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Abstract

The objectives of this thesis are to present novel approaches for optimising the con-

struction of multi environment trial (MET) datasets from a series of plant variety trials.

These include evaluating varieties in designed trials at various locations and typically

across many years. The MET datasets are then analysed to evaluate how well each

variety performs in each environment. Although sophisticated and relevant statistical

analyses have been proven to increase the reliability of predicted variety by environment

(VE) effects, there has been little research into how to construct an appropriate dataset.

This thesis fills a void in the literature by providing information-based diagnostics for

the optimal construction of the MET dataset.

The approaches are demonstrated using two motivating datasets: the first is a Oat

(Avena sativa) dataset and the other is a Durum wheat (Triticum durum L. ssp. Du-

rum Desf.) dataset. The former is used as an example of a dataset with independent

variety effects, whereas the latter is used as an example of a dataset with related va-

riety effects. These are also used for their attributes in the development of real-world

grounded simulation studies to examine the performance of the proposed diagnostics

and also to investigate established methodologies and concerns.

The breeding process is a progressive system that revolves around the evaluation and

selection of superior varieties. This naturally results in datasets with varied levels of

balance in terms of the number of varieties in common between environments, a metric

known as “variety connectivity”. Previously, it was considered that variety connectivity

was a primary driver of the reliability of the prediction of the variety by environment

(VE) effects. These concerns have traditionally been used in the construction of the

MET dataset. This thesis addresses these concerns first through real-world grounded
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simulation studies that demonstrate the sometimes intricate linkages between genetic

scenarios and variety connectivity. As a result, typical variety connectivity measure-

ments are proven to be insufficient as a method to construct MET datasets.

I then provide a systematic approach for the construction of MET datasets for selection

in plant breeding programs. Where I first discuss the structure of MET datasets, with

the focus on identifying groups of varieties that entered the first stage of testing in the

same year, which is denoted as contemporary groups (CGs), and also the establishment

of data bands, which are related to trials. This enables a thorough, and complete listing

of the trials in which the varieties of interest were grown and their progression between

years and stage. The approach for increasing the amount of data available for the vari-

eties under consideration is simple and straightforward, with only a few steps.

To quantify different MET datasets, I employ from model-based design theory the

A-optimality criterion, since this aligns with minimising the probability of an incorrect

selection decision. Then I propose the use of the D-optimality criterion to assess the

variance of the residual maximum likelihood (REML) estimated variance parameters.

In comparison to traditional connectivity type measures, the D-optimality diagnostic

is shown to provide a superior diagnostic since it encapsulates not only variety con-

nectivity but also other structural features such as trial size, replication, and genetic

relatedness. Thus, is shown to result in better forecasting of the uncertainty of genetic

variance parameter estimates in the construction of a MET dataset.

This thesis is shown to address a void in the literature, by providing a rigorous and

formal framework for the optimal construction of MET datasets for selection in plant

breeding programs. This is accomplished by striking the balance between maximis-

ing the variety information through the use of the CG methodology, and maximising

the reliability of variance parameter estimates through the use of the diagnosticD-value.
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ā Average inbreeding coefficient.

Fi Inbreeding coefficient.

fij Coefficient of parentage between varieties i and j.

`R Residual log-likelihood.

IA Average information matrix.

IE Expected information matrix.

I2E Expected information matrix for a two-stage approach.

IO Observed information matrix.

k Number of factors fit in the FA model.

ka Number of additive factors fit in the FA model.

ke Number of non-additive factors fit in the FA model.

Λ Matrix of environment loadings.

Λa Matrix of additive environment loadings.

Λe Matrix of non-additive environment loadings.

Ψ Diagonal matrix of specific environment variances.

xvii



GLOSSARY

Ψa Diagonal matrix of specific additive environment variances.

Ψe Diagonal matrix of specific non-additive environment variances.

f Vector of variety scores.

fa Vector of variety additive scores.

fe Vector of variety non-additive scores.

δ Vector of VE lack of fit effects.

δa Vector of additive VE lack of fit effects.

δe Vector of non-additive VE lack of fit effects.

β VE regression component.

βa Additive VE regression component.

βe Non-additive VE regression component.

S Total number of simulations.

x1,2 Number of varieties in common between two trials.

R̄ Model-based estimate of trial reliability.

RDk Design-based reliability value for variety k.

RDkc Design-based reliability value for variety k and connectivity level c.

R̄D Design-based trial reliability.

RSk Simulated reliability value for variety k.

RSkc Simulated reliability value for variety k and connectivity level c.

R̄S Simulated trial reliability.

R̄loss Difference between design-based and simulated trial reliabilities.

R̄X Maximum potential trial reliability.

xviii



GLOSSARY

R̄Xp Proportion of maximum potential trial reliability achieved.

κ Variance parameters.

κg Genetic variance parameters.

κg0 Chosen genetic variance parameters.

nκg Number of genetic variance parameters.

nκgj Number of genetic variance parameters for environment j.

A A-value.

D Diagnostic D-value.

Dj Diagnostic D-value for environment j.

D(A) Diagnostic D-value for additive VE variance parameters.

Dj(A) Diagnostic D-value for additive variance parameters for environment j.

D(I) Diagnostic D-value for non-additive (independent) VE variance parameters.

Dj(I) Diagnostic D-value for non-additive (independent) variance parameters for

environment j.

D(A+I) Diagnostic D-value for additive and non-additive VE variance parameters.

Dj(A+I) Diagnostic D-value for additive and non-additive variance parameters for en-

vironment j.

xix



GLOSSARY

Terminology and acronyms

AHDB: Agriculture and Horticulture Development Board.

AIC: Akaike information criteria. Used to compare different models and determine

which one is the best fit for the data.

Accuracy: The correlation between the true and predicted effects.

ADD%: Percentage of additive variance to total.

ANOVA: Analysis of variance. A traditional collection of statistical models and their

associated estimation procedures.

AR1: Separable auto regressive of order 1. The spatial correlation model generally

used in the analysis of field trials.

ARAM: Approximate reduced animal model.

ASReml-R: The linear mixed model R package used to analyse LMMs.

BLUE: Best Linear Unbiased Estimate.

BLUP: Best Linear Unbiased Predictor.

Breeder trial: A comparative variety trial managed by a public breeding program.

CC: Compound covariance. A model which assumes a common variance and covariance

within and between trials.

CG: Contemporary Groups. A cohort of test varieties produced jointly at the crossing

block stage.

CRD: Completely randomised design. A design which allows treatments to be com-

pletely randomised to experimental units.

CVE: Common Variety by environment effect. The component of the VE effect that

corresponds to the linear combinations of the common factors in the FA model.

Data band: A group of trials aligning with the testing system, namely the progression

through stages from year to year.

xx



GLOSSARY

Durum: A type of spring wheat generally used for semolina, and to make pasta and

dough.

Diagonal model: A model that can be used in the MET analysis to provide an inde-

pendent structure for the between trials genetic variance matrix.

Design matrix: A matrix which maps the incidence of a corresponding effects to the

data.

Design based values: Theoretical based values derived using ASReml-R. These are

generally derived reliability type measures on the BLUPs.

EBLUE: Empirical Best Linear Unbiased Estimate. All fixed effects in the linear

mixed model analysis are estimated using the method of best linear unbiased

estimation, but with variance parameter estimates replaced with their REML

estimates.

EBLUP: Empirical Best Linear Unbiased Predictor. All random effects in the lin-

ear mixed model analysis are predicted using the method of best linear unbiased

prediction, but with variance parameter estimates replaced with their REML es-

timates.

Environment: A year and location combination, often comprises of multiple trials.

Environment loading: Factor loading for an environment from a FALMM.

FAk: Factor analytic model of order k.

FAka, ke: Factor analytic model of order ka and ke for additive and non-additive effects.

FALMM: Factor analytic linear mixed model.

FAST: Factor analytic selection tools. Methodology derived from Smith & Cullis

(2018); Smith et al. (2021b) to summarise VE effects from a FALMM.

GC: Genetic correlation.

GRDC: Grains Research and Development Corporation. The funding body for NVT,

and global leader in grains industry research and development.

xxi



GLOSSARY

GV: Genetic variance.

IID: Independent and identically distributed. Defining a structure with no covariance.

LMM: Linear Mixed Model.

MET: Multi-environment Trials. A series of comparative variety trials grown in dif-

ferent trials (typically indexed by year and geographic location).

MSE: Mean squared error.

MSEP: Mean squared error of prediction.

NDBA: Northern Durum Breeding Australia.

NOBP: National Oat Breeding Program.

NRM: Numerator Relationship Matrix. This is a symmetrical matrix that represents

the genetic relationships between varieties, which assumes inheritance laws for

correlated genetic (additive) effects.This is built from a pedigree file.

NVT: National Variety Trials. A comparative variety trial managed by GRDC. Each

trial comprises a single randomisation of varieties to a set of field plots.

ODW: The model-based optimal design R: package used to design plant breeding trials.

One-stage analysis: A linear mixed model analysis of a dataset that comprises indi-

vidual plot yield data combined across all trials.

Pedigree file: A structured representation of a varieties ancestral links. Normally in

the form of ‘Me’, ‘Mum’, and ‘Dad.

PEV: Prediction error variance.

p-rep: Partially replicated. A standard design used for the early stages of plant breed-

ing trials where some varieties are replicated and others with just one replicate.

RCB: Randomised complete blocks. A standard design used for plant breeding trials

where similar experimental units are grouped into blocks or replicates.

Reliability: The square of the accuracy value.

xxii



GLOSSARY

REML: Residual Maximum Likelihood. The method of estimation for variance pa-

rameters in the linear mixed model analysis.

REMLRT: Residual maximum likelihood ratio test.

RGG: Rate of genetic gain. The variable in the breeders equation.

RL: Recommended list.

SEM: Standard error of the mean.

Specific variance: The error term in the FALMM model.

TMY: The mean yield of all field plots at a trial.

Trial: Each trial comprises a single randomisation of varieties to a set of field plots.

Tsize: Trial size. A term used in the simulation studies to distinguish how many

varieties are in a trial.

Unstructured model: A model that can be used in the MET analysis to provide a

structure for the between trials genetic variance matrix. This is a completely

saturated form so that for p environment there contains p(p+ 1)/2 parameters.

VAF%: Variance accounted for. The percentage of VE variance for a trial that is

accounted for by the common factors in an FA model.

Variety: An entry in a trial or environment.

Variety connectivity: Number of unique varieties in common between pairs of trials

or environments.

VE: Variety by Environment.

VEI: Variety by Environment Interaction.

Variety score: Factor scores for a variety from a FALMM.

xxiii





Chapter 1

Introduction

Plant breeding is a branch of agriculture that focuses on manipulating plant heredity

to develop new and improved plant varieties for use by society (Acquaah, 2013). It

consists of methods for the creation, selection, and fixation of superior plants in terms

of productivity or quality (Moose & Mumm, 2008). During this process, the ability

to select the best varieties and discard others is critical in constantly improving the

breeding gene pool (Zamir, 2001). The new varieties might have a greater yield, better

grain quality, stronger disease resistance, better agronomical qualities, and better qual-

ity attributes. Ideally, they will have a new set of characteristics that are superior to

the existing varieties (Luckett & Halloran, 1995).

Breeding of new crop varieties has been, and continues to be, a vital means for meet-

ing global food demands. Increased productivity is largely achieved by creating new

varieties with higher yields. The plant breeding process that targets grain yield is a

lengthy one and comprises a number of successive stages in which the newly devel-

oped breeding lines are grown in designed field trials. Note that the term “breeding

line” is technically correct in this context, but to be consistent with the majority of

literature, it will be replaced with the term “variety” for the remainder of this thesis.

In the first stage (often called Stage 1, S1), a large number of varieties is grown in a

small number of trials at different geographic locations and with low levels of within

trial replication. A proportion of varieties from S1 are then selected, on the basis of

superior yields, to progress to the next stage of testing (Stage 2, S2) in the following

year. The process continues through to Stage 3 (S3), and Stage 4 (S4) with decreases

1
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in the number of varieties being grown in each subsequent trial, but with higher levels

of within-trial replication and larger numbers of trials spread across the target growing

region. The culmination of the testing process is the identification of the best new

varieties that may be suitable for use by growers. In Australia, the elite varieties which

are considered for commercial release at the end of S4 are evaluated in the Grains Re-

search and Development Corporation (GRDC) funded National Variety Trials (NVT)

program (www.grdc.com.au/research/trials,-programs-and-initiatives/national-variety-

trials). In this system, varieties from all major plant breeding companies are tested

together in large numbers of trials with standardised management in order to provide

independent information for growers.

Identification of superior varieties at any stage in a plant breeding program or in a

testing program such as NVT, is achieved using an analysis of yield data combined

across a series of trials, also known as a multi-environment trial (MET). In this context,

“environments” are defined as the combinations of the geographic locations and years in

which the trials were conducted. The analysis of MET data is an essential component

of variety evaluation as it allows the investigation of varietal yield performance across

a range of locations and seasonal conditions.

1.1 Historical methods for multi-environment trial analysis

Historically, MET data were analysed using a two-stage process in which the first stage

consisted of separate analyses of individual trials to obtain variety means for each trial

(and possibly an associated measure of uncertainty). The resultant variety by trial

table of means was then used as “pseudo” data in a second stage, across trial analy-

sis. One of the earliest approaches for the second stage analysis was the analysis of

variance (ANOVA) for a series of experiments as described in Cochran & Cox (1950).

This method partitions sources of variation associated with the main effects of varieties,

the main effects of environments, variety by environment interaction (VEI) and within

trial error variation (a pooled estimate obtained from the first stage individual trial

analyses). Implicitly, the main effects and interactions are regarded as fixed effects so,

in particular, the variety effects and interactions are estimated using least squares.
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1.1 Historical methods for multi-environment trial analysis

A major limitation with the ANOVA approach is that it requires complete data, that

is, observations from all varieties in all environments. This is rarely the case so that the

application of this method, or indeed any method that requires complete data, typically

involves sub-optimal practices such as taking subsets of data or substituting imputed

values in the missing cells of the variety by trial table. The problem of incomplete

variety by trial tables was addressed in several key papers led by H. D. Patterson (Pat-

terson et al., 1977; Patterson, 1978; Patterson & Silvey, 1980). These papers describe

approaches for analysing incomplete MET datasets using models in which variety main

effects are regarded as fixed effects but environment main effects and VEI are regarded

as random effects. Thus, these are examples of linear mixed models (LMMs) although

this terminology was not used by the authors. In the LMMs, both the environment

effects and VEI are assumed to comprise independent and identically distributed sets

of effects, each with an associated variance component. Patterson et al. (1977) were the

first to consider partitioning VEI into several sources associated with the geographic

location (“centre”) and year of the trial. Thus, their model includes random effects for

variety by centre, variety by year and variety by centre by year interactions, each with

its own variance component. They are also the first to introduce the use of residual

maximum likelihood (REML) (Patterson & Thompson, 1971) for the estimation of vari-

ance components in unbalanced MET data. Using a similar model, and with reference

to incomplete variety by trial data, Patterson (1978) details a least squares method

for estimating variety means (across environments). Finally, Patterson & Silvey (1980)

provides a comprehensive overview of the methods of MET analysis used in the United

Kingdom crop variety testing system (an analogous system to the NVT). The models

and estimation methods are as given in the earlier two papers, but, importantly, even

though they still regard variety effects as fixed effects in their model, (Patterson & Sil-

vey, 1980, p. 230) compute an estimate of genetic variance (“the variance among the

population of variety means”) which they comment “enables us to calculate the gains

in varieties selected for recommendation.” They also raise the issue of “selection bias”,

noting that this “arises because a variety is more likely to be recommended if its trial

mean yield exceeds its true mean yield”. They quantify this bias using the ratio of ge-

netic variance to total variance. These concepts align more closely with the assumption

of random, rather than fixed, variety effects. In fact, the bias adjustment provided by

Patterson & Silvey (1980) is consistent with the phenomenon of “shrinkage” associated
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1. INTRODUCTION

with the prediction of random variety effects using the technique of best linear unbiased

prediction (BLUP) (Robinson, 1991).

Following on from this work, Cullis et al. (1996a,b) consider the analysis of a large

and highly unbalanced Australian MET dataset. They use a LMM similar to Patterson

& Silvey (1980) in the sense that there are variety and environment main effects, and

VEI is partitioned into sources associated with location and year. They also include

some genetic covariates so that the variety main effects and VEI are partitioned further.

Cullis et al. (1996b) assume fixed environment main effects and fixed effects for the ge-

netic covariates. All other effects, including the variety main effects (adjusted for the

covariates) are assumed to be random. They used REML for the estimation of variance

components. Furthermore, they used BLUP to obtain predictions of variety main effects

and key interactions and showed how these could be used for selection. This is arguably

the first published use of BLUP for selection in a MET. The predictions were calculated

using REML estimates of the variance parameters so that they were, in fact, empirical

best linear unbiased predictions (EBLUPs). This distinction between BLUPs, which

are based on known variance parameters, and EBLUPs, which are based on estimates

of variance parameters, is an important theme in this thesis.

The next major step change in the analysis of MET data was the work of Cullis et al.

(1998) who advocated replacing the two-stage approach with a one-stage analysis of

individual plot data combined across trials. They argued that with incomplete data

and non-orthogonal within-trial analyses, the efficiency loss in the two-stage approach

could be substantial, particularly with low levels of within-trial replication. Their refer-

ence to non-orthogonal within-trial analyses was particularly important, since, by this

time, it was widely accepted that spatial methods of analysis provided significant gains

in accuracy for field trials. In their fully efficient one-stage approach for MET data,

Cullis et al. (1998) used a LMM with fixed environment main effects, random variety

main effects and random VEI. They recognised that VEI variance often differed between

environments, so in their model they included a separate VEI variance parameter for

each environment. At the within-trial level, Cullis et al. (1998) adopted the spatial

modelling ideas of Cullis & Gleeson (1991) and Gilmour et al. (1997). These are based

on the fact that field trials are typically arranged as rectangular arrays of plots indexed
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1.2 Factor analytic linear mixed models for multi environment trial analysis

by rows and columns. A two-dimensional (row × column) separable spatial correlation

model is used for the errors. The correlation structure for each dimension is given by

an autoregressive process of order one which is a function of a single autocorrelation

parameter and reflects the fact that the correlation between plot errors decreases as

the distance between plots increases. The Cullis et al. (1998) approach proceeds by

first analysing each trial separately in order to assess the adequacy of the spatial mod-

els, to diagnose the existence of additional fixed or random terms (typically associated

with rows and/or columns) that may need to be added to the model and to identify

potential outliers. Once satisfactory within-trial models have been identified, they are

carried through to the LMM for the MET analysis where they are re-estimated. Thus,

the variance parameters to be estimated in the one-stage analysis include not only the

genetic variance parameters (associated with the variety main effects and VEI) but also

variance parameters associated with individual trial designs (for example, associated

with replicate block factors) and individual trial spatial variances and autocorrelations.

Cullis et al. (1998) was a landmark paper in raising awareness of the serious deficiencies

in the two-stage approach for the analysis of MET data. The efficiency losses asso-

ciated with this approach have also been demonstrated (Gogel, 1997; Welham et al.,

2010; Gogel et al., 2018) so that the one-stage approach is accepted as being necessary

to achieve accurate selection in a plant breeding program.

1.2 Factor analytic linear mixed models for multi environ-
ment trial analysis

In all the historic methods of MET analysis discussed in Section 1.1, the logic follows

the standard statistical approach for a factorial experiment in which the effects are

partitioned into main effects and interactions. Smith et al. (2001b) moved away from

this framework and adopted the quantitative genetics view in which yields in differ-

ent environments are synonymous with different traits (Falconer, 1952). It is therefore

natural to consider estimation of a genetic variance matrix for the environments. Such

a matrix comprises genetic variances for each environment (reflecting the magnitude

of variation in yield between varieties in individual environments) and genetic covari-

ances between pairs of environments (which, when expressed as correlations, reflect the
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agreement/disagreement in variety rankings). Smith et al. (2001b) achieved this by

proposing a LMM that included environment main effects and the variety effects for

individual environments (henceforth called the VE effects). Note that no variety main

effects are included in the model and that VE effects represent the nested effects of

varieties within environment and not VEI. Given the multi-trait analogy, Smith et al.

(2001b) fit the environment main effects as fixed effects and the VE effects as random

effects with a two-dimensional (Variety × Environment) separable variance structure.

If there are p environments and m unique varieties across the entire MET dataset then

there are mp VE effects (even if the data are unbalanced). If they are ordered as va-

rieties within-environments, the variance structure can be written as Ge ⊗Gv, where

Ge is a p× p variance matrix for the environment dimension (the between environment

genetic variance matrix) and Gv is an m×m matrix for the variety dimension.

Smith et al. (2001b) note that there are many possible forms for Ge, the most par-

simonious of which is the compound symmetric (or uniform) structure that arises from

the historic MET model with random variety effects (with variance component σ2
v) and

VEI (with variance component σ2
ve). In this case Ge only involves 2 parameters, with

every genetic variance (diagonal element) being given by σ2
v + σ2

ve and every genetic

covariance (off-diagonal element) by σ2
v . Partitioning VEI into sources associated with

locations and years (Cullis et al., 1996b, as in), or allowing for VEI variance heterogene-

ity (as in Cullis et al., 1998) provides slightly more general, but still restrictive forms

for Ge, none of which regularly provide a good fit to MET data. The most general form

for Ge is the unstructured form as is used in multi-trait analyses and which involves

p(p + 1)/2 variance parameters. Multi-trait applications typically involve only a few

traits (less than 10) whereas METs can involve numbers of environments in excess of

p = 50. With such large numbers, estimation of the variance parameters in an unstruc-

tured matrix will likely be unstable and result in inaccurate estimates (Kelly et al.,

2007).

Smith et al. (2001b) propose the use of factor analytic (FA) forms for Ge which arise by

assuming a multiplicative model for the VE effects. A factor analytic model of order k,

denoted FAk, comprises k multiplicative terms and a residual. Each of the multiplica-

tive terms is a product of a set of variety “scores” and environment “loadings” which
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are all estimated from the data. The variety scores are assumed to be random effects

and the environment loadings are variance parameters. The residuals are assumed to

be random effects with a separate variance (known as a “specific” variance) for each

environment. The loadings and specific variances combine to form a quite general form

for Ge that allows for both heterogeneity of genetic variance and covariance. It is much

more parsimonious than the unstructured form with p(k+1)−k(k−1)/2 parameters to

be estimated. The Smith et al. (2001b) analysis is similar to Cullis et al. (1998) in that

it is a one-stage approach that incorporates within-trial error variance modelling as pre-

viously described. This so-called factor analytic linear mixed model (FALMM) provides

EBLUPs of the VE effects that can then be summarised across environments in mean-

ingful ways to facilitate variety selection (Smith & Cullis, 2018; Smith et al., 2021b, see).

In the original FALMM paper of Smith et al. (2001b), the VE effects were assumed

independent between varieties so that Gv = Im. More recently it has been shown that

the accuracy of predicted VE effects can be greatly improved by including information on

the genetic relatedness of varieties in the FALMM. This can be achieved using pedigree

information for varieties, which is a structural representation of an individual’s ancestral

links. This information is represented using a Numerator Relationship Matrix (NRM),

often denoted as A (Henderson, 1976). A FALMM that incorporates pedigree informa-

tion has been shown to improve selection accuracy (Oakey et al., 2007; Beeck et al.,

2010). The associated model partitions the VE effects into additive and non-additive

effects. Separable variance models are assumed for each set and are given by Ga ⊗A
and Ge ⊗ Im where Ga and Ge are known as the additive and non-additive between

environment genetic variance matrices, respectively. In the FALMM, these variance

matrices each have their own factor analytic form. Information on genetic relatedness

can also be obtained using genomic (marker) data, in which case it is represented using

a Genomic Relationship Matrix (GRM), often denoted as K (VanRaden, 2008). The

FALMM proceeds in a similar manner to Oakey et al. (2007) except that the NRM is re-

placed by the GRM in the variance model for the additive effects (Tolhurst et al., 2019).

The FALMM approach has been found to regularly provide a good fit to MET data and

to provide key information on variety performance for selection. It is now widely used

for the analysis of Australian MET data and is regarded as the current “gold standard”
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method. Most of these analyses are conducted as part of the routine selection process

in plant breeding programs so are confidential and rarely published. However, some key

articles involving the application of FALMMs to MET data are summarised in Table

1.1. This table provides an insight into the structure of MET datasets that have been

analysed using FALMMs. The numbers of environments (p) included in the datasets

range from 4 to 196, whilst the number of varieties (m) ranges from 26 to 6951 (exclud-

ing the Radiata Pine studies). The degree of incompleteness in each dataset is measured

by the “percentage fill-in”, that is, the number of variety by environment combinations

present in the data expressed as a percentage of the total number of combinations (mp).

These range from 6% to 100% (excluding the Radiata Pine studies). Also shown (in the

last two columns) are the orders of FA models fitted, and whether the models included

information on genetic relatedness.

A key paper that provides direct evidence of the merit of FALMMs for variety selection

is Kelly et al. (2007). They consider eight example datasets from Australian plant breed-

ing programs (see Table 1.1 for summary information) and fit one-stage MET analyses

following Smith et al. (2001b). They assume independence between varieties so that the

variance model for the VE effects is given by Ge⊗Im. They used a range of models for

Ge including a compound symmetric and unstructured model together with FA models

of order k = 1 up to the maximum order possible for the dataset. The goodness of fit

of the models was investigated using AIC which showed that an FA model was the best

for 6 datasets and an unstructured for 2 datasets (NSW barley and Qld wheat). This

is an interesting result considering that most of these datasets involved relatively small

numbers of environments so that the unstructured model might be expected to perform

well. Note that one of the datasets for which unstructured was best had the smallest

number of environments (4 for NSW barley). Kelly et al. (2007) also consider the abil-

ity of the FALMM to provide accurate VE predictions for the purposes of selection.

Clearly, selection errors will be minimised when the correlation between the true and

predicted VE effects is maximised and the mean squared error of prediction (MSEP)

is minimised. (Kelly et al., 2007, p. 1064) comment that this is achieved with the use

of BLUP but the proviso is that “the BLUPs are calculated on the basis of the true

form for the genetic variance matrix”. There is the additional potential loss of accuracy

associated with the fact that variance parameters must be estimated so that selection
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1.2 Factor analytic linear mixed models for multi environment trial analysis

will be based on EBLUPs rather than BLUPs.

Kelly et al. (2007) investigate the accuracy of VE EBLUPs via a simulation study.

They generated data for 12 scenarios comprising the factorial combinations of three

numbers of varieties (m = 80, 200, 500) and four genetic variance matrices (Ge with

variance parameters taken from the FA2 model fitted to the Qld wheat dataset, the un-

structured model fitted to this dataset, the FA2 model fitted to the SA barley dataset,

the unstructured model fitted to this dataset). Importantly, the datasets were complete

with all varieties present in all trials. In each simulation run, the data were analysed

using six models for Ge, including diagonal, compound symmetric, unstructured, FA1,

FA2 and FA3 models. The accuracy of the VE EBLUPs was investigated using MSEP.

When data were generated using the FA2 model, and when the FA2 model was used

for analysis, the MSEP was smaller than that when the unstructured model was used.

However, when data were generated using an unstructured model, the results differed

depending on the number of varieties. For the largest number, that is, m = 500, the

MSEP was smallest when the unstructured model was used for analysis. In the case of

m = 80 or m = 200 varieties, FA models had MSEP values that were lower or equal

to those from an unstructured model. The implication is that, unless the number of

varieties is large, there will be insufficient information to reliably estimate the variance

parameters in an unstructured model and that this will have a negative impact on the

accuracy of the associated VE EBLUPs and thence selection. This is in agreement with

Sales & Hill (1976a,b) who demonstrated, in an animal breeding context, that poorly es-

timated genetic variance parameters reduces genetic gain. The accuracy of the EBLUPs

from an FA model were shown to be superior to those from an unstructured model for

small numbers of varieties, the implication being that the FA variance parameters are

more reliably estimated. The proposal that the reliability of genetic variance parameter

estimates will have an impact on the accuracy of VE predictions is a theme that will

be explored in this thesis. This will be done in a broad framework that encompasses

incomplete MET data.
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Table 1.1: Summary of key studies based on the analysis of METs using FALMM, and their dataset composition, including: number
of years, environments (Envs), and varieties (Vars); the minimum, maximum and median numbers of varieties in each environment;
the percentage of variety by environment combinations observed (%fill-in); and the forms of the separable Ge⊗Gv variance matrices
fitted to the VE effects.

Number of Varieties per Env % Models for

References Dataset descriptions Years Envs Vars Min Max Median fill-in Ge
a Gv

b

Smith et al. (2001b) SA Stage 3 Barley trials conducted in 1997 1 7 172 172 172 172 100 FA3 I

Thompson et al. (2003) NSW Stage 3 and 4 Barley trials conducted 1999-2001 3 62 216 29 118 32 25 FA2 I

Kelly et al. (2007) NSW Stage 2 Barley trials conducted in 2004 1 4 321 75 FA3 I
Qld Stage 2 Barley trials conducted in 2004 1 6 720 75 FA3 I
Qld Stage 2 Sorghum trials conducted in 2004 1 5 644 69 FA3 I
Qld Stage 2 Wheat trials conducted in 2004 1 7 1160 1160 1160 1160 100 FA3 I
SA Stage 2 Barley trials conducted in 2004 1 10 480 480 480 480 100 FA3 I
Vic Stage 2 Barley trials conducted in 2004 1 6 202 202 202 202 99 FA3 I
Vic Stage 2 Green Lentil trials conducted in 2004 1 6 50 83 FA3 I
Vic Stage 2 Red Lentil trials conducted in 2004 1 9 231 91 FA3 I

Beeck et al. (2010) Australian Early stage Canola trials conducted 2007-2008 for grain yield 2 19 332 153 260 154 38 FA3,3 A,I
Australian Early stage Canola trials conducted 2007-2008 for oil 2 13 332 153 260 183 40 FA2,3 A,I

Welham et al. (2010) Australian Late stage Wheat trials conducted in 1998 1 14 34 26 34 29 86 FA3 I
UK Late stage Wheat trials conducted in 1998 1 12 26 20 26 25 92 FA3 I

Cullis et al. (2014)c Australia and New Zealand Radiata Pine genetic trials conducted 1968-2005 37 77 2733 17 588 86 4 FA3 A

Smith et al. (2015) NVT Wheat trials from Southern region conducted 2009-2013 5 196 200 36 63 47 24 FA5 I

Gogel et al. (2018) NVT Wheat trials from Southern region conducted 2011-2015 5 192 188 29 59 47 24 FA2 I

Smith & Cullis (2018)c Australia and New Zealand Radiata Pine genetic trials conducted 1968-2007 39 92 3061 17 588 105 4 FA3 A

Smith et al. (2019) Australian Canola blackleg trials conducted 2011-2016 6 70 357 20 138 90 21 FA4 I

Tolhurst et al. (2019) Australian Stage 2 Wheat trials conducted in 2015 1 8 2868 609 2845 1320 21 FA4,2 K,I

Cocks et al. (2019) Australian Frost expression Wheat trials conducted 2010-2016 7 17 238 28 108 54 14 FA3 I

Smith et al. (2021b) Australian Stage 3 and 4 Wheat trials conducted 2014-2017 4 73 622 96 320 214 FA4 I

Ferrante et al. (2021) Australian Frost expression Wheat trials conducted 2010-2019 10 26 264 28 106 53 FA3 I
Australian Frost expression Barley trials conducted 2012-2019 8 24 66 19 48 35 FA3 I

Chapter 5 Australian Stage 4 Oat trials conducted 2012-2016 5 41 163 48 65 52 33 FA5 I

Chapter 8 Australian Stage 1-4 Durum trials conducted 2014-2018 5 30 6951 60 1836 101 6 FA4,3 A,I

NVT-online NVT Lentil trials conducted 2017-2021 5 59 31 14 17 15 49 FA4 I

a Factor analytic model of order k for independent variety effects; and of order ka, ke for those models with variety relationship matrices.
b Model for variety effects: Independent (I), numerator relationship matrix (A), and genomic relationship matrix (K).
c Reported summaries are by parents, rather than by variety.
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1.3 Multi-environment trial dataset construction

MET datasets for variety selection are unique in the sense that there is no single defini-

tive dataset for any given selection decision so that the plant breeder and statistician

must determine the data to combine for analysis. Given that the breeding process in-

volves trials that span both geographic locations and years, the decisions as to which

trials to include in the dataset can be quite complex. Importantly, the potential gains

of using the gold standard FALMM will only be realised if the models are applied to

appropriately constructed MET datasets (see Smith et al., 2021a, for example). Despite

the importance of this issue, there has been little research and there is a lack of consen-

sus in the literature on how MET datasets should be constructed for variety selection.

However, several authors, including Cullis et al. (2000) and Arief et al. (2015), have

stressed the importance of including VEI associated with seasonal conditions in the

models, so there is a clear need to include multiple years of data in a MET to enable

accurate selection. Thus, most of the recent publications in Table 1.1 involve datasets

that include trials from several years. Typically, this also involves the combination of

trials from different stages of testing. Most of these datasets were compiled using infor-

mal approaches, but with the premise that the aim should be to include as many trials

as possible to capture all available yield data on the varieties under consideration for se-

lection. This suggests that trials should be combined in order to maximise information

(data) on varieties. However, combining data from trials in different years and stages

leads to unbalanced (incomplete) data with low percentage fill-in (see Table 1.1). It

has been a major concern for some years that incomplete data may adversely affect the

reliability of estimation of the genetic variance parameters in the FALMM. As discussed

in Section 1.2, poor estimates of genetic variance parameters will reduce the accuracy

of the VE EBLUPs and thence selection. It is therefore important to establish whether

incomplete data, or other structural features of a MET dataset, may impact on the reli-

ability of genetic variance parameter estimates. This may then provide another criteria

for MET dataset construction, namely to maximise the information for estimation of

genetic variance parameters. These two aspects of MET dataset construction are the

focus of this thesis and are introduced in the following two sections to provide context

for this research.
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1.3.1 Maximising information on varieties

Smith et al. (2021a) formalise a method for constructing MET datasets to maximise

variety information. They introduce two new concepts relating to the two fundamen-

tal components in a breeding program, namely the varieties and the trials. On the

variety side, they define “contemporary groups” which are groups of varieties that com-

mence their yield testing in the same year. On the trial side, they define “data bands”

which are groups of trials across years that reflect the sequence of stages of selection.

Smith et al. (2001b) show how to combine data bands to form MET datasets for given

selection decisions. Their method maximises the amount of information available for

variety selection where information may be “direct” (observed data on the varieties) or

“indirect” (gained from genetically related varieties through the inclusion of pedigree or

marker data in the analysis). Smith et al. (2001b) also provide a measure to quantify

this information for a given MET dataset. They use the A-optimality criterion from

the model-based experimental design literature. This criterion was chosen since, when

calculated with respect to random treatment (variety) effects, the A-value reflects the

probability of correctly ranking varieties and thence being able to select the best (Bueno

Filho & Gilmour, 2003, 2007).

1.3.2 Maximising information for genetic variance parameter estima-
tion

The work of Smith et al. (2021a) was invaluable in formalising a method for construct-

ing MET datasets and for providing a criterion to compare and thence choose a suitable

dataset for a given set of variety selection decisions. A key consequence of this approach

is that it typically results in unbalanced data. Within the framework of the original

FALMM in which varieties were assumed unrelated, the percentage fill-in was thought

to be a key driver of the reliability of genetic variance parameter estimation and that

this in turn affected the reliability of predictions of VE effects (Smith et al., 2001b,

2015; Ward et al., 2019). Thus, a preliminary step prior to analysis was the examina-

tion of “variety connectivity”, that is, the number of varieties in common between pairs

of environments. Many of the papers listed in Table 1.1 therefore include this informa-

tion, which is typically presented graphically as a heatmap. As an example, a heatmap
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presenting the number of common varieties between environments for the dataset de-

scribed in Smith et al. (2015) is presented in Figure 1.1. This dataset comes from the

NVT program and consists of wheat trials from the Southern region conducted between

2009-2013. The full dataset comprises 200 varieties with 9462 variety by environment

combinations observed out of the possible 38416 (%fill-in of 24%). In general in this

dataset, all environments for a given year had a similar set of varieties, and much fewer

numbers of varieties in common between years.

In more recent applications of the FALMM in which information on genetic related-

ness of varieties has been included, the heatmap has continued to be used but may be

formed for “parental connectivity”, that is, the number of parents in common between

environments, since this was seen as important for the reliability of the additive genetic

variance parameter estimates (Cullis et al., 2014; Smith & Cullis, 2018). Often, where

“poor” connectivity was identified, either in terms of varieties or parents, this informa-

tion was used to remove individual environments or even years from a MET dataset

prior to analysis, as it was thought they would adversely affect genetic variance param-

eter estimation. Note that this was still deemed necessary even after a MET dataset

was identified using the Smith et al. (2021a) approach as having a good (low) A-value

because this criterion is calculated with reference to an underlying LMM in which the

variance parameters are assumed known.

There has been little in the literature to establish whether these connectivity methods

are the most appropriate for forecasting the reliability of variance parameter estimation

that will result from the analysis of a given MET dataset. The lack of research on

this topic is addressed in this thesis and has resulted in the publication of Lisle et al.

(2021). In a similar manner to Smith et al. (2001b), a criterion from the model-based

experimental design literature is proposed as a diagnostic tool that can be applied to

a MET dataset prior to analysis. In the case of Lisle et al. (2021), the criterion is

that of D-optimality, since this enables an assessment of the generalised variance of, or

equivalently the information for, the genetic variance parameter estimates. This thesis

therefore offers a diagnostic approach for constructing optimal MET datasets that aims

to balance the amount of variety information with the information available for genetic

variance parameter estimation.
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Figure 1.1: Variety connectivity across environments for the Wheat dataset described in
Smith et al. (2015). The colours on the off-diagonals indicate the number of varieties in
common between pairs of environments. Boundaries for years are indicated by the black
lines (2012 - 2016 inclusive from left to right and top to bottom). Right and bottom ticks
represent the 196 environments.
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1.4 Structure of thesis

The objectives of this thesis are to present novel approaches for optimising the con-

struction of MET datasets from a series of plant variety trials. Although sophisticated

and relevant statistical analyses have been proven to increase the reliability of predicted

VE effects, there has been little research into how to construct an appropriate dataset.

This thesis fills a void in the literature by providing information-based diagnostics for

the optimal construction of the MET dataset. The remaining chapters in this thesis are

arranged as follows.

Chapter 2 This chapter provides details about the estimation of linear mixed mod-

els, including the residual maximum likelihood (REML) estimation of variance

parameters and best linear unbiased prediction (BLUP) of random effects. It is

limited to theory of direct relevance to the thesis so it covers concepts of particular

importance to the analysis of data from plant breeding trials.

Chapter 3 This chapter discusses general aspects about simulation studies and pro-

vides fundamental concepts that are used for the studies presented in later chap-

ters. This includes the definition of performance measures of bias and mean

squared error (MSE) for REML estimates of variance parameters, and also the re-

liability of both BLUPs and empirical best linear unbiased predictions (EBLUPs).

Chapter 4 This chapter is devoted to the description of two motivating datasets that

are used throughout the thesis. They relate to two distinct types of data which

will allow two types of analysis to be investigated. The first, the so-called Oat

dataset, is a late-stage variety evaluation dataset in which only elite varieties are

considered and which will be analysed as if the varieties are unrelated, that is, with

the assumption of independence between the effects for different varieties. The

second, the Durum wheat dataset, is a full plant breeding dataset in which varieties

from all stages of testing are considered and for which pedigree information is

available. The analysis of these data will include the pedigree information via a

Numerator Relationship Matrix so that genetic relatedness between the varieties

will be accommodated.
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1. INTRODUCTION

Chapter 5 The process of fitting factor analytic linear mixed models (FALMMs), in-

cluding the spatial modelling of individual trials, is important to the themes of

this thesis. This process is demonstrated in this chapter for models in which inde-

pendence is assumed between the effects for different varieties. The Oat dataset

is used for this purpose.

Chapter 6 In this chapter, a simulation study with a range of treatments is used to

investigate the effect of variety connectivity on the reliability of genetic variance

parameter estimates in a MET analysis and also on the reliability of variety pre-

dictions. This is conducted within the framework of models in which independence

is assumed between varieties so the analysis of the Oat dataset from the previous

chapter provides the trial structural elements and variance component values for

the simulation study.

Chapter 7 This chapter demonstrates how MET datasets may be created using the

methodology of Smith et al. (2021a). The chapter includes some general results

about A-optimality and a reproduction of key sections of Smith et al. (2001b).

Note that although the candidate is not the first author of this paper, the can-

didate had a key role in dataset curation, application of the methodology to the

examples, and manuscript preparation and revision.

Chapter 8 This chapter is analogous to Chapter 5 but demonstrates the model fitting

process when pedigree information is included via the Numerator Relationship

Matrix. The Durum dataset is used for this purpose.

Chapter 9 This chapter develops theD-optimality diagnostic to assess the information

in a MET dataset for the REML estimation of genetic variance parameters. The

chapter includes some general results about D-optimality and a reproduction of

Lisle et al. (2021).

Chapter 10 Concluding remarks are provided in this chapter.
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Chapter 2

Linear mixed models: key results
for the analysis of plant breeding
trials

Linear Mixed Models (LMMs) are widely used for the analysis of plant breeding data.

Two key reasons for this are their capacity to deal with incomplete data and their

allowance for correlated effects with complex variance structures. Such variance struc-

tures include those required to model the variety effects in a multi-environment trial

analysis and so-called spatial models that accommodate correlation in the errors in field

trials. These models will be fully described and applied to examples in later chapters.

The aim of the current chapter is to present LMM theory that is directly relevant to

this thesis and allows development of the material presented in later chapters.

This chapter is arranged as follows: I first describe the general form of the LMM in

Section 2.1; I then provide the derivation, and distributional properties of the residual

maximum likelihood (REML) estimates of variance parameters in Section 2.2; then in

Section 2.3 I derive best linear unbiased predictions (BLUPs) of random effects, and

present a measure of reliability and inference for random effects; in Section 2.4 I in-

troduce empirical BLUPs (EBLUPs) given that prediction of the random effects are

typically calculated using REML estimates of variance parameters; and finally in Sec-

tion 2.5 I have concluding remarks.
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2. LINEAR MIXED MODELS: KEY RESULTS FOR THE ANALYSIS
OF PLANT BREEDING TRIALS

2.1 The linear mixed model

I begin with a general LMM for the (n×1) data vector y = (y1, ..., yn)> which is written

as

y = Xτ +Zu+ e (2.1)

where τ is the (t× 1) vector of fixed effects with associated design matrix X; u is the

(b× 1) vector of random effects with associated design matrix Z; and e is the (n× 1)

vector of errors. It is assumed that[
u
e

]
∼ N

([
0
0

]
,

[
G 0
0 Σ

])
where the variance matrices G and Σ are functions of variance parameters. The vector

of random effects u comprises q sub vectors ui so that u = (u>1 . . .u
>
q)
>. It is assumed

that ui comprises bi effects so that there are b = Σq
i=1bi effects for u. The sub-vectors

are assumed to be independent so that var(u) = G is a block diagonal matrix given

by ⊕qi=1Gi. In many cases, a sub-vector ui will be assumed to be independent and

identically distributed (IID) so it will have a simple variance component structure given

by Gi = σ2
i Ibi .

As discussed in Chapter 1, data from plant breeding trials are analysed in order to

rank the varieties so that the best can be selected for continued testing or for commer-

cial release. This aim is best achieved with the assumption of random effects so that

variety effects comprise one of the sub-vectors in u in the LMM. In the case of the anal-

ysis of a single trial, one approach is to assume IID variety effects. However, varieties

are created as part of a crossing program so there are familial relationships between

them. These can be accommodated in the LMM by including a known relationship

matrix as part of their variance structure which means that the variety effects are now

correlated. In the case of the analysis of a series of trials, that is, a MET, the vari-

ance structure relates to the variety effects in individual environments so the associated

variance structure will be required to accommodate correlations between environments.

The forms of variance structures for variety effects, both for a single trial analysis and

a MET analysis will be discussed in detail in later chapters.
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2.2 Residual Maximum Likelihood (REML) estimation of variance
parameters

The variance matrix Σ for the errors may take many forms. In the simplest case,

Σ = σ2In, where IID errors are assumed. In the spatial analysis of a field trial the

errors may have a correlated structure, so that Σ is non-identity. This form will be

described in later chapters.

Under these assumption the distribution of y is Gaussian with mean Xτ and vari-

ance

var(y) = H = ZGZ> + Σ

2.2 Residual Maximum Likelihood (REML) estimation of
variance parameters

Let κ denote the vector of unknown variance parameters associated with G and Σ. In

this thesis, the estimation of these parameters is achieved using the residual maximum

likelihood (REML) method of Patterson & Thompson (1971). This is based on a residual

(rather than full) likelihood function for the data vector. Verbyla (1990) presents a

derivation of the residual likelihood function that involves a transformation of the data

vector, y, to obtain a reduced vector, y2 that represents a set of n− t linear functions
that have zero mean. Specifically, he considers the transformation

L>y =

[
L1
>y

L2
>y

]
=

[
y1

y2

]
(2.2)

where L1 and L2 are n × t and n × (n − t) matrices respectively, both of full column

rank, and satisfying L1
>X = It and L2

>X = 0. Verbyla (1990) shows that the residual

log-likelihood for estimating the variance parameters in Equation (2.1) is the marginal

log-likelihood based on y2 which is given by

`R = −1

2

{
log |H|+ log |X>H−1X|+ y>Py

}
where P = H−1 −H−1X(X>H−1X)−X>H−1 with (X>H−1X)− being any gener-

alised inverse of (X>H−1X).

The REML estimation of κ requires the calculation of the REML scores. The form
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2. LINEAR MIXED MODELS: KEY RESULTS FOR THE ANALYSIS
OF PLANT BREEDING TRIALS

for the score for κi is given by

UR(κi) =
∂`R
∂κi

= −1

2

{
tr(PḢ i)− y>PH iPy

}
where the “dot" notation indicates the derivative, so that Ḣ i = ∂H/∂κi, i = 1 . . . nκ,

where nκ is the number of elements in κ. REML estimates of κi are obtained by setting

UR(κ) = 0, which typically requires a numerical solution. Gradient methods are useful

and involve the first term in a Taylor’s series expansion. If I expand the score equation

about the value of κ = κ(m) I find,

UR(κ) = UR

(
κ(m)

)
+
∂UR(κ)

∂κ>

∣∣∣∣
κ=κ(m)

(
κ− κ(m)

)
Equating the right hand side to zero and re-arranging gives

κ = κ(m) −
[
∂UR(κ)

∂κ>

]−1

κ=κ(m)

UR

(
κ(m)

)
= κ(m) +

[
IO

(m)
]−1

UR

(
κ(m)

)
(2.3)

where IO
(m) is the observed information matrix for κ at κ(m). This equation provides

the updated value which is denoted κ(m+1). This is known as the Newton-Raphson

algorithm. Elements of the observed information matrix are,

IO(κi, κj) = −∂UR(κi)

∂κj

=
1

2

∂tr
(
PḢ i

)
∂κj

− ∂y>PḢ iPy

∂κj


=

1

2
tr
(
PḢ ij

)
− 1

2
tr
(
PḢ iPḢj

)
+ y>PḢ iPḢjPy −

1

2
y>PḢ ijPy

(2.4)

where Ḣ ij = ∂2H/∂κi∂κj .
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2.2 Residual Maximum Likelihood (REML) estimation of variance
parameters

As an example, given an initial estimate κ(0), an update is,

κ(1) = κ(0) + IO(κ(0), κ(0))−1UR

(
κ(0)

)
An alternative to using IO is the use of the expected information matrix IE , which has

elements given by

IE(κi, κj) = E
[
−∂UR(κi)

∂κj

]
(2.5)

=
1

2
tr
(
PḢ iPḢj

)
(2.6)

When IO is replaced by IE in Equation 2.3 this is known as the Fisher-scoring algo-

rithm.

In practice, the trace terms in Equations 2.4 and 2.6 involving matrices of order n

are often not feasible to calculate. To combat this Gilmour et al. (1995) derive the

so-called average information matrix IA, which is formed by averaging IO and IE and

approximating y>PḢ ijPy by its expectation tr(PḢ ij) in those cases when Ḣ ij 6= 0.

For other variance models the average information matrix is an exact average. The

elements of the average information matrix are,

IA(κi, κj) =
1

2
y>PḢ iPḢjPy (2.7)

2.2.1 Distributional properties of REML estimates

It is well known that if variance parameters are estimated using (full) maximum like-

lihood, then the resultant estimates are asymptotically normal with zero mean and

variance matrix given by the inverse of the information matrix (see Mardia & Marshall,

1984, for example). Cressie & Lahiri (1993) discuss the distributional properties of vari-

ance parameter estimates obtained via residual maximum likelihood. Let κ̂ denote the

REML estimate of κ. Also let IE(κ,κ>) denote the full (nk×nk) expected information

matrix with elements as given in Equation 2.6. Then Cressie & Lahiri (1993) show that

asymptotically,

κ̂ ∼ N
(
0,IE(κ,κ>)−1

)
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This result about the asymptotic variance of κ̂ is used as the basis for a novel diagnostic

as provided in Chapter 9.

2.2.2 Residual maximum likelihood ratio test

The residual maximum likelihood ratio test (REMLRT) is a generic approach for com-

paring the fit of nested models. To compare models 1 and 2 which have residual log-

likelihoods of `1 and `2, respectively, and where model 2 contains an extra d variance

parameters, the REMLRT statistic is given as

D = 2(log(`2)− log(`1)) (2.8)

This has a distribution which is approximately chi-square on d df. If the model is

obtained by constraining variance parameters to be non-negative, the probability is

computed using a mixture of chi-square distributions as described in Self & Liang (1987);

Stram & Lee (1994).

2.3 Best Linear Unbiased Predictions (BLUPs) of random
effects

In this thesis the main emphasis is the prediction of random effects, in particular the

variety effects, and the reliability of those predictions. In terms of prediction of the

random effects, it is well known (see Robinson, 1991; Searle, 1997, for example) that

the best linear unbiased prediction (BLUP) of u is given by

ũ = GZ>Py

= GZ>H−1 (y −Xτ̂ ) (2.9)

where τ̂ =
(
X>H−1X

)−
X>H−1y so that Xτ̂ is the best linear unbiased estimate

(BLUE) of Xτ . The prediction error variance (PEV) for the random effects is given by

Ω = var(u− ũ) = G−GZ>PZG (2.10)

Searle (1997) presents an approach for the prediction of u based on the conditional

distribution of u given y. Using standard results concerning multivariate Normal dis-
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2.3 Best Linear Unbiased Predictions (BLUPs) of random effects

tributions he shows that

E(u|y) = GZ>H−1 (y −Xτ ) (2.11)

var(u|y) = G−GZ>H−1ZG (2.12)

Searle (1997) then notes that Equation (2.11) has the same form as the BLUP in

Equation (2.9) but with τ rather than τ̂ . Similarly Equation (2.12) has the same form

as the PEV in Equation (2.10) but with H−1 rather than P . In what follows, I show

that the exact forms for the BLUP and PEV of the random effects can be found using a

conditional approach but replacing the data vector y with the reduced vector, y2 from

Equation 2.2. It is noted that Diffey et al. (2017) also condition on y2 rather than y in

their development of a REML expectation-maximisation (EM) algorithm for variance

parameter estimation. The joint distribution of y2 and u is given by[
y2

u

]
∼ N

([
0
0

]
,

[
L2
>HL2 L2

>ZG
GZ>L2 G

])
I then consider the conditional distribution of u given y2 which, using results in Verbyla

(1990), leads to

E(u|y2) = GZ>L2 (L2
>HL2)

−1
y2

= GZ>Py

= ũ

var(u|y2) = G−GZ>L2 (L2
>HL2)

−1
L2
>ZG

= G−GZ>PZG

= Ω

as required. Finally, I therefore have that

u|y2 ∼ N (ũ,Ω) (2.13)
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2.3.1 Reliability of BLUPs

A measure of reliability for an individual BLUP can be obtained by considering the

joint distribution of u and ũ which is normal with zero mean and variance matrix

var
(
u
ũ

)
=

[
G GZ>PZG

GZ>PZG GZ>PZG

]
=

[
G G−Ω

G−Ω G−Ω

]
(2.14)

Mrode & Thompson (2005) define the accuracy of a prediction as the correlation between

the prediction and the true value of the random effect. Equation 2.14 shows that the

accuracy for the BLUP of the ith random effect is given by

cor(ui, ũi) =

√
1− d

>Ωd

d>Gd
(2.15)

where d is a vector of length b containing all zeros apart from a “1” in position i. Note

that this could also be written as

cor(ui, ũi) =

√
1− Ωii

Gii

where Ωii is the ith diagonal element of Ω so represents the prediction error variance

of ũi and Gii is the ith diagonal element of G so represents the variance of ui. Mrode

& Thompson (2005) also comment that the accuracy of prediction is often presented in

terms of reliability, which is the square of the accuracy value.

2.3.2 Inference on random effects

In the case of fixed effects, inference is typically formulated using hypothesis tests in

which the null hypothesis relates to “no difference” (that is, equality) between effects

or simply “no effect” (equality with zero). The concept and approach for such tests of

hypothesis is well understood. In the case of random effects, any tests involving equality

are inappropriate because the effects relate to a random variable. It is possible, however,

to make meaningful probability statements about u by using the conditional distribution

of u|y2 as derived in the previous section. In the plant breeding trial application it is

of interest to determine the probability that, given the data, the true (genetic) effect
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2.4 Empirical Best Linear Unbiased Predictions (EBLUPs) of random
effects

for variety i is higher than that for variety j. If I let ui and uj be the effects for variety

i and j respectively, then formally I consider

Pr (ui > uj |y2) = Pr (ui − uj > 0|y2)

= Pr ((ui − ũi)− (uj − ũj) > −(ũi − ũj)|y2)

= Pr
(

(ui − ũi)− (uj − ũj)√
d>Ωd

> −(ũi − ũj)√
d>Ωd

|y2

)
= 1− Φ

(
−(ũi − ũj)√

d>Ωd

)
where d is a vector of length b containing all zeros apart from a “1” in position i and “-1”

in position j and Φ is the standard normal cumulative distribution function. Note that

d>Ωd is therefore var ((ui − ũi)− (uj − ũj)), so represents the prediction error variance

(PEV) of the difference ũi − ũj . The general framework about probability statements

for random effects is used as the basis for the diagnostic presented in Chapter 7.

2.4 Empirical Best Linear Unbiased Predictions (EBLUPs)
of random effects

In the previous section I presented results about BLUPs of random effects. These assume

that the variance parameters inG and Σ are known. In practice, this is typically not the

case and the parameters must be estimated from the data. When variance parameters

must be estimated, it is common practice to obtain predictions of random effects using

Equation 2.9 but replacing the parameters in G and Σ with their REML estimates. If

the resultant matrices are denoted by Ĝ and Σ̂ (and thence Ĥ and P̂ ) the expression

ũ∗ = ĜZ>P̂ y (2.16)

can be calculated, but it is not the BLUP. It is instead called the Empirical Best

Linear Unbiased Prediction (EBLUP). Also note that the PEV for the EBLUP is often

calculated using the form in Equation 2.10, that is

Ω = Ĝ− ĜZ>P̂ZĜ (2.17)
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However, this is not correct because no account has been taken of the variability associ-

ated with the estimation of the variance parameters (Searle, 1997; Sales & Hill, 1976a).

It is, however, the standard measure provided in LMM software.

The properties of EBLUPs and the impact on their reliability as a result of the REML

estimation of the variance parameters is a focus of this thesis. To avoid clumsy nota-

tion, predicted random effects will always be denoted as ũ and where necessary, the

distinction between BLUPs and EBLUPs will be made in words.

2.5 Concluding remarks

The objectives of this thesis are to optimise the construction of MET datasets by using

a LMM statistical approach to critically assess the structure of the dataset and thus

improve the reliability of the predicted VE effects. This chapter has presented key LMM

theory for the analysis of plant breeding trials, which are are used and demonstrated

in Chapters 5 and 8 for the analysis of two motivating datasets, as well as provide the

theoretical framework for novel diagnostics presented in Chapters 7 and 9.
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Chapter 3

Simulation study methodology

This thesis includes simulation studies with objectives of addressing several broad con-

cerns with the construction of MET datasets (see Chapters 6 and 9). Concepts for

the preparation and presentation of the findings from these studies are presented in

this chapter. The simulation studies were created within the R statistical computing

environment (R Core Team, 2020), and all statistical analyses were completed with the

ASReml-R (Butler et al., 2017) package.

Simulation studies are used to generate empirical data about how statistical approaches

perform in different settings. These are in contrast to algebraic solutions, which are

not always attainable or maybe difficult to obtain. The ability to understand the be-

haviour of statistical approaches is a fundamental strength of simulation studies since

the parameters of interest are known from the data generation process. This allows the

examination of characteristics like bias and mean square error (MSE), and importantly

to the aims of this thesis, the reliability of predicted genetic effects (see Section 2.3.1,

which is defined as the (squared) correlation between the prediction and the true value

of the random effect). Because simulation studies create data from known distribu-

tions, they must be anchored in real-world circumstances so that the simulated results

appropriately represent the aims and objectives of the study. The plant breeding trials

detailed in Chapter 4 from Oat and Durum breeding programs inspired the investiga-

tions presented in this thesis.

This chapter is arranged as follows: In Section 3.1 I demonstrate how to simulate a
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3. SIMULATION STUDY METHODOLOGY

completely randomised designed (CRD) field trial, which is used as the motivation

throughout the remainder of this chapter. In Section 3.2 I describe the methodology to

form the performance measures of bias and mean squared error (MSE) for the residual

maximum likelihood (REML) estimates of the variance parameters, and also the relia-

bility of Empirical Best Linear Unbiased Predictions (EBLUPs) of the random effects.

In Section 3.3 I look more closely at the reliability of BLUPs and EBLUPs to develop

several novel concepts of importance to the simulation studies in Chapters 6 and 9.

I describe additional simulation study methodology which is important for running a

successful simulation study in Section 3.4. Concluding remarks are presented in Section

3.5.

3.1 Simulation of a trial with a completely randomised de-
sign

In this section, I demonstrate how to simulate grain yield data from a CRD field trial.

Here I consider a trial with m = 24 varieties with b = 3 replicates each, which are

completely randomised to n = 72 plots. The statistical model for the (72 × 1) data

vector y = (y1, y2, . . . , y72)> can be written as

y = Xτ +Zgug + e (3.1)

where τ is the overall mean with associated design matrix X; ug is the (24× 1) vector

of variety effects with associated design matrix Zg; and e is the (72×1) vector of errors.

It is assumed [
ug

e

]
∼ N

([
0
0

]
,

[
Gg 0
0 Σ

])
where simple variance structures are assumed for {Gg,Σ} so that, Gg = σ2

gI24 and

Σ = σ2I72. Under these assumptions, the distribution of y is Gaussian with mean Xτ

and variance

var(y) = H = σ2
gZgZg

> + σ2I72

For demonstration purposes, it is assumed that σ2
g = 0.2 and σ2 = 1. In terms of the

fixed effects, without loss of generality I choose τ = 0.
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3.1 Simulation of a trial with a completely randomised design

3.1.1 Simulation and analysis of the data vector

Here I provide the techniques and R code to simulate and analyse the data vector y using

the model in Equation 3.1. I simulate S = 200 times, but note that this is inspected in

Sections 3.4.3 to investigate how many simulations are required to make sure the results

are precise. The R code for generating y and the corresponding analysis is shown below

#var iance parameter va lue s .
sg2 <− 0 . 2 ; s2 <− 1
#number o f v a r i e t i e s and r e p l i c a t i o n
m <− 24 ; b <− 3
#number o f s imu la t i on s
S <− 200
#Variety names V1−V24
Varname <− rep ( paste ("V" , 1 :m, sep = ’ ’) , b )

#Set up base d a t a f i l e . Rectangular g r id with no . columns = b .
data <− data . frame (Column=rep ( 1 : b , each=m) , Row=rep ( 1 :m, b ) ,
Var iety=sample (Varname ) )
data$Var iety <− f a c t o r ( data$Variety ,
l e v e l s = mixedsort ( as . cha rac t e r ( unique ( data$Var iety ) ) ) )

#Setup matr i ce s to s t o r e r e s u l t s . True and pred i c t ed ug ’ s
Tug . t e s t <− matrix ( data=NA, nco l=S , nrow=m) #True
Pug . t e s t <− matrix ( data=NA, nco l=S , nrow=m) #Pred (EBLUPs)
#REML est imate f o r var iance parameters .
sg2 . pred <− matrix ( data=NA, nco l=1,nrow=S) #REML Genetic var
s2 . pred <− matrix ( data=NA, nco l=1,nrow=S) #REML Error var

f o r ( i in 1 : S){ #run S times
u_g <− rnorm (m, 0 , s q r t ( sg2 ) )
e <− rnorm (m∗b , 0 , s2 )
data$y <− u_g [ data$Var iety ] + e
RD. as <− asreml (y ~ 1 , random=~Variety , data = data )

Tug . t e s t [ , i ] <− u_g
Pug . t e s t [ , i ] <− RD. a s$ coe f f i c i en t s $ random [ 1 :m]
sg2 . pred [ i ] <− summary(RD. as ) $varcomp [ 1 , 1 ]
s2 . pred [ i ] <− summary(RD. as ) $varcomp [ 2 , 1 ] }

where u_g is the (24×1) vector of (true) variety effects, which are stored in the Tug.test
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3. SIMULATION STUDY METHODOLOGY

object; e is the (72 × 1) vector of errors; data is the datafile with 72 rows of data;

Variety is a factor with 24 levels, each occurring randomly three times; and finally y

is the (72 × 1) data vector. Note, R library packages asreml and gtools are required

for the code above.

For the ASReml-R code, 1 is the term reflecting the overall mean; Variety is the factor

representing the 24 levels of varieties which are fitted as random effects; sg2.pred and

s2.pred are objects containing the REML estimates of the genetic and error variance

parameters respectively; and Pug.test is an object containing the EBLUPs of the vari-

ety effects. I note that an error term is not specified in the model call, which defaults to

a simple error term representing independent and identically distributed (IID) effects.

3.2 Simulation study performance measures

3.2.1 Bias and mean square error

In this section I demonstrate the methodology to calculate bias and MSE performance

measures of the REML estimates of the variance parameters. I use the study described

in Section 3.1 and I recall that the values of the variance parameters used for data

generation were σ2
g = 0.2 and σ2 = 1, and ran S = 200 simulations.

For each of the variance parameters {σ2
g , σ

2}, let Ts denote the REML estimate from

the sth simulated dataset s = {1, 2, . . . , S}, and let µ denote the true value that was

used for generating data for either parameter. I define

Mean = T̄ =
1

S

S∑
s=1

Ts (3.2)

Bias = T̄ − µ (3.3)

MSE =
1

S

S∑
s=1

(Ts − µ)2 (3.4)

Table 3.1 presents the mean, bias, and MSE for {σ2
g , σ

2} given the estimates. I see that

there is a small amount of negative bias for σ2
g , and small positive bias for σ2. The MSE

for σ2
g is shown to be half of that shown for σ2.
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3.2 Simulation study performance measures

Table 3.1: Bias and MSE of the REML estimates of the variance parameters {σ2
g , σ

2}
from the simulation study of Section 3.1 with S = 200 simulations.

Parameter Mean Bias MSE

σ2
g 0.195 -0.005 0.021

σ2 1.006 0.006 0.043

3.2.2 Reliability of EBLUPs

This section describes the methods for calculating the reliabilities of EBLUP from a

simulation study. I define {ugks, ũgks} to be the true (simulated) effects and EBLUPs

respectively, for variety k = {1 . . .m} and simulation s = {1 . . . S}. The reliability

for the EBLUPs is computed as the square of the sample correlation between the true

effects and the EBLUPs. Thus, the reliability for variety k is given by

RS
k =cor

(
ugks, ũgks

)2
=

(∑S
s=1

(
ugks − ūgk

) (
ũgks − ¯̃ugk

))2

∑S
s=1

(
ugks − ūgk

)2∑S
s=1

(
ũgks − ¯̃ugk

)2 (3.5)

where ūgk denotes the mean across S simulations of the true effects for variety k, and

¯̃ugk is the mean for the predicted effects. I note that the superscript ‘S’ in the term

RS
k refers to the fact that the values are derived from the simulated results, with this

identification becoming crucial in later sections of this chapter. I also denote a trial

reliability as the across varieties average of RS
k , which is defined as

R̄S =
1

m

m∑
k=1

RS
k (3.6)

The RS
k for each variety for our CRD simulation study (with m = 24) are presented in

Table 3.2. The RS
k values range from 0.150 (V17) to 0.395 (V2). This is also depicted

graphically in Figure 3.1 for V1 which shows a positive linear relationship between ugs

and ũgs, which has a RS
k = 0.276. Thus, the correlation between the y− and x−values

in Figure 3.1 is
√

0.276 = 0.525. I also find that R̄S = 0.264.
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3. SIMULATION STUDY METHODOLOGY

Table 3.2: Reliability of EBLUPs RS

k for each variety k = {1 . . .m} using Equation 3.5,
from the CRD simulation study with S = 200 simulations.

Variety RS
k Variety RS

k Variety RS
k Variety RS

k

V1 0.276 V7 0.246 V13 0.264 V19 0.284
V2 0.395 V8 0.282 V14 0.231 V20 0.275
V3 0.221 V9 0.317 V15 0.213 V21 0.231
V4 0.187 V10 0.252 V16 0.308 V22 0.299
V5 0.358 V11 0.287 V17 0.150 V23 0.354
V6 0.244 V12 0.218 V18 0.266 V24 0.179

3.3 More on the reliability of BLUPs and EBLUPs

This section examines the methodology and principles underpinning the reliability val-

ues for the BLUPs (see Section 2.3.1), that is, those based on known variance parame-

ters. I also present their relationship to the reliabilities for the EBLUPs, that is, those

derived with REML estimates of the variance parameters.

The more detailed examination of reliability is needed for two key reasons. First is

that in the simulation studies in later chapters I require real-world values for the vari-

ance parameters for data generation. Thus, I need to examine analyses of a number of

field trials and summarise parameters across trials in some manner to obtain “typical”

values for the variance parameters. Because variance parameters are scale-dependent,

and because our main focus is on the variety effects, a sensible approach is to instead

consider trial reliability of the predicted variety effects. I must first develop a relative

measure of reliability so that averages across trials can be sensibly taken. I then need to

“calibrate” these relative reliabilities of BLUPs against values of variance parameters.

In this way I can obtain values of variance parameters that provide typical levels of

trial reliability. The second reason is that a major aim is to examine the impact of the

accuracy of variance parameter estimation on the reliability of variety predictions. This

involves a comparison of the reliability of BLUPs against the reliability of EBLUPs.
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Figure 3.1: True (simulated) effects ugs against the EBLUPs ũgs for V1 from the CRD
simulation study with S = 200 simulations. Solid blue line represents a 1:1 line.

3.3.1 Maximum reliability of BLUPs

In this section I use the CRD example, for which an algebraic form for reliability is

easily obtained, to show that reliability has an upper limit that depends on structural

elements including the number of varieties.

I again consider a CRD variety trial, containing b replicates of m varieties (n = bm).

I assume, without loss of generality, that the data are ordered as replicates within

varieties, so that Zg = Im ⊗ 1b. Assuming G = σ2
gIm and Σ = σ2In then

H = σ2
gZgZg

> + σ2In

= ζ1Im ⊗Ab + ζ2Im ⊗Bb
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where ζ1 = bσ2
g + σ2; ζ2 = σ2; Ab = 1b1

>
b/b, and Bb = Ib −Ab. It then follows that

H−1 =
Im ⊗Ab

ζ1
+
Im ⊗Bb

ζ2
P =

Bm ⊗Ab

ζ1
+
Im ⊗Bb

ζ2

From Equation 2.10, it is shown that the prediction error variance (PEV) is given by

PEV (ũg) = G−GZg
>PZgG

= σ2
gIm − σ2

gh
2(Im −Am)

where Am = 1m1>m/m, Bm = Im −Am, and h2 = σ2
g/(σ

2
g + σ2/b). The quantity h2 is

widely referred to in plant breeding as the line mean heritability. Therefore, for a single

variety k = {1 . . .m} it is found that

PEV (ũgk) = σ2
g − σ2

gh
2(1− 1/m) (3.7)

Finally, the reliability Rk (Equation 2.15) of the prediction for variety k = {1 . . .m} is

Rk = 1− PEV (ũgk)

var (ugk)

= 1−
[
σ2
g − σ2

gh
2(1− 1/m)

]
σ2
g

= h2(1− 1/m) (3.8)

so that in this simple case, the reliability Rk is the same for all varieties. Thus, when

averaged across varieties, a trial reliability is

R̄ =
1

m

m∑
i=1

Rk (3.9)

Again, for the CRD example, Rk is the same for all varieties and therefore also equal

to R̄. For other examples this is not the case, such as unequal replication and more

complex variance structures. I can show that in Equation 3.8 as m gets large, Rk (and

R̄) tends to h2, that is

lim
m→∞

R̄ = h2 (3.10)
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Also, when h2 = 1 in Equation 3.8, this defines the maximum potential R̄ to be pro-

portional to m. The maximum potential trial reliability is therefore defined as

R̄X = 1− 1/m (3.11)

Furthermore, I define the relationship with h2, as R̄ divided by R̄X , which is also defined

as the proportion of the maximum potential trial reliability

R̄Xp = h2 =
R̄

R̄X
(3.12)

Furthermore, rearranging Equation 3.12 for σ2
g for a particular R̄Xp , I show that

σ2
g =

σ2R̄Xp

b(1− R̄Xp)
(3.13)

3.3.2 Design-based reliability of BLUPs

As shown in Section 3.3.1 for the example of a CRD field trial with simple variance

structures, it is reasonably straightforward to obtain algebraic forms for the reliabili-

ties of BLUPs. However, an algebraic solution may not always be attainable for more

complicated scenarios. Examples may include variance structures for errors other than

the assumption of IID, covariance structures for random effects, and unequal variety

replication.

In this section I compute analogous reliability based values that assume known variance

parameters (not REML estimates), which I define as ‘design-based’ reliability values.

Here the prediction error variances (PEVs) of the variety effects from an ASReml-R

model fit by constraining variance parameters to the known values. I then use Equation

2.15 and denote the resultant reliability for variety k as RD
k , where the superscript ‘D’

refers to the fact these are identified as design-based reliability values. Similarly, I then

use Equation 3.9 and denote the trial reliability as R̄D.
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The code and output to obtain design-based reliability values for the CRD example

using the model in Equation 3.1 is shown below

#Set var iance parameter va lue s .
sg2 <− 0 . 2 ; s2 <− 1
#Set number o f v a r i e t i e s and r e p l i c a t i o n
m <− 24 ; b <− 3
#Variety names V1−V24
vars <− rep ( paste ("V" , 1 :m, sep="") ,b )

#Set up base d a t a f i l e . Rectangular g r id with no . columns =b
data <− data . frame (Column=f a c t o r ( rep ( 1 : b , each=m) ) ,
Row=f a c t o r ( rep ( 1 :m, b ) ) , Var iety=sample (Varname ) )
data$Var iety <− f a c t o r ( data$Variety ,
l e v e l s=mixedsort ( as . cha rac t e r ( unique ( data$Var iety ) ) ) )
data$y <− 1

#Create s t a r t i n g value f i l e .
v24 . sv <− asreml (y~1 , random=~Variety , r e s i d u a l=~units ,
data=data , s t a r t . va lue s=T)

#Constra in va r i anc e s parameters to equal s p e c i f i c va lue s .
sv <− v24 . sv$vparameters . t ab l e
sv$Value <− c ( sg2 , s2 )
sv$Constra int <− ‘F ’

#Run model with the s t a r t i n g va lue s f i l e .
v24 . as <− asreml (y~1 , random=~Variety , r e s i d u a l=~units ,
data=data , G. param=sv , R. param=sv )

#obta in pev ’ s and c a l c u l a t e r e l i a b i l i t i e s f o r 24 v a r i e t i e s .
v c o e f f <− v24 . as$vcoef f$random
round(1− v c o e f f / 0 . 2 , 3 )
# [ 1 ] 0 .359 0 .359 0 .359 0 .359 0 .359 0 .359 0 .359 0 .359
# [ 9 ] 0 .359 0 .359 0 .359 0 .359 0 .359 0 .359 0 .359 0 .359
#[17] 0 .359 0 .359 0 .359 0 .359 0 .359 0 .359 0 .359 0 .359

#a l g eb r a i c s o l u t i o n
round (0 .2/(0 .2+(1/3))∗ (1 −1/24) ,3)
#[1] 0 .359
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3.3 More on the reliability of BLUPs and EBLUPs

where start.values is the variance table object, which is given the variance parameter

values of 0.2 and 1 for σ2
g and σ2 respectively, and constrained to these values (‘F’);

and vcoeff from v24.as$vcoeff$random contains the PEV (see Equation 2.10) for the

varieties. I see that the reliabilities from the design-based and algebraic solution both

give the same reliability value of 0.359.

3.3.3 Reliability response of BLUPs

The simulation study given in Chapter 6 utilizes the properties of Equation 3.12 to

obtain values for σ2
g for a given R̄Xp , with varying levels of m. To demonstrate the reli-

ability identities as shown in the previous sections, I present graphically in Figure 3.2 the

relationships between {σ2
g ,m, R̄, R̄Xp}, given b = 3 for four levels of m = {12, 24, 48, 96}

(Tsize). For illustration I have highlighted R̄Xp = {0.85, 0.90, 0.95, 0.99} values on each

of the profile curves.

In Figure 3.2(a) I present the relationship of the genetic variance σ2
g to R̄. As shown,

there are different responses for the four Tsizes with all tending towards their corre-

sponding R̄X = {0.92, 0.96, 0.98, 0.99} values respectively, which are represented by the

coloured horizontal dashed lines.

In Figure 3.2(b) I present the relationship of the genetic variance σ2
g to R̄Xp . For

this example of a CRD, the four Tsizes have the same profile. I show for the R̄Xp

values of {0.85, 0.90, 0.95, 0.99}, that σ2
g = {1.89, 3.0, 6.33, 33.0}. Thus, for example,

with m = 24 to achieve an R̄Xp = 0.85 with b = 3, a value of σ2
g = 1.89 is required.

This strategy is followed in the simulation study detailed in Chapter 6. In other words

this calibration procedure is used to choose genetic variances that reflected a range of

reliabilities observed given a dataset with unequal numbers of varieties.
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Figure 3.2: Response profiles for (a) mean reliability for BLUPs (R̄), (b) proportion of
maximum potential mean reliability for BLUPs (R̄Xp

) over varying levels of genetic variance
σ2
g from completely randomised designed trials with 12, 24, 48, and 96 varieties (Tsize),

each with b = 3 replicates. Highlighted are R̄Xp
= {0.85, 0.90, 0.95, 0.99}. Dashed lines

in (a) represent the R̄Xp values for each Tsize; and (b) the R̄Xp = {0.85, 0.90, 0.95, 0.99}
values and their corresponding σ2

g values.

3.3.4 Mean loss in reliability of EBLUPs

The significance of the design-based reliability values RD
k and R̄D are that these provide

a general methodology for computing the reliabilities of BLUPs. As a result, these

give an upper bound to the simulated reliability values of the EBLUPs (see Equation

3.5), with observed disparities between the design-based and simulated reliability values

attributed as losses owing to the REML estimation of the variance parameters. I define

loss as

R̄loss = R̄D − R̄S (3.14)

For illustration, I now vary b = {2, 3, 4, 6, 8, 10, 15, 20, 25, 50} for the CRD field trial

simulation study example and complete the same steps as outlined in Section 3.1 for
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each level of b. The mean simulation reliability of the EBLUPs and the design-based

reliability of the BLUPs are given in Table 3.3, along with their associated losses. These

are also presented visually in Figure 3.3, where (a) shows the relationship of the two

reliability values and (b) their associated losses. Loss is shown to exhibit a clear non-

linear response, with low replication presenting a larger loss in EBLUP reliability.

Table 3.3: Simulated (R̄S) and design-based (R̄D) trial reliability and loss (R̄loss) for
the variety effects for the scenario with m = 24, with simulated parameters σ2

g = 0.2 and
σ2
g = 1, over varying levels of variety replication b.

b R̄S R̄D R̄loss

2 0.185 0.274 0.089
3 0.285 0.359 0.074
4 0.368 0.426 0.057
6 0.490 0.523 0.033
8 0.564 0.590 0.026

10 0.624 0.639 0.015
15 0.711 0.719 0.007
20 0.763 0.767 0.004
25 0.796 0.799 0.003
50 0.870 0.871 0.001

3.4 Additional simulation study information

This section provides additional information that is important for running a successful

simulation study. In Section 3.4.1 I discuss the use of random number generation; then

in Section 3.4.2 I provide the procedures to find model and variance parameter conver-

gence of ASReml-R model fits; and finally in Section 3.4.3 I define the methodology in

determining how many simulations are necessary to achieve a specified level of precision.

3.4.1 Random number generation

Simulation studies are often referred to as Monte Carlo simulations due to their con-

nections with the casino and the roll of the dice. That is, they rely on a number of dice

rolls, or in this case, the development of a number of random numbers. The insertion
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Figure 3.3: (a) Mean reliability for variety effects for design-based (BLUPs reliability) and
simulated (EBLUPs reliability), against number of replicates. (b) Mean loss in reliability
of the EBLUPs of variety effects, against number of replicates. The solid blue line in (b)
represents a smooth line through the points.

of bias into the system, similar to the casino situation, is unacceptable since it may

lead to erroneous outcomes. Random number generators (RNG) are the essential tool

for simulation studies, with much research detailing the consequences of using them in-

correctly (L’Ecuyer, 1990; Hellekalek, 1998; Ewald et al., 2008). “Bad random number

generators may ruin a simulation” (Hellekalek, 1998).

In R, pseudo-random numbers created from programmed equations are used to gen-

erate random numbers. Despite the fact that these numbers appear to be random, they

are not. Eventually, the numbers will repeat in the same sequence. It is critical to have

repeatable outcomes in simulation research so that fascinating or troublesome results

can be reproduced and questioned. The set.seed function in R is used to do this, which

allows random numbers to be duplicated given a seed. It is critical that the seed num-

bers are not duplicated, as this will result in identical outcomes. As a result, a set of
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seeds with the same length as the number of simulations is necessary. Using successive

numbers is also risky since they include a correlation structure (Hellekalek, 1998), which

can lead to false conclusions if correlations concealed in the random numbers and in the

simulated system interact constructively (Compagner, 1995).

3.4.2 Model fitting

ASReml-R (Butler et al., 2017) was used to fit all statistical models in this thesis. To

enable faster convergence, the ASReml-R model was given the true variance parame-

ter values as the initial REML estimates of the variance parameters. The number of

iterations necessary for convergence is recorded and utilised as a key outcome in the

simulation studies that follow.

Each model was given a maximum of 10 updates (asreml.update), with a total of

13 iterations per update to allow for model convergence. Both convergence of the resid-

ual log-likelihood and parameter estimates changing by less than 1% from the previous

iteration were used to determine convergence. Model fits that did not reach convergence

after the ten updates were considered as failures. The convergence code is shown below.

asreml . opt ions ( a i . s i ng=TRUE, f a i l =‘ so f t ’ )
f o r ( z in 1 : 10 ){ #al low f o r up to 10 updates
i f ( ! model . a s r \ $converge |

max(summary(model . a s r )\ $varcomp\$‘%ch ’ , na . rm=T) > 1)
{ model . a s r <− update (model . a s r ) }}

The ai.sing=TRUE and fail=‘soft’ options in asreml.options are set, so that error

messages do not halt the simulation run abruptly, but are converted to warning mes-

sages, thereby enabling the simulation to continue. It is noted that in the compilation

of results, those runs containing convergence issues were excluded.
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3.4.3 Number of simulations

Defining how many simulations S are required to achieve a specific level of precision

is not always considered (Burghout, 2004; Truong et al., 2015). Typically, the number

of simulations is determined by reviewing published simulation studies or past studies.

Every simulation study, however, has a specific amount of variability that should be

considered.

The number of simulations S in this thesis is determined by analysing the R̄S val-

ues, with the objective of simulating to within 1% (E=0.01). This is accomplished by

running a large pilot simulation study and partitioning into smaller sets denoted here

as simblocks, and then examining the range of R̄S results.

To illustrate this methodology, I again use the model in Equation 3.1, and similar

to Section 3.3.4 I vary the levels of varietal replication b = {2, 4, 6, 8, 10}. For each

replication scenario I then simulate S = 20000 times, and partition S into simblocks

= {100, 200, 500, 800, 1000, 2000}. Hence, each simblock contains a different number of

sets. For example, where simblock=100 contains 200 sets, and where simblock=2000

contains 10 sets. Table 3.4 shows the difference (E) between the top and bottom 2.5%

quantiles for R̄S for each simblock and replication level b combination. This suggests

S = 2000 are required for all scenarios apart from b = 2 which would require a greater

number of simulations.

Table 3.4: Difference (E) between the top and bottom 2.5% quantiles for R̄S for each
simblock and replication level b combination. For example for simblock 500 with b = 2, the
correlations quantiles were 0.172 and 0.209, with a difference of 0.037. Yellow cells show
those scenarios where an E=0.01 has been achieved.

Simblock

b 100 200 500 800 1000 2000

2 0.073 0.057 0.037 0.030 0.028 0.018
4 0.074 0.047 0.030 0.021 0.018 0.008
6 0.061 0.041 0.020 0.021 0.010 0.005
8 0.056 0.038 0.021 0.013 0.019 0.005
10 0.049 0.039 0.018 0.016 0.017 0.010
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3.5 Concluding remarks

The simulation study approaches, and reliability based principles of BLUPs provided

in this chapter serve as the foundation for the simulation studies described in Chapters

6 and 9. The former examines the impact of variety connectivity on the reliability of

varietal predictions from a Factor Analytic Multi Environment Trial analysis. The later

simulation study investigates the performance of a new diagnostic measure which offers

an alternative to the traditional variety connectivity methodology.
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Chapter 4

Motivating datasets

This chapter describes the datasets used as motivation throughout this thesis. These

are used for demonstration of statistical techniques; and for their key attributes which

are used in forthcoming simulation studies. Two distinct types of motivating datasets

are considered, namely a late-stage variety evaluation dataset in which only elite vari-

eties are considered and a full plant breeding dataset in which varieties from all stages

of testing are considered.

Many countries generate and analyse late stage evaluation datasets on an annual ba-

sis, including the Australian National Variety Trials (NVT) system (NVT online) and

the United Kingdom Agriculture and Horticulture Development Board (AHDB) recom-

mended list (RL) system (AHDB RL system). In particular, the NVT system examines

near-release varieties submitted by private plant breeding companies with the goal of

providing growers with independent information. Each year, around 700 trials cover-

ing 10 different crops are conducted. For each crop, MET datasets are created, and

the analysis approach is a FALMM (see Chapter 2), in which the variety effects are

considered to be independent (that is, the varieties are assumed to be unrelated). The

late-stage evaluation dataset included in this thesis was compiled using Stage 4 (S4)

trials undertaken by the National Oat Breeding Program (NOBP) between 2012 and

2016. It should be emphasised that this is not the type of dataset recommended for

breeding program variety selections (see Chapter 7), however, it is considered here to

resemble typical late-stage evaluation MET datasets, similar to those used in the NVT

and AHDB RL systems. This dataset is here-after referred to as the Oat dataset.
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The second motivating dataset reflects the full structure of a plant breeding program,

that is, multiple stages across years. The Stage 1 (S1) to S4 trials conducted between

2013 and 2018 by the Durum Breeding Australia (DBA) program are used for this pur-

pose. In contrast to the first motivating example, the method of analysis for such data

will incorporate pedigree information in order to accommodate relationships between

varieties. This dataset is here-after referred to as the Durum dataset.

This Chapter is arranged as follows: the Oat dataset is described in Section 4.1; and

then in Section 4.2 the Durum dataset is described.

4.1 Oat dataset

The NOBP has objectives of developing high quality export hay varieties along with

improved milling oats. The program is based in Adelaide at the University of Adelaide,

Waite Campus with operations run by breeders Dr. Pamela Zwer and Dr. Sue Hoppo.

Oats (Avena sativa) are grown in Australia across the grain cropping regions of south-

west Western Australia (WA), South Australia’s (SA) Eyre and York Peninsulas, west-

ern and northeastern Victoria (Vic), and the Riverina and central New South Wales

(NSW). The NOPB-derived varieties account for around 85% of oat production in South

Eastern Australia.

The NOBP S4 trials sown between 2012 and 2016 are considered here. Within S4,

varieties are often tested for multiple years, whereas in earlier stages, varieties were

either culled or promoted after one season. A small elite subset of the varieties are

submitted to the NVT program for further evaluation. Furthermore, following testing

in both S4 and NVT, top performing varieties are considered for commercial release.

4.1.1 Description of data

Table 4.1 provides a summary of the Oat dataset. There were 49 trials spread through-

out 43 environments. An environment is defined in this context as a year and location
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combination exposed to comparable management practices. When there are multi-

ple trials within an environment, these are classified as co-located trials (Smith et al.,

2021a). There are 12 trials classified as co-located in the Oat dataset. Trials in the Oat

dataset were sown in WA, SA, Vic, and central NSW, as illustrated in Figure 4.1.

Figure 4.1: Map showing the locations of the trials in the Oat dataset.

The number of trials per year ranged from 7 (2014) to 12 (2012 and 2013). Each trial was

laid out in a contiguous array of plots with between 3 and 30 columns and 6 to 60 rows.

Varieties were randomised in complete replicate blocks with three replicates each, with

replicate blocks aligned with columns, in so-called randomised complete block (RCB)

designs. As an example, Figure 4.2 presents the randomisation for OMaB15CUND6. As

shown, the trial is sown in a rectangular array consisting 12 columns and 14 rows, with

replicate blocks spanning four columns. It is noted that this trial is used for demon-

stration of a single trial analysis in Chapter 5.
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Figure 4.2: Spatial layout for OMaB15CUND6. Colours as represented by the legend
identify the replicate blocks (ColRep). Text represents the varieties sown in each plot. Plot
dimensions are 10m in length by 1.75m in width. Note: Plots as depicted are not drawn
to scale.

The number of varieties in each environment ranged from 24 to 60, with a median of 52

varieties. Within a year, the same cohort of varieties generally appeared in all environ-

ments. There were 163 varieties across all environments, which include 15 commercial

varieties and 148 test varieties. These are the varieties that are being evaluated for

commercial release, retention in S4 next year, or considered for inclusion in NVT.

Figure 4.3 presents the variety connectivity across environments, displaying the number

of varieties in common between all pairs of environments. This demonstrates that the

number of common varieties ranges from 13 to 60. This is also presented in tabular for-

mat in Table 4.2 by year, where the number of varieties per year ranged from 48 (2014)

to 65 (2013), with at least 16 (between 2012 and 2016) varieties in common between

years.
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4.1 Oat dataset

The trial mean yield (TMY) for each trial (see Table 4.1) varied from 0.62 to 6.19

t/ha, corresponding to a tenfold increase in yield. The change is often related to the

amount of accessible soil moisture. For example, winter 2016 was the second wettest

since records began in 1900, with several regions exceeding prior records. In comparison

to previous years, these rains resulted in high TMY values for 2016.
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Figure 4.3: Variety connectivity across environments for the Oat dataset. The colours on
the off-diagonals indicate the number of common varieties between pairs of environments.
Numbers on the diagonals show the number of varieties in each environment. Boundaries
for years are indicated by the black lines (2012 - 2016 inclusive from left to right and top
to bottom).
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Table 4.1: Summary of the trials in the Oat dataset. Horizontal dashed lines separates
the years. Trial Mean Yield (TMY) in tonnes per hectare is shown in the last column.
1The final digit in the trial and environment acronyms denotes the Australian state where
it was sown, where 2=NSW, 3=Vic, 5=SA, 6=WA.

Y
ea
r Number of

Trial1 Environment1 Columns Rows Varieties TMY

20
12

OMaB12BARK6 OMaB12BARK6 12 13 52 1.53
OMaB12KATA6 OMaB12KATA6 12 13 52 2.58
OMaA12KYBY5 OMaA12KYBY5 12 13 52 3.65
OMaB12MERR6 OMaB12MERR6 12 13 52 0.62
OMaA12PINE5 12PINE5 12 13 52 2.64
OMaB12PINE5 12PINE5 12 9 36 2.57
OMaA12RIVE5 12RIVE5 12 13 52 3.67
OMaB12RIVE5 12RIVE5 12 9 36 4.45
OMaA12RUTH3 OMaA12RUTH3 3 52 52 2.80
OMaA12TURR5 12TURR5 12 13 52 2.71
OMaB12TURR5 12TURR5 12 9 36 3.00
OMaB12WONG6 OMaB12WONG6 12 13 52 4.21

20
13

OMaB13KATA6 OMaB13KATA6 12 15 60 4.20
OMaA13KYBY5 OMaA13KYBY5 12 15 60 3.80
OMaA13PINE5 13PINE5 12 6 24 2.33
OMaB13PINE5 13PINE5 12 15 60 2.44
OMaA13RIVE5 13RIVE5 12 6 24 3.49
OMaB13RIVE5 13RIVE5 12 15 60 3.56
OMaA13RUTH3 OMaA13RUTH3 3 60 60 3.63
OMaA13RYLI6 OMaA13RYLI6 12 15 60 4.71
OMaA13TURR5 13TURR5 12 6 24 3.33
OMaB13TURR5 13TURR5 12 15 60 3.00
OMaB13WONG6 OMaB13WONG6 12 15 60 4.54
OMaA13YANC2 OMaA13YANC2 30 6 60 5.63

20
14

OMaA14GRIF2 OMaA14GRIF2 6 24 48 6.06
OMaB14KATA6 OMaB14KATA6 12 12 48 2.44
OMaA14KYBY5 OMaA14KYBY5 12 12 48 1.76
OMaA14PINE5 OMaA14PINE5 12 12 48 3.16
OMaA14RIVE5 OMaA14RIVE5 12 12 48 4.36
OMaB14RYLI6 OMaB14RYLI6 12 12 48 2.57
OMaB14WONG6 OMaB14WONG6 12 12 48 2.77

20
15

OMaB15CUND6 OMaB15CUND6 12 14 56 2.27
OMaA15GRIF2 OMaA15GRIF2 6 28 56 5.84
OMaA15KYBY5 OMaA15KYBY5 12 14 56 3.30
OMaB15PING6 OMaB15PING6 12 14 56 2.36
OMaA15RIVE5 OMaA15RIVE5 12 14 56 2.92
OMaB15RYLI6 OMaB15RYLI6 12 14 56 3.16
OMaA15TURR5 OMaA15TURR5 12 14 56 2.50
OMaA15WONG6 OMaA15WONG6 12 14 56 0.84

20
16

OMaB16COWR2 OMaB16COWR2 6 24 48 4.41
OMaB16CUND6 OMaB16CUND6 12 12 48 3.29
OMaA16KYBY5 OMaA16KYBY5 12 12 48 4.18
OMaA16MURE6 OMaA16MURE6 12 12 48 2.41
OMaA16PINE5 OMaA16PINE5 12 12 48 6.19
OMaA16PING6 OMaA16PING6 12 12 48 4.25
OMaA16RIVE5 OMaA16RIVE5 12 12 48 3.89
OMaA16RYLI6 OMaA16RYLI6 12 12 49 5.95
OMaA16TURR5 OMaA16TURR5 12 12 48 5.13
OMaA16WONG6 OMaA16WONG6 12 12 48 5.84
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Table 4.2: Number of varieties in common within and between years for the Oat dataset.
Diagonal elements shown in bold represent the number of varieties present in each year.
Off-diagonals represent the number of common varieties between pairs of years.

Year 2012 2013 2014 2015 2016

2012 60 30 19 17 16
2013 30 65 24 20 17
2014 19 24 48 30 22
2015 17 20 30 56 30
2016 16 17 22 30 49

4.2 Durum dataset

Durum wheat (Triticum Durum L. ssp. Durum Desf.) is a spring wheat that is ground

into semolina, used to make pasta, and a finer flour used to make bread or pizza dough

(Kadkol et al., 2022). It is cultivated in Australia’s northern grains areas, Northern and

Southern NSW, Southern and Central Queensland (Qld), SA’s mid north and Yorke

Peninsula regions, and areas of Victoria’s (Vic) Wimmera region. Dr. Gururaj Kadkol

directs the Northern Durum Breeding Australia (NDBA) program, which is located at

the Tamworth Agricultural Institute.

Considered here are the Durum wheat breeding trials from the NDBA program sown

between 2013 and 2018. Trials in the Durum dataset were sown in Northern NSW,

Southern and Central Qld, as illustrated in Figure 4.4. Unlike the Oat dataset, I con-

sider all stages of breeding. To show the full set of selections, Figure 4.5 shows the BL

progression and retention across stages and years. The S1 trials in any year contains, on

average, 1120 BL evaluated in one environment. As the program progresses the number

of BL decrease and the number of environments increase, until S4 which, on average,

contains 48 BL evaluated in eight environments. As with the oats, the Durum program

sends a small set of elite varieties to the NVT program.

As shown in Figure 4.5, there are four selection decisions in 2018 for S1 through to

S4. The number and direction of the arrows show the progression and retention of the

BL. As shown in greater detail the progression paths of the selection decisions for S4, the

progression path for the 56 BL of interest in Figure 4.6. This shows that 13 of the BL
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have progressed from the S1 cohort in 2013, 12 from the S1 cohort in 2014, and 31 from

the S1 cohort in 2015. Similarly, the progression and retention of the selection decisions

for S3 BL are shown in Figure 4.7. This is similar for the 93 BL of interest, where 5,

22, and 66 BL advanced from the S1 cohorts in 2014, 2015, and 2016, respectively.

Figure 4.4: Map of Eastern Australia showing locations of the environments in the Durum
dataset.

4.2.1 Description of data

Table 4.3 summarises the Durum environments conducted between 2013 and 2018.

There were 49 environments and 139 trials, with a total of 7158 varieties evaluated

throughout four breeding stages. In contrast to the Oats dataset, the Durum dataset is

dominated by co-located trials, with 22 environments including multiple trials. Several

of these environments consist of more than two trials, with as many as 13 trials (2017-

Tworth) conducted, typically spanning several breeding stages.

52
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S1

S2

S3

S4

2013 2014 2015 2016 2017 2018
582 1485 1000 1163 1303 1148

104 361 413 388 379 315

30 92 92 92 90 93

24 41 56 54 53 56

169 413 388 333 315 S1 Selection Decision

77 92 65 68 S2 Selection Decisions

9 18 25 10 38 S3 Selection Decisions

S4 Selection Decisions

35

33
9

2 3
6 25 25

7 11 25 40 18

Figure 4.5: Test varieties progression and retention across stages in the Durum dataset.
Numbers and arrows indicate the number and direction of BL respectively that have:
progressed to the next stage (blue), retained in the same stage (red), fast tracked to the
next stage (grey).

The trials were laid out in contiguous arrays of plots, and designed as grid-plot, partially

replicated (p-rep) (Cullis et al., 2006), or RCB with two or three replicates. Figure 4.8

shows the randomisation for the 2016-Breeza environment, which includes both an S3

and an S4 trial as an example of co-located trials. They are stacked in the column

direction, with the S4 trial sown above the S3 trial. Each were sown into rectangular

arrays with 12 columns and 15 or 16 rows. S3 and S4 trials were designed as RCB with

three and two replicates respectively. It is noted that this co-located environment is

used for demonstration for a single co-located trial pedigree analysis in Chapter 8.

Table 4.4 records the number of varieties within and between years. This shows the

number of common varieties between successive years is roughly one-third from the pre-

vious year with similar decreases over further years. The variety connectivity between

pairs of environments is shown in the lower triangle of Figure 4.9. As shown, there is

poor variety connectivity with many environments, which is typically seen between en-

vironments which are two or more years apart. As the dataset comprises environments

across breeding stages, this is to be expected given the objectives of the progressive

breeding cycle.
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Table 4.3: Summary of environments in the Durum dataset (2013 - 2018): number of
trials for each stage of testing (S1, S2, S3, S4); the total number of trials, plots, varieties;
and mean yield (tonnes per hectare). Horizontal dashed lines separate the years.

Y
ea
r Number of trials Number of Mean

Environment S1 S2 S3 S4 Total Plots Varieties yield (t/ha)

20
13

2013-Breeza 2 0 1 1 4 888 642 3.14
2013-Coonamble 0 0 0 1 1 96 32 3.28
2013-Duaringa 0 0 0 1 1 96 32 3.06
2013-Moree 0 2 1 1 4 408 151 3.22
2013-Nstar 0 0 1 1 2 168 60 3.31
2013-Spridge 0 0 0 1 1 96 32 3.63
2013-Trangie 0 0 0 1 1 96 32 2.47
2013-Tworth 0 2 1 1 4 408 151 2.02
2013-Walgett 0 2 0 1 3 336 123 3.62

20
14

2014-Breeza 3 0 0 1 4 1440 982 4.33
2014-Coonable 0 0 0 1 1 144 48 4.41
2014-Edgeroi 0 4 0 1 5 912 409 2.80
2014-Moree 0 0 1 1 2 336 140 3.01
2014-Nstar 0 0 1 1 2 336 140 3.84
2014-Spridge 0 0 0 1 1 144 48 7.15
2014-Trangie 0 0 0 1 1 144 48 2.42
2014-Tworth 2 4 1 1 8 1804 1052 3.86

20
15

2015-Breeza 0 0 2 2 4 744 152 5.04
2015-Bribbaree 0 0 0 1 1 180 60 2.80
2015-Coonamble 0 0 0 1 1 180 61 2.36
2015-Duaringa 0 0 0 1 1 180 60 3.09
2015-Edgeroi 0 4 1 1 6 1236 554 1.75
2015-Nbri 0 0 0 1 1 180 60 5.47
2015-Nstar 0 0 1 2 3 552 152 4.74
2015-Trangie 0 0 0 1 1 180 60 2.93
2015-Tulloona 0 0 0 1 1 180 60 4.37
2015-Tworth 6 4 1 1 12 2424 1555 4.00

20
16

2016-Breeza 0 0 1 1 2 372 152 4.35
2016-Edgeroi 0 0 0 1 1 180 60 4.79
2016-Gurley 0 0 0 1 1 180 60 5.62
2016-Nstar 0 0 1 2 3 552 152 5.49
2016-Tworth 6 3 1 1 11 2628 1704 4.81

20
17

2017-Blbgra 0 0 0 1 1 180 60 1.12
2017-Breeza 0 0 1 1 2 384 158 5.31
2017-Bribbaree 0 0 0 1 1 180 60 1.20
2017-Coonamble 0 0 0 1 1 180 60 1.61
2017-Edgeroi 0 0 0 1 1 180 60 3.93
2017-Garah 0 0 0 1 1 180 60 1.84
2017-Gurley 0 0 0 1 1 180 60 2.12
2017-Nstar 0 0 1 1 2 384 158 3.41
2017-Tworth 7 3 1 2 13 3014 1836 4.26
2017-Westmar 0 0 0 1 1 180 60 2.24

20
18

2018-Blbgra 0 0 0 1 1 198 66 1.24
2018-Breeza 6 3 1 1 11 2502 1629 5.53
2018-Coonamble 0 0 0 1 1 198 66 1.56
2018-Gurley 0 0 1 0 1 210 105 2.23
2018-Moree 0 0 0 1 1 198 66 1.51
2018-Trangie 0 0 0 1 1 198 66 1.02
2018-Tworth 0 3 1 1 5 1074 481 2.24
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S1

S2

S3

S4

2013 2014 2015 2016 2017 2018
13 12 31

8 12 31 4

5 9 11 38 3

5 14 18 56

8 12 31

8 11 31 3

5 9 4 38

S4 Selection Decisions

5

3
7 3

5 14 18

Figure 4.6: Test varieties progression and retention across stages for the 56 S4 varieties
considered for selection decisions in 2018 for the Durum dataset. Numbers and arrows
indicate the number and direction of BL respectively that have: progressed to the next
stage (blue), retained in the same stage (red), fast tracked to the next stage (grey).

S1

S2

S3

S4

2013 2014 2015 2016 2017 2018
5 22 66

5 22 68

5 25 93

3

5 22 66

5 22 68

S3 Selection Decisions3 3
5 25

Figure 4.7: Test varieties progression and retention across stages for the 93 S3 varieties
considered for selection decisions in 2018 for the Durum dataset. Numbers and arrows
indicate the number and direction of BL respectively that have: progressed to the next
stage (blue), retained in the same stage (red), fast tracked to the next stage (grey).

4.2.2 Description of pedigree data

The pedigree information associated with the Durum dataset contained 7623 records.

This relates to all 7158 varieties grown in the environments and 465 parental varieties

that were not grown in the environments. The numerator relationship matrix (NRM)

(see Chapter 2) was formed using the pedicure package (Butler, 2016) in R (R Core

Team, 2020). The inbreeding coefficients of varieties with phenotypic data ranged from

1.750 to 1.998 with a mean of 1.903. Similar to the number of common varieties between

years, the upper triangle of Table 4.5 shows the number of parents in common within

and between years. This shows reasonable connections between years, with a gentle

decrease in common parents in successive years.
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Table 4.4: Number of varieties in common within and between years for the Durum
dataset. Diagonal elements shown in bold represent the number of varieties present in each
year. Off-diagonals represent the number of common varieties between years.

Year 2013 2014 2015 2016 2017 2018

2013 733 252 90 39 31 20
2014 252 1986 534 140 74 36
2015 90 534 1556 540 145 83
2016 39 140 540 1704 479 150
2017 31 74 145 479 1837 477
2018 20 36 83 150 477 1629

Table 4.5: Number of parents in common within and between years for the Durum
dataset. Diagonal elements shown in bold represent the number of parents present in each
year. Off-diagonals represent the number of common parents between years.

Year 2013 2014 2015 2016 2017 2018

2013 58 43 32 20 21 17
2014 43 53 36 23 24 20
2015 32 36 50 35 35 30
2016 20 23 35 36 34 29
2017 21 24 35 34 43 33
2018 17 20 30 29 33 40
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Figure 4.8: Spatial layout for 2016-Breeza. The S4 trial (top) is sown above the S3 trial
(bottom) with no gaps. Colours as represented by the legend identify the replicate blocks
(ColRep). Text represents the varieties sown in each plot. Plot dimensions are 10m in
length and 1.75m in width. Plots as depicted are not drawn to scale.

57



4. MOTIVATING DATASETS

Figure 4.9: Heatmap of the number of common varieties (lower triangle) and parents
(upper triangle) between all pairs of environments in the Durum dataset. The numbers
in the diagonal boxes represent the number of varieties/parents in each environment; the
colours as referenced in the legends. Boundaries for years are indicated by the black
horizontal and vertical lines.
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4.3 Concluding remarks

4.3 Concluding remarks

This thesis heavily relies on the Oat and Durum datasets described in this chapter.

The Oat dataset is used to resemble standard late-stage variety testing procedures

used across the world with analyses involving independent variety effects. The Durum

dataset, on the other hand, depicts the entire structure of a plant breeding program,

and with the availability of pedigree information enables the analysis to allow for the

relationships between varieties.

The Oat dataset is first used to demonstrate single trial and MET analyses in Chapter

5. The structural elements of trial size and dimensions of the Oat dataset, as well as

their estimated variance parameters, are then used in a comprehensive simulation study

in Chapter 6. Finally, in Chapter 9, the Oat dataset is used to illustrate the methods

of a new diagnostic.

The Durum dataset provides the motivation in Chapter 7, which outlines an approach

for generating MET datasets that maximises the information available for selection de-

cisions. Using this methodology, an appropriate Durum dataset is constructed, and

with the corresponding pedigree file, is subsequently utilised in Chapter 8 to illustrate

co-located trial and MET pedigree analyses. Then, in Chapter 9, a subset of the Du-

rum dataset is used as the motivation to both test the performance of the approach in

a simulation study and to demonstrate the methodologies.
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Chapter 5

Statistical analysis of the Oat
dataset

This chapter uses the Oat dataset presented in Chapter 4 to demonstrate the statis-

tical methodology described in Chapter 2 with analyses involving independent variety

effects. This dataset and corresponding analysis is used to resemble standard late-stage

variety testing procedures used across the world. The structural elements, results and

summaries contained in this chapter are used as the motivation to the simulation study

in Chapter 6 to investigate the effects of variety connectivity on the reliability of varietal

predictions from a FA MET analysis.

Firstly, single and co-located trial analyses are illustrated in Sections 5.1 and 5.2, then

a summary of all single environment analyses is given in Section 5.3. Finally, the MET

analysis for the full Oat dataset is presented in Section 5.4.

5.1 Spatial analysis of a single trial

The spatial analysis of a single trial is demonstrated using the S4 trial in Cunderdin

in 2015 (OMaB15CUND6). Grain yield is the trait of interest, which is measured in

tonnes per hectare (t/ha), with plot yields ranging from ∼ 1.4 to 3.4 t/ha, with no

missing plot yields. This trial was sown in a rectangular grid with c = 12 columns by

r = 14 rows, (n = 168 plots), and m = 56 varieties replicated b = 3 times, as illustrated

in Figure 4.2. Complete replicates were aligned to blocks of four columns.
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5. STATISTICAL ANALYSIS OF THE OAT DATASET

5.1.1 Statistical analysis

The methods outlined in Chapter 2 were used for the analysis of OMaB15CUND6.

An initial model (M1) comprises terms reflecting the trial design and an AR1×AR1
process (see Chapter 2) for the errors was used. The LMM for the (168×1) data vector

y = (y1, y2, . . . , y168)> may be written as

y = Xτ +Zgug +Zbub + e (5.1)

where τ is the overall mean with associated design matrix X; ug is the (56× 1) vector

of random Variety effects with associated design matrix Zg; ub is the (3× 1) vector of

random replicate block effects with associated design matrix Zb; and e is the (168× 1)

vector of errors. It is assumed thatug

ub

e

 ∼ N

0
0
0

 ,
Gg 0 0

0 Gb 0
0 0 Σ


where,

• Gg = σ2
gI56 (Genetic variance matrix)

• Gb = σ2
bI3 (Replicate block variance matrix)

• Σ = σ2Σc(ρc)⊗Σr(ρr) (Error variance matrix)

where Σc (12× 12) and Σr (14× 14) correlation matrices for columns and rows respec-

tively.

The associated ASReml-R code for Model M1 is given as

M1 <− asreml ( y i e l d ~ 1 , random=~ Variety + ColRep ,
r e s i d u a l =~ ar1 (Column ) : ar1 (Row) , data=o15CUND6 . df )

where yield is the data vector of plot yields (t/ha); 1 denotes the overall mean;

Variety, ColRep are terms representing the random variety and replicate block ef-

fects respectively; the errors are modelled using an AR1×AR1 structure as given by

ar1(Column):ar1(Row); and o15CUND6.df is the data object.
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5.1 Spatial analysis of a single trial

Potential outliers were inspected using studentised conditional residuals (Smith & Cullis,

2021), which can be obtained from ASReml-R using the code below.

aom . df <− update (M1, aom=TRUE)

Inspection of these residuals did not identify any outliers as shown in Figure 5.1, which

presents a normal probability plot of the studentised conditional residuals.
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Figure 5.1: Normal probability plot for studentised conditional residuals from M1 of the
analysis of OMaB15CUND6. Black line represents a 1-1 line.

Upon inspection of the residual and variogram plots from Model M1 (Model 5.1) as

presented in Figures 5.2 and 5.4(a), there is clear evidence of a column effect. This is

evident in Figure 5.2 as the points in each panel are not evenly spread about zero. For

example, mostly all points are below zero in column 1 and all are above zero in column

6. The variogram in Figure 5.4(a) also shows this as the face along the column direction

is not smoothly approaching a plateau but has distinct jumps.

Model M1 is adjusted to include random Column effects uc with var(uc) = σ2
cI12, which

is denoted as Model M2. There is a significant change to the log likelihood between
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5. STATISTICAL ANALYSIS OF THE OAT DATASET

Models M1 and M2 with a REMLRT = 12.80 (see Table 5.1). Both Figure 5.3 and

5.4(b) from Model M2 show improvements to Model M1 as represented by the smooth

profile in the column direction. However, there is some indication of row effects, with

the variogram not reaching a plateau and with noticeable surges in the row direction.

I make an adjustment to Model M2 by including random Row effects ur with var(ur) =

σ2
rI14, which is denoted as Model M3. This shows a significant improvement between

Models M2 to M3 with a REMLRT = 9.96 (see Table 5.1). The variogram in Figure

5.4(c) from Model M3 appears more like the theoretical and therefore it is chosen as

the final model. Summaries of the three models are presented in Table 5.1, which gives

the number of variance parameters, the residual log-likelihood (`R), and the REMLRT

statistics between models.

Table 5.1: OMaB15CUND6: Summary of models fitted: sources of variation; residual
log-likelihood (`R); number of variance parameters; and likelihood ratio test (REMLRT).

Source of variation Variance

Model Global/Extraneousa localb parameters `R REMLRTc

M1 AR1×AR1 5 99.38
M2 ran(Column) AR1×AR1 6 105.78 12.80 ***
M3 ran(Row) AR1×AR1 7 110.76 9.96 ***

a ran(Column) and ran(Row) represent the random effects for the column and row factors.
b Correlation structures for separable spatial process: AR1 = autoregressive of order 1.
c Comparison of model i with model i− 1; *** p < 0.001.

The REML estimates of the variance parameters for the three models are given in Table

5.2. Furthermore, the average trial reliability R̄ = 0.644 (see Section 2.3.1 and Equation

3.9) and corresponding proportion to the maximum potential reliability is R̄Xp = 0.656

(see Equation 3.12). These values will be further explored in Section 5.3 with the

analysis of all environments.
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5.1 Spatial analysis of a single trial
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Figure 5.2: OMaB15CUND6 for Model M1. Residuals against row number for each
column.
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Figure 5.3: OMaB15CUND6 for Model M2. Residuals against row number for each
column.
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Figure 5.4: OMaB15CUND6: Variogram plots for (a) Model M1: AR1×AR1, (b)
Model M2: AR1×AR1 + ran(Column), and (c) Model M3: AR1×AR1 + ran(Column) +
ran(Row). x and y ordinates are displacement in the row and column directions respec-
tively, measured as difference in row/column numbers.

Table 5.2: OMaB15CUND6: REML estimates of variance parameters for: Variety (σ̂2
g);

ColRep (σ̂2
b ); Column (σ̂2

c ); and Row (σ̂2
r); spatial variance (σ̂2); column spatial correlation

(ρ̂c); and row spatial correlation (ρ̂r), for Models M1, M2, and M3. B denotes variance
parameter is estimated at the boundary value (0 for variance components).

Genetic Non-genetic Error

Model σ̂2
g σ̂2

b σ̂2
c σ̂2

r σ̂2 ρ̂c ρ̂r

M1 0.037 B - - 0.196 0.512 0.736
M2 0.033 B 0.063 - 0.094 0.507 0.393
M3 0.029 B 0.073 0.031 0.056 0.156 0.305

5.1.1.1 Empirical best linear unbiased predictions

From the analysis of M3, the variety EBLUPs ũg are obtained (see Equation 2.9). These

are given in Table 5.3 for the first and last four varieties in alphabetical order, along

with their reliability (r2) values (see Equation 2.15), these ranged from 0.58 to 0.63

with a mean of 0.62 (R̄). Figure 5.5 presents the relationship between ũg and the raw

means for individual varieties, where the dashed line represents a 1-1 relationship. The

generally low reliabilities results in substantial shrinkage so that the points in Figure

5.5 centre around a line with a slope much less than 1.
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5.1 Spatial analysis of a single trial

The remaining EBLUPs are presented below,

ũb = {0, 0, 0}

ũc = {−0.451, 0.044, 0.005, 0.307, 0.180, 0.463,−0.237, 0.142,−0.069,−0.122,−0.291, 0.029}

ũr = {−0.203, 0.021, 0.096,−0.065, 0.108, 0.269, 0.064, 0.221,−0.053, 0.080,−0.266,−0.179,

− 0.160, 0.066}

Note that since the estimate of the variance for the replicate block term ColRep (σ̂2
b )

was on the boundary the corresponding EBLUPs (ũb) were zero.
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Figure 5.5: OMaB15CUND6: ũg against raw centred varietal means. Dashed line repre-
sents a 1-1 line. A regression line through the points is shown by the solid blue line.
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5. STATISTICAL ANALYSIS OF THE OAT DATASET

Table 5.3: OMaB15CUND6: ũg, prediction error variance (PEV), and r2 estimates for
the first and last four varieties in alphabetical order.

Variety ũg PEV r2

Bannister 0.110 0.011 0.622
Carrolup -0.257 0.011 0.625
Dunnart 0.184 0.011 0.615
Durack 0.081 0.011 0.623
...

...
...

...
Wandering 0.215 0.011 0.612
Williams 0.168 0.011 0.611
Wombat 0.070 0.011 0.623
Yallara -0.044 0.011 0.617

5.2 Spatial analysis of a co-located trial

I now examine the analysis of a co-located trial. As in Smith et al. (2021a), co-located

trials are only deemed to comprise a single environment when they are all managed in

the same way, that is, they are sown and harvested within a similar time frame and

subjected to the same agronomy practices including fertilizer, herbicide, and pathway

regimes.

To illustrate this type of analysis, the two S4 trials (OMaA12PINE5 and OMaB12PINE5)

sown in Pinery in 2012, with the environment name ‘12PINE5’. The trials will hence-

forth be numbered as trials 1 and 2. They were both sown and managed similarly,

however their spatial arrangement in relation to each other is unknown. The trait of

interest is grain yield which is measured in tonnes per hectare (t/ha), with plot yields

ranging from ∼ 1.2 to 3.8 t/ha, with no missing plot yields.

Each trial was sown into rectangular arrays with c = 12 columns and r1 = 13 and

r2 = 9 rows, with n1 = 156 and n2 = 108 (Σ2
j=1nj = 264) plots respectively. There

were m1 = 52 and m2 = 36 varieties with m = 60 unique varieties across trials, with

28 varieties in common between trials. Both trials were designed as RCB with b = 3

replicates, with replicate blocks aligned with four columns in both trials.
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5.2 Spatial analysis of a co-located trial

5.2.1 Statistical analysis

Similar to the statistical analysis of a single trial I fit an initial model (M1.c) that

comprises terms reflecting the co-location of the trials within the environment and

the individual trial designs (Jordan, 2022). The LMM for the (264 × 1) data vector

y = (y1, y2, . . . , y264) is given by

y = Xτ +Zgug +Ztut +Zbub + e (5.2)

where ug is the (60× 1) vector of random variety effects with associated design matrix

Zg; ut is the (2 × 1) vector of random trial effects with associated design matrix Zt;

ub is the (6× 1) vector of random replicate block effects for each trial with associated

design matrix Zb; and e is the (264× 1) vector of errors across both trials.

It is assumed that 
ug

ut

ub

e

 ∼ N




0
0
0
0

 ,

Gg 0 0 0
0 Gt 0 0
0 0 Gb 0
0 0 0 Σ




where for the genetic and non-genetic effects it is assumed that

• Gg = σ2
gI60 (Genetic variance matrix)

• Gt = σ2
t I2 (Trial variance matrix)

• Gb = σ2
bI6 (Replicate block variance matrix)

As the spatial arrangement of the two trials in relation to each other is unknown, I

follow the ‘equal constrained’ approach of Jordan (2022), where the spatial variance

and spatial correlations for the two trials are constrained to be equal. I let e = (e>1, e
>
2)>

and write

Σ = var(e) = var
(
e1

e2

)
=

[
σ2

1Σc1(ρc1)⊗Σr1(ρr1) 0
0 σ2

2Σc2(ρc2)⊗Σr2(ρr2)

]
= ⊕2

j=1σ
2
jΣcj (ρcj )⊗Σrj (ρrj )

where Σc1 (12× 12), Σr1 (13× 13), Σc2 (12× 12), and Σr2 (9× 9) are the correlation
matrices for column and rows for both trials. I then have the constraints of: σ2

1 = σ2
2;
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5. STATISTICAL ANALYSIS OF THE OAT DATASET

ρc1 = ρc2 ; and ρr1 = ρr2 . There are six variance parameters to be estimated for Model
M1.c.

The associated ASReml-R code is given as

M1. c <− asreml ( y i e l d ~ 1 , random=~ Variety + Tr i a l + Tr i a l : ColRep ,
r e s i d u a l =~ dsum( ar1 (Column ) : ar1 (Row) | Tr i a l ) ,
data=o12PINE5 . df , vcc=Mcc)

where yield is the data vector of plot yields (t/ha); 1 denotes the overall mean;

Variety, Trial, Trial:ColRep are terms representing the random variety, trial and

within trials replicate blocks effects respectively. The errors are modelled using an

AR1×AR1 structure for each trial as given by dsum(ar1(Column):ar1(Row)|Trial).

The constraints are implemented within the constraint matrix Mcc which is detailed in

Table 5.4.

Table 5.4: The Mcc matrix of constraints for the analysis of 12PINE5. The second column
(V1) defines the grouping of variance parameters by assigning the same number to each
parameter within a group, and the third column (V2) contains the scaling coefficient.
As an example, the spatial variances for trials OMaA12PINE5 and OMaB12PINE5 are
constrained to variance parameter number 3.

Mcc matrix Variance

Term V1 V2 parameter

Trial_OMaA12PINE5!R 3 1 σ2
1

Trial_OMaB12PINE5!R 3 1 σ2
2

Trial_OMaA12PINE5!Column!cor 1 1 ρc1
Trial_OMaB12PINE5!Column!cor 1 1 ρc2
Trial_OMaA12PINE5!Row!cor 2 1 ρr1
Trial_OMaB12PINE5!Row!cor 2 1 ρr2

Following the same procedures as shown in Section 5.1, I added both random column

(Model M2.c) and row effects (Model M3.c) with significant changes in `R as shown

in Table 5.5. The REML estimates of the variance parameters for the three models

(M1.c, M2.c, and M3.c) are given in Table 5.6. In particular this shows the results of

the constraints. For example the estimates from M3.c are σ̂2
1 = σ̂2

2 = 0.030, ρ̂c1 = ρ̂c2 =

0.103, and ρ̂r1 = ρ̂r2 = 0.166.
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5.2 Spatial analysis of a co-located trial

Table 5.5: 12PINE5: Summary of models fitted: sources of variation; residual log-
likelihood (`R); number of variance parameters; and likelihood ratio test (REMLRT).

Source of variation Variance

Model Global/Extraneousa localb parameters `R REMLRTc

M1.c AR1×AR1 6 192.44
M2.c ran(Column) AR1×AR1 7 200.27 15.66 ***
M3.c ran(Row) AR1×AR1 8 205.39 10.24 ***

a ran(Column) and ran(Row) represent the random effects for the column and row factors within
trials.
b Correlation structures for separable spatial process: AR1 = autoregressive of order 1.
c Comparison of model i with model i− 1; *** p < 0.001.

Table 5.6: 12PINE5: REML estimates of variance parameters for: Variety (σ̂2
g); Trial

(σ̂2
t ); within trials ColRep (σ̂2

b ); within trials Column (σ̂2
c ); and within trials Row (σ̂2

r);
spatial variance (σ̂2); column spatial correlation (ρ̂c); and row spatial correlation (ρ̂r), for
Models M1.c, M2.c, and M3.c.

Genetic Non-genetic Error

Model σ̂2
g σ̂2

t σ̂2
b σ̂2

c σ̂2
r σ̂2

1 ρ̂c1 ρ̂r1 σ̂2
2 ρ̂c2 ρ̂r2

M1.c 0.167 0.008 0.009 0.052 0.234 0.437 0.052 0.234 0.437
M2.c 0.158 0.005 0.008 0.014 0.039 0.325 0.148 0.039 0.325 0.148
M3.c 0.157 0.004 0.009 0.015 0.008 0.030 0.103 0.166 0.030 0.103 0.166

5.2.1.1 Empirical best linear unbiased predictions

From the analysis of M3.c, the variety EBLUPs ũg are given in Table 5.7 for the first

and last four varieties in alphabetical order, along with their r2 values (see Equation

2.15), these ranged from 0.91 to 0.95 with R̄ = 0.93. Figure 5.6 presents the relationship

between ũg and the raw means for individual varieties, where the dashed line represents

a 1-1 relationship. The high reliabilities (mean of 0.93) results in little shrinkage so that

the points in Figure 5.6 centre around a line with a slope close to 1.
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5. STATISTICAL ANALYSIS OF THE OAT DATASET

Table 5.7: 12PINE5: ũg, prediction error variance (PEV), and r2 estimates for the first
and last four varieties in alphabetical order.

Variety ũg PEV r2

Bannister 0.353 0.008 0.951
Carrolup -0.091 0.008 0.951
Dunnart 0.335 0.008 0.951
Durack 0.136 0.008 0.951
...

...
...

...
SV05302-19 0.344 0.012 0.921
SV05305-49 0.080 0.013 0.920
WA01Q265-1 -0.002 0.013 0.920
Wandering 0.478 0.008 0.951

−1.0

−0.5

0.0

0.5

−1.0 −0.5 0.0 0.5
Raw variety means

u~
g

Figure 5.6: 12PINE5: ũg against raw centred varietal means. Dashed line represents a
1-1 line. A regression line through the points is shown by the solid blue line.

72



5.3 Results from all single environment analyses

5.3 Results from all single environment analyses

I now consider the analyses for all 43 environments in the Oat dataset. The same

procedures as shown in the previous sections for the analysis of OMaB15CUND6 and

12PINE5 were used. There were in total 51 outliers identified and removed from the

dataset. A summary of all unique models fitted to the non-genetic effects is presented

in Table 5.8. ColRep is the random model term for replicate block effects; Column

and Row are random model terms for column and row effects respectively; the spatial

models are defined as AR1×AR1 for spatial correlation in both directions, ID×AR1
for independent columns, and spatial correlation in the row direction, and ID×ID for

independent and identically distributed (IID) errors. Note that for co-located trials, a

random Trial term is also fitted and ColRep, Column and Row denote replicate block,

column, and row effects within trials. The most common non-genetic model was M1.o

with 13 environments.

Table 5.8: Set of unique models fitted to the non-genetic effects for the 43 environments in
the Oat dataset. ColRep is the random model term for replicate block effects; Column and
Row are random model terms for column and row effects; the spatial models are defined
as AR1×AR1 for spatial correlation in both directions, ID×AR1 for spatial in the row
direction only, and ID×ID for IID errors.

Model ColRep Column Row Spatial Environments

M1.o - - AR1×AR1 13
M2.o - - ID×AR1 6
M3.o - AR1×AR1 2
M4.o - ID×ID 1
M5.o - ID×AR1 6
M6.o - AR1×AR1 9
M7.o AR1×AR1 6

Note that for co-located trials, a random Trial term is also fitted and
ColRep, Column and Row denote replicate block, column, and row effects
within trials.

The REML estimates for the genetic and non-genetic variance parameters are shown

for each environment in Table 5.9. There were two environments OMaA14GRIF2 and

OMaA16PING6 which did not have a positive genetic variance, with the variance com-

ponents estimated at 0 (boundary). The trial reliability (R̄) (Equation 2.15) ranged

from 0.25 to 0.94 with a median of 0.81 (OMaA14GRIF2 and OMaA16PING6 removed).
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5. STATISTICAL ANALYSIS OF THE OAT DATASET

When adjusted for the number of varieties, the proportion of maximum potential relia-

bility (R̄Xp) (Equation 3.11) ranged from 0.26 to 0.95 with a median of 0.82. The last

row of Table 5.9 reports median results for M1.o and the non-genetic effects: the me-

dian variance component estimates were σ̂2
b = 0.019, σ̂2 = 0.301, ρ̂c = 0.248, ρ̂r = 0.629

respectively. The median for the genetic variance was σ̂2
g = 0.083.

Summaries of these results are used in the formation of the simulation study described

in Chapter 6. In particular, the 10%, 50%, and 90% quantiles of the R̄Xp values of 0.54,

0.82, 0.94 were adopted for the three levels: Low (L), Medium (M), and High (H), in the

calibration for the genetic variances. Finally, the non-genetic parameters median values

from M1.o (last row of Table 5.9) were used also in the simulation study to simulate

data, as well as to create trial designs.

5.4 One-stage multi-environment trial analysis

I now examine the MET analysis of the Oat dataset using the methods described in

Chapter 2. This dataset includes p = 43 environments and m = 163 varieties; however,

as demonstrated in the preceding section, the genetic variances for OMaA14GRIF2

and OMaA16PING6 were estimated on the boundary. Therefore these environments

were excluded from the MET dataset examined here, resulting in p = 41 environments,

t = 47 trials, m = 163 varieties, and n = 7068 field plots.

I now let yj be the (nj × 1) vector of yield data for environment (j = 1, 2, . . . , 41),

and let y = (y>1,y
>
2, . . . ,y

>
41)> be the combined (7068 × 1) vector of yield data across

environments. The LMM for y can be written as

y = Xτ +Zgug +Zpup + e (5.3)

where τ is a (41×1) vector of fixed effects which comprise solely of separate environment

means, with associated design matrixX; ug is a (6683×1) vector of random VE effects

with associated design matrix Zg; up is a vector of random non-genetic (peripheral)

effects consisting of trial, replicate blocks, column and row effects, as established by

the models in the single environment analyses (see Table 5.9), with an accompanying
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5.4 One-stage multi-environment trial analysis

Table 5.9: REML estimates for genetic and non-genetic variance parameters, and model
based estimates of reliability (R̄) and proportion of maximum potential reliability (R̄Xp

)
for each environment. B denotes variance parameter is estimated at the boundary value
(0 for variance components). The final column represents the non-genetic model chosen
(M1.o-M7.o). The final two rows present the median variance parameter estimates across
all environments, and the median across only those environments which used the M1 model.
Horizontal dashed lines separate years (2012-2016). The two environments illustrated in
this chapter for analysis are represented by grey rows.

Genetic Non-genetic Error

Environment σ̂2
g σ̂2

t σ̂2
b σ̂2

c σ̂2
r σ̂2 ρ̂c ρ̂r R̄ R̄Xp Model

OMaB12BARK6 0.056 0.169 0.199 0.259 0.481 0.490 M2.o
OMaB12KATA6 0.271 B 0.017 0.361 0.011 0.834 0.880 0.897 M3.o
OMaA12KYBY5 0.210 0.081 0.476 0.118 0.718 0.766 0.781 M1.o
OMaB12MERR6 0.014 B 0.101 0.072 0.479 0.342 0.348 M1.o
12PINE5 0.157 0.004 0.009 0.015 0.008 0.030 0.103 0.166 0.934 0.950 M7.o
12RIVE5 0.353 0.163 0.119 0.297 0.092 0.177 0.109 0.917 0.932 M6.o
OMaA12RUTH3 0.275 0.016 0.068 0.295 0.914 0.932 M2.o
12TURR5 0.210 0.041 B 0.054 0.025 0.115 0.079 0.216 0.846 0.860 M7.o
OMaB12WONG6 0.168 0.047 0.132 0.450 0.673 0.899 0.917 M1.o
OMaB13KATA6 0.219 0.003 0.164 0.015 0.323 0.811 0.825 M1.o
OMaA13KYBY5 0.067 B 0.911 0.683 0.454 0.365 0.371 M1.o
13PINE5 0.107 B B 0.088 0.008 0.045 0.037 0.287 0.880 0.893 M7.o
13RIVE5 0.314 B B 0.015 0.198 0.567 0.886 0.900 M5.o
OMaA13RUTH3 0.211 0.008 0.060 0.536 0.928 0.944 M2
OMaA13RYLI6 0.426 0.022 0.090 0.207 0.012 0.273 0.855 0.869 M6.o
13TURR5 0.362 0.043 0.003 0.092 0.119 0.236 0.410 0.922 0.936 M6.o
OMaB13WONG6 0.131 0.096 0.188 0.248 0.624 0.802 0.815 M1.o
OMaA13YANC2 0.187 B 0.442 0.227 0.224 0.113 0.686 0.698 M6.o
OMaA14GRIF2 0.000 0.058 0.776 0.004 0 0 M2.o
OMaB14KATA6 0.021 B 0.481 0.338 0.672 0.420 0.252 0.257 M6.o
OMaA14KYBY5 0.018 0.022 0.016 0.113 0.248 0.326 0.333 M5.o
OMaA14PINE5 0.086 B 0.105 0.097 0.355 0.086 0.741 0.757 M6.o
OMaA14RIVE5 0.123 0.011 0.021 0.311 0.833 0.806 0.823 M5.o
OMaB14RYLI6 0.051 B 0.411 0.197 0.638 0.451 0.461 M1.o
OMaB14WONG6 0.151 0.008 0.010 0.070 0.624 0.898 0.917 M5.o
OMaB15CUND6 0.029 B 0.073 0.031 0.056 0.156 0.305 0.616 0.627 M7.o
OMaA15GRIF2 1.513 0.016 0.082 0.233 0.926 0.943 M4.o
OMaA15KYBY5 0.053 0.018 0.122 0.193 0.629 0.723 0.736 M1.o
OMaB15PING6 0.069 0.471 0.244 0.278 0.645 0.649 0.660 M1.o
OMaA15RIVE5 0.866 0.031 0.071 0.136 0.180 0.183 0.935 0.952 M6.o
OMaB15RYLI6 0.059 0.019 0.723 0.331 0.883 0.646 0.658 M1.o
OMaA15TURR5 0.329 0.033 0.117 0.050 0.109 0.067 0.323 0.888 0.904 M7.o
OMaA15WONG6 0.016 0.026 0.014 0.006 0.022 0.083 0.070 0.640 0.652 M7.o
OMaB16COWR2 0.184 0.022 0.242 0.281 0.708 0.723 M2.o
OMaB16CUND6 0.180 0.089 0.056 0.123 0.226 0.303 0.819 0.837 M6.o
OMaA16KYBY5 0.173 0.203 0.344 0.250 0.483 0.693 0.708 M1.o
OMaA16MURE6 0.094 0.079 0.301 0.238 0.707 0.708 0.723 M1.o
OMaA16PINE5 0.387 B 0.268 0.751 0.906 0.926 M2.o
OMaA16PING6 0.000 0.049 0.464 0.376 0.145 0.169 0 0 M6.o
OMaA16RIVE5 0.308 B 0.031 0.369 0.663 0.815 0.833 M5.o
OMaA16RYLI6 0.083 B 0.524 0.299 0.228 0.366 0.374 M1.o
OMaA16TURR5 0.375 B 0.075 0.378 0.154 0.680 0.848 0.866 M3.o
OMaA16WONG6 0.422 B 0.173 0.388 0.545 0.810 0.828 M5.o

Median 0.168 0.023 0.011 0.090 0.021 0.199 0.187 0.415 0.806 0.823 All
Median 0.083 0.019 0.301 0.248 0.629 0.693 0.708 M1.o
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5. STATISTICAL ANALYSIS OF THE OAT DATASET

design matrix Zp; and e is the (7068× 1) vector of errors. It is assumed thatug

up

e

 ∼ N

0
0
0

 ,
Ge ⊗ I163 0 0

0 Gp 0
0 0 Σ


where Ge is a (41×41) symmetric positive (semi)-definite matrix known as the between

environments genetic variance matrix, which is modelled here using an FA structure of

order k denoted as FAk and given as

Ge = ΛΛ> + Ψ

where Λ is the (41× k) matrix of environment loadings; and Ψ is a (41× 41) diagonal

matrix with elements referred to as the specific environment variances. It is therefore

assumed for the VE effects that

ug = (Λ⊗ I163)f + δ

where f is the (163k × 1) vector of variety scores and δ is the (6683× 1) vector of VE

lack of fit effects. It is assumed that

var(f) = Ik ⊗ I163 (5.4)

var(δ) = Ψ⊗ I163 (5.5)

so that

var(ug) = (ΛΛ> + Ψ)⊗ I163 (5.6)

Note that ug can be further simplified to

ug = β + δ (5.7)

where β = (Λ⊗ I163)f is the so called VE regression component. Therefore, I consider

β and δ to be the building blocks of ug.
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5.4 One-stage multi-environment trial analysis

For the non-genetic effects it is assumed that

Gp = ⊕vk=1σ
2
pk
Iqk

Σ = ⊕47
j=1σ

2
j


Σcj(ρcj )⊗Σrj(ρrj )

Icj ⊗Σrj(ρrj )

Icj ⊗ Irj

where v is the number of components in up and qk is the number of effects in (length of)

upi and the errors are modelled using one of the spatial structures AR1×AR1, ID×AR1

or ID×ID. The non-genetic and error terms fitted are those established for single envi-

ronment analyses, as indicated in Table 5.9.

As an example, the ASReml-R code to fit the LMM with an FA1 model for ug (Equation

5.7) is given below

r r1 . a s r <− asreml ( y i e l d ~ Environment ,
random = ~ r r ( Environment , 1 ) : Var iety + diag ( Environment ) : Var iety +
at ( Environment , c o l . env ) : Tr i a l +
at ( Environment , crep ) : Tr i a l : ColRep +
at ( Environment , r c o l ) : T r i a l : Column +
at ( Environment , rrow ) : Tr i a l :Row,
r e s i d u a l = ~ dsum(~ ar1 (Column ) : ar1 (Row) | Tr ia l , l e v e l s = aa ) +
dsum(~ id (Column ) : ar1 (Row) | Tr ia l , l e v e l s =i a ) +
dsum(~ id (Column ) : id (Row) | Tr ia l , l e v e l s =i i ) ,
vcc=Mcc , na . a c t i on = na . method (y=’ inc lude ’ , x=’ inc lude ’ ) ,
data=oatsMET . df )

where col.env is a vector of environment names containing co-located trials; crep,

rcol, rrow are vectors of environment names containing those fitted with ColRep,

Column, Row random effects respectively; aa, ia, ii are vectors of environment names

which have an AR1×AR1, ID×AR1, and ID×ID spatial structures for errors respec-

tively; Mcc is the matrix which constrains spatial parameters equal for the co-located

environments (see Table 5.10); and oatsMET.df is the dataset containing the full data

object for the Oat dataset.

The FA1 model for ug has been fitted by splitting into the two constituent parts,

namely the regression part associated with β and the lack of fit part associated with δ.
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5. STATISTICAL ANALYSIS OF THE OAT DATASET

The term rr(Environment, 1):Variety relates to β and fits a so-called reduced rank

variance structure of order 1 for the environment dimension, namely

var(β) = ΛΛ> ⊗ I163

where Λ is a (41 × 1) matrix of loadings. The term diag(Environment):Variety

relates to δ and fits a diagonal variance structure for the environment dimension with

the variance structure shown in Equation 6.6.

Table 5.10: First 11 rows of the Mcc matrix for the MET analysis for the Oat dataset.
The second column (V1) defines the grouping of variance parameters by assigning the
same number to each parameter within a group, and the third column (V2) contains the
scaling coefficient. As an example, the spatial variances for trials OMaA12PINE5 and
OMaB12PINE5 are constrained to variance parameter number 83.

Term V1 V2

Trial_OMaB12BARK6!R 110 1
Trial_OMaB12KATA6!R 111 1
Trial_OMaA12KYBY5!R 89 1
Trial_OMaB12MERR6!R 112 1
Trial_OMaA12PINE5!R 83 1
Trial_OMaB12PINE5!R 83 1
Trial_OMaA12RIVE5!R 84 1
Trial_OMaB12RIVE5!R 84 1
Trial_OMaA12RUTH3!R 90 1
Trial_OMaA12TURR5!R 85 1
Trial_OMaB12TURR5!R 85 1

A series of FALMM were fit to the data with increasing numbers of factors (values of

k), as shown in Table 5.11. The Akaike information criteria (AIC) showed significant

improvements of successive models up to and including an FA5 model (see also Figure

5.7) and hence the FA5 model was chosen as the final model. The FA5 model variance

accounted for (VAF%) by all five factors was 85.3%.
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Table 5.11: Summary of number of variance parameters, residual log-likelihood (`R), and
AIC for the seven variance models fitted to the 41 environments in the Oat dataset. Grey
row corresponds to the model with the smallest AIC.

Model Parameters `R AIC

diag 227 1587.06 -2720.11
FA1 268 2050.42 -3564.85
FA2 308 2151.44 -3686.87
FA3 347 2202.80 -3711.60
FA4 385 2253.86 -3737.72
FA5 422 2293.98 -3743.96
FA6 458 2327.86 -3739.72
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Figure 5.7: Residual log-likelihood (left-hand side y-axis) and AIC (right-hand side y-
axis) for each model fitted to the Oat dataset. Colors as referenced in the legend. Dotted
vertical line represents the FA5 model as it has the lowest AIC value.

Table 5.12 provides summaries of the environment information from the FA5 model

fitted to VE effects: REML estimates of loadings for each factor, specific variances,

and percentage variance accounted for (VAF%) by all five factors. On an individual

environment basis, all but two environments had greater than 50% explained by the
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regression part of the FA model, and 30 environments had greater than 80% explained.

It is noted that the algorithm in ASReml-R (Butler et al., 2017) fixes all k(k − 1)/2

elements in the upper triangle of Λ to zero as shown in Table 5.12. This matrix may

be rotated as desired for interpretative purposes, where it is usually most meaningful to

rotate the estimated loadings to a principal component solution (Smith et al. (2001b,

2015, 2021b) for examples). As the emphasis of this thesis is on the reliability of VE

effects, the loadings do not need to be interpreted, and hence the loadings provided in

this thesis are unrotated.

The REML estimates of the loadings and specific variances can be used to form the

REML estimate of the between environments genetic variance matrix, denoted Ĝe. In

Table 5.13, a subset of this matrix based on the FA5 model is shown for the nine envi-

ronments in 2012. The diagonal elements represent the genetic variances which are also

presented in Table 5.12. The Ĝe matrix is transformed to the correlation parametri-

sation with the resultant Ĝe
(c)

matrix graphically presented in Figure 5.8 by way of

a heatmap. The rows and columns of the matrix have been ordered as environments

within years. The pairwise between environments genetic correlations ranged between

-0.71 and 0.97, with an average of 0.49. The simulation study detailed in Chapter 6

uses summaries of these correlations, specifically the 20%, 50%, and 90% quantiles of

0.2, 0.5, and 0.8 for the three levels of L, M, and H, respectively.
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Table 5.12: Summary of environment information from FA5 model fitted to VE effects:
REML (unrotated) estimates of loadings for each factor, specific variances (ψ̂), genetic
variances (σ̂2

g), and percentage variance accounted for (VAF%) by all five factors. Hori-
zontal dashed lines separates years (2012-2016).

Environment loadings

Environment 1 2 3 4 5 ψ̂ σ̂2
g VAF%

OMaB12BARK6 0.210 0 0 0 0 0.005 0.049 90.1
OMaB12KATA6 0.348 0.308 0 0 0 0.022 0.239 90.6
OMaA12KYBY5 0.251 0.228 0.268 0 0 0 0.187 100
OMaB12MERR6 0.001 0.106 -0.046 0.044 0 0 0.016 100
12PINE5 0.243 0.231 0.046 0.077 -0.119 0.016 0.151 89.2
12RIVE5 0.397 0.340 0.167 0.012 -0.131 0 0.318 100
OMaA12RUTH3 0.048 0.144 0.207 -0.107 -0.008 0.177 0.254 30.5
12TURR5 0.289 0.240 -0.055 0.140 -0.104 0.031 0.205 85.1
OMaB12WONG6 0.321 0.155 -0.067 -0.084 -0.111 0 0.151 100
OMaB13KATA6 0.453 0.175 0.145 -0.083 0.092 0 0.272 100
OMaA13KYBY5 0.102 0.080 -0.086 -0.014 0.110 0.030 0.067 54.6
13PINE5 0.222 0.126 0.108 0.125 -0.147 0.002 0.116 98.1
13RIVE5 0.318 0.252 0.315 0.086 -0.170 0.040 0.341 88.2
OMaA13RUTH3 -0.035 0.158 0.315 -0.078 -0.000 0.088 0.219 59.9
OMaA13RYLI6 0.266 0.421 0.219 -0.024 0.311 0.105 0.498 78.9
13TURR5 0.427 0.115 0.131 0.182 -0.245 0.072 0.378 80.8
OMaB13WONG6 0.203 0.191 0.154 -0.154 -0.081 0.008 0.139 94.6
OMaA13YANC2 0.187 0.071 0.258 0.050 -0.101 0.082 0.201 59.4
OMaB14KATA6 0.016 0.027 0.012 -0.100 -0.088 0 0.019 100
OMaA14KYBY5 0.047 -0.071 -0.008 0.034 -0.000 0.008 0.017 50.3
OMaA14PINE5 0.166 0.153 0.156 -0.070 -0.164 0 0.107 100
OMaA14RIVE5 0.316 0.159 0.018 -0.067 -0.180 0 0.162 100
OMaB14RYLI6 0.007 0.053 0.070 -0.222 0.025 0 0.058 100
OMaB14WONG6 0.138 0.030 -0.024 -0.178 -0.102 0.092 0.154 40.5
OMaB15CUND6 0.099 -0.038 0.047 -0.075 -0.145 0 0.040 100
OMaA15GRIF2 0.994 0.566 0.414 0.200 -0.524 0.345 2.139 83.9
OMaA15KYBY5 0.167 -0.035 0.096 0.017 -0.084 0.014 0.060 76.2
OMaB15PING6 0.089 -0.092 0.162 -0.173 -0.080 0.011 0.090 87.8
OMaA15RIVE5 0.574 0.345 0.611 0.299 -0.318 0.086 1.097 92.2
OMaB15RYLI6 0.061 -0.007 0.135 -0.163 -0.052 0.004 0.055 92.8
OMaA15TURR5 0.384 0.209 0.361 0.192 -0.253 0.011 0.433 97.6
OMaA15WONG6 0.048 -0.087 -0.029 -0.078 -0.005 0.001 0.017 97.1
OMaB16COWR2 0.342 0.163 0.038 -0.029 0.157 0.047 0.217 78.4
OMaB16CUND6 0.202 0.169 0.258 -0.023 -0.302 0.038 0.265 85.7
OMaA16KYBY5 0.305 -0.072 0.247 0.167 -0.045 0.016 0.205 92.3
OMaA16MURE6 0.098 0.004 0.109 -0.158 -0.225 0.007 0.105 92.9
OMaA16PINE5 0.565 -0.009 0.267 0.016 -0.112 0.104 0.507 79.5
OMaA16RIVE5 0.405 0.148 0.366 0.082 -0.144 0.114 0.461 75.3
OMaA16RYLI6 0.050 -0.167 0.124 -0.201 0.057 0 0.089 100
OMaA16TURR5 0.593 0.010 0.343 0.121 -0.185 0.059 0.577 89.7
OMaA16WONG6 0.367 0.288 0.414 -0.314 -0.287 0.023 0.593 96.1
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Table 5.13: Subset of the REML estimate of the Ge matrix for the 2012 environments
only. Diagonal elements and those shown in bold represent the genetic variances (σ̂2

g) and
the off-diagonal elements the covariances.

Environment O
M
aB

12
B
A
R
K
6

O
M
aB

12
K
A
T
A
6

O
M
aA

12
K
Y
B
Y
5

O
M
aB

12
M
E
R
R
6

12
P
IN

E
5

12
R
IV

E
5

O
M
aA

12
R
U
T
H
3

12
T
U
R
R
5

O
M
aB

12
W
O
N
G
6

OMaB12BARK6 0.049 0.073 0.053 0.000 0.051 0.083 0.010 0.061 0.067
OMaB12KATA6 0.073 0.239 0.158 0.033 0.155 0.243 0.061 0.175 0.160
OMaA12KYBY5 0.053 0.158 0.187 0.012 0.126 0.222 0.101 0.112 0.098
OMaB12MERR6 0.000 0.033 0.012 0.016 0.026 0.029 0.001 0.035 0.016
12PINE5 0.051 0.155 0.126 0.026 0.151 0.199 0.047 0.146 0.117
12RIVE5 0.083 0.243 0.222 0.029 0.199 0.318 0.103 0.202 0.182
OMaA12RUTH3 0.010 0.061 0.101 0.001 0.047 0.103 0.254 0.023 0.034
12TURR5 0.061 0.175 0.112 0.035 0.146 0.202 0.023 0.205 0.134
OMaB12WONG6 0.067 0.160 0.098 0.016 0.117 0.182 0.034 0.134 0.151

5.4.1 Variety predictions

The EBLUPs of the VE effects for a subset of six varieties and nine environments are

shown in Table 5.14. The ũgij and their building block components β̃ij and δ̃ij are

provided. Note that there is an EBLUP for the common VE effect (β̃ij) for a variety

for every environment, even if the variety was not grown there. This is because it is

associated with the factors (the regression part of the model). In contrast, the EBLUP

for the specific VE effect (δ̃ij) is 0 for a variety when it is not grown in an environment.

Note also that δ̃ij will be 0 if the VAF% for environment j was 100 (that is, the specific

variance was estimated on the boundary). Consequently, in these cases the EBLUP of

the common and total VE effects are identical.

There is considerable literature on the interpretation and presentation of FALMM re-

sults, such as Smith et al. (2015); Smith & Cullis (2018); Smith et al. (2021b). However,

again as the goals of this thesis are to study the reliability of VE effects, the presentation

of results are not addressed further here.
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Table 5.14: Summary set of results for a subset of six varieties in nine environments from
the FA5 MET analysis of the Oat dataset. Tick-marks indicate where the varieties were
grown. The EBLUPs of VE effects, that is ũgij and their building block components β̃ij
and δ̃ij .

Variety O
M
aB

12
B
A
R
K
6

O
M
aB

12
K
A
T
A
6

O
M
aA

12
K
Y
B
Y
5

O
M
aB

12
M
E
R
R
6

12
P
IN

E
5

12
R
IV

E
5

O
M
aA

12
R
U
T
H
3

12
T
U
R
R
5

O
M
aB

12
W
O
N
G
6

P
re
se
nc
e

Bannister
Carrolup
Mortlock
SV02020-21
SV05175-26
SV06071-16

β̃ij

Bannister 0.299 0.544 0.631 -0.085 0.354 0.794 0.429 0.237 0.577
Carrolup -0.376 -0.261 -0.066 0.128 -0.184 -0.323 0.108 -0.254 -0.542
Mortlock -0.145 -0.462 -0.659 0.007 -0.318 -0.688 -0.455 -0.196 -0.289
SV02020-21 0.065 0.388 -0.042 0.133 0.095 0.118 -0.061 0.222 0.273
SV05175-26 0.095 -0.035 -0.019 -0.018 0.216 0.162 -0.173 0.280 0.098
SV06071-16 -0.140 -0.263 -0.138 -0.047 -0.290 -0.346 0.056 -0.373 -0.251

δ̃ij

Bannister -0.011 0.027 0.000+ 0.000+ -0.009 0.000+ 0.122 -0.063 0.000+
Carrolup -0.028 0.053 0.000+ 0.000+ 0.047 0.000+ 0.373 0.115 0.000+
Mortlock 0 0 0 0 0.070 0.000+ 0 -0.038 0
SV02020-21 0.012 -0.237 0.000+ 0.000+ 0.089 0.000+ -0.223 0.090 0.000+
SV05175-26 0.006 -0.037 0.000+ 0.000+ 0.056 0.000+ -0.092 0.213 0.000+
SV06071-16 0 0 0 0 0 0 0 0 0

ũgij

Bannister 0.288 0.571 0.631 -0.085 0.344 0.794 0.552 0.174 0.577
Carrolup -0.403 -0.207 -0.066 0.128 -0.137 -0.323 0.481 -0.139 -0.542
Mortlock -0.145 -0.462 -0.659 0.007 -0.248 -0.688 -0.455 -0.234 -0.289
SV02020-21 0.076 0.151 -0.042 0.133 0.184 0.118 -0.284 0.313 0.273
SV05175-26 0.101 -0.072 -0.019 -0.018 0.272 0.162 -0.265 0.494 0.098
SV06071-16 -0.140 -0.263 -0.138 -0.047 -0.290 -0.346 0.056 -0.373 -0.251

+ δ̃ij = 0.000 because VAF%=100 for this environment.
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Figure 5.8: Heatmap of G(c)
e from the FA5 model for the MET analysis of the Oat

dataset. Key depicts the correlation colour scale. Boundaries for years are indicated by
the black lines (2012 - 2016 inclusive from left to right and top to bottom).
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5.5 Concluding remarks

This chapter uses the Oat dataset presented in Chapter 4 to demonstrate the statis-

tical methodology described in Chapter 2 with analyses involving independent variety

effects. It should be reiterated that this is not the sort of dataset suggested for breeding

program variety selections (see Chapter 7), but it resembles typical late-stage evalu-

ation MET datasets, such as those used in the NVT and AHDB RL systems. I first

illustrate a single and co-located trial analysis using subsets of this data, and then the

MET analysis utilising the entire Oat dataset.

The estimated variance parameters from these analyses are used in the simulation study

presented in Chapter 6. Average parameter estimates are used to simulate data and cre-

ate bespoke trial designs. Furthermore, quantiles for estimated genetic variances and ge-

netic correlations between trials are employed in the development of the three level (low,

medium, high) factorial structure. For the three levels of genetic variance, the calibra-

tion methods outlined in Chapter 3 are used given levels of R̄Xp = {0.54, 0.82, 0.94}
and their structural elements of trial size and variance parameter values. For the three

levels of genetic correlations between trials the values {0.2, 0.5, 0.8} are used.
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Chapter 6

The effect of variety connectivity on
the reliability of varietal predictions
from a factor analytic
multi-environment trial analysis

The techniques of variety selection entail a cyclic process of variety evaluation revolv-

ing: re-evaluating the best, removing the poor, and including new varieties as part of

the breeding objectives. As a result, between environments and years, a necessary and

frequently complex selection history of varieties is observed. This leads to datasets with

varying numbers of common varieties between pairs of environments, a measure known

as “variety connectivity”. Due to the rapid turnover of varieties in the early stages of

breeding, the tendency for poor variety connectivity is particularly observed, as demon-

strated by the datasets in Chapter 4, and in particular the Durum dataset consisting of

multiple breeding stages.

A 1-stage FALMM (Smith et al., 2001b) to model VE effects is regarded as the gold

standard (Gogel et al., 2018) method of analysis for MET data. The reader is directed to

Chapter 2, which discusses the statistical approach for these models, as well as Chapters

5 and 8, which illustrates with the analysis of the Oat and Durum datasets, respectively.

Historically, the majority of MET analyses did not include information on genetic relat-
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RELIABILITY OF VARIETAL PREDICTIONS FROM A FACTOR
ANALYTIC MULTI-ENVIRONMENT TRIAL ANALYSIS

edness, so that variety effects were assumed to be independent. Within this framework,

it was assumed that variety connectivity was a significant driver of the reliability of

genetic variance parameter estimates in a MET analysis, which affected the reliabil-

ity of predicted VE effects (Smith et al., 2001a, 2015; Ward et al., 2019). To address

these concerns, problematic environments were frequently omitted from MET datasets

if they shared too few varieties with other environments. However, there is no scientific

evidence supporting this strategy. Therefore in this chapter, a simulation study with

a range of treatments is used to investigate the effect of variety connectivity on the

reliability of genetic variance parameter estimates in a MET analysis and also on the

reliability of VE predictions.

Without loss of generality, and in order to focus purely on variety connectivity be-

tween individual pairs of environments, the study involved two trials (environments)

only. The number of varieties in common between the two trials is then varied across a

range of genetic scenarios. To keep the simulation studies anchored in real-world circum-

stances, trial structural elements and variance component values from the Oat dataset

(Chapters 4 and 5) were used to simulate datasets. This dataset is used to resemble

standard late-stage variety testing procedures used across the world with analyses in-

volving independent variety effects.

This chapter is arranged as follows: the treatments assessed in the simulation study

are described in Section 6.1; in Section 6.2 the trial plot structure and trial design

procedures are described; in Section 6.3 I discuss the methods to simulate the MET

datasets; then I describe the statistical procedures for the analysis of the simulated

datasets in Section 6.4; I then present in Section 6.5 the results from the simulation

study; and finally in Section 6.6 I have concluding remarks.

6.1 Treatments assessed in simulation study

The simulation is based on datasets with two trials, labelled as Env1 and Env2. The

treatments considered involve the factorial combinations of two trial sizes, three levels

of genetic variance, three levels of genetic correlation between trials, and varying levels

of variety connectivity. For the three level treatments, these are classified into low (L),
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6.1 Treatments assessed in simulation study

medium (M), and high (H) levels, based on the range of values reported in Chapter 5

from the analysis of the Oat dataset. For each of these combinations a range of variety

connectivities are investigated. The resulting components of the treatment structure

are fully described in the following sections.

6.1.1 Trial size

Two trial sizes (Tsize) consisting of m = 24 or 48 varieties with three replicates (b = 3)

each are considered. These are referred to as T24 and T48 respectively. As a result the

trials have n = 72 or 144 plots respectively. Table 6.1 presents the summary of the two

Tsize treatments. In particular, the size of m were chosen to represent the range of trial

sizes seen in the Oat dataset described in Chapter 4.

Table 6.1: Summaries of the two trial size (Tsize) scenarios.

Tsize Varieties (m) Columns Rows Plots (n)

T24 24 12 6 72
T48 48 12 12 144

6.1.2 Levels of genetic variance

The genetic variance levels for each trial (σ2
g1 and σ2

g2 for Env1 and Env2, respectively)

were calculated using the calibration procedure explained in Chapter 3. The aim was to

choose genetic variances that reflected a range of reliabilities observed in the analyses of

the Oat dataset (Chapter 4). In order to allow for the unequal numbers of varieties in

the Oat trials, I used the proportion of maximum potential reliability (R̄Xp , see Chapter

3, Equation 3.12) as the measure to summarise across those trials. The resultant 10%,

50% and 90% quantiles of R̄Xp were {0.54, 0.82, 0.94}. Using the profile curves in Figure

3.2 of Chapter 3, these mapped to genetic variances of {0.2, 0.75, 2.5} which were then

used as the L, M and H values for data generation in the simulation. In the simulated

study, I maintain the M level of genetic variance for Env1 (σ2
g1 = 0.75), but vary the

genetic variance for Env2 (σ2
g2 = {0.2, 0.75, 2.5}).
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6.1.3 Levels of genetic correlation between trials

The three levels of genetic correlation between trials (ρ12) are taken as the 20%, 50%,

and 80% rounded quantile range values of {0.2, 0.5, 0.8} respectively from the analysis

of the Oat dataset given in Chapter 5 (see Section 5.4). These are translated to the

between trials covariance (σ12) given values of {σ2
g1 , σ

2
g2} as

σ12 = ρ12

√
σ2
g1σ

2
g2 (6.1)

6.1.4 Levels of variety connectivity

The levels of variety connectivity between Env1 and Env2 (x1,2) were varied from one

variety in common between Env1 and Env2, through to all varieties in common (1 : m).

As shown in Table 6.2, not all levels of x1,2 were tested and instead increments between

1 and m were chosen to be proportional to the size of x1,2, with greater increments for

the larger scenarios. As a result, the T24 and T48 scenarios feature 13 and 19 treatment

levels of variety connectivity, respectively.

Table 6.2: Levels and increments of variety connectivity (x1,2).

x1,2 Increment Levels

1 1 {1}
2:24 2 {2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24}
28:48 4 {28, 32, 36, 40, 44, 48}

As an example, the T24 scenario has treatment levels of x1,2 = {1, 2, 4, . . . , 22, 24}, with

the maximum total number of varieties across both Env1 and Env2 being 47, which

occurs for the scenario when there is only 1 variety in common (x1,2 = 1). I label

these varieties as V1 through V47. The same 24 varieties (V1 - V24) are held in Env1

across all scenarios, and vary the number of common varieties in Env2. Examples of

the varieties present in Env2 include: all 24 varieties are in common (x1,2 = 24) where

I have varieties V1 - V24 in Env2; if I then consider 22 varieties in common (x1,2 = 22)

I have varieties V3 - V26 in Env2 (V25, and V26 are only present in Env2); finally if I

then consider the most extreme case with only 1 variety in common (x1,2 = 1), I have

varieties V24 - V47 present in Env2 (only V24 is in common with Env1).
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6.1.5 Overall treatment structure of simulation study

The treatment structure employed in the simulation study is summarised in Table 6.3.

There are 288 scenarios, that reflect the factorial combination of two trial sizes, three

levels of genetic variance, three levels of genetic correlation between trials, and either

13 or 19 levels of variety connectivity.

Table 6.4 lists the genetic parameter values for each of the nine genetic scenarios.

Each of the scenarios has been assigned a three-character acronym, indicating the

genetic variance for Env1 (σ2
g1 = {0.75}), the level of genetic variance for Env2

(σ2
g2 = {0.20, 0.75, 2.50}), and the level of genetic correlation between the two trials

(ρ12 = {0.2, 0.5, 0.8}). For example, the acronym ‘MLL’ represents medium σ2
g1 = 0.75,

low σ2
g2 = 0.20, and low ρ12 = 0.2. It is worth noting once more that σ2

g1 = 0.75 (the

medium level) for each of the nine genetic scenarios.

Table 6.3: Overview of factorial structure in simulation study.

Number of levels Total

Tsize Genetic variance Genetic correlation Variety connectivity Scenarios

T24 3 3 13 117
T48 3 3 19 171

Total 288

Table 6.4: Structure and parameter values for the nine genetic scenarios. The three-
character acronym indicates the level of genetic variance for Env1 (σ2

g1), the level of genetic
variance for Env2 (σ2

g2), and the level of genetic correlation between the two trials (ρ12).
Note, that the covariance parameter σ12 has been translated using Equation 6.1.

Scenario σ2
g1 σ2

g2 σ12 ρ12

MLL 0.75 0.20 0.08 0.2
MLM 0.75 0.20 0.19 0.5
MLH 0.75 0.20 0.31 0.8
MML 0.75 0.75 0.15 0.2
MMM 0.75 0.75 0.38 0.5
MMH 0.75 0.75 0.60 0.8
MHL 0.75 2.50 0.27 0.2
MHM 0.75 2.50 0.68 0.5
MHH 0.75 2.50 1.10 0.8
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6.2 Trial plot structure and trial design used in simulation
study

The trial structure for Env1 and Env2 were created to reflect trials observed in the Oat

dataset described in Chapter 4, that is, in terms of: the number of varieties; replication;

number of rows and columns; and replicate block alignment. The framework and design

of trials are fully discussed in the sections that follow.

6.2.1 Trial plot structure

Recall from 6.1.1 that I have two trial sizes, T24 and T48, with m = 24 or 48 varieties,

b = 3 replicates and hence n = 72 or 144 plots, as illustrated in Table 6.1. Because of

the levels of x1,2 I define M to be the maximum number of varieties across Env1 and

Env2, which corresponds to x1,2 = 1. Thus, I have M = 47 for T24 and M = 95 for

T48. Each trial is arranged in rectangular arrays with 12 columns and either 6 (T24)

or 12 (T48) rows, with replicate blocks aligned with four columns.

6.2.2 Trial design

Trial designs were created using the model-based designs software ODW (Butler, 2013)

within the R statistical computing environment (R Core Team, 2020). These designs

comprised random Variety and ColRep effects, and a AR1×AR1 structure for the errors.

The median parameter values from Chapter 5 (see Table 5.9) were used for the parameter

values. An example of the ODW code is given by

des ign . base <− odw( f i x ed=~ 1 , random=~ Variety + ColRep ,
r e s i d u a l=~ ar1 (Column ) : ar1 (Row) ,
permute=~ Variety , swap=~ ColRep ,
search="tabu+rw" ,
G. param = sv , R. param = sv , maxit=100 ,
data=T24 . t r i a l s )

where permute defines the model term to permute, which here is Variety; swap defines

where legal treatment exchanges are allowed, which for this example are within ColRep;

sv are the values of pre-specified variance parameters, which is detailed in Table 6.5;

search="tabu+rw" specifies the search strategy uses a TABU search (Taillard, 1991)
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with random walk; and maxit=100 specifies that 100 TABU loops are completed. The

errors are modelled using an AR1×AR1 structure as given by ar1(Column):ar1(Row).

Table 6.5: The sv object contains the starting values for the ODW trial design code for the
simulation study. This example is for Env1, however the same parameter values are also
used for Env2.

Component Value Parameter

Variety 0.75 σ2
g1

ColRep 0.10 σ2
b1

Column:Row!R 1.00 σ2
1

Column:Row!Column!cor 0.20 ρc1

Column:Row!Row!cor 0.60 ρr1

Separate trial designs were created for each trial (Env1 and Env2) within the treatment

framework of Tsize and connectivity level, corresponding to 64 trial designs in total.

6.3 Methods to simulate MET datasets

This section provides the techniques used to simulate the data vector, which corresponds

to a MET dataset with p = 2 trials. I use the framework of the treatment and plot

structure provided in Sections 6.1 and 6.2.

6.3.1 Simulation of the MET datasets

The LMM for data generation for the combined across trials (2n × 1) data vector

y = (y>1,y
>
2)> may be written as

y = Xτ +Zgug +Zbub + e (6.2)

where the fixed effects τ comprise a mean for each environment; ug is the (2M × 1)

vector of random VE effects with associated design matrix Zg; ub is the (6× 1) vector

of replicate block effects for each environment, with associated design matrix Zb; and
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e is the combined (2n× 1) vector of errors across trials. It is assumed thatug

ub

e

 ∼ N

0
0
0

 ,
Ge ⊗ IM 0 0

0 Gb 0
0 0 Σ


where the structures of {Ge,Gb,Σ} are described in the following sections. Under these

assumptions, the distribution of y is Gaussian with mean Xτ and variance

var(y) = H = Zg(Ge ⊗ IM )Zg
> +ZbGbZb

> + Σ (6.3)

Without loss of generality, for data simulation it is assumed that τ1 = τ2 = 0.

6.3.1.1 Simulated variety by trial genetic effects

Given that the simulation study includes two trials, an unstructured matrix would be

a reasonable model for the VE effects. However, the FALMM of Smith et al. (2001b) is

widely used in many plant breeding programs and is the focus of this thesis. Therefore,

an FA structure (see Section 5.4) of order 1 denoted as FA1 was used to simulate ug.

It is assumed that

Ge = ΛΛ> + Ψ (6.4)

where Λ is the (2×1) matrix of environment loadings with elements {λ11, λ12}; and Ψ is

a (2×2) diagonal matrix with elements {ψ1, ψ2} referred to as the specific environment

variances. It is therefore assumed for the VE effects that

ug = (Λ⊗ IM )f + δ

where f is the (M × 1) vector of variety scores and δ is the (2M × 1) vector of VE lack

of fit effects. It is assumed that

var(f) = IM (6.5)

var(δ) = Ψ⊗ IM (6.6)

so that

var(ug) = (ΛΛ> + Ψ)⊗ IM (6.7)
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As there are two trials, a constraint of ψ = ψ1 = ψ2 is employed to prevent the model

from being over-parametrised. The values for {λ11, λ12, ψ} for data generation using

this model are obtained from the parameters {σ2
g1 , σ

2
g2 , σ12} as follows

Ge =

[
λ2

11 + ψ λ11λ12

λ12λ11 λ2
12 + ψ

]
=

[
σ2
g1 σ12

σ12 σ2
g2

]

Thus, solving for λ11, λ12, and ψ the solution is

λ11 =

−(σ2
g2 − σ

2
g1) +

√
(σ2
g2 − σ2

g1)2 + 4σ2
12

2


1
2

λ12 =
σ12

λ11

ψ = σ2
g1 − λ

2
11

The parameter values as given in Table 6.4 for {σ2
g1 , σ

2
g2 , σ12} are re-parametrised to

their respective FA1 parameter form as given in Table 6.6 for each scenario.

Table 6.6: True FA1 parameter values of the loadings for Env1 (λ11), and Env2 (λ12),
and the combined across trial specific variance (ψ) for each of the nine genetic scenarios.

Scenario λ11 λ12 ψ

MLL 0.103 0.749 0.189
MLM 0.248 0.782 0.139
MLH 0.373 0.830 0.061
MML 0.387 0.387 0.600
MMM 0.612 0.612 0.375
MMH 0.775 0.775 0.150
MHL 1.339 0.205 0.708
MHM 1.409 0.486 0.514
MHH 1.509 0.726 0.223

6.3.1.2 Simulated non-genetic effects

The replicate block effects (ub), and errors (e) are simulated given the variance matrices

• Gb = ⊕2
j=1σ

2
bj
I3 (replicate block variance matrix)

• Σ = ⊕2
j=1σ

2
jΣcj(ρcj )⊗Σrj(ρrj ) (error variance matrix)
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where Gb is assumed to have a block diagonal structure with variances σ2
bj

(j = 1, 2 for

Env1, Env2), and Σ is assume to have a separable autoregressive process of order 1

(denoted AR1×AR1), where Σcj and Σrj are correlation matrices, containing parame-

ters ρcj and ρrj for the column and row dimensions respectively, with spatial variances

σ2
j .

The parameter variance values {σ2
b1
, σ2

b2
, σ2

1, σ
2
2, ρc1 , ρc2 , ρr1 , ρr2} for each simulation

dataset were derived from the average variance parameters from the analysis of the Oat

dataset given in Chapter 4. I consider σ2
b1

= σ2
b2

= 0.1; σ2
1 = σ2

2 = 1; ρc1 = ρc2 = 0.2;

ρr1 = ρr2 = 0.6.

6.3.2 Number of simulations

Using the methodologies described in Section 3.4.3, the T24 MLL scenario was utilised

to determine how many simulations are required to achieve an acceptable error of 1%

(E = 0.01) level of accuracy for the reliabilities of VE effect predictions with 95% confi-

dence. This scenario was chosen because it was projected to be the most unpredictable,

resulting in the worst case scenario. The findings indicated that S = 3000 simulations

were required to attain E = 0.01 accuracy, with an additional set of 200 simulations to

accommodate for convergence problems. As a consequence, in all scenarios, S = 3200

simulations were conducted but trimmed to 3000 valid simulations. Therefore, a total

of 921600 datasets were simulated across all treatments.

6.4 Statistical procedures used in simulation study

This section describes the methodologies and procedures employed in the statistical

analysis of the simulated MET datasets and the corresponding capture of results. The

simulation study was completed within the R statistical computing environment (R Core

Team, 2020) and analyses were completed using ASReml-R (Butler et al., 2017). The

framework for these procedures is discussed in the sections that follow.

6.4.1 Steps used in simulation study

In the simulation study, the steps for simulation s = {1, . . . , S = 3200} within a Tsize

{T24, T48} are as follows

96



6.4 Statistical procedures used in simulation study

1. Generate the random VE effects ug, replicate block effects ub, and errors e as

per the LMM in Equation 6.2 and for the pre-specified variance parameters as

described in Sections 6.3.1.1 and 6.3.1.2. In terms of the fixed effects, without

loss of generality I choose τ1 = τ2 = 0. As noted previously, I have generated 2M

VE effects, which correspond to the maximum total number of varieties across all

connectivity levels. I denote the resultant vectors for simulation s by ugs, ubs,

and es.

2. For the connectivity level x1,2, I subset the appropriate elements of ugs, which

I label as ugsc
, where c corresponds to the levels of x1,2 (see Table 6.2). I then

form the y data vector as per Equation 6.2 and then fit the LMM in Equation

6.2. I then save the REML estimates of the FA variance parameters, denoting as

{λ̂11sc , λ̂12sc , ψ̂sc} and then convert back to the corresponding genetic variance pa-

rameters denoted as {σ̂2
g1sc

, σ̂2
g2sc

, σ̂12sc}; the REML estimates for the non-genetic

variance parameters which is denoted as {σ̂2
b1sc

, σ̂2
b2tc

, σ̂2
1sc , σ̂

2
2sc , ρ̂c1sc , ρ̂c2sc , ρ̂r2sc , ρ̂r2sc}.

I then save the EBLUPs of the VE effects, denoted as ũgsc. Additionally, I save

model convergence parameters denoted as {isc, usc} to represent the number of

iterations and updates required for model convergence.

3. Repeat step 2. for each level of x1,2.

I focus on the set of results from Env1 since this contains the same varieties across all

x1,2 levels, thus allowing a fair comparison across scenarios.
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6.4.2 Statistical analyses

In the analysis of the MET datasets as described in step 2, I fit a FALMM of order k = 1

for ug (Equation 5.7). As an example, the ASReml-R code and updating procedure is

given below.

FA1 . as r <− asreml (y ~ Tr ia l ,
random=~ r r ( Tr ia l , 1 ) : Var iety + Tr i a l : Var iety +
at ( Tr i a l ) : ColRep ,
r e s i d u a l=~ dsum(~ ar1 (Column ) : ar1 (Row) | Tr i a l ) ,
data=MET. df ,R. param = sv , G. param = sv )

#update − up to 10 t imes .
f o r ( z in 1 : 10 ){
i f ( ! FA1 . as r$converge |
max(summary(FA1 . as r ) $varcomp$ ’%ch ’ , na . rm=T) > 1)
{
FA1 . as r <− update . asreml (FA1 . as r )
i f ( i s . nu l l ( dim(FA1 . a s r $ t r a c e ) [ 2 ] ) )

{ i t e r s <− i t e r s +1}
i f ( ! i s . nu l l ( dim(FA1 . a s r $ t r a c e ) [ 2 ] ) )

{ i t e r s <− i t e r s+dim(FA1 . a s r $ t r a c e ) [ 2 ] }
up . no <− up . no+1
}

Note that the FA1 model for ug has been fitted by splitting into the two constituent

parts, namely the regression part associated with β = ΛΛ> and the lack of fit part

associated with δ (also see Chapter 5). The term rr(Trial, 1):Variety relates to

β and fits a so-called reduced rank variance structure of order 1 for the environment

dimension, and Trial:Variety relates to δ. sv is the starting values for the residual

and random parameters (see Table 6.7 for an example); update.asreml provides the

updating of the FA1.asr ASReml object using the last set of REML variance parameter

estimates. iters and up.no are objects which count how many iterations and updates

were completed.
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Table 6.7: Example starting values (sv) for ASReml-R model for MML scenario.

Component Value Constraint∗ Parameter

rr(Trial, 1):Variety!Trial1!fa1 0.103 U λ11

rr(Trial, 1):Variety!Trial2!fa1 0.749 U λ12

Trial:Variety 0.189 P ψ

at(Trial, Trial1):ColRep 0.100 P σ2
b1

at(Trial, Trial2):ColRep 0.100 P σ2
b2

Trial_Trial1!R 1 P σ2
1

Trial_Trial1!Column!cor 0.200 U ρc1

Trial_Trial1!Row!cor 0.600 U ρr1

Trial_Trial2!R 1 P σ2
2

Trial_Trial2!Column!cor 0.200 U ρc2

Trial_Trial2!Row!cor 0.600 U ρr2
∗The parameter constraints are U (unconstrained) and P (positive).

6.4.3 Reliability of EBLUPs

I calculate two main performance measures or metrics in relation to the varying levels

of x1,2, namely a measure of the genetic variance parameter estimates and a measure

of the reliability of the predicted variety effects for Env1. For each level of x1,2, the

reliability for variety k = {1 . . .m} in Env1 was computed as the square of the sample

correlation between the true (simulated) effects (element of ugsc for the variety and in

Env1) and the EBLUP (element of ũgsc for the variety and in Env1). This is denoted

as RS
kc (see Equation 3.5), and when averaged across varieties it is denoted as R̄S

c (see

Equation 3.6).

6.5 Results of simulation study

The reliability-based metrics based on VE effects are the main focus in this thesis.

These metrics are interpreted such that better reliability provides superior variety se-

lection performance. These are compared to design-based values (see Chapter 3), with

the disparities showing the loss of reliability associated with estimation of the variance

parameters.
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This section is structured in the following way: model convergence is examined in

Section 6.5.1; variance component summaries including bias and MSE are given in Sec-

tion 6.5.2; reliability based values for the predicted genetic VE effects are presented in

Section 6.5.3; and then in Section 6.5.4 I examine the associated loss in the reliability

of the predicted VE effects.

6.5.1 Model convergence

Model convergence is determined within ASReml-R by inspection of the REML log-

likelihood, which defines convergence as “REML log-likelihood changes less than 0.002*cur-

rent iteration number” Butler et al. (2017). I employ the same strategy to find con-

vergence using the above definition as well as individual variance parameter estimates

changing by less than 1%, as described in Chapter 3.

Based on past experience analysing MET datasets, model convergence issues are com-

monly observed, which is thought to be attributed to the amount of information, or lack

thereof to estimate the unknown variance parameters. To achieve REML log-likelihood

and variance parameter estimate convergence, model updates (asreml.update) are fre-

quently necessary (Butler et al., 2017). In the majority of cases, the extra iterations

obtained using asreml.update leads to convergence. However, failure to converge is

noticed in some extreme conditions. The effect of variety connectivity on ASReml-R

model convergence is investigated in this section.

The number of model convergence problems for each scenario in the simulation study

ranged from 0 to 61 out of 3200 model fits. This is demonstrated to be far less than

the 200 additional simulations specified as buffers. The number of model convergence

problems for each scenario is depicted in Figure 6.1. In addition, there were two singu-

larity problems, both for the MMM scenario. A total of 1343 model fits failed out of a

total of 921600 model fits (0.15%).

Figure 6.1 shows non-linear decreasing responses for the average number of iterations,

and convergence issues across the range of x1,2 values. These patterns alone suggest

that variety connectivity influences the reliability of variance parameter estimates.
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Figure 6.1: Number of iterations required for model convergence, and number of conver-
gence issues from the 3200 simulations for each scenario. Colours and shapes as depicted
in legend, which reference the three levels of genetic variance (GV), and between trials
genetic correlations (GC).
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6.5.2 Variance parameter estimates

Presented here are the summaries of bias and MSE of the estimated variance parameters

from the simulation study. This includes,

• {λ11, λ12, ψ} (FA variance parameters)

• {σ2
g1 , σ

2
g2 , ρ12} (Genetic variance parameters)

• {σ2
b1
, σ2

b2
, σ2

1, σ
2
2, ρc1 , ρc2 , ρr1 , ρr2} (Non-genetic variance parameters)

6.5.2.1 Bias

Figures 6.2, 6.3, 6.4, and 6.5 present the bias (see Chapter 3, Equation 3.3) for each

variance parameter estimate across varying levels of x1,2 for non-genetic, FA, and genetic

variance/correlation components. For the non-genetic variance parameters (Figures 6.2,

6.3) I see as expected, there are no bias relationships in relation to the levels of x1,2.

When comparing T24 to T48, there is a greater bias with the non-genetic components

for T24. For the trial genetic variances (Figure 6.5) both Tsize show very little bias.

For FA parameters (Figure 6.4), as well as the genetic correlation on the other hand,

reveal a clear decrease in bias as connectivity is increased.

6.5.2.2 Mean squared error for factor analytic parameters

Figure 6.6 present the MSE (see Chapter 3, Equation 3.4) for each of the FA parameter

estimates across varying levels of x1,2. The MSE reveals a non-linear declining relation-

ship as connectivity is increased for all FA parameters, with almost identical profiles

across Tsize. However, for scenarios with high levels of genetic correlation between

trials (GV=H), flat responses are shown, particularly for ψ.
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Figure 6.2: Bias with standard error bars for non-genetic variance components for each trial: replicate block {σ2
b1
, σ2
b2
}; and spatial

variance {σ2
1 , σ

2
2}; against number of varieties in common (x1,2). Colours and shapes corresponding to the legend which identifies

each scenario, denoting the three levels of genetic correlation between trials (GC); and the three levels of genetic variance (GV).
Dashed horizontal line represents no bias.
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Figure 6.3: Bias with standard error bars for non-genetic variance components for each trial: spatial correlation in the column
direction {ρc1 , ρc2}; and spatial correlation in the row direction {ρr1 , ρr2} against number of varieties in common (x1,2). Colours
and shapes corresponding to the legend which identifies each scenario, denoting the three levels of genetic correlation between trials
(GC); and the three levels of genetic variance (GV). Dashed horizontal line represents no bias.
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Figure 6.4: Bias with standard error bars for FA variance components against number of
varieties in common (x1,2). Loading for Env1 (lam1 = λ11); loading for Env2 (lam2 = λ12);
and combined across trial specific variance (psi = ψ). Colours and shapes corresponding
to the legend which identifies each scenario, denoting the three levels of genetic correlation
between trials (GC); and the three levels of genetic variance (GV). Dashed horizontal line
represents no bias.
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Figure 6.5: Bias with standard error bars for genetic variance components and genetic
correlations against number of varieties in common (x1,2). Genetic variance for Env1 (s11
= σ2

11); genetic variance for Env2 (s22 = σ2
12); and genetic correlation between Env1 and

Env2 (GC = ρ12). Colours and shapes corresponding to the legend which identifies each
scenario, denoting the three levels of genetic correlation between trials (GC); and the three
levels of genetic variance (GV). Dashed horizontal line represents no bias.
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Figure 6.6: MSE for FA variance parameters against numbers of varieties in common
(x1,2). Loading for Env1 (lam1 = λ11); loading for Env2 (lam2 = λ12); and combined
across trial specific variance (psi = ψ). Colours and shapes corresponding to the legend
which identifies each scenario, denoting the three levels of genetic correlation between trials
(GC); and the three levels of genetic variance (GV).
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6.5.3 Reliability of predicted VE effects

The ultimate purpose of analysing a MET dataset is to select the (true) best varieties

from a cohort of varieties. This section examines the reliability of predicted VE effects

in respect to variety connectivity. I begin by looking at the results of the T24 MMM sce-

nario, and then extend to investigate further scenarios. I again reiterate that the focus

is on the reliability of predicted VE effects from the varieties in Env1 alone, since this

contains the same varieties across all connectivity levels, thus allowing a fair comparison.

As discussed in Chapter 3 (Section 3.3.2), I compute analogous reliability based values

that assume known variance parameters (not REML estimates), which I call design-

based reliability values. These reflect the maximum possible reliabilities, which I denote

as RD
kc for variety k, and again when averaged across all varieties I denote R̄D

c . I recall

that, RD relates to BLUPs, and RS to EBLUPs, that is, those derived using the REML

estimates of the variance components.

Table 6.8 and Figure 6.7(a) present both simulated and design-based reliability val-

ues R̄S
c and R̄D

c for the T24 MMM scenario. I observe R̄S
c values are typically increasing

with the number of common varieties, but the R̄D
c values are flat. As a result, the

difference between the two reliability values (R̄loss) narrow as the number of common

varieties increases. This is discussed more in the next section in measures of associated

loss.

6.5.4 Mean loss in reliability of EBLUPs of VE effects

I calculate the mean loss in reliability of EBLUPs of VE effects (see Chapter 3, Equation

3.14) within each level of variety connectivity c, as the difference between the (across

varieties average) simulated (R̄S
c ) and design-based (R̄D

c ) reliabilities. As previously

stated, since the R̄S and R̄D refer to the reliabilities of the EBLUPs and BLUPs, re-

spectively, and consider the losses owing to the REML estimation process of the variance

components and prediction of the EBLUPs of VE effects.
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Table 6.8: T24 MMM: Simulated (RS
c ) and design-based (RD

c ) reliability and loss (R̄loss)
for the predicted VE effects for Env1 against number of varieties in common (x1,2).

x1,2 R̄S
c R̄D

c R̄loss

1 0.743 0.796 0.053
2 0.763 0.801 0.038
4 0.759 0.797 0.038
6 0.765 0.796 0.031
8 0.757 0.792 0.035
10 0.763 0.793 0.030
12 0.770 0.794 0.024
14 0.768 0.794 0.026
16 0.770 0.793 0.023
18 0.774 0.794 0.020
20 0.773 0.793 0.021
22 0.770 0.793 0.024
24 0.775 0.792 0.017

For the T24 MMM scenario, Table 6.8 and Figure 6.7(b) show the mean losses in relia-

bility of the predicted VE effects for Env1 for varieties V1 - V24 that were present in

both Env1 and Env2. The losses are shown to decrease at a non-linear rate with the

losses ranging from 0.053 for x1,2 = 1 to 0.017 for x1,2 = 24.

The mean loss in reliability of the EBLUPs of VE effects for Env1 against x1,2 for

T24 and T48 are shown in Figures 6.8 and 6.9, respectively. Across scenarios, they

exhibit similar complex relationships for both Tsize, however with greater losses for

T24 than for T48. These results clearly show that variety connectivity alone does not

fully explain losses in reliability of predicted VE effects.
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Figure 6.7: T24 MMM: (a) Mean reliability for VE effects for Env1 for design-based
values (BLUPs) and simulated predicted values (EBLUPs), against number of varieties
in common (x1,2). Colours as represented in the legend represent design or simulated-
based values. (b) Mean loss in reliability (difference between design and simulation-based
reliability values) of the EBLUPs of VE effects for Env1, against number of varieties in
common (x1,2). The solid blue line in (b) represents a smooth line through the points.
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Figure 6.8: T24: Mean loss in reliability of the EBLUPs of VE effects for Env1, against
number of varieties in common (x1,2) for all scenarios. The solid blue line represents a
smooth line through the points.
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Figure 6.9: T48: Mean loss in reliability of the EBLUPs of VE effects for Env1, against
number of varieties in common (x1,2) for all scenarios. The solid blue line represents a
smooth line through the points.
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6.6 Concluding remarks

In this chapter I investigate the impact of variety connectivity on the reliability of pre-

dicted VE effects from a FALMM. The simulated scenarios are based on the Oat dataset

(see Chapter 4), which corresponds to the late stages of a breeding cycle with a low to

moderate number of varieties. It is also thought to represent standard late-stage eval-

uation MET datasets used internationally with analyses involving independent variety

effects.

The results have shown complex relationships between genetic scenarios and variety

connectivity. However, I have observed differences in reliabilities and mean losses of

predicted VE effects in relation to trial size, with smaller trial sizes exhibiting greater

losses. These results indicate that traditional variety connectivity measures do not

capture the whole story and should be used with caution to evaluate the inclusion or

exclusion of environments in a MET dataset.

This work has inspired new methodology, which is described in Chapter 9. The objective

of this new method is to give a superior diagnostic than the traditional connectivity type

measure in the sense of better forecasting the uncertainty of genetic variance parameter

estimates. In addition, rather than just the basic assumption of independent variety

effects used in this chapter, I present a technique for also investigating the reliabilities

of predicted VE effects with datasets containing related variety effects.
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Chapter 7

Use of contemporary groups in the
construction of multi-environment
trial datasets for selection in plant
breeding programs

Because of the intrinsic structure of a breeding program, and consequently selection on a

stage basis, analysis of plant breeding datasets frequently consists of a succession of sin-

gle year based analyses (Arief et al., 2019). According to Bernal-Vasquez et al. (2017),

datasets are frequently analysed on a year basis rather than spanning years for two rea-

sons: it is simpler and faster; and it is difficult to quantify variation across years due to

the lack of common varieties across breeding stages. We emphasize that, because plant

breeding operations are commercial, there is frequently a lack of literature on the meth-

ods used to create a MET dataset within the context of a commercial breeding program.

The objective of this chapter is to demonstrate how to create MET datasets using

the contemporary grouping (CG) methodology of Smith et al. (2021a). The fundamen-

tal concept is to include sufficient trials to gather as much information as possible on

the varieties under evaluation for selection. The impact of this method is evaluated

using the A-optimality criterion from model-based design theory.

This chapter is arranged as follows: Section 7.1 contains some general results about
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A-optimality. Following this, Section 7.2 presents a reproduction of key sections of the

publication listed below. Note that although the candidate is not the first author of

this paper, the candidate had a key role in dataset curation, application of the method-

ology to the examples, and manuscript preparation and revision. In Section 7.3 we

demonstrate how the CG methodology is used in practice when consulting with a plant

breeder. Finally, in Section 7.4 we have concluding remarks.

Smith, A., Ganesalingam, A., Lisle, C., Smith, A., Kadkol, G., Hobson, K. &

Cullis, B. R. (2021). Use of Contemporary Groups in the Construction of Multi-

Environment Trial Datasets for Selection in Plant Breeding Programs. Frontiers

in Plant Science. 11, 2325. doi: 10.3389/fpls:2020.623586

7.1 Preliminary remarks about A-optimality

In the experimental design literature, A-optimality is used to search for designs that

minimise the average variance of treatment contrasts (Butler, 2013). The criterion is

often referred to as the “average pairwise variance” and is widely used for fixed treatment

effects in comparative experiments (John & Williams, 1996). In the context of MET

dataset construction, we wish to know whether the trials that have been compiled

provide sufficient information to limit the probability of errors in selecting varieties to

progress to the next stage of testing. Bueno Filho & Gilmour (2003, 2007) show that if

theA-optimality criterion for fixed treatment effects is generalised for the case of random

treatment (variety) effects, then it aligns with the probability of incorrect selection

decisions. If we let ui and uj be the random effects for variety i and j respectively

(for i, j = 1 . . .m) and let ũi and ũj be the associated BLUPs, then the A-optimality

criterion in this context is given by

A =
1

m(m− 1)

m−1∑
i=1

m∑
j=i+1

var ((ui − ũi)− (uj − ũj)) (7.1)

Thus in the random effects setting the A-optimality criterion is the “average pairwise

prediction error variance” (Cullis et al., 2006).
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In Bueno Filho & Gilmour (2003) it is commented that “a good design is strongly

associated with the precision of pairwise comparisons because from these comparisons

an appropriate ranking can be carried out” and thence selections can be made. In Bueno

Filho & Gilmour (2007) a Bayesian justification is given for the use of the criterion in

Equation 7.1. Their argument, using our framework and notation, proceeds by defining

the problem as selecting s out of the m varieties for progression to the next stage of

testing. If we let S be the set of the s best varieties then interest focuses on comparisons

of varieties in this set with those not in the set. Formally, we are interested in differences

∆ij = ui− uj for i ∈ S and j /∈ S. Then to minimise the probability of any single error

in selection, given the data, we must minimise Pr(∆ij < 0|y2). In Section 2.3.2 it was

shown that this probability is a function of the prediction error variance of the difference,

that is var ((ui − ũi)− (uj − ũj)) so that this variance must be minimised. Bueno Filho

& Gilmour (2007) then state that “any such mistake leads to an incorrect selection”

so that the design criterion should minimise
∑

i∈S
∑

j /∈S var ((ui − ũi)− (uj − ũj)). Fi-
nally, Bueno Filho & Gilmour (2007) state that if “any treatment [variety] is equally

likely to be amongst the best s”, then the criterion required is to minimise the total

(or average) of all m(m − 1) pairwise prediction error variances. This is exactly the

A-optimality criterion of Equation 7.1.

7.2 Reproduction of Smith, Ganesalingam, Lisle, Kadkol,
Hobson and Cullis (2021)

In the reproduction, notational changes have been made to be consistent with the

nomenclature used in this thesis. It is worth noting that the Chickpea dataset is not

utilised here. Parts of the introduction and discussion sections of the paper have been

omitted.

7.2.1 Methods for MET dataset construction

In Chapter 4 it was demonstrated that breeding programs are supported by a group of

varieties produced jointly at the crossing block stage. These are said to be ‘born’ to-

gether and assessed successively in the advanced assessment stages. These are referred

here as contemporary groupings (CGs). For illustration we again consider the Durum

dataset, which is fully described in Chapter 4, in which there are four stages of testing,
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which are denoted S1 to S4. From 2015 to 2018, the following four CGs were created:

CG15, CG16, CG17, and CG18, which corresponded to varieties in S1 trials during that

time frame. Then, for example, a subset of the CG15 varieties was progressed to S2

trials in 2016, then to S3 in 2017, and eventually to S4 in 2018. As varieties progress

through stages, their number decreases, as illustrated in the rows of Figure 4.5. Four

selection decisions would be made yearly on S1, S2, S3, and S4 varieties as they move

to the next stage of testing.

The CG concept for MET data construction is first illustrated using a hypothetical

breeding program with four stages of testing (S1 to S4) and in which varieties progress

through stages without fast-tracking (skipping stages) or retention (remaining in a stage

for more years of testing). The aim is to construct a dataset to enable accurate selection

decisions for 2018.

We first consider the decisions on varieties in S4 in 2018. These varieties commenced

their testing in S1 trials in 2015 (so are all members of CG15), were selected to be

tested in S2 trials in 2016, then S3 trials in 2017, and finally S4 trials in 2018. Thus,

in order to capture all of the data on the varieties under consideration for selection, we

would combine data from all of the trials in this sequence. Overall, this would suggest

a separate analysis for each of the selection decisions, based on combining data from

the following trials:

• S1 selection decisions: S1 trials 2018.

• S2 selection decisions: S2 trials 2018 + S1 trials 2017.

• S3 selection decisions: S3 trials 2018 + S2 trials 2017 + S1 trials 2016.

• S4 selection decisions: S4 trials 2018 + S3 trials 2017 + S2 trials 2016 + S1

trials 2015.

It is instructive to illustrate this compilation of trials across stages and years using

tables such as Table 7.1. In this table the diagonal bands of stages across years are

labelled as A to I, with the labels A to D being assigned in such a way that they align

with the S1 to S4 trials in the year of selection (here 2018). The datasets described

above correspond to the diagonal bands of trials labelled as A to D. Thus, for example,

band D comprises data from S1 trials in 2015, S2 trials in 2016, S3 trials in 2017, and
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S4 trials in 2018. It is important to note that, for any given trial, the data from all of

the harvested plots is included and not just the data on the varieties of interest. Thus,

for example, the data from S1 trials in 2015 relates to all of the varieties tested in those

trials. We describe bands A to F in Table 7.1 as being “complete” in the sense that

they trace back to the first stage of testing, namely S1. In contrast, bands G to I are

incomplete, with band G missing S1 trials, band H missing S1 and S2 trials and band

I missing S1, S2, and S3 trials. This has implications in terms of selection bias which

will be discussed in Section 7.2.3.

In the absence of retention or fast-tracking, all the varieties in S1, S2, S3, and S4

in 2018 are members of CG18, CG17, CG16, and CG15, respectively. Thus, all the va-

rieties within a stage in 2018 belong to a single CG only and the entire selection history

for any of these varieties is captured in the associated data band. The generalization to

a more complex scenario will be discussed in the context of the Durum dataset example

(see Section 7.2.3).

In terms of information available for each of the four selection decisions it is instructive

to differentiate between “direct” and “indirect” information. The former relates to ob-

served data so is maximized by including all trials in which the varieties of interest have

been grown. In the hypothetical example this corresponds to the bands so suggests the

conduct of four analyses each based on a separate band (A, B, C, and D). However, the

use of a FALMM for analysis creates the possibility of also using indirect information

derived from genetically related varieties in other trials. We would therefore recommend

undertaking a single analysis using data combined across these bands. This recommen-

dation can be justified by applying the method described in Section 7.2.2 to quantify

information for selection. Finally, we note that in the MET analysis, V×E is modelled

with reference to environments which are defined to be combinations of trial locations

and years. Combining across bands may lead to the presence of multiple trials at a

single location within a year. For example, in any given year, locations with S1 trials

also typically include S2, S3, and S4 trials. We refer to such trials as ‘co-located’.
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Table 7.1: Data bands for potential inclusion in a MET dataset for selection decisions in
2018 from a breeding program with four stages of selection (S1 to S4).

Year

Stage 2013 2014 2015 2016 2017 2018

S1 F E D C B A
S2 G F E D C B
S3 H G F E D C
S4 I H G F E D

7.2.2 Quantifying information for selection in MET datasets

In order to discriminate among possible MET datasets in terms of the amount of infor-

mation available for selection decisions, we note that the problem has strong links with

optimal (model-based) design. As Butler et al. (2014) state, “The goal of optimal de-

sign is to discriminate among competing designs in an effort to maximize the treatment

information from a fixed number of experimental units.” This requires the use of an

optimality criterion, and, in the context of plant breeding trials in which the treatments

are varieties and the aim is selection, the A-optimality criterion (see Section 7.1) is

appropriate since this aligns with minimizing the probability of an incorrect selection

decision (Bueno Filho & Gilmour, 2003). A-optimality is based on the so-called A-value

which is the average pairwise variance of elementary treatment contrasts. We therefore

propose to use A-values to quantify the treatment (variety) information available in any

given MET dataset.

In model-based design, A-values are computed under a pre-specified LMM which we

will term the design model. Specification of the design model requires specification of

the fixed and random effects, the variance models for the random effects and errors and

the values of the associated variance parameters. The design model is usually chosen

to be as close as possible to that expected for the analysis. Additionally, the variance

parameter values are chosen as being “typical” so may be based on historic analyses.

The model proposed in this thesis for the analysis of MET data is the FALMM with

the inclusion of pedigree information (when available). Variety selections using this

model are typically focused on the measure of overall variety performance (across envi-

ronments) as presented in Smith & Cullis (2018). However, the factor analytic variance
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parameters are specific to the individual environments in the dataset so that typical

values do not exist. Therefore a more generic, but still realistic design model is required

for assessing MET dataset information. We have chosen a variance component model

that involves random variety main effects and random V×E effects, both of which are

partitioned into additive and non-additive effects. This is, in fact, a sub-model of the

FALMM. The A-values are then computed for the total (additive plus non-additive)

variety main effects since these provide a measure of average performance of varieties

across environments.

In order to determine reasonable values for the variance parameters in this design model

we consider Cullis et al. (2000) who conducted variance component analyses of grain

yield in 22 MET datasets from Australian crop variety evaluation programs. The envi-

ronments in those datasets were classified according to the year, the geographic region

and possibly location within region so Cullis et al. (2000) partitioned V×E accord-

ingly. In the Durum dataset example we do not have regional information nor are trials

typically located in identical positions from year to year. However, we recognize the

importance of variety by year interaction so maintain this as a separate source in the de-

sign model. Thus, we have used the variety main effects (V), variety by year interaction

(V×Y), and error sources of variation from Cullis et al. (2000), and have added together

the remaining sources to form residual variety by environment interaction. The mean

percentage contributions for each of these sources across all 22 datasets was 13.77%

(V), 8.59% (V×Y), 37.91% (residual V×E), and 39.73% (Error) (see Table 7.2). In the

model-based design literature, and without loss of generality, a value of one is typically

assumed for the error variance. We adopt the same approach here (see second row in

Table 7.2).

In contrast to our approach, the analyses in Cullis et al. (2000) do not involve infor-

mation on genetic relatedness. We therefore make the further assumption that additive

variance comprises 80% of total variance, a value that is often encountered in practice.

The final values for the variance parameters in the design model are given in the third

and fourth rows of Table 7.2. All A-values in this thesis were computed using ASReml-R

(Butler et al., 2017).
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Table 7.2: Variance parameter values for design model for variety main effects (V), variety
by year interaction (V×Y), residual variety by environment interaction (V×E), and Error.

V V×Y V×E Error

Mean % from Cullis et al. (2000) 13.77 8.59 37.91 39.73
Total variance parameter 0.35 0.22 0.95 1.00
Additive variance parameter 0.28/ā 0.18/ā 0.76/ā
Non-additive variance parameter 0.07 0.04 0.19

Rows in the table are: means of percentages in Cullis et al. (2000); associated
(total) variance parameter values assuming error variance of one; additive variance
parameter values (numerator is 80% of total values and denominator, ā, is the mean
of the diagonal elements of NRM); non-additive variance parameter values (20% of
total values).

7.2.3 Application to the Durum dataset

In this section, we demonstrate how to use the CG methods to create an appropriate

MET dataset from the Durum dataset described in Chapter 4 for the selection and

progression to the next stage of testing of the 2018 S1, S2, S3, and S4 test varieties.

Table 7.3 shows the number of test varieties for each stage and year (2013 to 2018). It

is important to note that test varieties refer exclusively to those under consideration for

selection, so excludes check varieties.

At any point of selection, a test variety may be chosen to go to the next level of testing,

kept in the current stage, or rejected. We clearly observe that Durum test varieties are

often held within stages for extra years of testing. The distribution of the 2018 varieties

across CGs is shown in the last columns of Table 7.3. As an example, for the S3 test

varieties (also see Figure 4.7), the majority (66) correspond to CG16, thus following the

straightforward progression along band C, as shown in Table 7.1. However, a significant

number (22) correspond to CG15 and progressed from S1 trials in 2015 to S2 trials in

2016, to S3 trials in 2017, and finally to S3 trials in 2018. Finally, five test varieties

correspond to CG14 which advanced from S1 trials in 2014 to S2 trials in 2015 to S3

trials in 2016, and were then kept in S3 in 2017 and 2018. We have also observed a

similar pattern for the S4 test varieties (see Figure 4.6), however with a higher level of
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retention. This has ramifications for the MET dataset’s construction.

The starting point for MET dataset construction for selection decisions on the 2018

test varieties (S1 to S4) includes all trials in bands A-D. With the retention of test

varieties, it is evident that most of the data on the 30 S3 and S4 test varieties that

belonged to CG14 and CG13 in 2018 will be lost. Table 7.4, for example, indicates

that there are nine test varieties in S4 for which five years of data would be missing if

the dataset only included bands A-D; another nine test varieties for which four years

would be missing; and seven test varieties lacking two or three years of data. This is,

in our opinion, unacceptable. As a result, we look at the inclusion of bands E and F

to the data. The improvement in collecting more information on the test varieties of

interest is seen in Table 7.4. Full data on the test varieties of interest may be acquired

by adding band G, but we advise against doing so because band G is incomplete as it

lacks S1 trials (see Table 7.1), and we do not have the whole selection history for many

of the test varieties in band G. The inclusion of band G, as well as the two incomplete

bands H and I, may result in ‘selection bias’, that is, bias in the estimates of the genetic

variance parameters (Thompson, 1973) and hence we do not recommended. As a result,

bands A-F are chosen for the final dataset, where only five S4 test varieties are missing

data in this dataset. The final MET dataset for analysis (bands A-F) included yield

data on 6951 varieties from 21660 plots, comprising 97 trials across 30 environments.

Finally, to compare the MET datasets we use the A-optimality criterion (see Section

7.1) as a diagnostic for each selection and for each of the five MET datasets: 2018 data

for each stage, the diagonal band of data for each stage, combined data bands A-D and

A-E, and the final dataset (bands A-F). Figure 7.1 illustrates the resultant A-values,

which clearly show the final dataset’s advantage in each scenario. The decrease in A-

values is mostly driven by an increase in the amount of direct information (as indicated

in the mean number of environments per variety), but indirect information also plays a

significant role. For example, the S1 varieties under consideration for selection in 2018
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were only grown in one environment, therefore there is no clear information difference

between utilising the 2018 data alone for this stage vs the final dataset. The A-value for

the final dataset is substantially smaller, suggesting the influence of indirect information

from relatives of the S1 variety.

Table 7.3: Number of test varieties in each Stage (S1-S4) and year (2013-2018) in the Durum
dataset.

Number of test varieties Number of 2018 test varieties

Stage 2013 2014 2015 2016 2017 2018 CG18 CG17 CG16 CG15 CG14 CG13

S1 582 1485 1000 1163 1303 1148 1148 0 0 0 0 0
S2 105 361 413 388 379 315 0 315 0 0 0 0
S3 30 92 92 92 90 93 0 0 66 22 5 0
S4 25 41 57 55 53 56 0 0 0 31 12 13

The final columns give the number of test varieties in each contemporary group (CG13 - CG18) for
the varieties for selection in 2018.

Table 7.4: MET dataset construction for 2018
selection decisions in the Durum dataset.

#years Bands in dataset

Stage missing A-D A-E A-F A-G

S1 0 1148 1148 1148 1148
S2 0 315 315 315 315
S3 0 88 93 93 93

2 5 0 0 0
S4 0 31 42 51 56

1 0 1 3 0
2 6 0 2 0
3 1 0 0 0
4 9 13 0 0
5 9 0 0 0

Number of test varieties missing data in datasets com-
prising bands A-D, A-E, A-F, and A-G. Total number
of test varieties for selection: 1148, 315, 93 and 56 (for
stages S1 to S4).
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Figure 7.1: A-values for 2018 test varieties under consideration for selection in the Durum
dataset (S4: 56 varieties, S3: 93 varieties, S2: 315 varieties, and S1: 1148 varieties). A-
values are given for five MET datasets: 2018 data alone for each stage (2018), diagonal
bands for each stage (band), data bands A-D (AD), data bands A-E (AE), and for the final
(final) dataset as described in Section 7.2.3. For each MET dataset, each point is labelled
with the average number of environments for the test varieties. It is worth noting that the
S1 MET datasets for 2018 and band are same.
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7.3 Contemporary groups in practice

The CG methodology has been frequently used to construct MET datasets in Australian

plant breeding programs since the introduction of the publication. In this section, I de-

scribe how the CG techniques are applied in these programs to provide breeders a

proposal for the MET datasets for analysis. A summary of the output provided to

breeders is shown in this section, referred to here after as the ‘CG spreadsheet’, as well

as the R code to generate this output.

I again use the Durum dataset as described in Chapter 4 as our example, and con-

sider the varieties grown in the S3 trials in 2018, for which there are 93 test varieties

for evaluation. The CG approach is simple and straightforward, with only a few steps,

which are as follows.

1. Define varieties as either test varieties or checks. As previously defined, test va-

rieties are those under consideration for selection, whereas checks are normally

released varieties intended for comparison. This process is frequently more com-

plicated than it appears, because some test varieties are utilised both as a check

and as a candidate for selection.

2. For each current selection decision I then determine the CG for each test variety.
The R code and output are below.

gg <− unique ( a l l da ta$Var i e t y [ a l ldata$YearStage==’2018S3 ’ ] )
vS3 . 2 0 1 8 . df <− data . frame ( Var iety=gg )
vS3 . 2 0 1 8 . df$Vtype <− ’ Test ’
vS3 . 2 0 1 8 . df$Vtype [ i s . e lement ( vS3 . 2 0 1 8 . df$Var iety ,
genos . checks ) ] <− ’ Check ’
l ength ( gg ) # 105
vvy <− with ( a l l da ta , tapply ( as . numeric ( as . cha rac t e r (Year ) ) ,
l i s t ( Variety , Year ) ,mean ) )

yy <− vvy [ vS3 . 2 0 1 8 . df$Var iety , ]
fy <− apply (yy , 1 , f unc t i on (x ) x [ ! i s . na (x ) ] [ 1 ] )
vS3 . 2 0 1 8 . d f$year1 <− fy
vvs <− with ( a l l da ta , tapply ( as . numeric ( Stage ) ,
l i s t ( Variety , Year ) ,min ) )
s s <− vvs [ vS3 . 2 0 1 8 . df$Var iety , ]
f s <− apply ( ss , 1 , f unc t i on (x ) x [ ! i s . na (x ) ] [ 1 ] )
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vS3 . 2 0 1 8 . d f$ s tage1 <− f s
s s <− as . data . frame ( s s )
names ( s s ) <− paste ( ’ S ’ , names ( s s ) , sep=’− ’)
s s$Var i e ty <− row . names ( s s )
s s <− s s [ ! i s . e lement ( ss$Var iety , genos . checks ) , ]
vS3 . 2 0 1 8 . df <− merge ( vS3 . 2 0 1 8 . df , ss , by=’Variety ’ , a l l . x=T)
vS3 . 2 0 1 8 . df$CG <− ’Unknown ’
vS3 . 2 0 1 8 . df$CG [ vS3 . 2 0 1 8 . d f$ s tage1==’1’&
vS3 . 2 0 1 8 . d f$year1 == ’2013 ’] <− ’CG13 ’
vS3 . 2 0 1 8 . df$CG [ vS3 . 2 0 1 8 . d f$ s tage1==’1’&
vS3 . 2 0 1 8 . d f$year1 == ’2014 ’] <− ’CG14 ’
vS3 . 2 0 1 8 . df$CG [ vS3 . 2 0 1 8 . d f$ s tage1==’1’&
vS3 . 2 0 1 8 . d f$year1 == ’2015 ’] <− ’CG15 ’
vS3 . 2 0 1 8 . df$CG [ vS3 . 2 0 1 8 . d f$ s tage1==’1’&
vS3 . 2 0 1 8 . d f$year1 == ’2016 ’] <− ’CG16 ’
vS3 . 2 0 1 8 . df$CG [ vS3 . 2 0 1 8 . d f$ s tage1==’1’&
vS3 . 2 0 1 8 . d f$year1 == ’2017 ’] <− ’CG17 ’
vS3 . 2 0 1 8 . df$CG [ vS3 . 2 0 1 8 . d f$ s tage1==’1’&
vS3 . 2 0 1 8 . d f$year1 == ’2018 ’] <− ’CG18 ’
vS3 . 2 0 1 8 . df$CG [ vS3 . 2 0 1 8 . df$Vtype==’Check ’ ] <− ’ Check ’
vS3 . 2 0 1 8 . df <− vS3 . 2 0 1 8 . df [ order ( vS3 . 2 0 1 8 . df$Vtype ,
vS3 . 2 0 1 8 . df$CG ) , ]

p r i n t ( head ( vS3 . 2 0 1 8 . df , 4 ) , row . names = FALSE)
#Variety Vtype year1 s tage1 S−13 S−14 S−15 S−16 S−17 S−18 CG
#10TD032 Test 2014 1 NA 1 2 3 3 3 CG14
#10TD036 Test 2014 1 NA 1 2 3 3 3 CG14
#11TD010 Test 2014 1 NA 1 2 3 3 3 CG14
#11TD014 Test 2014 1 NA 1 2 3 3 3 CG14

with ( vS3 . 2 0 1 8 . df , t ab l e (CG) )
# CG
# CG14 CG15 CG16 Check
# 5 22 66 10

where alldata is the Durum dataset, YearStage is the concatenation of Year

and Stage, and geno.checks is the list of check varieties determined in Step 1.

As already shown in Table 7.3, the S3 varieties include 66 varieties derived from

S1 in 2016 (CG16), 22 varieties from CG15, 5 varieties from CG14, and 10 are

checks. This step is also particularly critical as a data checking mechanism, as

any varieties with unknown origins may indicate that there are missing trials or

problems with variety naming.
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3. I then compile all the CGs to form a Table similar to that shown in Table 7.3.
Below is the R code.

vS1 . 2 0 1 8 . d f$Stage <− ’ S1 ’
vS2 . 2 0 1 8 . d f$Stage <− ’ S2 ’
vS3 . 2 0 1 8 . d f$Stage <− ’ S3 ’
vS4 . 2 0 1 8 . d f$Stage <− ’ S4 ’
durumALL . 2 0 1 8 . df <− rbind ( vS1 . 2 0 1 8 . df , vS2 . 2 0 1 8 . df ,
vS3 . 2 0 1 8 . df , vS4 . 2 0 1 8 . df )

tmp <− d r op l e v e l s ( a l l d a t a [ ! a l l da ta$Var i e ty %in%
genos . checks & ! i s . na ( a l l da ta$Var i e t y ) , ] )
tmp$StageVar <− paste ( tmp$Variety , tmp$YearStage , sep=’_’ )
tmp <− tmp [ ! dup l i ca t ed ( tmp$StageVar ) , ]
t tv <− t ab l e ( tmp$Stage , tmp$Year )

durumALL . 2 0 1 8 . d f$Stage <− f a c t o r (durumALL . 2 0 1 8 . df$Stage ,
l e v e l s=c ( ’ S1 ’ , ’ S2 ’ , ’ S3 ’ , ’ S4 ’ ) )
durumALL . 2 0 1 8 . df$CG <− f a c t o r (durumALL . 2 0 1 8 . df$CG ,
l e v e l s=c ( ’CG18 ’ , ’CG17 ’ , ’CG16 ’ , ’CG15 ’ , ’CG14 ’ , ’CG13 ’ , ’ Check ’ ) )

t tg <− t ab l e (durumALL . 2 0 1 8 . df$Stage , durumALL . 2 0 18 . df$CG)
cbind ( ttv , t tg )

# 2013 2014 2015 2016 2017 2018 CG18 CG17 CG16 CG15 CG14 CG13 Check
#S1 582 1485 1000 1163 1303 1148 1148 0 0 0 0 0 7
#S2 105 361 413 388 379 315 0 315 0 0 0 0 6
#S3 30 92 92 92 90 93 0 0 66 20 5 0 12
#S4 25 41 57 55 53 56 0 0 0 31 12 13 12

4. For each selection decision I then form a table presenting the flow from stage to
stage across years. Below is the R code. Note that this is how Figure 4.7 was
formed.

tmp . S3 <− tmp [ tmp$Variety %in% vS3 . 2 0 1 8 . df$Var iety , ]
tmp . S3$uniq <− paste (tmp . S3$Variety , tmp . S3$YearStage , sep="_")
tmp . S3 <− tmp . S3 [ ! dup l i ca t ed (tmp . S3$uniq ) , ]
#Example f o r the 93 S3 v a r i e t i e s
t ab l e (tmp . S3$Stage , tmp . S3$Year )

# 2013 2014 2015 2016 2017 2018
# S1 0 5 22 66 0 0
# S2 0 0 5 22 68 0
# S3 0 0 0 5 25 93
# S4 0 0 0 0 0 3

128



7.3 Contemporary groups in practice

5. Finally, to decide upon which dataset, I calculate the A-values for the possible
MET datasets. As an example, the R code below calculates the A-values for each
of the four selection decisions using the ‘final’ dataset. Note that they match the
values on Figure 7.1.

f i n a l . df$Environment <− f a c t o r ( f i n a l . df$Environment )
f i n a l . df$Gkeep <− f a c t o r ( f i n a l . df$Gkeep )
f i n a l . df$Year <− f a c t o r ( f i n a l . df$Year )

f i n a l . sv <− asreml (y ~ Environment ,
random =~ vm(Gkeep , ped . g iv ) + idv (Year ) :vm(Gkeep , ped . g iv ) +
idv ( Environment ) :vm(Gkeep , ped . g iv ) +
ide (Gkeep ) + Year : ide (Gkeep ) + Environment : ide (Gkeep ) ,
r e s i d u a l=~idv ( un i t s ) , data=f i n a l . df , s t a r t . va lue s=T,
na . ac t i on = na . method (x=’ inc lude ’ ) , maxit=1)

gams <− f i n a l . sv$vparameters . t ab l e
gams$Value <− c (0 . 28/ abar , 0 .18/ abar , 0 .76/ abar ,
0 . 07 , 0 . 04 , 0 . 19 , 1 , 1 )
gams$Constraint <− ’F ’

f i n a l . a s r <− asreml (y ~ Environment ,
random =~ vm(Gkeep , ped . g iv ) + idv (Year ) :vm(Gkeep , ped . g iv ) +
idv ( Environment ) :vm(Gkeep , ped . g iv ) +
ide (Gkeep ) + Year : ide (Gkeep ) + Environment : ide (Gkeep ) ,
r e s i d u a l=~idv ( un i t s ) , data=f i n a l . df ,
R. param=gams , G. param=gams ,
na . a c t i on = na . method (x=’ inc lude ’ ) , maxit=1,workspace=’1gb ’ )

f i n a l . s1 . pvs <− p r ed i c t ( f i n a l . asr , c l a s s i f y =’Gkeep ’ ,
only=c ("vm(Gkeep , ped . g iv )" ," ide (Gkeep )" ) ,
maxit=1, l e v e l s=vars . s1 , pworkspace=’4gb ’ )
( f i n a l .A. s1 <− f i n a l . s1 . pvs$avsed ^2)
# ov e r a l l
#0.4833488

f i n a l . s2 . pvs <− p r ed i c t ( f i n a l . asr , c l a s s i f y =’Gkeep ’ ,
only=c ("vm(Gkeep , ped . g iv )" ," ide (Gkeep )" ) ,
maxit=1, l e v e l s=vars . s2 , pworkspace=’4gb ’ )
( f i n a l .A. s2 <− f i n a l . s2 . pvs$avsed ^2)
# ov e r a l l
#0.3728789
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f i n a l . s3 . pvs <− p r ed i c t ( f i n a l . asr , c l a s s i f y =’Gkeep ’ ,
only=c ("vm(Gkeep , ped . g iv )" ," ide (Gkeep )" ) ,
maxit=1, l e v e l s=vars . s3 , pworkspace=’4gb ’ )
( f i n a l .A. s3 <− f i n a l . s3 . pvs$avsed ^2)
# ov e r a l l
#0.2990924

f i n a l . s4 . pvs <− p r ed i c t ( f i n a l . asr , c l a s s i f y =’Gkeep ’ ,
only=c ("vm(Gkeep , ped . g iv )" ," ide (Gkeep )" ) ,
maxit=1, l e v e l s=vars . s4 , pworkspace=’4gb ’ )
( f i n a l .A. s4 <− f i n a l . s4 . pvs$avsed ^2)
# ov e r a l l
#0.1991485

This information is then compiled into the CG spreadsheet, and discussed with the

breeder in terms of the composition of the MET datasets. Discussions may cover vari-

eties with unknown origins, ensuring that the MET datasets contain as much data as

feasible for the key test varieties of interest, and estimating the time required for the

corresponding MET analyses.

The final Durum MET dataset, as demonstrated in the earlier parts of this chapter

and detailed in Smith et al. (2021a), has trials in data bands A-F (see Table 7.1), with

30 environments, 97 trials, and 7628 varieties. This MET dataset has been analysed in

Chapter 8, to demonstrate analyses including pedigree information.

7.4 Concluding remarks

In this chapter I have demonstrated how to create MET datasets using the CG method-

ology of Smith et al. (2021a). This methodology has filled a gap in the literature by

providing a systematic approach for the construction of MET datasets for selection in

plant breeding programs. The approach for increasing the amount of data available for

the varieties under consideration is simple and straightforward, with only a few steps.

To quantify different MET datasets, we employ from model-based design theory the

A-optimality criterion as described in Section 7.1. When applied to the Durum dataset

(see Chapter 4), we clearly demonstrate the superiority of the MET datasets generated
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using the CG approach, especially when contrasted to more frequently used strategies.

The information benefits were connected with both direct and indirect information col-

lected from trials where genetically similar varieties were grown. We have demonstrated

that by sequentially building the MET dataset using data bands, we may create MET

datasets that capture as much information as feasible for the varieties of interest.

The final MET dataset derived in Section 7.2.3 has been used in Chapter 8 to demon-

strate a MET analysis with pedigree information. I note however, that combining trials

using the CG approach may result in datasets with poor variety connectivity between

environments. Whilst one of the advantages of using FALMM (as discussed in Chapter

1) is the ability to handle unbalanced data, there has been concern about the reliabil-

ity of the estimated genetic variance parameters when variety connectivity is poor. I

have already shown in Chapter 6 that variety connectivity influences the reliability of

genetic effects, it is also well-known that poorly estimated genetic variance parameters

will result in a reduction in genetic gain (Sales & Hill, 1976b,a). The A-value approach

does not take this into account since the variance parameters are assumed known. In

Chapter 9 a formal information based diagnostic using the D-optimality criterion will

be developed for this purpose. This may therefore be applied jointly with the A-value

approach in order to balance variety information and reliability of variance parameter

estimation in the search for an optimum MET dataset.
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Chapter 8

Statistical analysis of the Durum
dataset

This chapter uses the Durum dataset originally introduced in Chapter 4 to demonstrate

the statistical procedures described in Chapter 2, with analyses including pedigree in-

formation. In order to construct a suitable dataset, the final dataset was constructed

using the contemporary group (CG) methodology (see Chapter 7). Smith et al. (2021a)

demonstrated that this approach clearly showed superiority of the MET datasets con-

structed in comparison to traditional techniques. The information gains were linked

with both direct information, acquired from trials in which the varieties of interest

were grown, and indirect information derived from trials in which genetically similar

varieties were grown. The CG method is also shown to reduce the influence of selection-

based bias on datasets produced from a single year of data and affected by seasonally

exceptional years.

The analyses in this chapter differ from those provided in Chapter 5 for the Oat dataset

in that I use pedigree information to partition VE effects into additive and non-additive

(residual) VE effects (Oakey et al., 2007). The superiority of these models has been

widely demonstrated, as evidenced in Oakey et al. (2007); Beeck et al. (2010).

This chapter is arranged as follows: Section 8.1 contains some general information about

the Numerator Relationship Matrix (NRM), which is used in the analysis to allow for

related variety effects. Following this a co-located pedigree trial analysis is illustrated in
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Section 8.2, and then a summary of all single environment pedigree analyses is provided

in Section 8.3. Then in Section 8.4 the MET analysis of the full Durum dataset (see

Chapter 7) is presented. Finally, in Section 8.5 I have concluding remarks.

8.1 Numerator relationship matrix

In this chapter I now assume related variety effects, which are accommodated in the sta-

tistical model through the Numerator Relationship Matrix (NRM), commonly known

as the A matrix. This is a symmetric matrix that represents the genetic relationships

between varieties, which assumes inheritance laws for correlated genetic (additive) ef-

fects. The NRM is built from a pedigree file, which is a structured representation of

an individual’s ancestral links. The inclusion of this information in the LMM allows

for the links between varieties both within and across environments. The elements of

A = {aij} are given as

aii = 1 + Fi

aij = 2fij

where Fi represents the inbreeding coefficient, which represents twice the probability

that two alleles at a given locus are identical by descent, or in other words, the extent an

individual is more likely to be homozygous rather than heterozygous because of related

parents; and fij is the coefficient of parentage between varieties i and j.

In practice, the inverse of the NRM (A−1) is preferred in the LMM due to it com-

putational properties given that it is generally more sparse. In this thesis, the creation,

manipulation and calculation of the pedigree file and A−1 are constructed using the

pedicure R package (Butler, 2016).

8.2 Spatial analysis of a co-located trial with pedigree in-
formation

To illustrate the spatial co-located trial analysis with pedigree information, the S4

(16S4BRZ) and S3 trials (16S3BRZ) sown in Breeza in 2016, with the environment

name ‘2016-Breeza’ is used. They were both sown and managed similarly, with the S4
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trial sown above the S3 trial as shown in Figure 4.8. The trait of interest is grain yield

which is measured in tonnes per hectare (t/ha), with plot yields ranging from ∼ 2.6 to

5.6 t/ha, with one missing plot yield. The trials will henceforth be numbered as trials 1

(S3) and 2 (S4). Each trial was sown into rectangular arrays with c = 12 columns and

r1 = 15 or r2 = 16 rows, with n1 = 180 and n2 = 192 (Σ2
j=1nj = 372) plots respectively.

There are m1 = 60 and m2 = 96 varieties with 152 unique varieties across trials, with

four check varieties in common between trials. Both trials were designed as a RCB with

b1 = 3 and b2 = 2 replicates, with replicate blocks aligned with four and six columns

for trials 1 and 2 respectively.

The pedigree information contained 254 records, relating to the 152 varieties grown

and 102 ancestral varieties that were not grown. This information is used to form a

numerator relationship matrix (NRM, see Section 8.1), denoted A. This is a (m×m)

matrix where m = 254.

8.2.1 Statistical analysis

The methods outlined in Chapter 2, with extensions for the co-located aspect as de-

scribed in Chapter 5, were used for the analysis of 2016-Breeza. An initial model (M1)

comprises terms reflecting the co-location of the trials within environment, the trial

designs and an AR1×AR1 process for the errors was used. With the allowance of the

pedigree information the vector of variety effects (ug), which is denoted as the total

variety effects, can be decomposed into additive (ua) and non-additive (ue) variety

effects, so that

ug = ua + ue (8.1)

The LMM labelled Model 1 (M1) for the (372 × 1) data vector y = (y1, y2, . . . , y372)>

may be written as

y = Xτ +Zg(ua + ue) +Ztut +Zbub + e (8.2)

where τ is the overall mean with associated design matrixX; {ua,ue} are the (254×1)

vectors of random additive and non-additive variety effects respectively with associated

design matrix Zg; ut is the (2× 1) vector of random trial effects with associated design

matrix Zt; ub is the (5× 1) vector of random replicate block effects for each trial with
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8. STATISTICAL ANALYSIS OF THE DURUM DATASET

associated design matrix Zb; and e is the combined (372 × 1) vector of errors across

both trials. It is assumed that
ua

ue

ut

ub

e

 ∼ N




0
0
0
0
0

 ,

Ga 0 0 0 0
0 Ge 0 0 0
0 0 Gt 0 0
0 0 0 Gb 0
0 0 0 0 Σ




where

• Ga = σ2
aA (Additive genetic variance matrix)

• Ge = σ2
eI254 (Non-additive genetic variance matrix)

• Gt = σ2
t I2 (Trial variance matrix)

• Gb = σ2
bI5 (Replicate block variance matrix)

• Σ = ⊕2
j=1σ

2
jΣcj (ρcj )⊗Σrj (ρrj ) (Error variance matrix)

where Σcj and Σrj are the (12× 12) and (rj × rj) correlation matrices for columns and
rows respectively. Similar to the methods outlined in Chapter 5 for the analysis of the
Oat dataset, I use the ‘equal constrained’ approach of Jordan (2022), where the spatial
variance and spatial correlations for the two trials are constrained to be equal.

The associated ASReml-R code for M1 is given as

M1. as r <− asreml ( y i e l d ~ 1 ,
random =~ vm( Variety , breeza16 . ainv ) + ide ( Var iety ) +
Tr i a l + Tr i a l : ColRep ,
r e s i d u a l =~ dsum(~ ar1 (Column ) : ar1 (Row) | Tr i a l ) ,
vcc=Mcc , data=breeza16 . df )

where yield is the data vector of plot yields (t/ha); 1 denotes the overall mean; Trial,

Trial:ColRep are terms representing the random trial and within trials replicate block

effects respectively. The errors are modelled using an AR1×AR1 structure for each trial

as given by dsum(ar1(Column):ar1(Row)|Trial); Mcc is the matrix of constraints (see

Table 5.4 for an example); and breeza16.df is the data object.

The variety effects as shown by Equation 8.1 have been partitioned into additive and

136



8.2 Spatial analysis of a co-located trial with pedigree information

non-additive effects. The term vm(Variety,breeza16.ainv) relates to the additive ef-

fects ua which uses breeza16.ainv which is the (sparse form) A−1 for the 2016-Breeza

environment. The vm() is ASReml syntax referring to a known relationship structure,

with the form vm(obj, source) where, obj=Variety, source=breeza16.ainv. The

term ide(Variety) relates to the non-additive effects ue, where ide() creates a part-

ner term to vm() with the same levels.

Following the same procedures as shown in Chapter 5 for the analysis of the Oat dataset,

random column and row effects were added with a significant (p < 0.001) increase in

`R after their inclusion. The adjusted M1 is denoted as Model 2 (M2). There were no

outliers identified. Table 8.1 displays the REML estimates of the variance parameters

for M2.

In relevance to this thesis, I use σ̂2
a = 0.054 and σ̂2

e = 0.074 from Table 8.1. Thus,

v̂ar(ug) = σ̂2
aA + σ̂2

eI254 and for an individual variety I have v̂ar(ugi) = aiiσ̂
2
a + σ̂2

e

where aii is the ith diagonal element of A. For the 152 varieties with phenotypic data in

2016-Breeza, the values of aii range from 1.750 to 1.998 with a mean of ā = 1.879. I then

define an (average) total genetic variance for the varieties grown in this environment

as σ̂2
g = āσ̂2

a + σ̂2
e = 0.175. Finally, I compute the percentage of total genetic variance

accounted for by the additive component as āσ̂2
a/σ̂

2
g × 100% = 57.6%.
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Table 8.1: REML estimates of variance parameters for the co-located trial analysis for
2016-Breeza for Model M2.

Term in model REML estimate Parameter

Trial 0.000 σ2
t

Trial:ColRep 0.001 σ2
b

Trial:Column 0.026 σ2
c

Trial:Row 0.002 σ2
r

vm(Variety, breeza16.ainv) 0.054 σ2
a

ide(Variety) 0.074 σ2
e

Trial_16S3BRZ!R 0.064 σ2
1

Trial_16S3BRZ!Column!cor 0.060 ρc1

Trial_16S3BRZ!Row!cor 0.211 ρr1

Trial_16S4BRZ!R 0.064 σ2
2

Trial_16S4BRZ!Column!cor 0.060 ρc2

Trial_16S4BRZ!Row!cor 0.211 ρr2

8.2.1.1 Empirical best linear unbiased predictions

From the analysis of M2, the variety EBLUPs for the total variety effects ũg (see

Equation 8.1) are obtained. These are presented in Table 8.2 for the first and last four

varieties in alphabetical order, along with their PEV and r2. I also show their additive

(ũa) and non-additive (ũe) EBLUPs. Figure 8.1 presents the relationship between

ũg and the raw means for individual varieties, where the dashed line represents a 1-1

relationship. The reasonably high reliabilities (mean of 0.82) results in little shrinkage

so that the points centre around a line with a slope close to 1. The r2 for the total

variety effects ranged from 0.70 to 0.89 with R̄ = 0.82.
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Table 8.2: 2016-Breeza: ũa, ũe, ũg, prediction error variance (PEV) for ũg, and r2

estimates for the first and last four varieties in alphabetical order.

Variety ũa ũe ũg PEV r2

10TD022*3X-103 -0.044 -0.036 -0.080 0.053 0.699
10TD022*3X-77 -0.005 0.022 0.017 0.027 0.847
10TD022*3X-96 -0.042 -0.033 -0.075 0.035 0.800
10TD022*3X-98 -0.087 -0.099 -0.186 0.035 0.802
...

...
...

...
...

...
UAD1151056 -0.416 -0.308 -0.724 0.026 0.851
UAD1151096 -0.098 -0.072 -0.170 0.026 0.851
UAD1151097 -0.159 -0.118 -0.277 0.026 0.851
UAD1152020 -0.166 -0.122 -0.288 0.026 0.852

−0.5

0.0

0.5

−1.0 −0.5 0.0 0.5 1.0
Raw variety means

u~
g

Figure 8.1: 2016-Breeza: ũg against raw centred varietal means. Dashed line represents
a 1-1 line. A regression line through the points is shown by the solid blue line.
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8.3 Summary of results from all single environment
analyses

I now consider the analyses for all 30 environments in the Durum dataset. The same

procedures as shown in the previous section for the analysis of 2016-Breeza were used.

There were 12 outliers identified and removed from the Durum dataset. A summary

of all unique models fitted to the non-genetic effects is presented in Table 8.3. These

models include the non-genetic effects of ColRep which is the random model term for

the replicate block effect; Column and Row are random model terms for column and row

effects; the spatial models for all environments was an AR1×AR1 for spatial correlation

in both directions. The inclusion of the non-genetic model terms are denoted by the

tick marks in Table 8.3 with the four unique models denoted as Models M1.d, M2.d,

M3.d, and M4.d. Note that for co-located trials, a random Trial term is also fitted and

ColRep, Column and Row denote replicate block, column, and row effects within trials.

M4.d was the most commonly selected non-genetic model, with 13 environments, which

include random effects for ColRep, Column and Row.

Table 8.4 provides the REML parameter estimates for the genetic, non-genetic, and

error variance parameters. The ā is shown for each environment, which is the mean of

the diagonal elements for A for the subset of varieties grown in each environment, the

percentage of additive variance (ADD%) is also provided. The average ADD% across

all environments was 58%, but note that this increases to ∼80% when the MET analysis

is used (see Section 8.4).
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8.3 Summary of results from all single environment
analyses

Table 8.3: Set of unique models fitted to the non-genetic effects for the 30 environments
in the final Durum dataset. ColRep is the random model term for replicate block effects;
Column and Row are random model terms for column and row effects; the spatial model
AR1×AR1 denotes spatial correlation in both directions.

Model ColRep Column Row Spatial Environments

M1.d - - AR1xAR1 4
M2.d - AR1xAR1 9
M3.d - AR1xAR1 4
M4.d AR1xAR1 13

Note that for co-located trials, a random Trial term is also fitted and
ColRep, Column and Row denote replicate block, column, and row effects
within trials.
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Table 8.4: REML estimates for genetic {σ̂2
a, σ̂

2
e , σ̂

2
g}, non-genetic {σ̂2

t , σ̂
2
b , σ̂

2
c , σ̂

2
r}, and error {σ̂2, ρ̂c, ρ̂r} variance parameters for

the analysis of the Durum environments. ā shows the mean of the diagonal elements of A for the subset of varieties grown in
each environment. ADD% shows the percentages of additive genetic variance to the total genetic variance. The final column
represents the non-genetic model chosen (M1.d-M4.d). B denotes variance parameter is estimated at the boundary value (0 for
variance components). Horizontal dashed lines separate years (2013-2018). The environment 2016-Breeza illustrated in this chapter
for analysis is represented by the grey row.

Genetic Non-genetic Error

Environment σ̂2
a σ̂2

e σ̂2
g σ̂2

t σ̂2
b σ̂2

c σ̂2
r σ̂2 ρ̂c ρ̂r ā ADD% Model

2013-Breeza 0.106 0.038 0.236 0.007 B 0.002 0.001 0.133 0.278 0.325 1.877 84.0 M4.d
2014-Breeza 0.070 0.011 0.143 B 0.021 0.005 0.007 0.083 0.596 0.429 1.881 92.1 M4.d
2014-Edgeroi 0.027 0.010 0.060 0.027 0.006 0.002 0.057 0.426 0.629 1.877 83.0 M2.d
2014-Tworth 0.037 0.001 0.071 0.118 0.031 0.003 0.056 0.524 0.370 1.876 98.0 M2.d
2015-Breeza 0.051 B 0.097 0.008 B 0.007 0.046 0.147 0.129 -0.073 1.882 100 M4.d
2015-Edgeroi 0.033 0.035 0.097 0.121 0.001 0.006 0.000 0.031 0.169 0.618 1.877 64.0 M4.d
2015-Nstar 0.019 0.086 0.122 0.059 0.031 0.030 0.045 0.012 1.882 29.6 M2.d
2015-Tworth 0.012 0.019 0.042 0.155 0.006 0.002 0.004 0.078 0.131 0.301 1.916 56.0 M4.d
2016-Breeza 0.054 0.074 0.175 B 0.001 0.026 0.002 0.064 0.060 0.211 1.878 57.6 M4.d
2016-Edgeroi 0.006 0.218 0.229 0.004 0.026 0.357 0.035 1.883 4.8 M1.d
2016-Gurley 0.056 0.189 0.294 0.012 0.026 0.069 -0.112 0.461 1.883 35.6 M3.d
2016-Nstar 0.086 0.034 0.196 0.031 0.005 0.015 0.004 0.096 0.052 0.630 1.878 82.5 M4.d
2016-Tworth 0.071 0.096 0.232 1.258 0.014 0.027 0.013 0.157 0.353 0.399 1.923 58.6 M4.d
2017-Blbgra 0.038 0.021 0.092 0.028 0.002 0.028 0.038 0.193 0.119 1.881 77.0 M4.d
2017-Breeza 0.041 0.183 0.261 B 0.014 0.007 0.158 0.269 0.379 1.907 29.9 M2.d
2017-Bribbaree 0.009 0.026 0.042 B 0.020 0.140 0.031 0.829 1.881 38.8 M2.d
2017-Coonamble 0.018 0.024 0.057 B 0.086 0.247 0.545 1.881 58.4 M1.d
2017-Edgeroi 0.005 0.009 0.020 0.009 0.071 -0.056 0.732 1.881 51.8 M1.d
2017-Garah B 0.020 0.020 0.028 0.004 0.079 0.005 0.434 1.881 0 M3.d
2017-Gurley 0.010 0.069 0.087 B 0.011 0.005 0.081 -0.012 0.722 1.881 20.6 M4.d
2017-Nstar 0.010 0.014 0.034 0.030 0.005 0.004 0.069 0.338 0.288 1.907 58.3 M3.d
2017-Tworth 0.021 0.017 0.058 0.341 0.021 0.032 0.012 0.142 0.283 0.469 1.932 71.1 M4.d
2017-Westmar 0.008 0.020 0.035 B 0.002 0.019 0.145 0.404 1.881 44.5 M2.d
2018-Blbgra 0.005 0.001 0.010 0.001 0.001 0.016 0.261 0.717 1.916 94.6 M2.d
2018-Breeza 0.136 0.046 0.304 0.171 0.017 0.031 0.023 0.095 0.062 0.064 1.892 85.0 M4.d
2018-Coonamble 0.001 0.002 0.004 0.010 0.003 0.064 -0.197 0.084 1.916 42.6 M2.d
2018-Gurley 0.001 0.021 0.023 B 0.001 0.153 0.065 0.888 1.927 6.4 M3.d
2018-Moree 0.003 0.022 0.028 B 0.041 0.053 0.488 0.839 1.916 19.5 M2.d
2018-Trangie 0.006 B 0.012 B 0.048 0.149 0.596 1.916 100 M1.d
2018-Tworth 0.015 B 0.029 0.472 0.170 0.026 0.006 0.110 0.189 0.767 1.930 100 M4.d
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8.4 One-stage multi-environment trial analysis

I now consider the MET analysis of the Durum dataset using the methods described in

Chapter 2. This dataset consists of p = 30 environments, t = 97 trials, and n = 21660

plots. The pedigree information associated with the Durum dataset containedm = 7628

varieties, relating to all 6951 varieties grown across all environments and 677 ancestral

varieties that were not grown.

I now let yj be the (nj × 1) vector of yield data for environment j(= 1, 2, . . . , 30),

and let y = (y>1,y
>
2, . . . ,y

>
30)> be the combined (21660 × 1) vector of yield data across

environments. The LMM for y can be written as

y = Xτ +Zg(ua + ue) +Zpup + e (8.3)

where τ is a vector of fixed effects which comprise solely of separate environment means,

with associated design matrix X; {ua,ue} are (228840× 1) vectors of random additive

and non-additive VE effects with associated design matrix Zg; up is a vector of random

non-genetic (peripheral) effects consisting of trial, replicate blocks, column and row

effects as established by the models in the single environment analyses (see Table 8.4),

with associated design matrix Zp; and e is the (21660×1) vector of errors. It is assumed

that 
ua

ue

up

e

 ∼ N




0
0
0
0

 ,

Ga ⊗A 0 0 0

0 Ge ⊗ I7628 0 0
0 0 Gp 0
0 0 0 Σ




where {Ga,Ge} are (30×30) symmetric positive (semi)-definite matrices known as the

between environments additive and non-additive genetic variance matrices respectively.

Similar to the Oat MET analysis described in Chapter 5, these matrices are modelled

using (separate) FA structures of order {ka, ke} respectively given as

Ga = (ΛaΛa
> + Ψa) Ge = (ΛeΛe

> + Ψe)

where {Λa,Λe} are the (30 × ka) and (30 × ke) matrices of additive and non-additive

loadings respectively; {Ψa,Ψe} are the (30× 30) diagonal matrices where the diagonal

elements are the specific additive and non-additive environment variances respectively;
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8. STATISTICAL ANALYSIS OF THE DURUM DATASET

and A is the (7628 × 7628) NRM for the Durum dataset. It is then assumed for the

additive and non-additive VE effects that

ua = (Λa ⊗ I7628)fa + δa ue = (Λe ⊗ I7628)fe + δe

where {fa,fe} are the (7628ka×1) and (7628ke×1) vectors of additive and non-additive

variety scores respectively, and {δa, δe} are the (228840 × 1) vectors of additive and

non-additive VE lack of fit effects respectively. It is assumed that

var(fa) = Ika ⊗A var(fe) = Ike ⊗ I7628

var(δa) = Ψa ⊗A var(δe) = Ψe ⊗ I7628

so that

var(ua) = (ΛaΛa
> + Ψa)⊗A var(ue) = (ΛeΛe

> + Ψe)⊗ I7628

It should also be noted, that the total VE effects ug is the simple addition of ua and

ue (see Equation 8.1). These can be further simplified to

ua = βa + δa ue = βe + δe

where βa = (Λa ⊗ I7628)fa and βe = (Λe ⊗ I7628)fe are the so called additive/non-

additive VE regression components. Finally, I denote the full genetic model in which

an FAka has been used for ua and an FAke has been used for ue as FAka,ke.

For the non-genetic effects it is assumed that

Gp = ⊕vk=1σ
2
pk
Iqk

Σ = ⊕97
j=1σ

2
jΣcj (ρcj )⊗Σrj (ρrj )

where v is the number of components in up and qk is the number of effects in (length of)

upk; and the errors are modelled using AR1×AR1 spatial structures. The non-genetic

and error terms fitted are those established for the single environment analyses, as in-

dicated in Table 8.4.
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8.4 One-stage multi-environment trial analysis

As an example, the ASReml-R code to fit the LMM with an FA1,1 model for ua and ue

is given below

r r 1 r r 1 . a s r <− asreml ( Yie ld ~ Environment ,
random =~ r r ( Environment , 1 ) : vm( Variety , durum . ainv ) +
diag ( Environment ) : vm( Variety , durum . ainv ) +
r r ( Environment , 1 ) : i de ( Var iety ) + diag ( Environment ) : ide ( Var iety ) +
at ( Environment , c o l . env ) : Tr i a l +
at ( Environment , crep ) : Tr i a l : ColRep +
at ( Environment , r c o l ) : T r i a l : Column +
at ( Environment , rrow ) : Tr i a l :Row,
r e s i d u a l=~dsum(~ ar1 (Column ) : ar1 (Row) | Tr i a l ) , data=f i n a l . df ,
vcc=Mcc , na . a c t i on = na . method (x=‘ inc lude ’ ) )

where col.env is a vector of environment names containing co-located trials; crep,

rcol, rrow are vectors of environment names containing those fitted with ColRep,

Column, Row random effects respectively; Mcc is the matrix which constrains spatial

parameters equal for the co-located environments; and final.df is the dataset contain-

ing the full data object for the Durum dataset.

The FA1,1 model for {ua,ue} have both been fitted by splitting them into the two

constituent parts, namely the regression part associated with {βa,βe}, and the lack of fit

part associated with {δa, δe}. The terms rr(Environment,1): vm(Variety,durum.ainv)

and rr(Environment,1): ide(Variety) relate to βa and βe respectively, where I again

fit reduced rank variance structures of order 1 for the environment dimension, namely

var(βa) = ΛaΛa
> ⊗A var(βe) = ΛeΛe

> ⊗ I7628

where {Λa,Λe} are (30×1) matrices of additive and non-additive loadings respectively.

The terms diag(Environment): vm(Variety,durum.ainv) and diag(Environment):

ide(Variety) relate to δa and δe respectively, which fit diagonal variance structures

for the environment dimension, that is

var(δa) = Ψa ⊗A var(δe) = Ψe ⊗ I7628

where {Ψa,Ψe} are the (30× 30) diagonal matrices for the additive and non-additive

specific variances respectively.
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8. STATISTICAL ANALYSIS OF THE DURUM DATASET

A series of FALMM were fit to the data with increasing numbers of additive factors

(values of ka) and non-additive factors (values of ke), as shown in Table 8.5. The

Akaike information criteria (AIC) showed significant improvements of successive mod-

els up to and including an FA4,3 model (see also Figure 8.2) and hence the FA4,3 model

was chosen as the final model. The FA4,3 model variance accounted for (VAF%) by the

factors was 92.1%, 86.6%, and 90.7% for additive, non-additive, and total VE effects,

respectively.

Table 8.5: Summary of number of variance parameters, residual log-likelihood (`R), and
AIC for the eight variance models fitted to the 30 environments in the Durum dataset.
Grey row corresponds to the model with the smallest AIC.

Model ka ke Parameters `R AIC

diag - - 234 11037.51 -21607.02
FA1,1 1 1 294 11470.71 -22353.42
FA2,1 2 1 323 11582.12 -22518.24
FA2,2 2 2 352 11645.82 -22587.64
FA3,2 3 2 380 11696.16 -22632.31
FA3,3 3 3 408 11726.49 -22636.99
FA4,3 4 3 435 11755.17 -22640.33
FA5,3 5 3 461 11777.84 -22633.67

Table 8.6 presents summaries of the environment information from the FA4,3 model

fitted to the additive and non-additive VE effects: REML estimates of loadings for each

factor, specific variances, genetic variances, and percentage variance accounted for by

the four and three additive and non-additive factors respectively, as well as across all

seven factors. On an individual environment basis, all environments had greater than

50% explained by the regression part of the FA model, and 24 environments had greater

than 80% explained. The average percentage additive variance across environments was

74.9%. This was computed using ā = 1.905 which was the mean of the diagonal ele-

ments of A for all 6951 varieties with phenotypic data.

The REML estimates of the loadings and specific variances can be used to form the

REML estimates of the additive and non-additive between environments genetic vari-

ance matrices, denoted {Ĝa, Ĝe}, respectively. I also define an (average) estimated
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8.4 One-stage multi-environment trial analysis

total genetic variance matrix as Ĝg = āĜa + Ĝe. Note that the diagonals of this

matrix are provided in Table 8.6. The Ĝg matrix is transformed to the correlation

parametrisation with the resultant Ĝg
(c)

matrix graphically presented in Figure 8.3 by

way of a heatmap. The rows and columns of the matrix have been ordered as envi-

ronments within years. The pairwise between environments genetic correlations ranged

between -0.64 and 0.91, with an average of 0.24.
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Figure 8.2: Residual log-likelihood (left-hand side y-axis) and AIC (right-hand side y-
axis) for each model fitted to the motivating Durum MET dataset. Colours as referenced
in the legend. Dotted vertical line represents the FA4,3 model as it has the lowest AIC
value.
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Figure 8.3: Heatmap of Ĝ
(c)

g from the FA4,3 model for the MET analysis of the Durum
dataset. Key depicts the correlation colour scale. Boundaries for years are indicated by
the black lines (2013 - 2018 inclusive from left to right and top to bottom).
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Table 8.6: Summary of environment information from the FA4,3 model fitted to the additive and non-additive VE effects: REML
(unrotated) estimates of loadings for each factor, specific variances {ψ̂a, ψ̂e}, genetic variances {σ̂2

a, σ̂
2
e}, and percentage variance

accounted for {VAFa%, VAFe%} by the four and three additive and non-additive factors respectively. Along with the genetic
variance (σ̂2

g) and percentage variance accounted for (VAFg%) for the total VE effects. ADD% shows the percentages of additive
variance to the total. Horizontal dashed lines separate years (2013-2018).

Additive Non-Additive Total

Environment loadings Environment loadings

Environment 1 2 3 4 ψ̂a σ̂2
a VAFa(%) 1 2 3 ψ̂e σ̂2

e VAFe(%) σ̂2
g VAFg(%) ADD%

2013-Breeza 0.328 0 0 0 0 0.205 100 0.237 0 0 0 0.056 100 0.261 100 78.4
2014-Breeza 0.106 0.223 0 0 0 0.116 100 0.119 0.082 0 0 0.021 100 0.137 100 84.8
2014-Edgeroi 0.106 -0.070 -0.105 0 0 0.052 100 0.115 0.022 -0.049 0 0.016 100 0.068 100 76.3
2014-Tworth 0.083 0.095 -0.128 -0.009 0 0.062 100 0.017 -0.024 -0.077 0 0.007 100 0.068 100 90.0
2015-Breeza 0.186 0.024 -0.001 0.011 0 0.067 100 0.100 -0.059 0.167 0 0.041 100 0.109 100 61.9
2015-Edgeroi 0.103 -0.033 -0.187 -0.100 0.003 0.113 95.1 0.060 0.013 -0.035 0.013 0.018 27.7 0.132 85.7 86.1
2015-Nstar 0.264 0.094 -0.146 0.048 0.011 0.216 90.1 0.030 0.072 -0.093 0 0.015 100 0.231 90.7 93.6
2015-Tworth 0.133 0.037 -0.030 0.015 0.004 0.047 82.1 0.010 -0.063 -0.081 0 0.011 100 0.057 85.4 81.6
2016-Breeza 0.287 0.000 0.045 0.030 0.009 0.178 90.9 -0.051 0.077 0.040 0 0.010 100 0.188 91.4 94.6
2016-Edgeroi 0.199 0.004 0.071 0.097 0 0.103 100 -0.050 0.341 0.100 0 0.129 100 0.232 100 44.4
2016-Gurley 0.234 -0.025 0.143 0.180 0 0.207 100 -0.068 0.269 0.058 0.021 0.102 79.1 0.308 93.1 67.0
2016-Nstar 0.098 0.049 0.047 0.101 0.026 0.097 48.0 -0.015 0.186 0.092 0 0.043 100 0.140 64.1 69.1
2016-Tworth 0.207 -0.050 0.010 0.152 0.014 0.158 82.9 -0.060 0.243 0.013 0.023 0.086 73.3 0.244 79.5 64.8
2017-Blbgra -0.055 0.062 0.010 0.166 0.001 0.069 96.1 0.103 0.058 -0.031 0 0.015 100 0.083 96.8 82.2
2017-Breeza 0.124 0.246 0.201 0.150 0 0.264 100 0.174 0.064 0.226 0 0.085 100 0.350 100 75.6
2017-Bribbaree 0.014 0.023 0.023 -0.008 0.001 0.005 50.9 -0.160 -0.055 0.034 0 0.030 100 0.035 93.0 14.3
2017-Coonamble -0.002 0.018 -0.017 0.156 0 0.047 100 0.080 -0.033 -0.043 0 0.009 100 0.057 100 83.5
2017-Edgeroi 0.040 0.052 -0.033 0.103 0.001 0.032 95.1 -0.036 -0.000 0.016 0 0.002 100 0.033 95.4 95.2
2017-Garah 0.018 0.057 -0.012 0.125 0 0.037 100 -0.118 -0.062 0.030 0 0.019 100 0.055 100 66.5
2017-Gurley 0.053 0.035 -0.080 0.146 0 0.060 100 -0.170 -0.051 0.025 0.018 0.050 64.0 0.111 83.7 54.6
2017-Nstar 0.054 0.075 0.001 0.115 0 0.041 100 -0.050 0.025 0.035 0.003 0.007 61.4 0.049 94.4 85.4
2017-Tworth 0.056 0.047 0.081 0.097 0.002 0.043 93.2 0.065 0.050 -0.011 0.016 0.022 30.6 0.066 71.9 66.0
2017-Westmar 0.014 0.026 -0.043 0.134 0 0.039 99.7 -0.070 -0.063 0.092 0 0.017 100 0.057 99.8 69.6
2018-Blbgra -0.034 0.051 0.021 0.040 0 0.011 100 0.002 0.011 -0.031 0 0.001 100 0.012 100 91.1
2018-Breeza 0.127 0.252 0.151 0.057 0.024 0.247 81.5 0.141 -0.093 -0.001 0.026 0.055 52.3 0.301 76.2 81.9
2018-Coonamble -0.009 -0.023 -0.017 0.020 0 0.002 100 0.025 0.003 0.025 0 0.001 100 0.004 100 65.1
2018-Gurley 0.005 0.091 0.050 0.050 0 0.025 100 0.013 0.056 -0.081 0 0.010 100 0.035 100 71.8
2018-Moree -0.038 0.039 0.023 0.081 0.005 0.029 66.5 0.058 0.065 0.003 0 0.008 100 0.037 73.4 79.4
2018-Trangie -0.044 0.019 0.028 0.053 0 0.011 100 0.019 0.036 -0.027 0 0.002 100 0.014 100 82.1
2018-Tworth 0.020 0.011 0.048 0.064 0.007 0.026 50.3 -0.017 -0.026 -0.044 0 0.003 100 0.029 55.2 90.1
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8. STATISTICAL ANALYSIS OF THE DURUM DATASET

8.4.1 Variety predictions

The EBLUPs of the additive, non-additive and total VE effects for a subset of six

varieties and eight environments are shown in Table 8.7. The building block components

of β̃ij and δ̃ij for the additive and non-additive VE effects are provided, similar to the

working example in Chapter 5 for the MET analysis of the Oat dataset. Additionally,

the building blocks for the total VE effects are presented (see Equation 8.1). Again,

when a variety is not grown in an environment, the EBLUP for the specific non-additive

VE effect for δ̃eij is 0. However, because the NRM is used in calculation of the variance

of the additive specific VE effects, this does not apply to the additive VE effects.

8.5 Concluding remarks

The Durum dataset originally introduced in Chapter 4 is used in this chapter to demon-

strate the statistical procedures outlined in Chapter 2, with analyses including pedigree

information. Unlike the Oat dataset (see Chapter 4) the final Durum dataset used

for analysis in this chapter is appropriately constructed for the selection decisions of

interest, as shown in Chapter 7. I provide a single trial analysis based on subsets of

this data, followed by a MET analysis based on the entire Durum dataset. I show that

when pedigree information is included, the variety effects are partitioned into additive

and non-additive variety effects.

Summaries of the results presented in this chapter serve as the motivation and struc-

ture for the simulation study presented in Chapter 9, which is used to examine the

performance of the new diagnostic also detailed in that chapter.
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8.5 Concluding remarks

Table 8.7: Summary set of results for a subset of six varieties in eight environments
from the FA4,3 MET analysis of the Durum dataset. Presence shown by tick-marks shows
where the varieties were grown. The EBLUPs of additive/non-additive VE effects, that
is {ũaij , ũeij} and their building block components {β̃aij , β̃eij} and {δ̃aij , δ̃eij}. Also pre-
sented are the EBLUPs of the total VE effects for β̃gij and ũgij .

Variety 20
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Jandaroi
DBA Lillaroi
Vitron
Neodur
Bellaroi
DBA Lillaroi-16A

A
dd

it
iv
e
V
E

eff
ec
ts

β̃aij

Jandaroi 0.025 0.494 0.025 0.449 0.028 0.596 0.286 0.084
DBA Lillaroi 0.244 0.126 0.214 0.261 0.148 0.308 0.437 0.153
Vitron 0.255 0.447 -0.031 0.220 0.184 0.026 0.359 0.164
Neodur -0.408 -0.715 0.050 -0.352 -0.294 -0.042 -0.574 -0.262
Bellaroi 0.296 -0.279 0.058 -0.268 0.119 -0.064 -0.167 0.004
DBA Lillaroi-16A 0.585 -0.083 0.406 0.189 0.307 0.435 0.548 0.233

δ̃aij

Jandaroi 0.000 -0.000 -0.000 0.000 -0.000 0.030 -0.132 0.057
DBA Lillaroi -0.000 0.000 0.000 0.000 0.000 -0.053 0.081 0.019
Vitron 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Neodur 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 0.000
Bellaroi -0.000 0.000 -0.000 -0.000 0.000 0.030 0.040 0.075
DBA Lillaroi-16A -0.000 0.000 0.000 -0.000 0.000 -0.041 0.030 0.020

ũaij

Jandaroi 0.025 0.494 0.025 0.449 0.028 0.625 0.154 0.141
DBA Lillaroi 0.244 0.126 0.214 0.261 0.148 0.255 0.518 0.173
Vitron 0.255 0.447 -0.031 0.220 0.184 0.026 0.359 0.164
Neodur -0.408 -0.715 0.050 -0.352 -0.294 -0.042 -0.574 -0.262
Bellaroi 0.296 -0.279 0.058 -0.268 0.119 -0.033 -0.127 0.079
DBA Lillaroi-16A 0.585 -0.083 0.406 0.189 0.307 0.394 0.578 0.253

N
on

-a
dd

it
iv
e
V
E

eff
ec
ts

β̃eij

Jandaroi -0.270 -0.102 -0.156 -0.083 -0.021 -0.088 -0.071 -0.094
DBA Lillaroi 0.064 0.004 0.039 0.037 -0.006 0.023 0.013 0.049
Vitron 0.104 0.077 0.057 0.000 0.026 0.030 0.035 -0.014
Neodur -0.166 -0.123 -0.091 -0.000 -0.042 -0.048 -0.056 0.023
Bellaroi 0.540 0.318 0.233 -0.040 0.336 0.115 0.031 -0.081
DBA Lillaroi-16A 0.326 0.167 0.142 -0.005 0.193 0.071 0.013 -0.018

δ̃eij

Jandaroi 0.000+ 0.000+ 0.000+ 0.000+ 0.000+ 0.066 0.000+ 0.000+
DBA Lillaroi 0 0 0 0 0 0.104 0 0.000+
Vitron 0 0.000+ 0 0 0 0 0 0
Neodur 0 0.000+ 0 0 0 0 0 0
Bellaroi 0 0 0 0 0.000+ -0.045 0.000+ 0.000+
DBA Lillaroi-16A 0 0 0.000+ 0.000+ 0.000+ -0.046 0.000+ 0

ũeij

Jandaroi -0.270 -0.102 -0.156 -0.083 -0.021 -0.022 -0.071 -0.094
DBA Lillaroi 0.064 0.004 0.039 0.037 -0.006 0.127 0.013 0.049
Vitron 0.104 0.077 0.057 0.000 0.026 0.030 0.035 -0.014
Neodur -0.166 -0.123 -0.091 -0.000 -0.042 -0.048 -0.056 0.023
Bellaroi 0.540 0.318 0.233 -0.040 0.336 0.070 0.031 -0.081
DBA Lillaroi-16A 0.326 0.167 0.142 -0.005 0.193 0.025 0.013 -0.018

T
ot
al

V
E

eff
ec
ts β̃gij

Jandaroi -0.245 0.393 -0.132 0.366 0.007 0.507 0.215 -0.010
DBA Lillaroi 0.308 0.130 0.253 0.298 0.142 0.331 0.450 0.203
Vitron 0.358 0.524 0.026 0.220 0.210 0.057 0.394 0.149
Neodur -0.574 -0.838 -0.041 -0.352 -0.336 -0.091 -0.630 -0.239
Bellaroi 0.836 0.039 0.291 -0.308 0.455 0.051 -0.136 -0.077
DBA Lillaroi-16A 0.911 0.084 0.548 0.184 0.499 0.506 0.561 0.215

ũgij

Jandaroi -0.245 0.393 -0.132 0.366 0.007 0.603 0.084 0.047
DBA Lillaroi 0.308 0.130 0.253 0.298 0.142 0.383 0.531 0.222
Vitron 0.358 0.524 0.026 0.220 0.210 0.057 0.394 0.149
Neodur -0.574 -0.838 -0.041 -0.352 -0.336 -0.091 -0.630 -0.239
Bellaroi 0.836 0.039 0.291 -0.308 0.455 0.036 -0.096 -0.003
DBA Lillaroi-16A 0.911 0.084 0.548 0.184 0.499 0.419 0.591 0.236

+ δ̃eij = 0.000 because VAFe%=100 for this environment.
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Chapter 9

Information based diagnostic for
genetic variance parameter
estimation in multi-environment
trials

In Chapter 7 it was shown how to construct a MET dataset, that is, to determine the

trials to be compiled, in order to maximise the amount of data available for selection

decisions on varieties of interest. The criterion of A-optimality was used to assess any

given dataset since it reflects the probability of making selection errors (see Section 7.1).

A-optimality is based on known variance parameter values whereas in practice, these

must be estimated from the data. In construction of a MET dataset it is therefore also

important to assess whether the structure of the dataset supports accurate estimation

of the variance parameters, in particular the genetic variance parameters.

It had previously been thought that variety connectivity was a key driver of the re-

liability of genetic variance parameter estimation and that this in turn affected the

reliability of predictions of VE effects (Smith et al., 2001a, 2015; Ward et al., 2019).

To combat these concerns, problematic environments were often removed from MET

datasets if they appeared to have insufficient numbers of varieties in common with

other environments. However, there has been little work to establish whether variety

connectivity is the most appropriate measure to use for this purpose. In Chapter 6
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9. INFORMATION BASED DIAGNOSTIC FOR GENETIC VARIANCE
PARAMETER ESTIMATION IN MULTI-ENVIRONMENT TRIALS

I found that although variety connectivity was influential, there appeared to be other

factors at play. In response to this, Lisle et al. (2021), proposed the criterion of D-

optimality as a diagnostic to assess the information available for the REML estimation

of genetic variance parameters in a MET analysis.

This chapter is arranged as follows: Section 9.1 contains some general results about D-

optimality. Following this, Section 9.2 presents an adaptation of the publication listed

below. In Section 9.3 I demonstrate how to calculate D-values in practice. Finally, in

Section 9.4 I have concluding remarks.

Lisle, C., Smith, A., Birrell, C,. & Cullis, B. R. (2021). Information Based

Diagnostic for Genetic Variance Parameter Estimation in Multi-Environment

Trials. Frontiers in Plant Science. 12, 2856. doi: 10.3389/fpls:2021.785430.

9.1 Preliminary remarks about D-optimality

In the experimental design literature, D-optimality is used to search for designs that

minimise the generalised variance of parameter estimates (Butler, 2013; Russell, 2018).

The parameters are usually fixed effects, for example regression coefficients, within an

ordinary (or generalised) linear model (Russell et al., 2009). Applications for linear

mixed models are less common, but Ankenman et al. (2003) present an interesting ex-

ample in which D-optimality is used in order to minimise the variance of the estimates

of both fixed effects and variance components.

The D-optimality criterion is usually defined in terms of the determinant of the in-

formation matrix for the parameter estimates. In the experimental design context, a

design is said to be D-optimal if it maximises this determinant. Equivalently it is

D-optimal if it minimises the determinant of the variance matrix of the parameter es-

timates. The latter is preferred as it is more consistent with the A-optimality criterion

in the sense that “smaller is better”. In our setting, the parameters of interest are the

variance parameters, κ, in a LMM, and we wish to assess a MET dataset for the ability

to provide accurate REML estimates κ̂. The asymptotic variance matrix of κ̂ is given
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by the inverse of the information matrix as given in Section 2.2. I formally define the

variance matrix here as

V (κ,κ>) = IE(κ,κ>)−1

so the D-optimality value is given by

D = log |V (κ,κ>)|

where the vertical bar represents the determinant.

To show how this can be interpreted as representing the “generalised variance” of κ̂

it is helpful to consider the case of nk = 2 so that κ = (κ1, κ2)>. I let

V (κ,κ>) = var
(
κ̂1

κ̂2

)
=

[
σ11 σ12

σ12 σ22

]
then it is shown that

|V (κ,κ>)| = σ11σ22 − σ2
12

= σ11(σ22 − σ2
12/σ11)

= var(κ̂1)var(κ̂2|κ̂1)

so that

D = log(var(κ̂1)) + log(var(κ̂2|κ̂1))

Thus, the D-optimality criterion is the sum of the logarithms of the variance of κ̂1 and

the variance of κ̂2 conditional on κ̂1. This result of summing logarithms of variances

of estimates conditional on other estimates holds more generally (and does not depend

on the ordering) and hence the D-optimality criterion can be interpreted as measuring

generalised or “total” variance.

9.2 Reproduction of Lisle, Smith, Birrell and Cullis (2021)

In the reproduction, notational changes have been made to be consistent with the

nomenclature used in this thesis. Additional figures, tables and results that were not

included in the publication have been added in this chapter and some parts of the in-
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troduction and discussion sections of the paper have been omitted.

I note the following additions that were not included in the publication:

• I include the application of the new diagnostic to the Oat dataset in Section 9.2.4.

This is used in conjunction with the A-optimality criterion as described in Chapter

7 to investigate the optimal number of years to include in the MET dataset.

• Two larger trial sizes (T192 and T384) are now included in the simulation study

for the additive VE effects in Section 9.2.6.2.

9.2.1 Statistical methods

9.2.1.1 Model for analysis

Let yj denote the nj−vector of data for the jth environment, j = 1, . . . , p. We then let

y denote the n−vector of data combined across all environments in the MET, so write

y = (y>1,y
>
2, . . . ,y

>
p)
>. Note that n =

∑p
j=1 nj . The LMM for y can be written as

y = Xτ +Zgug +Zpup + e (9.1)

where τ is a vector of fixed effects with associated design matrix X; ug is the vector

of random genetic effects with associated design matrix Zg; up is a vector of ran-

dom non-genetic (or peripheral) effects with associated design matrix Zp; and e =

(e>1, e
>
2, . . . , e

>
p)
> is the combined vector of errors from all environments. The vector of

fixed effects includes mean parameters for individual environments. The vector of ran-

dom peripheral effects includes effects associated with the experimental designs within

environments. It is assumed thatug

up

e

 ∼ N

0
0
0

 ,
Gg 0 0

0 Gp 0
0 0 Σ

 (9.2)

where the matrices {Gg,Gp,Σ} are variance matrices for {ug,up, e} respectively. Gg

is known as the between environments variance/covariance matrix and is described in

later sections. Gp is assumed to be block diagonal given by Gp = ⊕bi=1σ
2
piIqi where

b is the number of components in up and qi is the number of effects in (length of)

upi. Σ is assumed to be block diagonal, so that Σ = ⊕pj=1Σj where Σj = var (ej)
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is the variance matrix for the errors for the jth environment. In the LMM of Smith

et al. (2001b), spatial models are used for the errors and the matrices Σj correspond to

separable autoregressive processes.

The random genetic effects ug comprise the variety effects nested within environments,

and will be referred to as the VE effects. If we let m denote the total number of unique

varieties across all environments, then the vector ug has length mp, which is ordered as

varieties within environments. In this chapter we allow for the use of pedigree informa-

tion, so we partition the VE effects into additive and non-additive (residual VE) effects

(Oakey et al., 2007) as follows

ug = ua + ue

It is assumed that var (ua) = Ga ⊗A where A is the numerator relationship matrix

and Ga is a p× p symmetric positive (semi)-definite matrix that will be referred to as

the between environment additive genetic variance matrix. In terms of the non-additive

effects, it is assumed that var (ue) = Ge ⊗ Im where Ge is a p× p symmetric positive

(semi)-definite matrix that will be referred to as the between environment non-additive

genetic variance matrix. The variance matrix of the total VE effects (that is, additive

plus non-additive) is therefore given by

var (ug) = Gg = Ga ⊗A+Ge ⊗ Im (9.3)

Note that if no pedigree information is included in the analysis then ug = ue and

Gg = Ge ⊗ Im. Finally, the variance matrix for the data vector is given by

var (y) = H = ZgGgZg
> +ZpGpZp

> + Σ (9.4)

The first step in fitting the model in Equation (9.1) is the estimation of the variance

parameters associated with the random effects and residuals. We let κ denote the vector

of (unknown) variance parameters and let nκ be the associated number of parameters.

We use residual maximum likelihood (REML) estimation which requires calculation of

the REML scores for the elements of κ. These are given by:

U(κi) = −1

2

{
tr(PḢ i)− y>PH iPy

}
(9.5)
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where P = H−1 −H−1X
(
X>H−1X

)−
X>H−1 with

(
X>H−1X

)− being any gen-

eralised inverse of
(
X>H−1X

)
. The “dot” notation indicates a derivative so that

Ḣ i = ∂H/∂κi, i = 1 . . . nκ. The REML estimate of κ is obtained by equating the

scores to zero and will be denoted by κ̂. This typically requires an iterative scheme. A

computationally efficient scheme is the average information algorithm of Gilmour et al.

(1995) which is a Fisher scoring algorithm in which the average information matrix, IA,

is used instead of the expected information matrix, IE . The elements of these matrices

are given by

IA(κi, κj) = 1
2y
>PḢ iPḢjPy

IE(κi, κj) = 1
2tr
(
PḢ iPḢj

)
(9.6)

Given the REML estimates of the variance parameters we can then compute empirical

best linear unbiased estimates (EBLUEs) of the fixed effects and empirical best linear

unbiased predictions (EBLUPs) of the random effects in Equation 9.1. In particular, the

EBLUPs of the VE effects are given by ũg = GgZg
>Py and these have an associated

prediction error variance (PEV) of var (ũg − ug) = Gg − GgZg
>PZgGg. Note that

in these equations the matrices Gg and P are formed using the REML estimate κ̂ of

κ. We can then compute a model based reliability (Mrode & Thompson, 2005) for an

individual VE effect prediction as the square of the correlation between the true effect

and the EBLUP. For the kth VE effect, this is obtained as

cor (ũgk , ugk)2 = 1−
(Gg −GgZg

>PZgGg)kk
(Gg)kk

(9.7)

where the subscript “kk” indicates the kth diagonal element of the associated matrix.

9.2.2 Information based diagnostic for genetic variance parameter es-
timation

An asymptotic variance matrix for the REML estimates of the variance parameters can

be obtained as the inverse of the information matrix. This could either be the average

information matrix or, more traditionally, the expected information matrix. For the

purposes of developing a diagnostic, we use the latter, the elements of which are given

in Equation (9.6). In this chapter the interest lies in the estimation of genetic variance
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parameters, so we partition the variance parameters as κ = (κg
>,κḡ

>)>, where κg are

the genetic variance parameters associated with {Ga,Ge} and κḡ are the remaining

variance parameters, that is, associated with the peripheral random effects and errors.

We partition the full expected information matrix accordingly and write as

IE(κ,κ>) =

[
IE(κg,κg

>) IE(κg,κḡ
>)

IE(κḡ,κg
>) IE(κḡ,κḡ

>)

]
(9.8)

The asymptotic variance matrix for κ̂g can then be obtained as

V (κg,κg
>) =

[
IE(κg,κg

>)− IE(κg,κḡ
>)(IE(κḡ,κḡ

>))−1IE(κḡ,κg
>)
]−1 (9.9)

Smith & Cullis (2018) recommend the use of factor analytic models for {Ga,Ge}. Other

possibilities include compound symmetric and unstructured forms. Irrespective of the

form used, the parameters of interest are the variances and covariances in {Ga,Ge}.
The aim in this chapter is to develop a diagnostic that reflects the information available

to estimate these parameters but which does not require the fitting of the full LMM. In

order to achieve this we apply some of the concepts from model-based design in which

the aim is to search a design space for a configuration which is optimal in some sense

under a pre-specified LMM. The latter includes specification of the terms in the model

and also values for the variance parameters. Although the aim here is not to search

a design space but rather to assess a particular design (dataset) we can proceed in a

similar manner by considering a pre-specified LMM. In order to simplify computations

but enable wide applicability we use a LMM that has a relatively simple structure for

the non-genetic effects. In terms of the model in Equation (9.1) we assume that the fixed

effects comprise a mean parameter for each environment (so that τ = (τ1, τ2, . . . , τp)
>)

and we assume there are no peripheral effects so write

y = Xτ +Zg (ua + ue) + e (9.10)

where the design matrices are given by X = ⊕pj=11nj and Zg = ⊕pj=1Zgj where Zgj is

the nj×m design matrix for the VE effects for environment j (= 1, . . . , p). The genetic

variance matrices, {Ga,Ge}, are assumed to have unstructured forms with p(p+ 1)/2

unique variance parameters in each that are denoted by {σajs , σejs}(j ≤ s = 1, . . . , p),

respectively.
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Finally, we assume that the error variance matrices are given by Σj = σ2
j Inj so that

Σ = ⊕pj=1σ
2
j Inj . The variance matrix for the data vector is then given by

H = Zg (Ga ⊗A+Ge ⊗ Im)Zg
> + Σ

and the unknown variance parameters are κ = (κg
>,κḡ

>)> where κg comprises {σajs ,

σejs} (j ≤ s = 1, . . . , p) and κḡ comprises σ2
j (j = 1, . . . , p). We then use pre-specified

values of these parameters to compute the information matrix in Equation (9.8) and

thence the variance matrix in Equation (9.9). The chosen variance parameters will

be denoted κg0 and κḡ0 and the resultant variance matrix denoted by V (κg0,κg
>
0

).

We then consider the D-optimality criterion of model-based design because it is used to

search for designs that minimise the generalised variance of parameter estimates. In our

setting we wish to measure the generalised variance of the genetic variance parameter

estimates for a given dataset. This can be obtained for the complete set of genetic

variance parameters as

D =
log
∣∣V (κg0,κg

>
0

)∣∣
nκg

(9.11)

where the vertical bar represents the determinant and nκg is the number of genetic

variance parameters and is used as a divisor to provide a scaling for comparisons across

models and/or datasets.

Although the overall D-value is of interest, our focus is on individual environments and

their relative contribution to the reliability of genetic variance parameter estimation.

We therefore also compute a D-value for environment j (= 1, . . . , p) as

Dj =
log
∣∣∣V (κg0j

,κg
>
0j

)∣∣∣
nκgj

(9.12)

where V (κg0j
,κg

>
0j

) is the partition of V (κg0,κg
>
0

) that relates to environment j and

nκgj is the associated number of genetic variance parameters. In the case of models

in which information on genetic relatedness is not used we have nκgj = p, and the

parameters are the genetic variance for the environment and all p − 1 genetic covari-

ances with other environments. In models in which the genetic effects are partitioned
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into additive and non-additive effects we have nκgj = 2p. To distinguish between these

different genetic models we label the diagnostic values as Dj(A+I) if they correspond

to a LMM with both additive (A) and non-additive (or independent, I) VE effects;

Dj(I) if they correspond to the LMM with independent VE effects alone (that is, ge-

netic relatedness is not used) or Dj(A) if they correspond to the LMM with additive

VE effects alone. Irrespective of the genetic model used, the diagnostic values for all p

environments can then be scrutinized in various ways in order to check for “problem”

environments with large values, which represent those environments with large variance.

Finally, a further computational simplification can be made in the calculation of

V (κg,κg
>) by using the marginal variance matrix for the genetic variance parameters

rather than the conditional matrix as given in Equation (9.9). Thus we can use

V (κg,κg
>) = [IE(κg,κg

>)]
−1 (9.13)

This is a reasonable simplification given that the non-genetic variance parameters in

the pre-specified LMM are simply the error variances so that the uncertainty associated

with their estimation is likely to be small.

9.2.3 A two-stage procedure

We first let dj be the number of varieties in environment j (= 1, . . . , p) and define

d =
∑p

j=1 dj to be the number of VE combinations present in the data. Then note that

formation of V (κg0,κg
>
0

) using Equation (9.9) or (9.13) involves calculating traces of

matrices of dimension n. The dimensionality of the problem can be reduced by con-

sidering a two-stage approximation to the LMM as described in Gogel et al. (2018).

Given the simple form for the model in Equation (9.10) and the associated variance

matrices, we may expect little loss in using this approach and the benefit is a reduction

in dimensionality from n (total number of plots in the dataset) to d (total number of

VE combinations present).

In the first stage of the two-stage approach, a separate analysis is conducted for each

environment in order to obtain predicted variety means and a measure of their uncer-

tainty. In these analyses the variety effects are regarded as fixed effects. The predicted
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means are combined across environments to form the data for the second stage analy-

sis. We adopt the notation of Gogel et al. (2018) so let η denote the full mp× 1 vector

of variety mean parameters for individual environments and let ηd be the d × 1 sub-

vector corresponding to the VE combinations present in the data. Thus, we can write

ηd = Dη where D is a d×mp indicator matrix that selects the appropriate elements.

We let η̂d be the vector of predicted variety means for individual environments from

the first stage. In our setting the individual environment analyses are particularly sim-

ple, involving only a single set of effects, namely the fixed variety effects, and the error

variance for environment j is simply σ2
j Inj . This means that the variance matrix of η̂d

from the first stage is given by Ω = ⊕pj=1Ωj where Ωj is the dj × dj diagonal matrix

given by σ2
jdiag (1/rji), where rji is the number of plots of variety i in environment j.

The LMM for the second stage combined analysis of the p environments can then be

written as

y2 = X2τ +D (ua + ue) + ξ (9.14)

where y2 = η̂d from the first stage, and X2 = D (Ip ⊗ 1m). In terms of the variance

structures, var (ua) = Ga ⊗A and var (ue) = Ge ⊗ Im (as in the one-stage analysis)

and var (ξ) = Ω where this is known from the first stage. The variance matrix for the

data vector in the second stage is then given by

H2 = D (Ga ⊗A+Ge ⊗ Im)D> + Ω (9.15)

Elements of the expected information matrix for the variance parameters in the second

stage LMM are then given by

I2E(κi, κj) =
1

2
tr
(
P2Ḣ2iP2Ḣ2j

)
(9.16)

where P2 = H2
−1−H2

−1X2

(
X2
>H2

−1X2

)−1
X2
>H2

−1. This now involves matrices

of dimension d rather than n. As in the previous Section 9.2.2 we do not actually conduct

the two-stage analysis but compute the expected information matrix using Equation

(9.16) for a given choice of variance parameter values. We then form the (marginal)

variance matrix for the genetic variance parameter estimates using Equation (9.13) and

denote the resultant matrix by V2(κg0,κg
>
0

). This is substituted into Equations (9.11)
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and (9.12) to compute the diagnostic.

9.2.4 Application to the Oat dataset

This section shows the application of the diagnostic to the Oat dataset (see Chapter

4). As this dataset does not have pedigree information, it represents a scenario with

independent VE effects. Here I present some key information and apply the diagnostic

procedure. The dataset comprisedm = 163 varieties from n = 7068 plots corresponding

to 47 trials from Stage 4 (S4) across p = 41 environments sown between 2012 and 2016.

The number of varieties in an environment ranged from 48 to 65 with a median of 52. I

note that there are d = 2216 variety by environment combinations present in the data,

representing a nearly 70% reduction when using a 2-stage approach for computing the

diagnostic. The number of varieties in common between pairs of environments (x1,2)

(see Figure 4.3) ranged from 16 to 65 with a median of 22.

As pedigree information was not available I computed the I2E based on the LMM

without the partitioning of the genetic effects as in Equation 9.10, so that nκg = 861.

The values of the variance parameters for calculation of the diagnostic were set to

σejs =

{
0.2; j = s = 1, . . . , p

0.16; j < s = 1, . . . , p

σ2
j =

{
0.15; j = 1, . . . , p

These values were chosen as being both representative of actual estimates from histori-

cal analyses that are often encountered in practice. In particular, I have set a between

environments correlation of 0.8 for the VE effects.

As the Oat dataset does not have pedigree information available, the CG methodol-

ogy described in Chapter 7 is not appropriate to be used to construct the MET dataset.

As such, this is investigated here via the inclusion and exclusion of years in the dataset

with examination of the A-values as shown in Table 9.1, and D(I)-values as shown

in Table 9.2. The Dj(I)-values for each environment within the yearly datasets, from

this pre-specified LMM are given in Table 9.2. This relationship is shown in Figure

9.1, which shows the A-values decreasing over increasing numbers of years, whilst the
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D(I)-values increase after two-years. The two-year MET dataset provides the smallest

D(I)-value (-7.99) and hence the greatest information to estimate the genetic variance

parameters and the five-year dataset provides the highest D(I)-value (-7.87) and hence

the least information to estimate the genetic variance parameters. It is also noted that

environments in 2013 (mean = -7.34) had the smallest Dj(I)-values and environments

in 2012 (mean = -7.28) and 2016 (mean = -7.25) had the largest Dj(I)-values, which

represent the greatest and least information to estimate genetic variance parameters,

respectively.

Table 9.1: Oat example: Diagnostic A-values based on LMM with independent VE effects
over varying numbers of years in the MET dataset. Average number of environments
present for the 2016 cohort of test varieties, number of environments, varieties and plots.

Number of Mean Number of

years Years A-value Environments Environments Varieties Plots

5 2012:2016 0.28 16.9 41 163 7068
4 2013:2016 0.28 15.9 32 133 5340
3 2014:2016 0.29 14.7 23 92 3504
2 2015:2016 0.30 13.0 17 74 2640
1 2016 0.36 9.0 9 48 1296
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Figure 9.1: Oat example: A- and diagnostic D(I)-values over varying numbers of years
in the MET dataset. The points are labelled with the associated mean numbers of en-
vironments in which the 2016 test varieties were sown for the A-values and the number
of parameters (nκg ) for the D(I)-values. Left and right y-axes correspond to the A- and
diagnostic D(I)-values respectively.
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Table 9.2: Oat example: Diagnostic Dj-values based on LMMs with independent VE
effects (Dj(I)) over differing numbers of years in the MET dataset. Five year dataset
consists of the full five year dataset used as the motivating dataset. Dashed horizontal
lines represent year blocks. Bottom two rows present the overall D(I)-values and the
number of parameters nκg

.

Y
ea
r Dj(I)

Number of years in dataset

No. Environment 5 4 3 2 1

20
12

1 OMaB12BARK6 -7.24
2 OMaB12KATA6 -7.24
3 OMaA12KYBY5 -7.24
4 OMaB12MERR6 -7.24
5 12PINE5 -7.37
6 12RIVE5 -7.37
7 OMaA12RUTH3 -7.24
8 12TURR5 -7.37
9 OMaB12WONG6 -7.24

20
13

10 OMaB13KATA6 -7.30 -7.26
11 OMaA13KYBY5 -7.30 -7.26
12 13PINE5 -7.42 -7.37
13 13RIVE5 -7.42 -7.37
14 OMaA13RUTH3 -7.30 -7.26
15 OMaA13RYLI6 -7.30 -7.26
16 13TURR5 -7.42 -7.37
17 OMaB13WONG6 -7.30 -7.26
18 OMaA13YANC2 -7.30 -7.26

20
14

19 OMaB14KATA6 -7.29 -7.30 -7.25
20 OMaA14KYBY5 -7.29 -7.30 -7.25
21 OMaA14PINE5 -7.29 -7.30 -7.25
22 OMaA14RIVE5 -7.29 -7.30 -7.25
23 OMaB14RYLI6 -7.29 -7.30 -7.25
24 OMaB14WONG6 -7.29 -7.30 -7.25

20
15

25 OMaB15CUND6 -7.31 -7.35 -7.36 -7.36
26 OMaA15GRIF2 -7.31 -7.35 -7.36 -7.36
27 OMaA15KYBY5 -7.31 -7.35 -7.36 -7.36
28 OMaB15PING6 -7.31 -7.35 -7.36 -7.36
29 OMaA15RIVE5 -7.31 -7.35 -7.36 -7.36
30 OMaB15RYLI6 -7.31 -7.35 -7.36 -7.36
31 OMaA15TURR5 -7.31 -7.35 -7.36 -7.36
32 OMaA15WONG6 -7.31 -7.35 -7.36 -7.36

20
16

33 OMaB16COWR2 -7.25 -7.27 -7.30 -7.33 -7.25
34 OMaB16CUND6 -7.25 -7.27 -7.30 -7.33 -7.25
35 OMaA16KYBY5 -7.25 -7.27 -7.30 -7.33 -7.25
36 OMaA16MURE6 -7.25 -7.27 -7.30 -7.33 -7.25
37 OMaA16PINE5 -7.25 -7.27 -7.30 -7.33 -7.25
38 OMaA16RIVE5 -7.25 -7.27 -7.30 -7.33 -7.25
39 OMaA16RYLI6 -7.25 -7.27 -7.30 -7.33 -7.25
40 OMaA16TURR5 -7.25 -7.27 -7.30 -7.33 -7.25
41 OMaA16WONG6 -7.25 -7.27 -7.30 -7.33 -7.25

Overall Dj(I) -7.87 -7.89 -7.94 -7.99 -7.90
nκg

861 528 276 153 45
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9.2.5 Application to the Durum dataset

This section shows the application of the diagnostic to the Durum dataset. In this chap-

ter, for reasons of simplicity and clarity, we restrict attention to Stage 3 (S3) selection

decisions so we subset the data accordingly from the full Durum dataset as described in

Chapter 4. Here we present some key summary information. As this dataset contains

pedigree information, it represents a scenario with related genetic effects. Summary in-

formation for the Durum dataset is given in Table 9.3. The dataset comprisedm = 3708

varieties from n = 9786 plots corresponding to 40 trials from breeding stages Stage 1

(S1) to Stage 3 (S3) across p = 13 environments sown between 2014 and 2018. The

number of varieties per environment ranged from 96 to 1649 with a median of 105.

We note that there are d = 6168 variety by environment combinations present in the

data, representing a nearly 40% reduction when using a 2-stage approach for computing

the diagnostic. The pedigree information comprised 3959 records and included all the

varieties in the MET dataset. The inbreeding coefficients of the latter ranged from

0.750 to 0.998 with a mean of 0.911. The number of varieties in common between pairs

of environments (displayed in a heatmap in Figure 9.2) ranged from 3 to 485 with a

median of 36.

Given that the analysis of the Durum dataset for the purposes of variety selection

would proceed using a LMM with the partitioning of the VE effects into additive and

non-additive effects, we computed the I2E based on this model (so that nκg = 182).

The values of the variance parameters for calculation of the diagnostic were set to

σajs =

{
0.1; j = s = 1, . . . , p

0.08; j < s = 1, . . . , p

σejs =

{
0.05; j = s = 1, . . . , p

0.04; j < s = 1, . . . , p

σ2
j =

{
0.15; j = 1, . . . , p

These values were chosen as being both representative of actual estimates from histori-

cal analyses that are often encountered in practice and of a magnitude that could allow

the diagnostic to provide good discrimination between environments. In particular, we

have set the additive genetic variance to 80% of the total genetic variance (see Equation
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9.3) for each environment and therefore 20% for the non-additive genetic variance; and

a between environments correlation of 0.8 for both additive and non-additive VE effects.

The Dj(A+I)-values for each environment from this pre-specified LMM are given in

Table 9.4. The environments 2016-Tworth and 2015-Tworth had the smallest Dj(A+I)-

values and therefore the greatest information to estimate genetic variance parameters.

Whereas, 2018-Tworth, 2018-Gurley, and 2018-Breeza had the largest Dj(A+I)-values

and therefore the least information to estimate genetic variance parameters.

Given the high percentage of additive genetic variance we also computed the simpler di-

agnostic, based on a LMM with additive VE effects alone. For this diagnostic nκg = 91

representing a four-fold reduction in the number of elements in I2E(κi, κj) and hence

a significant saving in computation. The resultant Dj(A)-values are presented in Table

9.4 and Figure 9.3, which show little difference compared with the Dj(A+I)-values. In

particular, Figure 9.3 shows an almost 1:1 relationship.

To investigate the robustness of the diagnostic we also inspect the Dj(A+I)- and Dj(A)-

values with parameters set to those which are at the lower end of those seen in practice.

The values of the variance parameters for calculation of the diagnostic were set to

σajs =

{
0.05; j = s = 1, . . . , p

0.02; j < s = 1, . . . , p

σejs =

{
0.15; j = s = 1, . . . , p

0.06; j < s = 1, . . . , p

σ2
j =

{
0.15; j = 1, . . . , p

In particular, we have set the additive genetic variance to 40% of the total genetic vari-

ance (see Equation 9.3) for each environment and therefore 60% for the non-additive

genetic variance, and a between environments correlation of 0.4 for both additive and

non-additive VE effects. The resultant Dj-values are presented in both Table 9.4 and

Figure 9.3. Once again, there is little difference in the rankings of environments for

Dj(A+I) compared with Dj(A) (Figure 9.3 (d)). Additionally the rankings were robust

to the two choices of variance parameters (high and low) used in forming the diagnostic,
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with the only noticeable change being associated with 2014-Breeza (Figure 9.3(b) and

(c)).

As a comparison with the historical measure of variety connectivity, the Dj(A+I) values

computed using the high set of parameters have been plotted against mean connectivity

in Figure 9.4. This figure shows that the diagnostic values encompass numerous struc-

tural elements of the environments other than variety connectivity, such as the number

of varieties grown and the mean replication per variety.

Table 9.3: Summary of environments in the Durum dataset. Number of: trials for each
stage of testing (S1, S2, S3), total trials, plots and varieties. Dashed horizontal lines
represent year blocks.

Number of trials Number of

No. Environment S1 S2 S3 Total Plots Varieties

1 2014-Breeza 3 0 0 3 1296 937
2 2014-Tworth 2 0 0 2 700 554
3 2015-Edgeroi 0 4 0 4 864 417
4 2015-Tworth 6 4 0 10 2052 1418
5 2016-Breeza 0 0 1 1 192 96
6 2016-Nstar 0 0 1 1 192 96
7 2016-Tworth 6 3 1 10 2448 1649
8 2017-Breeza 0 0 1 1 204 102
9 2017-Nstar 0 0 1 1 204 102
10 2017-Tworth 0 3 1 4 1004 482
11 2018-Breeza 0 0 1 1 210 105
12 2018-Gurley 0 0 1 1 210 105
13 2018-Tworth 0 0 1 1 210 105

Total 17 14 9 40 9786 3708
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Figure 9.2: Heatmap of the number of varieties in common between all pairs of environ-
ments in the Stage 3 Durum MET dataset. The colours are as referenced in the legend.
The boxes along the diagonal show the number of unique varieties in individual environ-
ments. Boundaries for years are indicated by the grey horizontal and vertical lines.
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Table 9.4: Durum example: Diagnostic Dj-values based on LMMs with additive and
non-additive VE effects (Dj(A+I)) and those based on LMMs with additive VE effects
alone (Dj(A)). High and low parameter values of additive variance (80% and 40% respec-
tively) and between environments genetic correlation (0.8 and 0.4 respectively) are used.
Environments are ordered in ascending order on their Dj(A+I)-values (High).

High Low

Environment Dj(A+I) Dj(A) Dj(A+I) Dj(A)

2016-Tworth -8.28 -9.25 -7.82 -8.60
2015-Tworth -8.27 -9.27 -7.82 -8.61
2017-Tworth -8.03 -9.04 -7.45 -8.25
2015-Edgeroi -7.95 -8.94 -7.30 -8.09
2017-Breeza -7.65 -8.69 -6.95 -7.80
2017-Nstar -7.65 -8.69 -6.95 -7.80
2014-Breeza -7.56 -8.61 -6.74 -7.47
2016-Breeza -7.51 -8.53 -6.76 -7.61
2016-Nstar -7.51 -8.53 -6.76 -7.61
2014-Tworth -7.43 -8.51 -6.72 -7.53
2018-Breeza -7.39 -8.55 -6.67 -7.59
2018-Gurley -7.39 -8.55 -6.67 -7.59
2018-Tworth -7.39 -8.55 -6.67 -7.59
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Figure 9.3: Durum example: Comparisons of Diagnostic Dj-values based on LMMs with additive and non-additive VE effects
(Dj(A+I)) and those based on LMMs with additive VE effects alone (Dj(A+I)) for high and low parameter values of additive
variance (80% and 40% respectively) and between environments genetic correlation (0.8 and 0.4 respectively). (a) Dj(A+I) against
Dj(A) values using the high parameter values, (b)Dj(A+I) againstDj(A+I) values using high and low parameter values respectively,
(c) Dj(A) against Dj(A) using high and low parameter values respectively, and (d) Dj(A) against Dj(A+I) using low parameter
values.
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Figure 9.4: Durum example: Diagnostic Dj(A+I)-values based on LMM with additive
and non-additive VE effects plotted against mean number of varieties in common. Labels
show the total number of varieties, colours as represented in legend show the mean number
of replicates.
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9.2.6 Simulation studies to investigate the performance of the diag-
nostic

9.2.6.1 LMM without pedigree information

Within the framework of the LMM with independent VE effects it was previously

thought that variety connectivity was a key driver of the reliability of variance parame-

ter estimation and that this in turn affected the reliability of predictions of VE effects.

We therefore consider a simulation study in which a range of connectivity levels is ex-

amined and assess the performance of both variety connectivity and the D-optimality

diagnostic. For simplicity, and without loss of generality, we use p = 2 environments

and label these as Env1 and Env2. Each environment has the same number of varieties

(so that d1 = d2), and we vary the number of varieties in common (which is given

by x1,2 = d −m). We assume the trials in Env1 and Env2 comprise 3 replicates and

consider 4 sizes (Tsize) of trial corresponding to different numbers of varieties, namely

d1(= d2) = {12, 24, 48, 96} so that n1(= n2) = {36, 72, 144, 288}.

The simulation study for the first trial size (Tsize=12) is described in the following.

We consider the connectivity levels x1,2 = 2, 4 . . . 12 (increments of 2). The maxi-

mum total number of varieties across Env1 and Env2 is m = 22, corresponding to

x1,2 = 2. We label these varieties as V1 - V22. We assume that the 12 varieties in

Env1 are always V1 - V12. The 12 varieties in Env2 are then V1 - V12 for x1,2 = 12;

V2 - V13 for x1,2 = 11 and so on to V11 - V22 for x1,2 = 2. Our focus is on Env1

because this contains the same varieties across all connectivity levels so allows a fair

comparison across these levels. The underlying LMM is as in Equation (9.10) but with

independent VE effects alone (that is, without the additive VE effects) so that nκg = 3.

Given the data structure for each value of x1,2 and some pre-specified variance param-

eters, we can compute the diagnostic for Env1 which will be denoted D1c(I), where c

represents x1,2. For the purposes of both the calculation of D1c(I) and of data gen-

eration in the simulation study we chose the values of the variance parameters to be

κg0 =
(
σe110 = 0.2, σe120 = 0.16, σe220 = 0.2

)> and κḡ0 =
(
σ2

10
= 0.15, σ2

20
= 0.15

)>. The
diagnostic is calculated using the two-stage formula for expected information, that is,
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as in Equation (9.16) and is given by

D1c(I) =
log
∣∣Vc

(
(σe110 , σe120 ), (σe110 , σe120 )>

)∣∣
2

(9.17)

In the simulation study, the steps for the sth simulation (s = 1 . . . N) are as follows

1. Generate the random genetic effects ue and errors e as per the LMM in Equation

(9.10) and for the pre-specified variance parameters κg0 and κḡ0. In terms of the

fixed effects, without loss of generality we choose τ1 = τ2 = 0. Note that we

generate 2m genetic effects, where m = 22 which corresponds to the maximum

total number of varieties across all connectivity levels. We denote the resultant

vector for simulation s by ues. The errors for simulation s are denoted by es
which is a vector of length n1 + n2 = 72.

2. For the connectivity level x1,2, we subset the appropriate 24 elements of ues . We

will label the associated vector as uesc . We then form the data vector and fit the

LMM as in Equation (9.10), without the inclusion of pedigree information. We

save the REML estimates of the genetic variance parameters, denoting these as

{σ̂e11sc , σ̂e12sc , σ̂e22sc} and save the EBLUPs of the genetic effects, denoting these

as ũesc .

3. Repeat Step 2 for each value of x1,2

A total of N = 2000 simulations was conducted for each trial size. The simulation based

diagnostics and reliabilities were only computed for the LMMs in Step 2. that achieved

convergence (with one update if required) and resulted in a positive definite form for

the REML estimate of Ge. All models in this chapter were fitted using the ASReml-R

package (Butler et al., 2017) within R (R Core Team, 2020).

The simulations were conducted in order to obtain two main quantities of interest for

each value of x1,2, namely a measure of the reliability of the genetic variance parameter

estimates and a measure of the reliability of the predicted variety effects for Env1. For

the former, we computed a simulation based equivalent of the diagnostic in Equation

(9.17), namely:

DS
1c(I) =

log
∣∣Vc

(
(σ̂e11c , σ̂e12c ), (σ̂e11c , σ̂e12c )>

)∣∣
2

(9.18)
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where the determinant is with respect to the sample variance/covariance matrix of the

REML estimates of the genetic variance parameters for Env1. In terms of the variety

predictions, we computed the reliability of the EBLUPs for the 12 varieties that were

always present in Env1, namely V1 - V12. For each value of x1,2, the reliability for

variety k (= 1 . . . 12) in Env1 was computed as the square of the sample correlation

between the true (generated) effects (element of uesc for the variety and Env1) and the

EBLUPs (element of ũesc for the variety and Env1). This will be denoted RS
kc.

Noting that the simulation based reliabilities (RS
kc) of the variety predictions take into

account the uncertainty in having to estimate the variance parameters, we compute

analogous values that assume known variance parameters. These reliabilities therefore

reflect the maximum possible values against which we can measure the loss attributable

to variance parameter estimation. This was achieved by fitting, for each value of x1,2,

the LMM as per Equation (9.10) but with the variance parameters fixed at the value κ0.

We then computed the model based reliability for variety k (= 1 . . . 12) in Env1 using

Equation (9.7) but because this has been computed with respect to known variance

parameters (not REML estimates) we will call it the design based reliability (RD
kc). We

calculated the associated loss for the EBLUP reliabilities as

loss = RD
kc −RS

kc (9.19)

Finally, we summarise these by taking means across the varieties in Env1 that were

also present in Env2. We restrict the results to this set of varieties because in any

MET analysis, there is a fundamental difference between varieties that were present

in multiple environments (so-called connected varieties) and those that were present

in a single environment only. The MET analysis, compared with separate analyses of

individual environments, has the potential to improve the reliability of predictions for

connected varieties through the use of additional data. This is not the case for varieties

present in a single environment only. Hence our focus is the connected varieties.

Results of simulation without pedigree information

First we note that the number of simulations in which the model fitting was successful

(as defined in Section 9.2.6.1) was strongly related to the number of varieties in common
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between the two environments (see Figure 9.5). The number of successful model fits for

the connectivity level of x1,2 = 2 was particularly low and additionally the results were

found to be unreliable. Therefore, in what follows, the results for this connectivity level

have been excluded.

The relationship between the diagnosticD1c(I)-values (from Equation 9.17) and the sim-

ulation based equivalent DS
1c(I)-values (from Equation 9.18) is shown in Figure 9.6 (a).

This good agreement shown in Figure 9.6 (a) clearly indicates that the diagnostic per-

forms well in terms of forecasting the level of uncertainty in genetic variance parameter

estimation. Figure 9.6 (b) shows that there is a decreasing linear relationship between

(log) variety connectivity and the uncertainty in genetic variance parameter estimation,

but this is only within a given trial size, that is, for a given number of varieties. The

connectivity measure fails for comparisons involving trials with different number of va-

rieties.

Figure 9.7 shows the mean losses in reliability of the EBLUPs of VE effects for Env1

for those varieties that were present in both environments. These are plotted against

the diagnostic D1c(I)-values, with a separate panel for each trial size. Each point has

been supplemented with a standard error of the mean (SEM) which was based on a

pooled estimate of error across all trial sizes and connectivity levels. Thus differences

in SEM reflect differences in the numbers of varieties used to compute the means (that

is, differences in connectivity). The panels in this figure show that, for a given trial

size, the loss in reliability of EBLUPs is well predicted by the diagnostic D1c(I)-values.

This also holds across trial sizes, although the relationship is more variable (Figure 9.8).

Results displayed in Figures 9.5, 9.6 and 9.8 have been extracted for the “best case”

scenario of 100% connectivity for each Tsize and are presented in Table 9.5. This again

shows the good agreement between the diagnostic D1c(I)-values and the simulation

based DS
1c(I)-values, and the relationship between the diagnostic and the loss in relia-

bility of VE predictions. It also shows that, even with 100% connectivity, there were

substantial problems with the smallest trial size in terms of all criteria (number of suc-

cessful model fits, reliability of genetic variance parameter estimates and reliability of

VE effect predictions).
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Table 9.5: Summary of key results for independent VE effects simulation study for each
trial size and the case of 100% connectivity between the two trials: simulation based
DS

1c(I)-values; diagnostic D1c(I)-values; mean loss in reliability of EBLUPs of VE effects
for Env1 (with associated standard error); number of successful model fits out of N = 2000
simulations.

Varieties in EBLUP reliability Successful
Tsize common DS

1c(I) D1c(I) loss se model fits

12 12 -5.15 -5.16 0.021 0.0023 1,509
24 24 -5.85 -5.90 0.013 0.0016 1,842
48 48 -6.51 -6.62 0.006 0.0011 1,974
96 96 -7.19 -7.32 0.004 0.0008 1,999

Figure 9.5: Independent VE effects simulation study: number of successful model fits
from N = 2000 simulations plotted against number of varieties in common for four trial
sizes (trials with {12, 24, 48, 96} varieties). Trial sizes (Tsize) are represented using different
colours. Each point within Tsize corresponds to a different level of variety connectivity
which ranges from x1,2 = 2 up to the number of varieties in a trial (representing 100%
connectivity between the two trials).
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Figure 9.6: Independent VE effects simulation study: simulation based DS
1c(I)-values plotted against (a) diagnostic D1c(I)-values

and (b) log number of varieties in common for four trial sizes (trials with {12, 24, 48, 96} varieties) and a sequence of connectivity
levels. Trial sizes (Tsize) are represented using different colours. Each point within Tsize corresponds to a different level of variety
connectivity which ranges from x1,2 = 4 up to the number of varieties in a trial (representing 100% connectivity between the two
trials).
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Figure 9.7: Independent VE effects simulation study: mean loss in reliability of the
EBLUPs of VE effects for Env1 for those varieties that were present in both environments.
Each panel corresponds to a different trial size (trials with {12, 24, 48, 96} varieties) and
the points correspond to a sequence of connectivity levels. Also shown are standard errors
for each mean (vertical lines) and a loess smoother through the means for each Tsize.
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Figure 9.8: Independent VE effects simulation study: mean loss in reliability of the
EBLUPs of VE effects for Env1 for those varieties that were present in both environments.
The colours correspond to different trial sizes (trials with {12, 24, 48, 96} varieties) and
the points for each colour correspond to a sequence of connectivity levels. Also shown are
standard errors for each mean (vertical lines) and a loess smoother through all the means.
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9.2.6.2 LMM with pedigree information

We extend the simulation study in order to assess the performance of the diagnostic in

terms of correlated VE effects. To simplify the simulations, and without loss of gen-

erality, we consider the LMM as in Equation (9.1) but without the non-additive VE

effects, so that as in section 9.2.6.1, nκg = 3. The set-up for the study is the same as

in section 9.2.6.1 but we only consider the two larger trial sizes along with two addi-

tional larger trial sizes of 192 and 384, namely d1(= d2) = {48, 96, 192, 384} so that

n1(= n2) = {144, 288, 576, 1152}. Across the range of connectivity levels the total num-

ber of varieties required for the simulation is 767 (corresponding to x1,2 = 2 for the trial

size of 384) and we label these as V1-V767. The simulation study requires a numerator

relationship matrix (A) for these varieties. We therefore chose V1-V767 from the actual

lines in Stage 3 (S3), Stage 4 (S4) and Stage 2 (S2) in 2018 and 2017 in the Durum

data and computed A from the associated pedigree information. For the chosen subset

of varieties, the inbreeding coefficient ranged from 0.750 to 0.998 with a mean of 0.925.

For the purposes of both the calculation of D1c(A) and of data generation in the simu-

lation study we chose the values of the variance parameters to be:

κg0 =
(
σa110 = 0.1, σa120 = 0.08, σa220 = 0.1

)> and κḡ0 =
(
σ2

10
= 0.15, σ2

20
= 0.15

)>
Results of simulation with pedigree information

As in the independent VE effects study, the number of simulations in which the model

fitting was successful was related to the number of varieties in common between the

two environments (see Figure 9.9). However, a key difference was that the number of

successful model fits for the connectivity level of x1,2 = 2 was reasonable so these results

have been included in what follows.

The results are presented in the same format as in Section 9.2.6.1. The good agreement

shown in Figure 9.10 (a) clearly indicates that the diagnostic performs well in terms

of forecasting the level of uncertainty in genetic variance parameter estimation in the

presence of pedigree information. Figure 9.10 (b) shows that there is a decreasing linear

relationship between (log) variety connectivity and the uncertainty in genetic variance

parameter estimation, but this only holds for trials with the same number of varieties.
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The mean loss in reliability of the EBLUPs of the additive VE effects for Env1 for

those varieties that were present in both environments is well predicted by the diag-

nostic D1c(A)-values, both for individual trial sizes (Figure 9.11) and across trial sizes

(Figure 9.12).

Figure 9.9: Additive VE effects simulation study: number of successful model fits from
N = 2000 simulations plotted against number of varieties in common for four trial sizes
(trials with {48, 96, 192, 384} varieties). Trial sizes (Tsize) are represented using different
colours. Each point within Tsize corresponds to a different level of variety connectivity
which ranges from x1,2 = 2 up to the number of varieties in a trial (representing 100%
connectivity between the two trials).
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Figure 9.10: Additive VE effects simulation study: simulation based DS
1c(A)-values plotted against (a) diagnostic D1c(A)-values

and (b) log number of varieties in common for four trial sizes (trials with {48, 96, 192, 384} varieties) and a sequence of connectivity
levels. Trial sizes (Tsize) are represented using different colours. Each point within Tsize corresponds to a different level of variety
connectivity which ranges from x1,2 = 2 up to the number of varieties in a trial (representing 100% connectivity between the two
trials).
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Figure 9.11: Additive VE effects simulation study: mean loss in reliability of the EBLUPs
of VE effects for Env1 for those varieties that were present in both environments. Each
panel corresponds to a different trial size (trials with {48, 96, 192, 384} varieties) and the
points correspond to a sequence of connectivity levels. Also shown are standard errors for
each mean (vertical lines) and a loess smoother through the means for each Tsize.

185



9. INFORMATION BASED DIAGNOSTIC FOR GENETIC VARIANCE
PARAMETER ESTIMATION IN MULTI-ENVIRONMENT TRIALS

Figure 9.12: Additive VE effects simulation study: mean loss in reliability of the EBLUPs
of VE effects for Env1 for those varieties that were present in both environments. The
colours correspond to different trial sizes (trials with {48, 96, 192, 384} varieties) and the
points for each colour correspond to a sequence of connectivity levels. Also shown are
standard errors for each mean (vertical lines) and a loess smoother through all the means.
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9.2.6.3 Robustness of diagnostic

We again investigate the robustness of the diagnostic to a change in variance parameters.

Figures 9.13, 9.14, 9.15 and 9.16 show results from a simulation study where we have set

the additive genetic variance to 40% of the total genetic variance for each environment

and therefore 60% for the non-additive genetic variance, and a between environments

correlation of 0.4 for both additive and non-additive VE effects. These values are at

the lower end of those seen in practice and are presented here to show the robustness of

the diagnostic. The results highlight similar trends to the original simulation as already

presented.

Figure 9.13: Low value scenario: Additive VE effects simulation study: number of suc-
cessful model fits fromN = 2000 simulations plotted against number of varieties in common
for two trial sizes (trials with 48 and 96 varieties). Trial sizes (Tsize) are represented using
different colours. Each point within Tsize corresponds to a different level of variety con-
nectivity which ranges from c = 2 up to the number of varieties in a trial (representing
100% connectivity between the two trials).
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Figure 9.14: Low value scenario: Additive VE effects simulation study: simulation based DS
1c(A)-values plotted against (a)

diagnostic D1c(A)-values and (b) log number of varieties in common for two trial sizes (trials with 48 and 96 varieties) and a
sequence of connectivity levels. Trial sizes (Tsize) are represented using different colours. Each point within Tsize corresponds to a
different level of variety connectivity which ranges from c = 2 up to the number of varieties in a trial (representing 100% connectivity
between the two trials).
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Figure 9.15: Low value scenario: Additive VE effects simulation study: mean loss in reliability of the EBLUPs of VE effects for
Env1 for those varieties that were present in both environments. Each panel corresponds to a different trial size (trials with 48 and
96 varieties) and the points correspond to a sequence of connectivity levels. Also shown is a loess smoother through the means for
each Tsize.
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Figure 9.16: Low value scenario: Additive VE effects simulation study: mean loss in
reliability of the EBLUPs of VE effects for Env1 for those varieties that were present in
both environments. The colours correspond to different trial sizes (trials with 48 and 96
varieties) and the points for each colour correspond to a sequence of connectivity levels.
Also shown is a loess smoother through all the means.
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9.3 Calculating D-values in practice

For illustration to calculate D-values, I present in this section the R code to calculate
the Dj(A+I)-values given in the first column of Table 9.4. Note that the R function
DoptFull.tot is given in Appendix A.

l i b r a r y (msos )
l i b r a r y (Matrix )
l i b r a r y ( g t o o l s )
l i b r a r y ( ggp lot2 )
l i b r a r y ( gg r epe l )

durumEI . Tot . S3 <− DoptFull . t o t ( data . df=s3d iag . df , s i g . vmvar=0.1 ,
s i g . vmcov=0.08 , s i g . idevar =0.05 , s i g . idecov =0.04 , sigm=0.15 ,
Efac=’Environment ’ , Gfac = ’ Variety ’ ,Amat=Amat)

M <− s o l v e (durumEI . Tot . S3 )
ld . mat .T <− matrix ( data=NA, nco l=2,nrow=length ( envs ) )
rownames ( ld . mat .T) <− envs
colnames ( ld . mat .T) <− c ( ’ ld . v1 ’ , ’ ld . v2 ’ )
f o r ( i in 1 : l ength ( envs ) ){
V11 <− M[ grep ( envs [ i ] , rownames (M) ) , grep ( envs [ i ] ,
colnames (M) ) ] ; dim(V11)
V12 <− M[ grep ( envs [ i ] , rownames (M) ) , grep ( envs [ i ] ,
colnames (M) , i nv e r t=T) ] ; dim(V12)
V21 <− M[ grep ( envs [ i ] , rownames (M) , i nv e r t=T) , grep ( envs [ i ] ,
colnames (M) ) ] ; dim(V21)
V22 <− M[ grep ( envs [ i ] , rownames (M) , i nv e r t=T) , grep ( envs [ i ] ,
colnames (M) , i nv e r t=T) ] ; dim(V22)

ld .mat .T[ i , 2 ] <− l o gde t (V22 − V21%∗%so l v e (V11)%∗%V12)
ld .mat .T[ i , 1 ] <− l o gde t (V11)
}
round ( ld .mat .T[ , 1 ] / 2 6 , 2 ) #26 parameters
# 2014−BREEZA 2014−TWORTH 2015−EDGEROI 2015−TWORTH
# −7.56 −7.43 −7.95 −8.27
#2016−BREEZA 2016−NSTAR 2016−TWORTH 2017−BREEZA
# −7.51 −7.51 −8.28 −7.65
#2017−NSTAR 2017−TWORTH 2018−BREEZA 2018−GURLEY
# −7.65 −8.03 −7.39 −7.39
#2018−TWORTH
# −7.39
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9.4 Concluding remarks

In this chapter we have developed a diagnostic to be applied to a MET dataset prior to

analysis in order to assess the reliability of genetic variance parameter estimates, both

for the dataset across all environments and for individual environments. Similar to the

methods outlined in Chapter 7 we use a model-based design approach and apply D-

optimality measures to genetic variance parameters. Two simulation studies, one using

a LMM with independent VE effects and the other additive VE effects, showed that

the diagnostic D-values performed well in the sense of predicting the actual reliability

of genetic variance parameter estimates.

Historically variety connectivity between environments was calculated prior to the con-

duct of a MET analysis to investigate the likely reliability of genetic variance parameter

estimation. Although this measure is simple to compute and intuitively reasonable,

there has been little in the literature to validate its use. This was investigated in Chap-

ter 6 which showed that variety connectivity was influential but there were other factors

at play. This is also shown in the simulation studies within this chapter but I note that

variety connectivity was only able to predict the reliability of genetic variance param-

eter estimation across connectivity levels for a given trial size (number of varieties in

the trial). In contrast, the new D-optimality diagnostic predicted reliability across both

connectivity levels and trial sizes. The application to the Durum dataset also suggested

that D-optimality encapsulates numerous structural features of a MET data-set that

are influential in determining the reliability of genetic variance parameter estimation.

These features included, but are not limited to, variety connectivity, trial size, variety

replication as well as variety relationships when available.

The simulation study results suggest that trials with small numbers of varieties will, in

general, have larger D-values when compared with trials with more varieties. Even in

the case of 100% connectivity, the smallest trial size considered (12 varieties in each of

the two trials) resulted in large D-values which then translated to substantial losses in

the reliability of VE effect predictions. Additionally, the number of successful model fits

was much lower compared with the scenario in which there were more varieties in each

trial. This is consistent with our experience in analysing MET datasets in which many
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trials have small numbers of varieties. Even when the connectivity between these and

larger trials is high, there are often computational difficulties in fitting the FALMM.

In practice, we therefore suggest that individual environment diagnostic values should

be examined for a given MET dataset in order to identify environments with large D-

values. These environments may contribute insufficient information for genetic variance

parameter estimation so their inclusion in the MET dataset should be carefully consid-

ered. Additionally, examination of the overall diagnostic value across all environments

may be useful. If the overall D-value is large this may indicate insufficient information

to fit the gold standard FALMM and it may only be possible to fit a simpler model,

such as a variance component model.

Finally, as demonstrated in Chapter 7, the CG methodology shows the information

benefits of using MET datasets that span stages and years. However as a result, this

approach may lead to datasets with poor levels of variety connectivity. To determine

the best MET dataset, we use the A-value criterion (see Section 7.1) to analyse the

range of datasets, as this criterion has been shown to align with the probability of mak-

ing incorrect selection decisions (Bueno Filho & Gilmour, 2003, 2007). Calculation of

the A-values is based on an LMM with known variance parameter values, however in

practice these must be estimated from the data. As illustrated in this chapter and in

Chapter 6, I have shown the link between the reliability of variance parameter estima-

tion and the reliabilities of the corresponding VE effect predictions. As a consequence,

I advocate combining the A and D-value approaches in order to balance variety infor-

mation and reliability of variance parameter estimation in the search for an optimum

MET dataset.
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Chapter 10

Conclusion

Despite the fact that METs are an important part of plant breeding, and although

sophisticated and relevant statistical analyses, as detailed in Chapters 1 and 2, have

been proven to increase the reliability of the predicted variety effects for individual en-

vironments (VE effects), there has been little research into how best to construct an

appropriate dataset in terms of deciding which trials should be included. Under the

paradigm of the factor analytic linear mixed model (FALMM) methodology of Smith

et al. (2001b) for MET analysis, the objective is for the reliable prediction of the VE

effects. These predictions can be meaningfully summarised across environments, for

example, using the interaction class methodology of Smith & Cullis (2021).

The objectives of this thesis were to present novel approaches for optimising the con-

struction of MET datasets from a series of plant variety trials. Two motivating datasets

described in Chapter 4 were utilised to exemplify these objectives. The first is an Oat

dataset and the other is a Durum wheat dataset. The former is used as an example

of a dataset with independent VE effects, whereas the latter is used as an example of

a dataset with related VE effects. These, along with their statistical analyses given in

Chapters 5 and 8 respectively, are used for their attributes in the development of real-

world grounded simulation studies (see Chapter 3 for their methodology) and diagnostic

tools, with the objectives of investigating recognised concerns and providing superior

methodology to existing approaches for the construction of MET datasets.
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10.1 Summary of research

The breeding process is a progressive system that revolves around the evaluation and

selection of superior varieties. This naturally results in datasets with varied levels of

balance in terms of the number of varieties in common between environments, a metric

known as “variety connectivity”. It was long believed that this was a key driver of the

reliability of genetic variance parameter estimation and that this in turn affected the

reliability of predictions of VE effects. It is well-known that poorly estimated genetic

variance parameters will result in a reduction in genetic gain (Sales & Hill, 1976a,b).

Historically, to combat these concerns, environments were often removed from the MET

dataset if they appeared to have insufficient numbers of varieties in common with other

environments (Smith et al., 2001a, 2015; Ward et al., 2019, for example). However,

there has been little research to establish whether this approach is the most appropri-

ate method for this purpose.

These concerns are first investigated through a real-world grounded simulation study

in Chapter 6, for the case of independent VE effects. The results from this simulation

study demonstrated the intricate linkages between genetic scenarios and variety connec-

tivity. In particular, it was shown that variety connectivity was only able to predict the

reliability of genetic variance parameter estimation across connectivity levels for a given

trial size (number of varieties in the trial). As a result, the typical variety connectivity

approach was demonstrated to be inadequate for constructing MET datasets.

We then provided a systematic approach for the construction of MET datasets for

selection in plant breeding programs in Chapter 7. This methodology describes the

structure of MET datasets, with the focus on identifying groups of varieties that en-

tered the first stage of testing in the same year, which are denoted as contemporary

groups (CGs), and also the establishment of data bands, which are related to trials.

This enabled a thorough, and complete listing of the trials in which the varieties of in-

terest were grown and their progression between years and stages. To quantify different

MET datasets, we employed the A-optimality criterion from model-based design the-

ory, since this aligns with minimising the probability of an incorrect selection decision

(Bueno Filho & Gilmour, 2003, 2007). This measure was applied to variety effects which
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demonstrated the importance of adding as many trials as necessary to capture the se-

lection histories of the varieties under consideration. This approach was demonstrated

to be superior to other commonly used dataset construction strategies when applied

to the Durum dataset presented in Chapter 4, which had four selection decisions. As

in the case of standard model-based design, the calculation of A-values is based on a

pre-specified linear mixed model (LMM), so it assumes that the associated variance

parameters are known. The approach for increasing the amount of data available for

the varieties under consideration was shown to be simple and straightforward, with only

a few steps.

It is important to distinguish between ‘direct’ and ‘indirect’ information in terms of

information accessible for selection decisions. The former is concerned with observable

data and is maximised by considering all trials in which the varieties of interest have

been grown. The use of a FALMM for analysis with pedigrees, opens up the option of

utilising indirect information gained from genetically related varieties. However, it was

noted that combining trials across stages and years may result in an unbalanced dataset,

as demonstrated for the Durum dataset with 6% of variety by environment combinations

observed (see Table 1.1). Whilst one of the advantages of using a FALMM is the ability

to handle unbalanced data, I again raised concern about the reliability of estimation

of genetic variance parameters in extreme cases when variety connectivity is poor, and

thus sought a diagnostic that was superior to traditional connectivity measures.

It was therefore critical to assess the influence of the structure of a MET dataset on the

reliability of genetic variance parameter estimation, since this may affect the reliability

of variety predictions. As a result, in Chapter 9, a formal diagnostic tool was devel-

oped that can be applied to a MET dataset prior to analysis to examine the potential

reliability of genetic variance parameter estimates. As in the CG methodology, I again

used a model-based design approach, and apply D-optimality to the genetic variance

parameters. Computation of the diagnostic measure requires specification of variance

parameters, namely the genetic and error variances for individual environments and

genetic correlations between pairs of environments. As these values are not known or

how they differ between environments prior completing the MET analysis, a pragmatic

and sensible approach is used that assumes homogeneity between environments. These
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parameter values can be chosen to reflect typical estimates obtained in practice. How-

ever, in the application to the Durum dataset, the diagnostic tool is shown to be robust

to the specification of these values.

Two simulation studies are conducted in Chapter 9, one employing a LMM with in-

dependent VE effects and the other with additive VE effects. They demonstrated that

the diagnostic D-values performed well in the sense of predicting the actual reliabil-

ity of genetic variance parameter estimates, where lower diagnostic D-values represent

higher levels of information to estimate the parameters of interest. The diagnostic

was shown to encapsulate numerous other structural features of a MET dataset that

are influential in determining the reliability of genetic variance parameter estimation.

These features include, but are not limited to: variety connectivity; trial size; variety

replication; and when available, variety relatedness. Furthermore, the results showed

that trials with small numbers of varieties will, in general, have larger D-values when

compared with trials with more varieties. Even in the case of 100% connectivity, the

smallest trial size of 12 varieties resulted in larger D-values which then translated to

substantial losses in the reliability of VE effect predictions. Additionally, the number

of successful model fits was much lower compared with scenarios in which there were

more varieties in each trial. This is consistent with our experience in analysing MET

datasets with small numbers of varieties. Even when the connectivity between these

and larger trials is high, there are often computational difficulties in fitting the FALMM.

The problem with environments which have a small number of varieties leads to a

broader issue for MET datasets arising from crop variety evaluation programs such as

the NVT. In contrast to plant breeding datasets, all trials in evaluation programs have

relatively few varieties. Three examples were given in Table 1.1, corresponding to NVT

Wheat and Lentil datasets. In the two Wheat datasets (Smith et al., 2015; Gogel et al.,

2018), the median number of varieties per trial was 47 in both cases, whereas for Lentils

(NVT-online) the median number was 15 with a maximum number of varieties per trial

of only 17. In the early years of NVT (2005 – circa 2013), the MET analysis was of

the form used in Cullis et al. (1996a,b), namely a variance component model with va-

riety by environment interaction partitioned into sources associated with locations and

years. As discussed in this thesis, such a model rarely provides a good fit to the data
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in the sense of accounting for variety by environment interaction, but is parsimonious,

with very few variance parameters to be estimated. The success of FALMM in plant

breeding applications led to its adoption for NVT data (Smith et al., 2015) and this is

the current method used for all crops.

10.2 Future direction

In practice, I suggest both the CG and D-optimality methodologies to be used to con-

struct optimal MET datasets for use in plant breeding programs, with environments

with large D-values considered for exclusion as these may contribute insufficient in-

formation for genetic variance parameter estimates. Furthermore, I note that these

approaches outlined in this thesis are presently applied in numerous private breeding

programs in Australia and overseas.

The pre-specified LMM for the calculation of the D-optimality diagnostic shown in this

thesis utilises a fully saturated form of the genetic variances and covariances within and

between environments. It therefore targets MET analyses that employ factor analytic,

or unstructured forms for the genetic variance matrices. I note that it is reasonably

simple to modify the pre-specified LMM to reflect simpler models, such as a variance

component model. Additionally, the partitioning of the genetic effects into additive and

non-additive was achieved in this thesis using pedigree information, but the modifica-

tion to use genomic marker data is straightforward.

The research finding in this thesis concerning the importance of trial size (number of va-

rieties per trial) on the reliability of genetic variance parameter estimates raises concerns

about the use of FALMM for datasets such as the NVT Lentils data (see Table 1.1).

Thus, leading on from this thesis is the need to investigate whether there is sufficient

information in such datasets to reliably estimate the factor analytic variance parameters

and whether the resultant variety predictions are more or less accurate compared with

those obtained by fitting the simplistic but parsimonious variance component model.
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10.3 Final remarks

The main objectives of this thesis were to address a void in the literature, and provide a

rigorous and formal framework for the optimal construction of MET datasets for selec-

tion in plant breeding programs. These have been accomplished by striking the balance

between maximising the variety information through the use of the CG methodology,

and maximising the reliability of variance parameter estimates through the use of the

diagnostic D-value. It is intended that the improvements in the reliabilities of the VE

effects demonstrated in this thesis will lead to more widespread use of these approaches

in plant breeding programs. Thus, leading to an increase in genetic gain.
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Appendix A

R functions

The R code presented here provides the function to calculate the expected information
matrix for the total effects, that is, for additive and non-additive effects, as given in
Chapter 9.

DoptFull . t o t <− f unc t i on ( data . df , s i g . vmvar , s i g . vmcov , s i g . idevar ,
s i g . idecov , sigm , Efac = "env " , Gfac = "geno " , Amat = Amat) {
##################
#This func t i on c a l c u l a t e s EI f o r the t o t a l g en e t i c
e f f e c t s parameters , that i s f o r add i t i v e + non−add i t i v e .
##################
#data . df = d a t a f i l e which conta in s the s t r u c t u r a l in format ion ,
#environments , v a r i e t i e s .
#s i g . vmvar = Addit ive var i ance f o r each environment
#s i g . vmcov = Addit ive covar iance between environments
#s i g . idevar = Non−add i t i v e var i ance f o r each environment
#s i g . idecov = Non−add i t i v e covar iance between environments
#sigm = Error var i ance
#Efac = Name o f environment f a c t o r in d a t a f i l e
#Gfac = Name o f the va r i e t y f a c t o r in d a t a f i l e
#Amat = The NRM fo r a l l v a r i e t i e s .

nrep<−t ab l e ( data . df [ [ Gfac ] ] , data . df [ [ Efac ] ] )
dv <− dimnames ( nrep ) [ [ 1 ] ]
de <− dimnames ( nrep ) [ [ 2 ] ]
data . df2 <− data . frame ( nrep=as . vec to r ( nrep ) )
data . df2$Env <− f a c t o r ( rep ( de , each=length (dv ) ) )
data . df2$Geno <− f a c t o r ( rep (dv , l ength ( de ) ) )
data . df2 <− data . df2 [ data . df2$nrep >0 ,]
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m <− l ength ( l e v e l s ( data . df2$Geno ) ) # 6
e <− l ength ( l e v e l s ( data . df2$Env ) )
# genos in each s i t e . . .
gnam <− l i s t ( )
f o r ( i in 1 : l ength ( de ) ) {
gnam [ [ i ]]<−as . cha rac t e r ( unique ( data . df2$Geno [ data . df2$Env==de [ i ] ] ) )
}
names (gnam) <− de
Gamat <− matrix ( s i g . vmcov , nrow=length ( de ) , nco l=length ( de ) )
diag (Gamat) <− s i g . vmvar
dimnames (Gamat) <− l i s t ( de , de )

Gemat <− matrix ( s i g . idecov , nrow=length ( de ) , nco l=length ( de ) )
diag (Gemat) <− s i g . idevar
dimnames (Gemat) <− l i s t ( de , de )
Imat <− diag (1 , nrow=dim(Amat ) [ 1 ] , nco l=dim(Amat ) [ 2 ] )
rownames ( Imat ) <− colnames ( Imat ) <− rownames (Amat)
k <− 0
ZAZ <− ZIZ <− l i s t ( )
Hmat <− matrix (0 , nrow=dim( data . df2 ) , nco l=dim( data . df2 ) )
pind <− pvmtype <− pidetype <− Env1 <− Env2 <− c ( )
p r i n t ( ’ Ca l cu l a t ing H’ )
pb <− progress_bar$new ( t o t a l=length ( de ) )
f o r ( i in 1 : l ength ( de ) ) {
f o r ( j in 1 : i ) {
k <− k+1
pind [ k ] <− k
pvmtype [ k ] <− ’ var .vm’
pidetype [ k ] <− ’ var . ide ’
Env1 [ k ] <− de [ i ]
Env2 [ k ] <− de [ j ]
ZAZ [ [ paste ( de [ i ] , de [ j ] , sep =" : " ) ] ] <− Amat [ gnam [ [ i ] ] , gnam [ [ j ] ] ]
ZIZ [ [ paste ( de [ i ] , de [ j ] , sep =" : " ) ] ] <− Imat [ gnam [ [ i ] ] , gnam [ [ j ] ] ]
Hmat [ data . df2$Env==de [ i ] , data . df2$Env==de [ j ] ] <−
as . matrix (Gamat [ de [ i ] , de [ j ] ] ∗ZAZ [ [ paste ( de [ i ] , de [ j ] , sep =" : " ) ] ] +
Gemat [ de [ i ] , de [ j ] ] ∗ ZIZ [ [ paste ( de [ i ] , de [ j ] , sep =" : " ) ] ] )
i f ( i != j ) {
pvmtype [ k ] <− ’ cov .vm’ ; p idetype [ k ] <− ’ cov . ide ’
Hmat [ data . df2$Env==de [ j ] , data . df2$Env==de [ i ] ] <−
as . matrix (Gamat [ de [ j ] , de [ i ] ] ∗ t (ZAZ [ [ paste ( de [ i ] , de [ j ] , sep =" : " ) ] ] ) +
Gemat [ de [ j ] , de [ i ] ] ∗ t ( ZIZ [ [ paste ( de [ i ] , de [ j ] , sep =" : " ) ] ] ) )
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}
}
Hmat [ data . df2$Env==de [ i ] , data . df2$Env==de [ i ] ] <−
Hmat [ data . df2$Env==de [ i ] , data . df2$Env==de [ i ] ] +
sigm∗diag (1/ data . df2$nrep [ data . df2$Env==de [ i ] ] )
pb$t ick ( )
}
p .vm. ind . df <− data . frame ( pind=pind , ptype=pvmtype ,
Env1=paste0 (Env1 , " .vm") ,Env2=paste0 (Env2 , " .vm") )
p . ide . ind . df <− data . frame ( pind=pind , ptype=pidetype ,
Env1=paste0 (Env1 , " . ide ") ,Env2=paste0 (Env2 , " . ide " ) )

pars . n <− c ( paste0 ( names (ZAZ) , " .vm") , paste0 ( names ( ZIZ ) , " . i de " ) )
params <− as . data . frame ( combinat ions (n=length ( pars . n ) , r=2,
v=pars . n , r epea t s . a l lowed=T) )
tmp <− s t r s p l i t ( params$V1 , " : " )
params$Env1_V1 <− sapply ( tmp , " [ " , 1)
params$Env2_V1 <− sapply ( tmp , " [ " , 2)
params$Env2_V1 <− gsub ( " . ide " ,"" , params$Env2_V1)
params$Env2_V1 <− gsub ( " .vm" ,"" , params$Env2_V1)
tmp <− s t r s p l i t ( params$V2 , " : " )
params$Env1_V2 <− sapply ( tmp , " [ " , 1)
params$Env2_V2 <− sapply ( tmp , " [ " , 2)
params$Env2_V2 <− gsub ( " . ide " ,"" , params$Env2_V2)
params$Env2_V2 <− gsub ( " .vm" ,"" , params$Env2_V2)

XX <− model . matrix (~data . df2$Env−1)
Hinv <− s o l v e (Hmat)
Pmat <− Hinv − Hinv%∗%XX%∗%so l v e ( t (XX)%∗%Hinv%∗%XX)%∗%t (XX)%∗%Hinv
dimEI <− l ength (ZAZ)+length ( ZIZ )
EI <− matrix (0 , nrow=dimEI , dimEI )
dimnames (EI ) [ [ 1 ] ] <− dimnames (EI ) [ [ 2 ] ] <− pars . n

p r i n t ( ’ Ca l cu l a t ing EI ’ )
pb <− progress_bar$new ( t o t a l=nrow ( params ) )
f o r ( i in 1 : nrow ( params ) ) {
Hdoti <− matrix (0 , nrow=dim( data . df2 ) , nco l=dim( data . df2 ) )
i f ( l ength ( grep ( ’ . vm’ , params$V1 [ i ]))==1){

Hdoti [ data . df2$Env==params$Env1_V1 [ i ] ,
data . df2$Env==params$Env2_V1 [ i ] ] <−

205



A. R FUNCTIONS

as . matrix (ZAZ [ [ paste (params$Env1_V1 [ i ] ,
params$Env2_V1 [ i ] , sep =" : " ) ] ] )

Hdoti [ data . df2$Env==params$Env2_V1 [ i ] ,
data . df2$Env==params$Env1_V1 [ i ] ] <−
as . matrix ( t (ZAZ [ [ paste (params$Env1_V1 [ i ] ,
params$Env2_V1 [ i ] , sep =" : " ) ] ] ) )
}
i f ( l ength ( grep ( ’ . ide ’ , params$V1 [ i ]))==1){
Hdoti [ data . df2$Env==params$Env1_V1 [ i ] ,
data . df2$Env==params$Env2_V1 [ i ] ] <−
as . matrix ( ZIZ [ [ paste (params$Env1_V1 [ i ] ,
params$Env2_V1 [ i ] , sep =" : " ) ] ] )

Hdoti [ data . df2$Env==params$Env2_V1 [ i ] ,
data . df2$Env==params$Env1_V1 [ i ] ] <−
as . matrix ( t ( ZIZ [ [ paste (params$Env1_V1 [ i ] ,
params$Env2_V1 [ i ] , sep =" : " ) ] ] ) )
}
PHdoti <− Pmat%∗%Hdoti
####
Hdotj <− matrix (0 , nrow=dim( data . df2 ) , nco l=dim( data . df2 ) )
i f ( l ength ( grep ( ’ . vm’ , params$V2 [ i ]))==1){
Hdotj [ data . df2$Env==params$Env1_V2 [ i ] ,
data . df2$Env==params$Env2_V2 [ i ] ] <−
as . matrix (ZAZ [ [ paste (params$Env1_V2 [ i ] ,
params$Env2_V2 [ i ] , sep =" : " ) ] ] )

Hdotj [ data . df2$Env==params$Env2_V2 [ i ] ,
data . df2$Env==params$Env1_V2 [ i ] ] <−
as . matrix ( t (ZAZ [ [ paste (params$Env1_V2 [ i ] ,
params$Env2_V2 [ i ] , sep =" : " ) ] ] ) )
}
i f ( l ength ( grep ( ’ . ide ’ , params$V2 [ i ]))==1){
Hdotj [ data . df2$Env==params$Env1_V2 [ i ] ,
data . df2$Env==params$Env2_V2 [ i ] ] <−
as . matrix ( ZIZ [ [ paste (params$Env1_V2 [ i ] ,
params$Env2_V2 [ i ] , sep =" : " ) ] ] )

Hdotj [ data . df2$Env==params$Env2_V2 [ i ] ,
data . df2$Env==params$Env1_V2 [ i ] ] <−
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as . matrix ( t ( ZIZ [ [ paste (params$Env1_V2 [ i ] ,
params$Env2_V2 [ i ] , sep =" : " ) ] ] ) )
}
PHdotj <− Pmat%∗%Hdotj
EI [ params$V1 [ i ] , params$V2 [ i ] ] <− EI [ params$V2 [ i ] ,
params$V1 [ i ] ] <− sum(PHdoti∗ t ( PHdotj ) )
pb$t ick ( )
}
re turn (EI .mat=EI /2)}
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