R∩ J. Moving the derivative inside the integral shows that

d
dt

A { f}(t) = d
dt

∫
I
K1(x)t−w f (x)dλ (x)

=
∫

I

∂

∂ t
[K1(x)t−w f (x)]dλ (x)

=
∫

I
log(K1(x))K1(x)t−w f (x)dλ (x)

= A {x 7→ log(K1(x)) f (x)}(t)

We know that A { f} is holomorphic on J, so the limit

lim
s→s0

A { f}(s)−A { f}(s0)

s− s0

exists for every s0 ∈ J. As such we may take any path from s to s0 to compute this limit.
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Thus
d
ds

A { f}(s) = A {x 7→ log(K1(x)) f (x)}(s)

for all s ∈ R∩ J, where differentiation is in the complex sense. Now, observe that the
functions defined pointwise by

d
ds

A { f}(s), A {x 7→ log(K1(x)) f (x)}(s)

are holomorphic, so the function defined by1

s 7→ d
ds

A { f}(s)−A {x 7→ log(K1(x)) f (x)}(s) (5.3)

is holomorphic on J. Since the function in (5.3) is identically zero on R∩ J, and R∩ J2

contains a limit point in J it follows that the function in (5.3) is identically zero on J. This3

completes the proof.4

The above result can be formally obtained by

d
ds

A { f}(s) = d
ds

∫
I
K1(x)s−w f (x)dλ (x)

=
∫

I

d
ds

K1(x)s−w f (x)dλ (x).

However, we feel that it is important to provide conditions such that such a computation5

is valid.6

5.2 Convolution of distributions7

It was discussed in Futcher & Rodrigo [37] that L1(I,B, |µ|) is a Banach algebra without8

a unit. We will introduce a distribution δt such that, when we define the convolution9

which includes distributions, the distribution δt satisfies δt ∗ f = f for every f ∈C∞
c (I;R).10

Recall the discussion in Chapter 2 regarding Fréchet spaces. The preliminary results11

become relevant here.12

Before we consider the function f ∗g, where f ∈ D ′(I;R) and g ∈C∞
c (I;R), we will13

first examine the following set14

Vg = {x ∈ Î : ψ(x,u) ∈ Î for every u ∈ supp(g)}. (5.4)

Proposition 95. Suppose that g has compact support. Then the set Vg defined in (5.4) is15

open.16

Proof. Fix x∈Vg. As supp(g) is compact, we have that ψ(x,yi)∈ Î and ψ(x,ys)∈ Î where
yi = inf(supp(g)) and ys = sup(supp(g)). We will consider the case when K1 is monotonic
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increasing. As Î is an open interval, we have that Ĵy =K−1
1 (K1(y)K1(Î)) is open and x ∈ Ĵy

for every y ∈ supp(g). As such, there exist εyi,εys > 0 such that (x− εyi,x+ εyi)⊆ Ĵyi and
(x−εys,x+εys)⊆ Ĵys . We choose ε =min{εyi,εys}. Note that K1 is monotonic increasing,
so

K1(x− εys)< K1(x− ε)< K1(x+ ε)< K1(x+ εys).

A similar inequality holds when εys is replaced by εyi . This implies

(ψ(x− ε,yi),ψ(x+ ε,yi))⊆ Î

(ψ(x− ε,ys),ψ(x+ ε,ys))⊆ Î.

Observe that
1

K1(ys)
≤ 1

K1(y)
≤ 1

K1(yi)
,

for every y ∈ supp(g). From here, we see that ψ(x−ε,ys)≤ ψ(x−ε,y) and ψ(x+ε,y)≤
ψ(x+ ε,yi) for every y ∈ supp(g). As Î is an interval, we have

(ψ(x− ε,y),ψ(x+ ε,y))⊆ (ψ(x− ε,ys),ψ(x+ ε,yi))⊆ Î

for every y ∈ supp(g). This implies that (x− ε,x+ ε)⊆Vg and completes the proof.1

5.2.1 Convolution as a function2

We state that Ju × I is no longer an open set. For convenience, we impose the fact that ψ3

is C∞(Ju × I), where the partial derivatives of ψ on the boundary of Ju × I are interpreted4

to be left or right side derivatives where appropriate.5

Before we attempt to justify the convolution of distributions we make one more ob-6

servation. Let J̃x = ψ−1(x, Î) = {y ∈ I : ψ(x,y) ∈ Î}. If x ∈ Vg then, by the definition of7

Vg, we have that u ∈ J̃x for every u ∈ supp(g). Hence supp(g)⊆ J̃x.8

By considering the convolution of two functions to be defined on Vg, where g has
compact support, the formula which satisfies the convolution property is simplified. If
x ∈ Vg, then we guarantee that x ∈ Jy for every y ∈ supp(g). If f ∈ L1

loc(I;R) and g ∈
C∞

c (I;R), then we have

|( f ∗g)(x)| ≤
∫

I
| f (ψ(x,u))D1ψ(x,u)χJu

(x)g(u)|du

=
∫

supp(g)
| f (ψ(x,u))D1ψ(x,u)g(u)|du.

Recall that D1ψ(x, ·) is continuous on supp(g) and g ∈C∞
c (I;R), As such, g and D1ψ are
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bounded by M1 and M2 respectively. This gives us the following inequality

|( f ∗g)(x)| ≤ M1M2

∫
supp(g)

| f (ψ(x,u))|du.

We also have that K1 never vanishes and is strictly increasing. This implies that |D2(x, ·)|
is bounded below on supp(g) by some 1/M3. We see that

|( f ∗g)(x)| ≤ M1M2M3

∫
supp(g)

| f (ψ(x,u))||D2ψ(x,u)|du

= M1M2M3

∫
J̃x

| f (ψ(x,u))||D2ψ(x,u)|χ supp(g)(u)du.

Note that J̃x is an open set. From here, we make the substitution z = ψ(x,u) which gives
us

|( f ∗g)(x)| ≤ M1M2M3

∫
Î
| f (z)|χ supp(g)(ψ(x,z))dz

= M1M2M3

∫
ψ(x,supp(g))

| f (z)|dz.

As ψ(x,supp(g)) is compact, we see that |( f ∗ g)(x)| < ∞. That is, the convolution is
defined on Vg. We see that by making a substitution, we have

( f ∗g)(x) =
∫

J̃x

f (ψ(x,u))D1ψ(x,u)g(u)χ supp(g)(u)du

=
∫

ψ(x,supp(g))
f (u)D1ψ(x,u)g(ψ(x,u))du.

Observe that if u ∈ ψ(x,supp(g)) if and only if ψ(x,u) ∈ supp(g), then the following1

formula holds2

( f ∗g)(x) =
∫

I
f (u)D1ψ(x,u)g(ψ(x,u))du. (5.5)

We will now show that u ∈ ψ(x,supp(g)) if and only if ψ(x,u) ∈ supp(g).3

Fix u ∈ ψ(x,supp(g)). By the definition of ψ(x,supp(g)), we have

K1(u) ∈
{

K1(x)
K1(y)

: y ∈ supp(g)
}
.

So K(u) = K1(x)/K1(z) for some z ∈ supp(g), this gives us z = ψ(x,u). Hence ψ(x,u) ∈4

supp(g).5

Now, suppose ψ(x,u) ∈ supp(g). This implies K1(x)/K1(u) ∈ K1(supp(g)). This
means

K1(x)
K1(u)

= K1(z).

Rearranging this equation gives u = ψ(x,z) ∈ ψ(x,supp(g)). We may now define the6
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convolution of a distribution and a test function.1

Definition 96. Let f ∈ D ′(I;R) and g ∈C∞
c (I;R). We define the convolution f ∗g : Vg →2

R by the formula3

( f ∗g)(x) = f [D1ψ(x, ·)g(ψ(x, ·))]. (5.6)

Consider the distribution δt : C∞
c (I;R) → R, where δt [g] = g(t). We now see that

since 1 ∈ K1(I), then for t = K−1
1 (1), we have

(δt ∗g)(x) = δt [D1ψ(x, ·)g(ψ(x, ·))]

= D1ψ(x,K−1
1 (1))g(ψ(x,K−1

1 (1)))

= g(x).

That is, δt ∗ g ≡ g. So by extending the convolution formula to distributions, the convo-4

lution of some distribution with any function in C∞
c (I;R) is the function itself. We now5

examine the properties of this newly defined function.6

Theorem 97. Let f ∈D ′(I;R) and g∈C∞
c (I;R), the function f ∗g : Vg →R is continuous.7

Proof. Fix {xn} ⊂ Vg, where xn → x0 ∈ Vg, and fix ε > 0. We wish to show that the8

sequence of functions D1ψ(xn, ·)g(ψ(xn, ·)) converges to D1ψ(x0, ·)g(ψ(x0, ·)) in the set9

C∞
c (I,F ;R) for some compact set F . Note that there exists a δ > 0 such that [x0 −δ ,x0 +10

δ ] ⊂ Vg, since Vg is an open set. Now, as xn → x0, for this δ > 0, there exists N ∈11

N such that n ≥ N implies xn ∈ [x0 − δ ,x0 + δ ]. This guarantees that all but a finite12

amount of terms of the sequence {xn} are elements of the set [x0 − δ ,x0 + δ ]. Observe13

that ψ(xn,u) ∈ supp(g) if and only if u ∈ ψ(xn,supp(g)). We deduce that for n ≥ N, the14

functions g(ψ(xn, ·)), and as a consequence D1ψ(xn, ·)g(ψ(xn, ·)), vanish outside the set15

ψ([x0 −δ ,x0 +δ ]× supp(g)). Now, let16

F =
N−1⋃
n=1

ψ({xn}× supp(g))∪ψ([x0 −δ ,x0 +δ ]× supp(g)), (5.7)

We see that F is a compact set and the functions g(ψ(xn, ·)) vanish outside F for every
n ∈ N0. As such, for every n ∈ N0, the function D1ψ(xn, ·)g(ψ(xn, ·)) and its derivatives
of all orders vanish outside F . That is to say

{D1ψ(xn, ·)g(ψ(xn, ·))}∞
n=0 ⊆C∞

c (I,F ;R).

Let r j be defined such that r j(x1,x2) = x j for j = 1,2. We now wish to show that17

∂ k

∂ rk
2
[D1ψ(xn, ·)g(ψ(xn, ·))]→

∂ k

∂ rk
2
[D1ψ(x0, ·)g(ψ(x0, ·))] (5.8)



5.2. CONVOLUTION OF DISTRIBUTIONS 104

for every k ∈ N0. We note that we are using the same notation for partial derivatives as
that in Tu [98]. Fix ε > 0, k ∈ N0 and u ∈ F . Observe the function defined by

∂ k+1

∂ r1∂ rk
2
[D1ψ(g◦ψ)]

is continuous on the compact set [x0 − δ ,x0 + δ ]×F and as such is bounded by some
value M. Choose a natural number Ñ ≥ N which guarantees that |xn−x0|< min{δ ,ε/M}
when n ≥ Ñ. For a fixed n ≥ Ñ, we have by the Mean Value Theorem∣∣∣∣ ∂ k

∂ rk
2
[D1ψ(xn,u)g(ψ(xn,u))]−

∂ k

∂ rk
1
[D1ψ(x0,u)g(ψ(x0,u))]

∣∣∣∣
=

∣∣∣∣ ∂ k+1

∂ r1∂ rk
2
[D1ψ(cn,u)(g◦ψ)(cn,u)]

∣∣∣∣ |xn − x0|, (5.9)

where cn is some value in the open interval whose endpoints are x0 and xn. As cn ∈
[x0 −δ ,x0 +δ ], we have that the (k+1)-order derivative in equation (5.9) is bounded by
M for every u ∈ F . This gives us∣∣∣∣ ∂ k

∂ rk
2
[D1ψ(xn,u)g(ψ(xn,u))]−

∂ k

∂ rk
2
[D1ψ(x0,u)g(ψ(x0,u))]

∣∣∣∣≤ M|x− x0|

< ε,

for every u ∈ F . What has been shown is for every ε > 0, there exists Ñ ∈ N such that
n ≥ Ñ implies the function D1ψ(xn, ·)g(ψ(xn, ·)) is in the set

{
y ∈C∞

c (I,F ;R) : ||y−D1ψ(x0, ·)g(ψ(x0, ·))||(k,m) < ε
}
.

As such, the expression in (5.8) holds. As k was arbitrary, we have that xn → x0 implies1

D1ψ(xn, ·)g(ψ(xn, ·))→ D1ψ(x0, ·)g(ψ(x0, ·)) (5.10)

in C∞
c (I,F ;R). As f ∈ D ′(I;R), if xn → x0 then

f [D1ψ(xn, ·)g(ψ(xn, ·))]→ f [D1ψ(x0, ·)g(ψ(x0, ·))],

which implies
( f ∗g)(xn)→ ( f ∗g)(x0).

This completes the proof.2

We now introduce a lemma which will help us show the convolution is infinitely3

differentiable on Vg.4
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Lemma 98. Let x ∈ Vg and let {hn} be a sequence such that {x+ hn} ⊆ Vg and hn con-

verges to 0. For every k ∈ N∪{0}, we have

1
hn

{
∂ k

∂ rk
1
[D1ψ(x+hn, ·)g(ψ(x+hn, ·))]−

∂ k

∂ rk
1
[D1ψ(x, ·)g(ψ(x, ·))]

}
→ ∂ k+1

∂ rk+1
1

[D1ψ(x, ·)g(ψ(x, ·))]

in C∞
c (I;R).1

Proof. Fix x ∈ Vg and let {hn} be a sequence defined in the statement of the lemma. Fix
ε > 0 and u ∈ I. Furthermore, let k, l ∈ N0. By the Mean Value Theorem, we have that

∂ l

∂ rl
2

1
hn

[
∂ k

∂ rk
1

D1ψ(x+hn,u)g(ψ(x+hn,u))−
∂ k

∂ rk
1

D1ψ(x,u)g(ψ(x,u))
]

=
∂ k+l+1

∂ rl
2∂ rk+1

1
[D1ψ(xn,u)g(ψ(xn,u))] (5.11)

for some xn where |xn − x| < |hn| and xn → x as hn → 0. We note that for some fixed
δ > 0, we have [x−δ ,x+δ ]⊆Vg and for some N ∈N, it holds that xn ∈ [x−δ ,x+δ ] for
every n ≥ N. We introduce the compact set

F =
N−1⋃
n=1

ψ({xn}× supp(g))∪ψ([x−δ ,x+δ ]× supp(g)).

Note that if u ∈ I \F , then D1ψ(xn,u)g(ψ(xn,u)) = 0 for every n ∈ N∪{0}. Because of
this, we may assume u ∈ F . It is evident that the function

∂ k+l+1

∂ rl
2∂ rk+1

1
[D1ψ(g◦ψ)]

is continuous on [x− δ ,x+ δ ]×F and as such bounded by some constant M. So for a
fixed ε > 0, there exists Ñ ∈ N such that n ≥ Ñ ≥ N implies∣∣∣∣∣ ∂ k+l+1

∂ rl
2∂ rk+1

1
[D1ψ(xn,u)g(ψ(xn,u))]−

∂ k+l+1

∂ rl
2∂ rk+1

1
[D1ψ(x,u)g(ψ(x,u))]

∣∣∣∣∣
≤ M|xn − x|< ε. (5.12)

As u ∈ F was arbitrary and the inequality in (5.12) holds for every u ∈ F , for a fixed k, the2

sequence in the statement of the lemma converges in C∞
c (I;R). As k was arbitrary, this3

completes the proof.4

From here, it is easy to see that the convolution is infinitely differentiable.5



5.2. CONVOLUTION OF DISTRIBUTIONS 106

Theorem 99. Let f ∈ D ′(I;R) and g ∈C∞
c (I;R). Then f ∗g ∈C∞(Vg;R).1

Proof. Fix x ∈Vg. We will show by induction that for every k ∈ N,2

( f ∗g)(k)(x) = f
[

∂ k

∂ rk
1
[D1ψ(x, ·)g(ψ(x, ·))]

]
. (5.13)

Let k = 1, and let {hn} be a sequence which satisfies the properties stated in Lemma 98.
Then

D1ψ(x+hn,u)g(ψ(x+hn,u))−D1ψ(x,u)g(ψ(x,u))
hn

→ ∂

∂ r1
[D1ψ(x, ·)g(ψ(x, ·))].

As we have

( f ∗g)(x+hn)− ( f ∗g)(x)
hn

= f
[

D1ψ(x+hn, ·)g(ψ(x+hn, ·))−D1ψ(x, ·)g(ψ(x, ·))
hn

]
,

letting hn → 0 yields3

( f ∗g)′(x) = f
[

∂

∂ r1
[D1ψ(x, ·)g(ψ(x, ·))]

]
. (5.14)

Next, assuming this holds for all natural numbers less than or equal to k, we will show the
formula holds for the (k+1)-order derivative. Observe that

( f ∗g)(k)(x+hn)− ( f ∗g)(k)(x)
hn

=
1
hn

{
f
[

∂ k

∂ rk
1
[D1ψ(x+hn, ·)g(ψ(x+hn, ·))]

]
− f
[

∂ k

∂ rk
1
[D1ψ(x, ·)g(ψ(x, ·))]

]}
= f

[
1
hn

{
∂ k

∂ rk
1
[D1ψ(x+hn, ·)g(ψ(x+hn, ·))]−

∂ k

∂ rk
1
[D1ψ(x, ·)g(ψ(x, ·))]

}]
.

Once again, applying Lemma 98 and letting hn → 0 gives us that the formula in (5.13)4

holds for k+1. This completes the proof.5

5.2.2 Transform of a distribution6

We start by defining an appropriate notion of convergence in A (C∞
c (I;C)). It is high-7

lighted that due to the assumptions of functions in C∞
c (I;C), for every f ∈ C∞

c (I;C) we8

have that f satisfies the assumptions in Theorem 58. As such A :C∞
c (I;C)→A (C∞

c (I;C))9
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is a bijection. So, we define convergence in A (C∞
c (I;C)) as follows.1

Let { fn} be a sequence in A (C∞
c (I;C)). The sequence { fn} converges to f if A −1{ fn}∈2

C∞
c (F ;C) and A −1{ f}∈C∞

c (F ;C) for some compact set F ⊆ I and A −1{ fn}→A −1{ f}3

in C∞
c (I;C). An A -distribution on I is a continuous linear functional on A (C∞

c (I;C)),4

which we denote by D ′
A (I;C). We consider the weak∗ topology on D ′

A (I;C).5

Consider the A -transform where the value of w present in the kernel is 0. Further-6

more, suppose I ⊆ J. Now, consider the A ∗-transform defined by7

A ∗{ f}(y) =
∫

I
K1(y)x f (x)dλ (x), (5.15)

where f ∈C∞
c (I;C). Let f ,g ∈C∞

c (I;C), a straightforward computation shows that∫
I

f (x)A {g}(x)dλ (x) =
∫

I
f (x)

∫
I
K1(y)xg(y)dλ (y)dλ (x)

=
∫

I
g(y)

∫
I
K1(y)x f (x)dλ (x)dλ (y)

=
∫

I
g(y)A ∗{ f}(y)dλ (y).

We see from this calculation the reason for denoting the operator in (5.15) by A ∗. The
operator A ∗ is the adjoint of A as it satisfies

⟨ f ,A {g}⟩L2(λ ) =
∫

I
f (x)A {g}(x)dλ (x) = ⟨A ∗{ f},g⟩L2(λ ).

We can now extend the A ∗-transform to distributions.8

Definition 100. Let f ∈D ′
A (I;C) and φ ∈C∞

c (I;C). The A -transform of f is defined by9

10

A ∗{ f}[φ ] = f [A {φ}]. (5.16)

Theorem 101. The map A ∗ : D ′
A (I;C)→ D ′(I;C) is a homeomorphism.11

Proof. We will first show that A is a bijection. Consider the map A : D ′(I;C) →
D ′

A (I;C) which is defined by

A { f}[φ ] = f [A −1{φ}].

We have

A {A ∗{ f}}[φ ] = A ∗{ f}[A −1{φ}] = f [A A −1{φ}] = f [φ ], ∀φ ∈ A (C∞
c (I;C)),

A ∗{A { f}}[φ ] = A { f}[A {φ}] = f [A −1A {φ}] = f [φ ], ∀φ ∈C∞
c (I;C).

Hence, A ∗ is a bijection, and A is the inverse A ∗-transform.12
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Now, let { fa}a∈A be a net in D ′
A (I;C) such that fa → f . We wish to show that

A { fa}→ A { f}, where convergence is pointwise. Fix φ ∈C∞
c (I;C). We have

A { fa}[φ ] = fa[A {φ}]→ f [A {φ}] = A { f}[φ ].

Hence A ∗ is continuous. A similar argument shows that A −1 =A is continuous. Hence1

A ∗ : D ′
A (I;C)→ D ′(I;C) is a homeomorphism.2

5.3 Convolution of measures3

In this section, we introduce the convolution of two measures and show some basic prop-4

erties. In Chapter 2, we introduced the space of all complex Borel measures on I, namely5

M(I). Recall that we imposed that K1(I) = (0,1] or K1(I) = [1,∞).6

Definition 102. Let η , ν ∈M(I). We define the convolution η ∗ν ∈M(I) by the following
formula

(η ∗ν)(E) =
∫

I

∫
I
χE(K

−1
1 (K1(x)K1(y)))dη(x)dν(y).

It is obvious that (η ∗ν)( /0)= 0. By splitting the integral up into its real and imaginary7

components, then the positive and negative components, an application of the Monotone8

Convergence Theorem shows that the function is countably additive on B. Hence η ∗ν is9

a measure on I. By a classical argument involving the Dominated Convergence Theorem,10

it is evident that for every bounded Borel measurable function h,11 ∫
I
hd(η ∗ν) =

∫
I

∫
I
h(K−1

1 (K1(x)K1(y)))dη(x)dν(y). (5.17)

We now prove that the map which takes the equivalence class f ∈ L1(I,B, |µ|) to the12

measure defined by dη = f d|µ| is a homomorphism.13

Theorem 103. Let dη = f d|µ| and dν = gd|µ|. Then d(η ∗ν) = ( f ∗g)d|µ|.14

Proof. By the definition of the convolution of two measures, we deduce that

(η ∗ν)(E) =
∫

I

∫
I
χE(K

−1
1 (K1(x)K1(y)))dη(x)dν(y)

=
∫

I

∫
I
χE(K

−1
1 (K1(x)K1(y))) f (x)g(y)[K1(x)K1(y)]s̃−w dxdy,

which comes from the fact that

η(E) =
∫

E
f (x)K1(x)s̃−w dλ (x), ν(E) =

∫
E

g(y)K1(y)s̃−w dλ (y).
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By making the substitution K1(z) = K1(x)K1(y), we have

(η ∗ν)(E) =
∫

I

∫
Jy

χE(z) f (ψ(z,y))g(y)D1ψ(z,y)K1(z)s̃−w dzdy

=
∫

I

∫
I
χE(z) f (ψ(z,y))g(y)D1ψ(z,y)χJy

(z)d|µ|(z)dy.

Recall that ψ(z,y) = K−1
1 (K1(z)/K1(y)). An application of Fubini’s Theorem gives us

(η ∗ν)(E) =
∫

I
χE(z)

∫
I

f (ψ(z,y))g(y)D1ψ(z,y)χJy
(z)dyd|µ|(z)

=
∫

E
( f ∗g)(z)d|µ|(z).

1

We note that one can embed L1(λ ) into M(R) by mapping f ∈ L1(λ ) to η , where2

dη = f dλ and λ is the Lebesgue measure. Suppose that the convolution of two measures3

is given by (η ∗ν)(E) = (η ×ν)(s−1(E)), where s(x,y) = x+ y. Given dη = f dλ and4

dν = gdλ then one has d(η ∗ν) = ( f ∗g)dλ , where f ∗g is the Fourier convolution of f5

and g. The proof of Theorem 103 shows that we can embed L1(I,B, |µ|) into M(I). We6

now show that M(I) has a unit.7

Proposition 104. Let δt be the Dirac measure, where t =K−1
1 (1). Then we have δt ∗η =η8

for every η ∈ M(I).9

Proof. A straightforward computation shows that

(δt ∗η)(E) =
∫

I

∫
I
χE(K

−1
1 (K1(x)K1(y)))dδt(x)dη(y)

=
∫

I
χE(K

−1
1 (K1(t)K1(y)))dη(y).

From here, substituting t = K−1
1 (1) yields δt ∗η ≡ η .10

We can define a transform of measures which belong to M(I).11

Definition 105. Let η ∈ M(I). The A -transform of η is given by

A {η}(s) =
∫

I
K1(x)s−w dη(x).

Using (5.17), it is easy to show the homomorphism property which is to be expected
of the convolution operation. Taking the transform of the measure (η ∗ν) gives us

A {η ∗ν}(s) =
∫

I
K1(x)s−w d(η ∗ν)(x)

=
∫

I

∫
I
[K1(x)K1(y)]s−w dη(x)dν(y)
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=
∫

I
K1(x)s−w dη(x)

∫
I
K1(y)s−w dν(y).

Therefore A {η ∗ ν} ≡ A {η}A {ν}. By defining As{η} = A {η}(s), the following
inequality holds

|As{η}| ≤
∫

I
|K1(x)s−w|d|η |(x).

Recall that we consider kernels where K is bounded in I×J, say |K1(x)s−w| ≤C on I×J.
So for every ||η || ≤ 1, we have

|As{η}| ≤C
∫

I
1d|η |=C|η |(I) =C||η || ≤C.

This shows that As is a bounded linear map. This guarantees the existence of a1

homomorphism between M(I) and C with respect to our convolution, given that M(I) is2

a normed algebra. It has already been shown that L1(I,B, |µ|) is a Banach algebra. We3

will now show that M(I) is a normed algebra.4

Lemma 106. The convolution operation is associative, commutative and satisfies ||η ∗5

ν || ≤ ||η || · ||ν ||.6

Proof. For every η ,ν ,ξ ∈ M(I), the following equation holds by the definition of the
convolution product

((η ∗ν)∗ξ )(E) =
∫

I

∫
I
χE(K

−1
1 (K1(x)K1(z)))d(η ∗ν)(x)dξ (z).

From (5.17) we see that

((η ∗ν)∗ξ )(E) =
∫

I

∫
I

∫
I
χE(K

−1
1 (K1(x)K1(y)K1(z)))dη(x)dν(y)dξ (z).

Applying the definition of the convolution of two measures gives us

(η ∗ (ν ∗ξ ))(E) =
∫

I

∫
I
χE(K

−1
1 (K1(x)K1(z)))dη(x)d(ν ∗ξ )(z).

Another application of equation (5.17) shows that ((η ∗ ν) ∗ ξ )(E) = (η ∗ (ν ∗ ξ ))(E).
Showing the convolution is commutative is trivial. Now, let f be a Borel map such that
| f | ≤ 1 on I. We have∣∣∣∣∫I

f d(η ∗ν)

∣∣∣∣= ∣∣∣∣∫I

∫
I

f (K−1
1 (K1(x)K1(y)))dη(x)dν(y)

∣∣∣∣
≤
∫

I

∫
I
| f (K−1

1 (K1(x)K1(y)))|d|η |(x)d|ν |(y).
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Using the fact that f is an arbitrary Borel map such that | f | ≤ 1 on I, we have1 ∣∣∣∣∫I
f d(η ∗ν)

∣∣∣∣≤ ||η || · ||ν ||. (5.18)

An equivalent formula for ||η ∗ ν || is the supremum of the set of quantities on the left2

side of (5.18) for every | f | ≤ 1 on I, as shown in Theorem 28. Therefore ||η ∗ ν || ≤3

||η || · ||ν ||.4

We now introduce the convolution of functions in L1(I,B, |µ|) with Borel measures.5

Definition 107. Let f ∈ L1(I,B, |µ|) and η ∈ M(I). Define the function f ∗η : I →C by

( f ∗η)(x) =
∫

I
K1(y)−(s̃−w) f (ψ(x,y))χJy

(x)D1ψ(x,y)dη(y),

where s̃ is chosen such that s̃ ∈ ∂J, K1(y)−(s̃−w) ∈ R and such that |µs|(I) is maximised.6

Lemma 108. Suppose that f and η are defined as in Definition 107. Then f ∗η is defined7

almost everywhere on I and f ∗η ∈ L1(I,B, |µ|).8

Proof. We start by assuming f and η are nonnegative. By the usual arguments which
involve splitting the integral up into its real and imaginary parts, then the positive and
negative parts, one can show this holds for complex f and η . As f ∗η is nonnegative, we
apply Tonelli’s Theorem which gives us∫

I
( f ∗η)(x)d|µ|(x)

=
∫

I

∫
I
K1(y)−(s̃−w) f (ψ(x,y))χJy

(x)D1ψ(x,y)dη(y)d|µ|(x)

=
∫

I

∫
Jy

K1(y)−(s̃−w) f (ψ(x,y))χJy
(x)D1ψ(x,y)K1(x)(s̃−w) dxdη(y)

=
∫

I

∫
I

f (z)K1(z)(s̃−w) dzdη(y).

Hence || f ∗η ||µ ≤ || f ||µ · ||η ||.9

So we have that M(I) is a unital normed algebra, where I is defined such that K−1
1 (1)∈10

I. We have that L1(I,B, |µ|) is a subalgebra of M(I) with respect to this new convolution11

product. Due to the introduction of the convolution of a function with a measure, we can12

prove a stronger result about L1(I,B, |µ|).13

Proposition 109. The subalgebra L1(I,B, |µ|) is an ideal of M(I).14

Proof. Let dη = f d|µ| and ν ∈ M(I). Manipulating the measure ( f ∗ν)d|µ| gives∫
E
( f ∗ν)(x)d|µ|(x)
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=
∫

I

∫
I
χE(x)K1(y)−(s̃−w) f (ψ(x,y))χJy

(x)D1ψ(x,y)dν(y)d|µ|(x)

=
∫

I

∫
I
χE(x)K1(y)−(s̃−w) f (ψ(x,y))χJy

(x)D1ψ(x,y)d|µ|(x)dν(y)

=
∫

I

∫
I
χE(K

−1
1 (K1(z)K1(y))) f (z)d|µ|(z)dν(y)

=
∫

I

∫
I
χE(K

−1
1 (K1(z)K1(y)))dη dν .

This in turn gives us d(η ∗ν) = ( f ∗ν)d|µ|. This completes the proof.1

Recall from Theorem 34 that M(I) is complete, so M(I) is a commutative unital2

Banach algebra and L1(I,B, |µ|) is a nonunital subalgebra of M(I). However, it should3

be noted that L1(I,B, |µ|) is not a maximal ideal of M(I).4

Proposition 110. The ideal L1(I,B, |µ) is not a maximal ideal in M(I).5

Proof. Let T : M(I) → C be a multiplicative functional. That is, an algebra homomor-6

phism from M(I) to C which satisfies T (δt) = 1, where t = K−1
1 (1). We know such a7

functional exists, namely As. It was shown in Folland [35] that there is a one to one corre-8

spondence between multiplicative functionals on M(I) and maximal ideals of M(I). More9

specifically, every maximal ideal of M(I) is the kernel of some multiplicative functional.10

We will now show if L1(I,B, |µ|)⊆ ker(T ), then this inclusion is a proper inclusion.11

Let x ∈ K−1
1 (Î). It is straightforward to show that δx ̸= δt , where δx is the Dirac point

measure at x. Since δx /∈ L1(I,B, |µ), if T (δx) = 0, then δx ∈ ker(T ) and we are done.
Now suppose T (δx) ̸= 0. Consider the Borel measure T (δx)δt − δx. If T (δx)δt − δx ∈
L1(I,B, |µ|), then there exists f ∈ L1(I,B, |µ|) such that

(T (δx)δt −δx)(E) =
∫

E
f (x)d|µ|(x).

Letting E be the singleton set {K−1
1 (1)}, we see that

T (δx) = 0,

which is a contradiction. So we have T (δx)δt −δx /∈L1(I,B, |µ|). Observe that T (T (δx)δt −12

δx) = T (δx)T (δt)−T (δx) = 0. So L1(I,B, |µ|)⊊ ker(T ). This completes the proof.13



Chapter 61

Discussion and future work2

A new class of discrete and integral transforms was introduced in Chapter 2. In Chapter3

3, a class of integral transforms was analysed which encapsulates the integral transforms4

defined in Chapter 2. This class of transforms includes the Fourier, Laplace and Mellin5

transforms. Both the shifting and convolution properties were introduced for this class of6

transforms. Sufficient conditions were given for the existence of the convolution property.7

Further assumptions were placed on the convolution formula which guarantee the convo-8

lution of two functions is continuous. A subclass of integral transforms, each of which9

has a logarithmic separable kernel was shown to be injective. Following this, an inversion10

formula was presented for a subclass of continuously differentiable functions. The results11

in this chapter have found applications in second-order linear differential equations. More12

specifically, analytical solutions for a class of differential equations were derived which,13

to the author’s knowledge, have not been derived previously. Due to the complex nature14

of these solutions, the analytical and numerical results were compared for the purpose15

of determining the accuracy of our analytical solutions. Once a justification was made,16

a comparison between the analytical and numerical solutions was made to highlight the17

need for the analytical solution for a specific differential equation. This, in turn, gives18

justification for our new class of integral transforms and our convolution formula.19

Another potential application for the results in this thesis is to solve integral equations
of the form

h(x) =
∫

I
f (ψ(x,u))g(u)D1ψ(x,u)χJu

(x)du,

where f and h are given, and g is to be determined. It follows that, under appropriate
hypotheses, the solution g is found by applying the integral transform corresponding to
that specific convolution formula, namely

g(x) =
∫

I

h(ψ(x,u))
f (u)

D1ψ(x,u)χJu
(x)du.

113
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Other types of integral equations include

f (x) = h(x)+
∫

I
g(ψ(x,u)) f (u)D1ψ(x,u)χJu

(x)du,

where g and h are specified functions and f is unknown. For the case where A is the
Laplace transform, these types of integral equations are the well-known Volterra integral
equations, as ψ(x,u) = x−u. Assuming that g,h and K1 satisfy all the necessary assump-
tions, we have

A { f}= A {h}+A {g}A { f}.

Rearranging this equation gives

A { f}= A {h}
1−A {g}

.

Applying the inversion formula then yields

f (x) =
c1K′

1(x)
2πiK1(x)

lim
T→∞

∫ µ−c2+iT
c1

µ−c2−iT
c1

K1(x)−(c1s+c2)
A {h}(s)

1−A {g}(s)
ds.

In Chapter 4, the class of discrete and integral transforms introduced in Chapter 2 was1

analysed. Some examples of transforms which fall in our class were presented. We sub-2

sequently proved some elementary properties of discrete and integral transforms which3

fall in our class. These include the image of the integral transform being a subset of some4

bounded and continuous functions, as well as the transform being a continuous operator5

between normed vector spaces. The shifting and convolution properties for this class of6

transforms was introduced and sufficient conditions for the existence of these properties7

was given. Some examples of convolution formulas which are associated with discrete8

transforms were given and these formulas were shown to be commutative. It was then9

proven that the class of discrete transforms is injective on the space L1(I,B, |µ|). This10

allows for a simple proof that the convolution product is commutative, associative and11

distributes over addition. A proof which shows the convolution product is continuous12

on the product space L1(I,B, |µ|)×L1(I,B, |µ|) is given. Collecting the results in this13

chapter shows that the space L1(I,B, |µ|) is a Banach algebra and A is a continuous ho-14

momorphism between two Banach algebras. The chapter was concluded by showing that15

when I is an interval, the space L1(I,B, |µ|) has no unit. In the case where I is countable,16

the space L1(I,B, |µ|) may have a unit.17

In Chapter 5, further properties of the convolution product were shown. This includes18

the fact that when an Lp function is convolved with an Lq function, the resulting function19

is a continuous function which vanishes at infinity. The problem of there being no unit20

in the Banach algebra L1(I,B, |µ|) was addressed. Distributions were analysed in this21
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chapter. Before the convolution of a distribution and a test function was introduced, an1

appropriate space Vg, in which the new convolution was defined on, was studied. It was2

shown that the convolution of a distribution and a smooth function is smooth on the space3

Vg.4

In the case of the Fourier convolution, it is possible to define the convolution of a
distribution and a bump function either as a distribution or as a smooth function. It may
not be possible to define the convolution of a distribution and a smooth function as a
distribution in a natural way for our class of transforms. Suppose f ∈ L1

loc(I;R) and
g ∈ C∞

c (I;R). Assume φ is some sufficiently well-behaved function. By making some
formal calculations, we have∫

I
( f ∗g)(x)φ(x)dλ (x) =

∫
I

∫
I

f (u)g(ψ(x,u))D1ψ(x,u)χJu
(x)φ(x)dλ (u)dλ (x)

=
∫

I
f (u)

∫
I
g(ψ(x,u))D1ψ(x,u)χJu

(x)φ(x)dλ (x)dλ (u).

As such, it seems appropriate to define the following

( f ∗g)[φ ] = f
[

u 7→
∫

I
g(ψ(x,u))D1ψ(x,u)χJu

(x)φ(x)dλ (x)
]
.

The issue with the above definition is that it has not been shown that the function defined
by

u 7→
∫

I
g(ψ(x,u))D1ψ(x,u)χJu

(x)φ(x)dλ (x)

is a smooth function on I with compact support. However, suppose we have that the5

function K1 satisfies K1(I) = (0,∞), and here we assume I is an open interval. Then6

it is possible to extend a subclass of the integral transforms introduced in Chapter 3 to7

distributions.8

Suppose I is an open interval and K(x,s) = K1(x)s−w. Let ψ and D1ψ be defined
as in Chapter 4 and Chapter 5. Also, let Vg be defined as in (5.4). We highlight for
f ,g ∈C∞

c (I;R) that f ∗g exists by Theorem 49. Since Ju = I for every u ∈ I, we have that
ψ is defined on I × I. Now, if we wish to define f ∗g as a function, then we let

( f ∗g)(x) = f [g(ψ(x, ·))D1ψ(x, ·)].

Now, if we define f ∗g as a distribution, then for every φ ∈C∞
c (I,Vg;R), we let

( f ∗g)[φ ] = f
[

u 7→
∫

I
g(ψ(x,u))D1ψ(x,u)φ(x)dλ (x)

]
.

We note that such transforms do not fall in the class of discrete and integral transforms
introduced in Chapter 2. However, the corresponding convolution product is a special
case of the ϕ-convolution. We note that this seems like an appropriate definition for the
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convolution of f and g as a distribution. This is because the function

x 7→ f [g(ψ(x, ·))D1ψ(x, ·)]

is locally integrable on I. As such it defines a distribution, which is equivalent on Vg. That
is

( f ∗g)[φ ] =
∫

I
f [g(ψ(x, ·))D1ψ(x, ·)]φ(x)dλ (x).

This can be shown by making some formal calculations as well as some abuse of notation.
We have that

( f ∗g)[φ ] = f
[

u 7→
∫

I
g(ψ(x,u))D1ψ(x,u)φ(x)dλ (x)

]
= f

[
lim

N→∞

N

∑
i=1

g(ψ(ti, ·))D1ψ(ti, ·)φ(ti)(xi − xi−1)

]

= lim
N→∞

N

∑
i=1

f [g(ψ(ti, ·))D1ψ(ti, ·)]φ(ti)(xi − xi−1)

=
∫

I
f [g(ψ(x, ·))D1ψ(x, ·)]φ(x)dλ (x).

It was mentioned in Chapter 2 that the Fourier transform can be defined on tempered1

distributions due to the underlying functions being Schwartz functions, and the fact that2

the Fourier transform is an isomorphism on the Schwartz functions. The A -transform is3

a bijection between two spaces, which allows us to define a transform A ∗ on some class4

of distributions, where the A ∗-transform is related to the A -transform. An alternative5

approach to extend our class of integral transforms with distributions is to define the6

transform of a distribution f by f [K1(·)s−w] where the distributions are defined on an7

appropriate set of functions.8

We recall that, for a given transform A , we were able to define the adjoint of A on
some class of distributions. There is potential for our class of transforms to be defined on
distributions. If it can be shown that the A ∗-transform is a bijection between two classes
of functions, then it may be possible to extend the A -transform to distributions formally
as follows

A { f}[φ ] = f [A ∗{φ}].

The convolution was extended to complex Borel measures, which contains the set
of probability measures on I. The Fourier convolution of measures is fundamental when
studying independent random variables. More specifically, the Fourier transform of a
probability measure is the characteristic function. The concept of vague convergence,
which is weak∗ convergence in M(I) = C0(I;C)∗, plays an important role in probability
theory. If {µn} is a sequence of probability measures in M(I) which converges to µ in
the weak∗ topology on M(I), then the sequence of distribution functions µn((−∞, t]) will
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converge to µ((−∞, t]) at every point where t 7→ µ((−∞, t]) is continuous. In fact, these
two properties are equivalent. That is, if µn((−∞, t])→ µ((−∞, t]) at every point where
t 7→ µ((−∞, t]) is continuous, then µn → µ vaguely given µn and µ are probability mea-
sures. So µn → µ vaguely if and only if µn((−∞, t])→ µ((−∞, t]) at each point µ((−∞, ·])
is continuous if and only if the corresponding sequence of characteristic functions con-
verge pointwise to F{µ}. The utility of this can be found in the Central Limit Theorem,
which states that a sequence of independent identically distributed random variables {Xi}
whose mean is µ and variance is σ , then the expression

n

∑
i=1

Xi −µ

σ/
√

n

converges vaguely to the standard normal distribution. It is expected that the A -transform1

of measures has a similar convergence property which may have applications to probabil-2

ity theory.3
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