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Abstract 

Long-term climate change mitigation calls for a switch from the current global non-

renewable energy system to low greenhouse gas (GHG) emission energy solutions. Many 

nations have started adopting energy-efficient technology as part of their climate change 

programs and the built environment has been identified as a key lever for reducing emissions 

linked to energy efficiency. Building rooftop photovoltaic (PV) system is an effective 

technology to reduce emissions through the use of solar energy. In recent years, rooftop PV 

systems have become the main source of solar-generated energy, and forecasting their 

output is critical when assessing a site's PV energy potential. However, integrating 

topographical features with seasonal considerations to estimate solar PV energy is 

challenging. There are some studies available that estimate solar PV energy on rooftops using 

geospatial tool modeling, but these have limitations in functionality, accuracy, and 

calculation speed. This study uses a geospatial tool to assess the solar PV potential of suitable 

rooftops in the suburbs of Wollongong, Australia, namely, Wombarra and Cringila. The 

model used in this study compares the energy potential of these two suburbs based on the 

topographical feature (escarpment), seasonality, rooftop slope, and aspect. The digital 

surface model (DSM) is created using LiDAR data, and then the DSM, building footprints, and 

suburb boundaries data are used to calculate the solar PV energy potential. A total of 1594 

buildings from two suburbs were considered. Subsequently, solar radiation modeling for four 

common seasons in a year and a comparison of solar radiation output, suitable rooftop area, 

and electricity output are being done for both suburbs. Wombarra's building rooftops are 

shadowed by the escarpment, whereas Cringila's aren't. Even though the weather in both 

suburbs is similar, the escarpment's shadow affects solar PV energy output. Wombarra has 

178 kWh/m2/building lesser yearly solar radiation than Cringila. Hence, Cringila offers more 

solar rooftop installation potential per building. The average annual potential electricity 

generation per dwelling in Wombarra is 20.6 kWh/m2/day, and the same for Cringila is 27.6 

kWh/m2/day. The outcome reveals that 1352 building rooftops, with a usable area of 75481 

m2, are the best locations for installing solar panels. According to the Australian 

Government's Energy Made Easy statistics, the annual electricity consumption per 

household in Wollongong is 5707.6 kWh (Australian Energy Regulator 2022). The estimated 

yearly electricity production is 12705 Mwh (Wombarra: 2778.3 Mwh, Cringila: 9926.7 Mwh), 

which would be sufficient to meet local electricity consumption. An excess of 17% from 

Wombarra and 48% from Cringila can be exported back to the grid, which can be used by 
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neighbouring areas. Tiseo (2021) reported that Australia's power sector released 656.4 

grams/kWh of CO2 in 2020. Therefore, solar PV panels on all suitable rooftops of both 

suburbs could prevent 8339.5 tonnes of CO2 emissions. To achieve the goal of clean energy, 

future development can use the study's findings as a guide. The proposed approach can 

assist in influencing policies and subsidies to boost deployment. This research can be made 

more in-depth by taking into account social and economic factors like consumer choices and 

return on investment, and physically inspecting specific building rooftop impediments.
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1. Introduction 

1.1 Background 

Electricity is an important facet of contemporary life, and the various ways in which it 

benefits us cannot be overstated. We rely on electricity for several different things, such as 

illuminating, cooling, heating, and refrigerator, as well as for the functioning of gadgets, 

electronics, computers, and transportation systems, among other things (Schiffer 2009). In 

this day and age, we would be nothing without the aid of electricity. A secondary source of 

energy is the electricity that we require for our day-to-day activities. Electricity is created 

through the transformation of fundamental and natural energy sources including nuclear 

energy, natural gas, coal, wind, and solar energy, into electrical energy (Salehabadi et al. 

2020). This process is of utmost significance in the improvement of human lives and the 

revitalization of the national economy. 

The generation of electricity through the use of resources that are not replenishable (non-

renewables) is a major cause of environmental concern. Since industrialization in the 18th 

century, traditional fossil fuels have been extensively used to generate electricity (Sen 2008), 

resulting in the release of several greenhouse gases and thus, migrating the climate. The 

consumption of fossil fuels is to blame for environmental issues such as global warming and 

air pollution, both of which contribute to the deterioration of people's health and the overall 

quality of life in their respective communities (Breeze 2014). Coal and oil are two major 

examples of polluting fossil fuels that are contributing to environmental degradation.  

The most significant contribution that humans have made to the problem of climate change 

is the generation of energy through the combustion of fossil fuels, in particular coal (Ng et 

al. 2019). Because one of the major sources of carbon dioxide (CO2) emissions is electricity 

generation using fossil fuels, governments have investigated the feasibility of switching from 

polluting energy sources to clean energy sources (Ellabban et al. 2014). Even if some 

countries have reduced their emissions, greenhouse gas (GHG) emissions are still rising. Over 

the last decade, the widespread implementation of renewable energy sources has emerged 

as a primary concern for governments and decision-makers across the board in industrialized 

economies, developing markets, and a large number of developing nations. As a result of 

this, a great number of nations have initiated a paradigm shift by embracing technology that 

is more energy efficient and fuels that emit less pollution as part of their initiatives to combat 

climate change (International Energy Agency (IEA) 2021b). The shift from conversation to 
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action, on the other hand, frequently proves to be a great deal and more challenging than 

was first imagined. These changes have repercussions and necessitate adjustment at all 

levels of decision-making, management, and economic planning. Such adjustments require 

a full understanding of the many capacities, such as finances, infrastructure, as well as the 

climatic and topographic circumstances at a location, in order to ensure a seamless transition 

to an energy system. Renewable energy sources are a foundational component of 

sustainable practices for meeting the needs of the underprivileged and fostering long-term 

economic expansion (Moriarty & Honnery 2012). Renewable energy will assist millions of 

people to have better access to modern energy services, reduce economic risk by assuring 

energy security, and minimize the likelihood that climate change will occur. All of these 

benefits are achieved by cutting emissions (Reddy & Nathan 2013).  

There was a 6% increase in worldwide energy-related CO2 emissions from 2020 to 2021, 

bringing the total to 36.3 Gt of CO2 emissions in 2021 (IEA 2022). The production of electricity 

and heat saw the largest growth in CO2 emissions of any industry in 2021, with a 900 Mt 

increase in the amount of gas released into the atmosphere. As a result of this, 46% of the 

worldwide rise in emissions may be attributed to it, since the use of all fossil fuels grew to 

assist in meeting the growing demand for energy (IEA 2022). Buildings account for around 

40% of the world's total energy use, giving them an important place in the energy industry 

(World Economic Forum 2021). It is anticipated that the demand for energy from buildings 

will continue to rise around the globe in the next decades. In addition to this, the 

construction industry has a considerable impact on how natural resources are utilized 

(Sartori & Hestnes 2007). Therefore, structures, even though that they provide facilities for 

human needs and their innumerable advantages to society, cannot be overlooked, buildings 

have also had detrimental effects on the environment over the previous few decades (Zuo & 

Zhao 2014). The annual increase in CO2 emissions from the building industry was 81 Mt in 

2019, which resulted in 167 Mt of CO2 emissions from the building sector in 2021. (IEA 2022). 

As the global population continues to rise, so has the need for electric energy in all kinds of 

daily uses like entertainment, transportation, healthcare, outdoor, household, commercial, 

and office. As a direct result of human activity, the extraction of non-renewable resources 

such as natural gas, coal, and oil has led to major negative effects on the surrounding 

environment as well as on society. The transition to a more sustainable and environmentally 

friendly method of producing electricity is urgently required. Solar energy is recognized as a 

clean source of energy that does not incur any cost in transportation, is endless, widely 
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available, easily accessible, inexpensive, and beneficial to the environment. As a result, solar 

energy exceeds other forms of renewable energy as well as fossil-based energy resources. 

(Lukač et al. 2013).  

The transition to solar energy instead of continuing with conventional fossil fuels for 

electricity production has significant benefits. According to The Australia Institute Climate of 

the Nation, 83% of the population aged between 18 and 34 years has a concern about climate 

change (Quicke 2021). It is identified that solar energy is a major alternative to powering 

homes and heating water so it can help to reduce carbon emissions and lead to a more 

sustainable lifestyle (Kabir et al. 2018). Electricity production from solar panels is also not 

harmful to humans, wildlife, and ecosystems because there is no impact on the land and air 

quality as occurs in electricity production from oil and gas. Therefore, solar energy can help 

to reduce climate change and decrease the use of fossil fuel-based energy production, which 

includes carbon emissions, air pollution, and other adverse impacts on the environment 

(Shahsavari & Akbari 2018). Further, solar energy also helps to achieve sustainable 

development goals. For instance, SDG goal 3: Good health and well-being are achievable 

when there is lesser carbon emission to whom an individual has exposure. SDG goal 7: clean 

and affordable energy is also achievable, as there is almost no impact on the environment 

(Güney 2019).  

Solar energy is one of the most abundant natural energy resources. It has the potential to 

significantly cut CO2 emissions, and solar photovoltaics (PV) is one of the most effective 

methods to convert it into electricity (Freitas & Brito 2019). A photovoltaic system is a group 

of cells that work together to convert solar radiation into electricity. Each cell has layers of a 

semi-conducting material. Light striking the cell generates an electric field that reaches 

across its layers, causing electricity to flow. Each cell generates a particular amount of 

electrical power, which is proportional to the amount of light that hits it (Tyagi et al. 2013). 

The cost of solar photovoltaic (PV) systems has decreased noticeably all over the world with 

time, and globally, the process of converting solar energy to electricity has significantly 

increased. This is largely due to the lower cost of PV cells as well as their higher conversion 

efficiency (Baurzhan & Jenkins 2016). Consequently, PV technology is a beneficial investment 

because it lowers greenhouse gas emissions and results in cost reductions over the long 

term. It has been anticipated that solar photovoltaic electricity will reduce annual utility 

expenses in Abu Dhabi, United Arab Emirates, by $3.3 million (Harder & Gibson 2011). 
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Australia’s electricity generation production increased significantly in 2020-21, reaching a 

capacity of 266 tWh, which was the highest total generation as compared to previous years 

(Australian Energy Market Operator 2021). Coal and natural gas are the main sources of 

energy to produce electricity in the country. 71% of the total electricity is generated in 

Australia using fossil fuels such as coal, gas, and oil. Coal is contributing to producing more 

than half of the total energy in Australia (Department of Climate Change, Energy, the 

Environment and Water (dcceew) 2022a). However, the subsequent environmental impacts 

are driving the country toward the usage of renewable energy sources (Kabir et al. 2018). A 

comparison from the beginning of the century, there is almost a 30% reduction in the use of 

coal, whereas an increase of 5% is observed for the use of renewable energy sources in 2021 

in comparison to 2020 (IEA 2021a). Currently, solar energy is the most prominent renewable 

energy source in Australia, and it is contributing to 12% of total electricity production 

(dcceew 2022a). Apart from this, 17% of the total electricity production is coming outside of 

the national electricity sector as it is contributed by households and businesses (dcceew 

2022a).  

In New South Wales, the contribution of coal to total electric energy production is still 

dominant and most of the energy is coming from the electricity sector in the country. Only a 

small portion of the country’s electricity is generated by businesses and households 

(Department of Planning and Environment 2019). But since 2009, the country has adopted 

solar energy significantly more frequently as a renewable energy source, and it is anticipated 

that solar energy will play a big role in the nation's future electricity production (Ravimohan 

et al. 2014). As of 2019, there were nearly two million PV solar energy dwellings and the 

penetration level is around 60% at a global level, Australia leads the globe in implementing 

distributed residential PV solar energy and around 60% of solar panel installations are for the 

residential sector (Narayanan et al. 2021).  

Considering the benefits of solar energy, Australia is continuously focusing on achieving 

sustainability and meeting net zero carbon emission goals set to be achieved in 2050 (IEA 

2021b). In 2020, Australia was generating 21.6% of its total electricity using solar PV panels 

and in 2021, it had increased to 31.8% (Geoscience Australia 2022a). In the next ten years, 

the average annual growth rate is expected to be 33.6% for solar PV panels for energy 

production (Geoscience Australia 2022a). Solar energy has the potential for remote areas to 

deliver off-grid electricity to them. As of December 2020, 2.7 million solar PV systems were 

installed, and they covered 27.3% of houses in Australia. In New South Wales, solar energy 
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has been adopted using 8275 installations that are generating around 37,000 kW of capacity 

(Clean Energy Council 2022). Further, the rapid growth of hospitals, commercial buildings, 

schools, and businesses is creating a need to control electricity costs, so people are moving 

toward solar energy. Governmental initiatives and policies are also major factors in uplifting 

the adoption of solar energy in Australia (Rahman & Vu 2020). It indicates that there is a 

significant transition toward solar energy sources. In 2021, Australia broke its previous 

record for rooftop solar system construction by building around 380,000 new systems (Taylor 

2022). These installations have a combined capacity of 3.2 gigawatts when all their power is 

combined. As a result, Australia's total amount of renewable energy produced in 2021 was 

72.5 Twh, a 23% increase over the amount produced in 2020 (Taylor 2022). After installing 

the largest generator in Australia, that total capacity increased to 17 gigawatts, which is 

equivalent to the count of rooftops of more than 3 million, and that’s where Australia leads 

the globe in rooftop solar PV energy (Taylor 2022). However, in 2020, total energy 

consumption from renewables account for only 6% (Li et al. 2020). In 2020, fossil fuels 

account for 76% of Australia's electricity generation, with solar energy accounting for only 

22.3% of the nation's yearly renewable electricity output (Clean Energy Council 2020). 

Although Australia receives more sun than any other continent on Earth, its major energy 

consumption is powered by solar energy, which accounts for less than 1% of Australia's 

overall consumption (Yu & Halog 2015). Security of energy supply to meet rising demand, 

universal access to energy services, and limiting the impact of energy on climate change are 

the three main global energy concerns. Human progress and energy availability are 

intertwined (Asumadu-Sarkodie & Owusu 2016). The Energy Networks Australia (2017) 

forecasts that by the year 2050, rooftop solar installations will cover 40% of all rooftops in 

Australia. Solar power is one of the most eco-friendly forms of renewable energy, and 

Australia has abundant solar radiation per square metre (Bahadori & Nwaoha 2013). PV 

systems have the ability to meet urban energy needs while relieving strain on the grid 

infrastructure. With the support of the grid, customers can generate their energy and even 

export it back into it when they don't need it. Many commercial and industrial buildings have 

vacant roof space that might be converted to solar photovoltaics (Sewchurran & Davidson 

2021).  Distributed generation, driven by rising power prices and falling PV costs, is having 

an impact on the electricity system, notably on the management of the transmission 

networks (Rathore et al. 2019). A better understanding of the magnitude and distribution of 

all rooftops’ potential would help network design and support tailored strategies for PV solar 
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energy development (Rathore et al. 2019). Future expansion in the global usage of solar 

energy is predicted to be driven mostly by government regulations, as well as decreasing 

investment costs and risks (Bahadori & Nwaoha 2013).  

 

It is crucial to establish effective and precise geospatial frameworks for evaluating and 

categorizing rooftops as per slope, aspect, and suitable area for PV systems across local 

government areas in order to support informed planning and investment decisions. Solar 

radiation on different earth's surfaces varies significantly regarding intensity, and it is 

because of atmospheric and astronomical factors. In calculating solar photovoltaic energy 

potential, it is essential to predict how solar radiation is distributed in the selected site 

because of variations in solar radiation from one surface to another.  

 

Australia is found in the southern half of the globe, and as the earth revolves around the sun, 

the Southern Hemisphere experiences more daylight hours for half of the year, i.e., spring 

and summer, due to the Earth's inclination axis. The axis tilts away during the other half of 

the year, which results in less sunlight reaching the southern hemisphere during autumn and 

winter (Singh 2022). Considering this phenomenon, the overall amount of solar radiation for 

a site in Australia varies in a cyclical variation. The number of variations in solar radiation 

results in various seasons. Besides these, there is also the impact of topographical factors on 

the distribution of solar radiation incoming to a site. For instance, topographical features can 

result in shadows on most of the site's area, reducing the solar panel area's exposure to 

sunlight. If solar panels are positioned in an area covered with shade, there is a loss of 

revenue because of the lower energy potential of each solar photovoltaic cell. Therefore, 

analyzing shadow casting on a site in the different seasons due to topographic features is 

essential to considering evaluating solar radiation distribution and calculating solar 

photovoltaic energy (Doorga et al. 2019). Additionally, there is a major impact on the location 

where solar panels are being installed. The location of the dwelling, the tilt angle of the 

rooftop, along with its orientation for sunlight, are important factors, as they determine the 

overall sunlight density in a unit area of the surface (Ghaleb & Asif 2022).  

 

Solar PV panels capture the energy of sunlight and convert it into electricity, and it is one of 

the most efficient ways of converting solar energy into direct current (DC).  Given a specific 

area, the efficiency of solar PV is determined by two key factors: the distribution of solar 

radiation over a suitable rooftop area and its intensity. Even though the number of rooftop 
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assessment tools and methods for PV is growing, these methods must consider some 

important variables collectively in the assessment, like considering solar insolation variation 

at each hour for different seasons, including obstruction of topographic features, vegetation, 

and other buildings, sun direction over the seasons and a day, and rooftop characteristics 

(slope and aspect).   

    

1.2  Research Aim and Objectives 

This research aims to investigate the impact of topographical structure on the solar energy 

output. In order to accomplish this, two suburbs are selected, namely, Wombarra and 

Cringila, located in Wollongong, NSW, Australia. In Wombarra, the escarpment is close to 

dwellings, resulting in a varying amount of shadow cast across the seasons. On the other 

hand, in Cringila there is no shadow from an escarpment due to its distance from dwellings. 

The study will estimate and statistically compare the solar PV potential of all type of building 

rooftops based on topographical obstructions and seasonal variation. The estimation of 

seasonal solar energy for each building in these suburbs will be conducted through the 

utilization of LiDAR data in a geospatial technique. This approach provides an effective and 

accurate method to assess the potential energy output of solar panels on rooftops, allowing 

for better decision making when it comes to installing solar panels. By using LiDAR data and 

GIS, we can accurately measure the size of roofs, calculate their orientation and tilt angles, 

as well as determine the amount of sunlight that each building receives throughout the year. 

With this information in hand, we can then estimate how much solar energy each building is 

likely to produce throughout the year. The data collected through this research will help us 

better understand how these factors affect the solar PV potential of dwelling rooftops. There 

are few studies that have provided assessments of the shading effects of topographical 

features to estimate the solar PV potential of all rooftops. A detailed evaluation of all kinds 

of obstructions around buildings, including topographical features, on a suburban scale, is 

necessary to assess the solar PV potential of rooftops during the various seasons of the year. 

The following are the objectives of this study:   

a. Validate the estimated mean solar radiation data in the selected suburbs for four 

seasons, against the Wollongong weather stations’ data. 
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b. Estimate the amount of solar radiation falling on each building rooftops, and the 

distribution of suitable rooftop areas of the selected suburbs for each of the four 

seasons and over the course of a year. 

c. Calculate the potential solar photovoltaic energy output of all building rooftops in 

selected suburbs by using the estimated solar radiation, and the distribution of 

suitable rooftop areas. 

d. Compare the energy output of selected suburbs and estimate average loss of solar 

PV energy due to escarpment shadow in one of the suburb in kWh/m2/day/building. 

e. Estimate the possible change in CO2 emissions based on the potential solar PV energy 

production of both suburbs. 

   

1.3  Research Outline 

Chapter 1 Introduction: This chapter presents the background, research aim, and objectives 

of the study that was carried out. This introductory chapter outlines what kind of information 

is organized and managed in various chapters so that it provides a clear understanding of the 

research content. In addition, it is helpful to establish a background to develop a 

fundamental understanding of the research area. The subsequent chapters are structured as 

follows: 

Chapter 2 Literature review: This chapter provides a literature review and includes the 

research articles that are pertinent to the modeling of PV energy and determining solar 

radiation by applying the impacts of topographic obstacles in the estimation process. This 

chapter discusses the contributions of various authors to developing and modeling the solar 

PV system at different scales. It also discusses the relevancy of the case studies and the 

application of estimations for the selected area of interest. This chapter also focused on 

research methodology and tools used in various studies, and it includes the identification of 

the importance of topographical feature and their analysis of solar radiation. 

Chapter 3 Regional Setting: This chapter is focused on the study area, taking into 

consideration the landscape, dwelling structures, climate, and the vision of the local council 

in order to accomplish the objective of creating a sustainable city. Additionally, the criteria 

that were utilized to pick Cringila and Wombarra as two places in which to collect and analyze 

the data to estimate solar PV energy potential. 
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Chapter 4 Research Methodology: In this chapter, the primary emphasis is placed on 

providing an explanation of the research method to facilitate the development of an accurate 

solar PV energy estimation model utilizing the geospatial application ArcGIS Pro. It then 

continues to give an outline of the aims and objectives of the research and justifies how the 

methodologies can be applied to attain the particular purpose. In addition to presenting the 

utilization of data and sources, the study also discussed the relevant parameters for the 

model that was used to process the data. 

Chapter 5 Results: This chapter contains results and analysis produced by using the 

geospatial method, and provides adequate visual and statistical representations of the 

output. Statistical representation describes distribution and variations and provides the solar 

PV energy potential for the selected suburbs while undertaking a comparative analysis of 

outcomes for both suburbs. At last, the model is validated, and for that, it contains a 

comparison of the data generated by simulations with the data generated by bureau 

stations, and the mean absolute percentage error (MAPE) method is used to evaluate the 

percentage difference.  

 
Chapter 6 Discussion:  This chapter discussed the findings and their implications in light of 

pertinent literature, as well as the study's limitations. 

 

Chapter 7 Conclusion: This chapter outlines the conclusions from the research in this thesis 

and highlights the prospects for further research in this area. 
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2. Literature Review 

2.1 Introduction 

The potential of rooftop PV systems to generate electricity from solar energy is estimated 

using a variety of methods, as mentioned in (Freitas et al. 2015) and (Margolis et al. 2017). 

These techniques have been used to determine the technical potential of PV and rooftop 

suitability factor for many cities and countries, including the European Union (Defaix et al. 

2012), Australia (Teofilo et al. 2021), Seoul (Hong et al. 2017), Switzerland (Buffat et al. 2018), 

Australia (Rana & Rahman 2020), Wheatbelt region (Clifton & Boruff 2010), New South Wales 

(Almaghrabi et al. 2021), City of Neom (Alqahtani & Balta-Ozkan 2021), Municipality of 

Laghouat, Algeria (Boulahia et al. 2021), Netherlands (Calcabrini et al. 2019), and Greece 

(Karteris et al. 2013). Finding a location's solar energy potential before installing solar panels 

is one of the most challenging tasks. As a result, a variety of studies are being conducted to 

determine whether or not the potential for solar radiation is sufficient to meet the energy 

needs of a particular region. The amount of solar radiation that strikes a PV system has the 

greatest impact on the overall energy generation efficiency of the system. To install an 

effective PV system in a specific location, it is necessary to have accurate and reliable 

information about the variables involved in assessing solar PV energy potential. In addition 

to this, data on solar radiation is essential for determining the system design and accessibility 

of the photovoltaic system (Labed & Lorenzo 2004). Installing measuring equipment such as 

pyrheliometers at a spot is the most basic way to gauge the amount of solar radiation at any 

location (Schüler et al. 2016). On the other hand, maintaining and supervising their daily 

record is a time-consuming and expensive task, particularly in rural and mountainous 

locations. Therefore, there isn't enough data available to measure solar radiation for a given 

area, particularly in rural and mountainous areas (Benti et al. 2022). Incoming solar radiation 

on a dwelling surface is influenced by a number of variables, including the structure of the 

roof, the topography of the area, the surface features, and the amount of solar insolation 

(Zalamea & Alvarado 2014). Earlier approaches for calculating the PV potential relied on 

computed solar radiation methods that were either top-down or were unable to capture 

either complicated rooftops or the likely shade that would be caused by the 

impediments (Ineichen 2016). Then, a mix of computer models and geospatial 

methodologies arose to enhance the solar irradiance estimations and for the estimation of 

both technical (Wiginton et al., 2010) and socio-economic potential (Gooding et al. 2013). 

On the other hand, geospatial-based methods, help capture the spatial and temporal 
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fluctuations of solar irradiation and, as a consequence of this, PV yields (Nguyen & Pearce 

2010). Aerial imagery, digital surface models (DSM), and LiDAR data are examples of the 

types of geographic data that are used as the foundation for the vast majority of geospatial-

based methodologies (Redweik et al. 2011; Tovar-Pescador et al. 2006). These 

methodologies start with varying presumptions. Therefore, their levels of precision and 

functionality are not comparable to one another. The assumption that every place on the 

rooftop receives the same quantity of solar radiation, regardless of the shading 

factors, slope, and aspect, is the most prevalent one considered in models. These kinds of 

assumptions frequently result in inaccurate conclusions (Jakubiec & Reinhart 2013). When it 

comes to the preparation of maps or the creation of PV potential tools, it is essential that the 

model be customized to suit the geographical area. This is because solar radiation and the 

weather parameters that are associated with it change significantly according to the location 

and time. These methods still lack seasonality assessment of solar radiation due to 

topographical features outside the boundary of the area of interest that will lead to variation 

in shading and suitable rooftop area at different time periods in a year.  Scale, rooftop 

characteristics, landforms, and solar insolation are the most important factors since the 

same processes cannot be applied at the local, regional, or national levels (Buffat et al. 2018). 

As a consequence of this, researchers were forced to begin their work all over again from 

scratch and develop their very own data models (Farzaneh et al. 2019). The determination 

of the amount of solar potential in urban areas plays an essential part in the promotion of 

adaptive policies and financing programs, as well as in the gradual movement of cities toward 

a low-carbon energy transition (Wiginton et al. 2010). 

 There are a variety of ways to deal with solar estimations and among many different 

approaches to calculating solar PV energy, the three-step approach is used the most 

frequently: (i) solar irradiance calculation of the selected site (ii) estimation of the suitable 

roof area (iii) calculation of the power of the PV (Julieta et al. 2022). In order to do an analysis 

of the solar potential of varying building densities as well as the total roof area that is 

available, the climatological circumstances and the selected site settings that are employed 

are both considered to be input data. 

 2.2 Extent of the study area 

In the recent few years, there has been a lot of focus placed on the viability of installing large-

scale solar panel systems on the rooftops of residential buildings. In previous studies, 
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numerous study scales have been used to estimate and increase solar potential. Starting at 

the continental scale (Defaix et al. 2012; Teofilo et al. 2021), country scale (Buffat et al. 2018; 

Rana et al. 2020), city scale (Almaghrabi et al. 2021; Alqahtani & Balta-Ozkan 2021; Boulahia 

et al. 2021; Clifton & Boruff 2010) to the urban block scale (Calcabrini et al. 2019; Karteris et 

al. 2013). An analysis of the various approaches suggests that scale and the availability of 

data are two factors that are essential to the production of an accurate estimate of solar 

photovoltaic energy (Julieta et al. 2022). Therefore, depending on the desired outcome, 

several distinct methods, technologies, and tools have been applied, ranging from solar 

constant approaches with straightforward 2D display maps to the most advanced 3D 

modeling and the utilization of remote sensing data (LiDAR) (Gagnon et al. 2018; Ghosh & 

Vale 2006; Jo & Otanicar 2011; Odeh & Nguyen 2021; Suomalainen et al. 2017). 

2.2.1 Solar PV assessment at a country scale 

In order to determine the PV potential of a 2250 square kilometre area with a spatial 

resolution of 0.5 m2, a simulation was done for more than 3 million structures in Switzerland 

(Buffat et al. 2018). Images of solar radiation captured by the satellite were integrated with 

the technical parameters of photovoltaic (PV) technology contained in the model (Buffat et 

al. 2018). The footprints of individual structures were acquired by utilizing a combination of 

Open Street Map, cadastral surveys, and SwissTLM because there was no single source that 

could cover such a huge area (Buffat et al. 2018). A Digital surface model (DSM), which was 

produced from LiDAR,(remote sensing data) was provided by Swisstopo to determine slope 

and aspect (Buffat et al. 2018). There is a significant possibility that some of the data would 

be duplicated, and there is also the possibility that some of the data would be completely 

absent because this research covers such a vast area and uses such a diverse range of 

technologies to achieve the same results. Because of the greater area, it was necessary to 

collect more than one DSM, and the data that was gathered had to be smoothed. Second, 

the simulation of a wider region that makes use of numerous tools at the same time requires 

a lot of computational effort, in addition to the compatibility and integration of these tools, 

which is necessary to migrate data from one tool to another. Both SwissTLM3D and 

Swisstopo are exclusive to their namesake country of Switzerland and are not available 

anywhere else. 

For the whole United States, the technical potential of rooftop solar photovoltaics was 

examined (Gagnon et al. 2018). US Department (2006-14) LiDAR data was used, which covers 
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23% of the footprints of US buildings. The counts of medium and large buildings were based 

on data from an energy consumption survey of commercial buildings. To estimate the 

number of small structures, a regression model was created (derived from survey data of zip 

codes and population density). To get the total roof area, a random sample of buildings in 

Zip Codes with LiDAR data was selected, and the extrapolation was performed for all of the 

structures in the vicinity. The slope, azimuth, and shadowing of roofs were determined by 

using LiDAR data. For the roof suitability validation, Google Project Sunroof was employed 

(Gagnon et al. 2018). Even though it is possible to estimate a wide area's solar potential, 

doing so requires manual intervention in filling the gap for missing data, which is time-

consuming and error-prone. In addition, the Google Project Sunroof feature is only available 

in the United States and has not yet been rolled out to Australia. Here, LiDAR data only 

covered 23% of the buildings, and the remaining data were dependent on surveys, making 

the accuracy of the information in those areas suspect. 

Teofilo et al. (2021) developed a geospatial-based methodology to assess large-scale 

commercial rooftop PV installations (located at 21 airports around Australia) and provided 

an overview of their great potential at the country level. To complete the tasks of digitizing 

roof polygon outlines and computing rooftop area, the World Imagery feature of ArcGIS Pro 

2.4 was utilized (Teofilo et al. 2021). Geoscience Australia provided the digital elevation data 

that was used to determine the elevation of the ground. The 3D imagery that was supplied 

by MetroMap was used to obtain data on the height of the buildings (Teofilo et al. 2021). 

The Area solar irradiation tool was used to identify the solar irradiation. The PV Watts 

calculator was used to figure out the optimal tilt angle for the solar panels (Teofilo et al. 

2021). This methodology requires less time and effort and is more scalable. 

Jung et al. (2019) used digital numerical map-oriented estimates to determine the solar 

energy potential on the slopes of South Korea's national highways. The national geographical 

institute was the source of the spatial data that was collected for estimating purposes 

to support efficient land utilization. The coordinates for the maps were derived from spatial 

data in a 3D vector form (Jung et al. 2019). In addition, DEM was used so that continuous 

digitalization of topographic surfaces could be accomplished. It was used in both the 

examination of terrain and the estimation of solar radiation. A digital numerical map was 

utilized to extract vector-type elevation contours, and then these elevation contours were 

translated to raster data in order to obtain an elevation value for each cell that was contained 
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inside the grid (Jung et al. 2019). In addition, an estimation of the shaded area and the 

possible area for use with the national road network were included in the study. In order to 

complete the study, manual digitization of contour maps was required, and MATLAB was 

utilized for further calculation (Jung et al. 2019). MATLAB necessitates the construction of 

GIS packages, which is a time-consuming process and cannot be automated. 

2.2.2 Solar PV assessment at a state scale 

Almaghrabi et al. (2021) conducted research on PV power forecasts for all PV plants in New 

South Wales, Australia. To develop the forecast model, solar performance data provided by 

Australian Energy Market Operator (AEMO) was aggregated over 494 days (2019-2020) in 

NSW (Almaghrabi et al. 2021). The data were normalized to prepare regional-level time 

series data. Then, the ARIMA model and Deep Learning algorithms (CNN and LSTM) were 

applied to evaluate spatial patterns over different time intervals in the time series data, and 

the prediction was made considering only historical solar power data (Almaghrabi et al. 

2021). The limitation includes that this study used only previous recorded data and did not 

take into account shading analysis due to the obstructions in the sunlight path and roof 

statistics.   

An energy estimating model for solar PV systems that makes use of a deep learning algorithm 

and data from remote sensing was proposed by Jiang et al. (2022). To record the patterns of 

solar radiation, geostationary satellite photos were used, which had a low spatial resolution. 

The overall area of the study was 107,200 km2, and it is located in the province of Jiangsu in 

China (Jiang et al. 2022). The hourly solar radiation was determined by using a deep learning 

algorithm to analyze the collected satellite photos along with the associated time and 

location data. Using a technique called deep learning segmentation, the footprints of 

buildings were extracted from high-resolution photographs. The model was trained using a 

convolutional neural network (CNN) based on the collected historical data and estimation 

was carried out. The modeling of photovoltaic (PV) electricity output made use of the Global 

Solar Energy Estimator (GSEE) and Python module. In this model, the limitations consist of 

rooftop characteristics and topographical structure, both of which are crucial to derive 

shading impact and suitable rooftop areas.  
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2.2.3 Solar PV assessment at a city scale 

Jo & Otanicar (2011) developed a method for evaluating the potential energy production of 

the city of Chandler, Arizona, by utilizing data from remote sensing, geographic information 

systems (GIS), and simulations of renewable energy sources. While Quickbird remote sensing 

data photographs and GIS building footprints were utilized for the detection of building 

rooftops using an object-orientated approach (Definiens developer program) (Jo & Otanicar 

2011). Google Sketch was utilized for the loss calculation due to shadows that were cast by 

the buildings. After importing the data into ArcGIS, the computation of the area was carried 

out. A total of 150 buildings were inspected, and visual examination was employed to locate 

obstructions on the roofs of 20 of those buildings (Jo & Otanicar 2011). This method takes a 

long time and cannot be scaled up.  

Boulahia et al. (2021) proposed an engineering-statistical technique for evaluating the 

photovoltaic solar potential on the rooftops of residential buildings. The study focused on 

Laghouat, which is located in the Central Southern region of Algeria. The full roof area was 

provided by the urban master plan developed by Laghouat in 2009 (Boulahia et al. 2021). 

The Ladybug tool performed an analysis of solar radiation in which shading losses, solar 

irradiance, tilt angle, and azimuth were taken into consideration (Boulahia et al. 2021). On 

the other hand, Ladybug is a three-dimensional tool that simulates one building at a time 

and then hypothesizes about the rest of the buildings in the simulation. This method is time 

consuming and sample building results were extrapolated for the estimation of all buildings. 

 The study by Suomalainen et al. (2017) focused on residential structures located in 

Auckland, New Zealand which spans an area of 2250 square kilometres.  LiDAR data was used 

to develop the DSM. This data contains building topography as well as trees. The shapefile 

that was used was based on census data from 2013 to compute the area of building 

footprints and was provided by the Auckland Council. Estimating annual solar radiation in 

ArcGIS requires the use of a solar radiation tool that takes into account DSM and shapefiles 

(Suomalainen et al. 2017). This tool took into account many different factors, including time 

zone, climate, slope, surface orientation, and the effect of surrounding buildings and trees. 

The building footprint information supplied by the council takes into account garden blinds 

and garages, as a result, the findings are exaggerated as a direct result of the inclusion of 

these factors. 
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Ghosh & Vale (2006) developed a model to estimate the potential for rooftop solar energy 

in Glen Innes, which is located in Auckland. The ArcGIS application made use of aerial 

photographs in order to find a suitable area for solar energy generation (Ghosh & Vale 2006). 

This process considered factors such as the orientation and slope of the roof. In light of 

previous investigations, both the size of PV panels and their efficiency were taken into 

consideration. On the other hand, seasonality and topographic features were not taken into 

account in this investigation.  

Odeh & Nguyen (2021) devised a technique to evaluate the potential of installing 

photovoltaic (PV) systems on rooftops in the residential areas of Sydney. The SunSPoT tool 

was used to calculate the annual energy production for every roof that had an area that was 

greater than or equal to 4 square metres on more than one side (Odeh & Nguyen 2021). Roof 

samples from each neighbourhood were considered, and the results were used to determine 

how much energy could be produced by each roof. This tool calculated the annual energy 

production of a rooftop by taking into consideration a wide range of factors, some of which 

include solar irradiation, PV area, orientation, and tilt angle, amongst others (Odeh & Nguyen 

2021). The process is time-consuming since the SunSPoT tool, calculates the amount of solar 

photovoltaic (PV) electricity produced by a single residence at a given time. Also, this tool is 

currently not accessible in the Wollongong region. 

Clifton & Boruff (2010) assessed the potential of Solar PV energy in the Wheatbelt area of 

Western Australia. This model was prepared considering DSM data with a resolution of 0.5-

metre square, including topography, solar radiation, and land usage, in conjunction with the 

geospatial software ArcGIS. The two Bureau of Meteorology stations that are geographically 

near to the Wheatbelt region were used to collect the monthly average direct normal 

irradiance (DNI) data (Clifton & Boruff 2010). The ArcGIS solar radiation model was then used 

to derive solar radiation data. In this particular investigation, the aspects and PV elements 

were not taken into account when assessing concentrated solar power (CSP). 

Using machine learning techniques, Mahmud et al. (2021) evaluated the amount of solar 

electricity generated in the city of Alice Springs, Northern Territory, Australia. Solar 

irradiance from the nearest weather station, as well as short-and long-term forecasts of PV 

power generation, were included in the data set (Mahmud et al. 2021). The investigation of 

roof tilt and orientation, as well as shading, were not included in this study. 
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Nettesheim et al. (2015) studied soil and litter variation patterns in a tropical region 

(Marambaia is in Rio de Janeiro, Brazil) with opposing slopes that intercept different amounts 

of solar radiation at different times of the year. Based on study goals and terrain, two 

sampling sites were chosen. Each site's element concentrations were determined by 

analyzing soil and litter samples. DEM was used to create geospatial models for each sample 

site. These findings suggest that topography influences soil and litter variation in 

mountainous tropical landscapes (Nettesheim et al. 2015). The geographic orientation of 

slopes determines soil and litter variation patterns in regions with varying topography 

(Nettesheim et al. 2015). However, the project did not consider solar PV potential and the 

variability of seasons in solar radiation calculation. 

Fu & Rich (2002) proposed a geometric model for solar radiation to determine its applications 

in forestry and agriculture. They conducted the study at the Rocky Mountain Biological 

Laboratory in Colorado. They have selected a topographic area with significant differences, 

covering an area of 300 square kilometres. Their study recorded temperature for each hour 

and an insolation-modified adiabatic model for temperature measurement was used to 

create temperature maps for the selected topographical surfaces. They have created 

insolation maps to determine topographical influences such as the impact of elevations, sky 

obstructions, and surface orientation. Second, they have constructed temperature maps to 

identify the minimum temperature at the locations. Later, correlation analysis was used to 

measure the temperature of soil with insolation and elevation. They conducted the study for 

a month and used the 30-m DEM method. Their study revealed that topographical features 

have a significant contribution to solar radiation at a location.  

2.2.4 Solar PV assessment for a few dwellings 

Rana & Rahman (2020) assessed the solar PV energy of a single-built area in Queensland, 

Brisbane, Australia. Data on solar electricity used in this study was gathered from a 1.22 MW 

PV system placed at the University of Queensland buildings in Brisbane, Australia. Over a 

period of two years, data on solar power generation were gathered and pooled at 1-minute 

intervals. The methods used for forecasting were Support Vector Regression (SVR) and 

Neural Network (NN) based machine learning models. Scholars did forecast based on 

historical time series data and did not consider the seasonality of solar radiation, aspect, and 

tilt angle.  
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Alqahtani & Balta-Ozkan (2021) investigated the potential of rooftop solar PV energy 

generation for meeting residential loads on three dwellings in Neom, Saudi Arabia. The 

model made use of a Homer Pro simulation model as part of the PV system assessment and 

load profile design. This model utilized graphic location parameters and economic factors in 

addition to PV system design in order to determine the maximum battery capacity and panel 

size in order to maximize electricity production. A fixed tracking system was assumed with 

an assumption of a tilt angle of 28-degrees and a 0-degree aspect angle. The level of 

sensitivity of the system was determined by Homer Pro and was based on the availability of 

resources as well as the cost of the different components (Alqahtani & Balta-Ozkan 2021). 

The analysis of shadowing and obstructions was made more difficult since the study did not 

include DSM data. In the same vein, the parameters of solar radiation known as azimuth, 

slope, and direction were not the primary focus of this investigation. 

Jung et al. (2020) proposed a monthly solar PV potential forecasting model for South Korea. 

Their study has utilized time series datasets for 164 PV sites for over 63 months. It included 

data such as weather conditions, electrical trading, power plant capacity, and estimated solar 

radiation. The authors have used historical data to produce a machine-learning-based 

forecasting model to determine the estimated monthly PV potential for a new power plant. 

The dataset-trained model is used to acquire temporal patterns for multiple sites, and for 

that, long short-term memory layers were used to process the monthly data. It was used for 

topographical and temporal variations in weather and solar irradiation conditions. The digital 

elevation method is adopted to determine topographical conditions at various sites. 

However, the method contained time-series data and machine learning dependent models. 

The estimation was done to complete the data as well as rooftop characteristics like slope 

and aspect historical data were not considered. 

Heo et al. (2021) investigated in their study how the performance of solar power estimation 

has an impact on topographic and meteorological data obtained from other PV sites. The 

authors have proposed a solar power estimation model utilizing multi-channel CNN. This 

model was tested for its capability to collect and use raster map data such as temperature, 

solar irradiation, wind speed, and perception at various sites. The study emphasized the 

evaluation of a multi-channel CNN-based prediction model so that the monthly capacity for 

solar PV can be estimated. Geographical and meteorological characteristics of the solar 

photovoltaic site are extracted from image data resembling with map. The CNN algorithm 
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was used to capture spatial data from the image, and it was further used to identify spatial 

patterns in meteorological and terrain information. The national spatial data infrastructure 

of Korea is used to obtain spatial data and input datasets for terrain information. Continuous 

numerical maps are processed to extract data for contour maps and DEM. In this model, the 

boundary lines of roads, contours, and administrative boundaries are used as major aspects 

of spatial information for estimation. The study was conducted on a national scale, with 

estimation used to complete the data and historical data not taken into account for rooftop 

characteristics like slope and aspect. 

2.3 Summary  

2.3.1 Methodology assessment 

There are four common approaches used in the field to determine whether solar PV energy 

is acceptable for solar photovoltaic panels. The first type is known as the constant-value 

method, and it is used to extrapolate the number of usable rooftops based on assumptions 

about factors like the percentage of flat roofs and sloped roofs, the count of buildings with 

the optimum rooftop aspect, the area affected by building impediments (i.e., ventilation and 

heating), and shading (Melius et al. 2013). This method is widely used, especially as a starting 

point for area calculation. It requires less time and resource input and can be easily applied 

to large regions compared with other methods (Alqahtani & Balta-Ozkan 2021; Gagnon et al. 

2018; Melius et al. 2013). However, the trade-offs are that the uniqueness of individual 

buildings is not captured, which results in little validation (Melius et al. 2013).  

The second kind is manual selection methods. Google Earth and other forms of satellite or 

aerial photography are used in the manual selection processes. PVWatts, developed by the 

National Renewable Energy Laboratory, manually determines the allowable area of the 

rooftop, yielding more accurate results than constant-value approaches (Margolis et al. 

2017; Melius et al. 2013; Odeh & Nguyen 2021). The investigation examined each building in 

the vicinity. As a result, this approach requires a lot of work, and it might not be suitable for 

doing an exhaustive examination of a region and is not considered a scalable methodology.  

The third kind is a machine learning based forecasting model which requires time-series 

historical data of solar energy production, i.e., solar radiation data, slope data, and aspect 

data (Isaksson & Karpe Conde 2018; Mahmud et al. 2021). However, the trade-off is that 

shading analysis for any kind of topographical structure is not included in this model. 
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The fourth kind is geospatial-based methods. For geospatial-based methods, instead of using 

fixed values or selecting structures manually, the suitability is determined by geospatial 

software after each characteristic value of what makes a suitable rooftop is fed to a computer 

model (Boulahia et al. 2021; Jo & Otanicar 2011; Melius et al. 2013; Teofilo et al. 2021). 

Moreover, the 3-D model generated from orthophotography, or LiDAR data, is the primary 

tool for analyzing the effect of solar resources and shadow (Boulahia et al. 2021; Jo & 

Otanicar 2011; Melius et al. 2013; Suomalainen et al. 2017; Teofilo et al. 2021). Geospatial-

based methods are exceptionally efficient when calculating total solar energy generation 

potential because they consider slope, orientation, building structure data, and obstructions; 

produce versatile outputs like creating maps for slope, aspect, and solar radiation for any 

given period; and automatically calculate skyview factors and viewshed (Ghosh & Vale 2006; 

Melius et al. 2013; Suomalainen et al. 2017).  

When compared to constant-value, hand-selected methods, and machine-learning based 

methods, a geospatial-based procedure yields more accurate results. This procedure can be 

applied to larger spaces than the manual selection method (Margolis et al. 2017). Given the 

advantages of objectivity, high accuracy, and high resolution of the LiDAR data due to 

technological development, geospatial-based methods have become the most popular 

method to estimate rooftop suitability for PV (Melius et al. 2013). The constant-value 

method is excluded because using it in a complex-built environment would cause significant 

inaccuracy. The manual selection method could be applied to the study site due to its small 

scale and high accuracy, but it does not provide a systematic and efficient method that could 

be used elsewhere. As a result, the geospatial-based method is the best to find a balance 

between accuracy and efficiency. Moreover, this method gives both 2D and 3D views of the 

study site, which makes the demonstration of the building more accessible. Thus, this 

research methodology will mainly focus on the utilization of the geospatial method.  

2.3.2 Data availability and extent of the study area 

Further, the assessment of the solar PV potential in various studies is subjected to data 

availability and differences in spatial area. The evaluation depends on the scale of the study 

and various methods have been suggested, combining satellite images, LiDAR data, DSM 

model, building footprints, quantification of the available rooftop areas, and PV sizing. 

Estimates at the country scale involve extensive computation, data collection from many 

sources, and data aggregation due to the sheer vastness of the territory and the ensuing data 

volumes (Buffat et al. 2018). While comparing previous studies conducted for solar PV energy 
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estimation, these were centred either on major cities in the USA (Gagnon et al. 2018), Saudi 

Arabia (Alqahtani & Balta-Ozkan 2021), and Switzerland (Buffat et al. 2018) or the country 

scale because a larger part of these territories is covered by major cities where data 

availability is not a constraint and also there is an absence of natural landforms which 

obstruct the direct sunlight on dwelling rooftops, while comparing to regional areas. 

Therefore, not much attention has been given to the evaluation of solar PV energy estimation 

for regional areas. However, Australia has a significant regional population and just five of its 

large cities have a population of over one million, as shown in Figure 1a. These are Sydney, 

Melbourne, Brisbane, Adelaide, and Perth (Glenn 2022), while the Inner Regional area 

(Baxter 2011) is home to 20% of the Australian population (Figure 1b).   
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Figure 1a: The Population of more than 1 million in five major cities in Australia on 30 June 2021, 

indicated in the light blue box (ABS, 2021c); Figure 1b: Population distribution in Australia by major 

cities, inner regional areas, outer regional areas, and remote areas (Baxter 2011) and total population 

of Australia in 2021 is 25.4 million (ABS 2022). 

For inner regional areas like Wollongong, no research has been done to forecast the use of 

solar PV electricity. Recently, cross-border migration and its effects on host nations have 

received a great deal of attention on a worldwide scale. But it is increasingly evident that 

local community groundswell in regional areas is much more prevalent than international 

migration. Some of the factors that cause them to relocate include politics, society, and the 
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environment. This extensive migration increases resource consumption and affects the 

climate over time (Meyerson et al. 2007). Two essential actions that can reduce climate 

migration are reducing greenhouse gas emissions and considering climate migration when 

planning future development. A concerted action is required to mitigate climate migration 

caused by population growth in regional areas, and this research will aid in estimating solar 

PV energy and will help the decision makers in considering an integrated approach to 

understanding the solar energy potential at the local scale. Therefore, Australia's regional 

areas are physically favourable and can significantly contribute to the country's overall PV 

estimations and as a case study being conducted in the areas of Wollongong. 

As per Wollongong city 2030's sustainable planning, the Wollongong council is visioning a 

climate-resilient and sustainable city. Wollongong City Council needs long-term solutions to 

climate change and environmental degradation. 78 percent of 2018/19's emissions came 

from energy use (Wollongong City Council 2020). To achieve this sustainable planning 

mission, it is imperative to use a scalable solar PV energy modeling technique for this area in 

order to bridge the gap in energy supply and demand (Wollongong City Council 2020). While 

considering decision making for strategic changes on a large scale, it is good to have a 

bottom-up approach and be driven by local strategic changes. Strategic planning and policy 

making at the municipal and local governments/suburb levels help make decisions at the 

state and country level. Hence, municipalities and local governments can facilitate any 

innovative strategy effectively (Dwyer 2018) and one of the objectives of this study is to 

analyze solar PV potential at the suburban scale, which can help LGA to gauge the gap in 

current energy usage and the potential.  

2.3.3 Research limitations 

In the current literature, there is a dearth of studies that implemented automation while 

calculating skyview factors and viewsheds, including variation at one-hour intervals, and 

accurate seasonal shading analysis including topographic features, and there is still potential 

for advancement in determining the variation in area suitability factors in different seasons 

for all building footprints. Some studies did not include the elevation data needed to analyse 

the impacts of impediments and topographic features (Alqahtani & Balta-Ozkan 2021; 

Boulahia et al. 2021; Odeh & Nguyen 2021). Some studies have used software not deployed 

to Wollongong; these are Google Project Sunroof, Swisstopo, SwissTLM and SunSPoT (Buffat 

et al. 2018; Gagnon et al. 2018; Odeh & Nguyen 2021). Some of the earlier studies made use 
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of manual procedures like the visual assessment of buildings for load and obstructions, which 

are known for their high level of accuracy but are very time-consuming. Other studies, on 

the other hand, made use of ratios of rooftop area based on assessing a smaller area and 

extrapolating the results on a national norms or assumptions basis. Very few studies have 

included topographical features for solar radiation modeling, but the objectives of some of 

those were finding soil properties (Nettesheim et al. 2015; Fu & Rich 2002), finding solar PV 

potential using machine learning methods emphasizing more on temporal patterns to find 

topographical feature effects (Jung et al., 2020), and finding potential sites for the installation 

of a solar PV installation (Jung et al. 2019). None of the studies included seasonal outcomes 

of solar radiation modeling, which is affected by landforms/topographical features and leads 

to the calculation of suitable rooftop areas for each dwelling and results in potential solar PV 

electricity for the area of interest. Along with solar power density, rooftop area, and 

alignment of the solar PV panels, there is a significant impact of seasonality and 

topographical obstructions on solar radiation distribution and determining the suitable 

rooftop area for PV installation. The shadow cast by escarpment and its variability during the 

seasons can reduce the conversion of solar energy to electricity through solar PV panels. This 

thesis focuses on the estimation of the solar PV energy potential of two suburbs, namely, 

Wombarra and Cringila, which are located in Wollongong, NSW, Australia. These two suburbs 

are chosen to demonstrate the comparative analysis of shading effects (how solar insolation 

varies in different seasons) due to topographical features (escarpment). Both suburbs have 

similar climatic conditions, rainy days, and dwelling structures (Australian Bureau of Statistics 

(ABS) 2021a; ABS 2021d; World Weather Online 2022). On the other hand, Wombarra is right 

beside the escarpment, and Cringila has no effect of shading due to the escarpment. As a 

result, even if the climatic conditions are identical, the solar PV energy output will differ due 

to the shadow cast by the escarpment. 

   

An examination of a variety of methodologies revealed that geospatial-based methods 

provide several benefits, the most notable of which are scalability, efficiency, and accuracy 

(Julieta et al. 2022). In addition, LiDAR data, DSM model, and building footprints are widely 

utilized in conjunction with the widely used robust geospatial software ArcGIS when 

calculating the power produced by solar PV systems. This paper makes a two-fold 

contribution for the reasons stated above: first, it presents a scalable approach for estimating 

solar PV potential and power generation on building rooftops across two suburbs by using 

LiDAR data, building footprints, and geospatial software. Second, this method compares the 
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result of the PV potential of these two suburbs in different seasons, which is affected by the 

shadow of an escarpment, vegetation, and other buildings. This study simulates the solar PV 

potential in Australia at a suburban scale, including geographical features in shading analysis 

in consideration of seasons, which has not yet been covered in previous studies.  

 Appendix A contains a tabular listing of the literature discussed in “section 2.2: Extent of 

study area”. It is a comparison of studies and their methodologies, including the factors 

considered. Additionally, it examines whether or not any validation is being done. 
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3. Regional Setting 

3.1 Landscape and climate setting 

The study was conducted on two suburbs located in the inner regional area of Wollongong, 

NSW, Australia, at a distance of approximately 80 Km south of Sydney. Wollongong is located 

on New South Wales’ south coast, between the Illawarra escarpment and the Tasman Sea 

(Figures 2a and 2b). The average annual maximum and minimum temperatures for the city 

are 21°c and 15°c, respectively (World Weather Online 2022). There are four distinct seasons 

in the city: summer (December-January), autumn (March-May), winter (June-August), and 

spring (September-November) (World Weather Online 2022). The city has a mild winter and 

warm summer climate. January is the warmest month, and July is the coolest, with maximum 

temperatures of 26°C and 16°C, respectively (World Weather Online 2022). Its unique 

environment includes escarpment and lush rainforests. It is one of New South Wales’s largest 

cities, with an area of approximately 683.8 square kilometres (Informed Decisions 2021), and 

a city council population forecast for 2022 is 223,684 (Wollongong City Council 2020). As per 

the Informed Decisions (2022),  the population of Wollongong will increase by 24.62% from 

the year 2022 to 2041, which is an average annual growth of 1.13%. Hence, this local 

community groundswell will lead to the utilization of more resources, specifically non-

renewable resources, and consequently will result in climate change degradation. As per the 

Wollongong City Council (2020), climate change adaptation is required in the city. The 

statistics of 2018/19 show that emissions from energy consumption were 78%, population 

of Wollongong will increase by 20% in 2036 and hence emissions as well (Wollongong City 

Council 2020). The vision is to adopt net zero emissions by 2030. The City Council is working 

with the community to reduce the city's emissions and increase renewable energy usage 

(Wollongong City Council 2020). One of the positive actions is installing solar panels and 

improving home energy efficiency. 
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Wollongong is home to a population of around 214,657 people of many different cultural 

backgrounds, and it is surrounded by and defined by the escarpment (Figure 3) (Macquarie 

2013). The Illawarra Escarpment is a sandstone cliff that has a long steep slope, where 

elevation changes suddenly, as well as it is covered with dense vegetation (Macquarie 2013). 

This 200–400 metre vertical ascent is a wall of sandstone cliffs and slopes covered by forest. 

Around 120 kilometres long, the Illawarra Escarpment is covered in plant slopes that descend 

from cliffs (Macquarie 2013). Throughout the year, the average amount of daily DNI that 

Wollongong receives is 4.5 kWh/m2, as reported by the Bureau of Meteorology (BOM) (2019) 

(higher in summer and lower in winter). That's to conclude, for every 1 kilowatt-hour 

produced by solar panels, using the conservative estimate that the solar array's efficiency is 

around 85%, the generated electricity is about 3.9 kWh of power (Sykes 2022). 

 

Figure 2a: Location of Wollongong City in NSW, Australia indicated by dark blue dot; Figure 2b: 

Wollongong City map with city and suburb boundaries in dark blue.  

2a 2b 

Tasman Sea 
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3.2 Study Area 

The chosen suburbs for study in Wollongong are Wombarra and Cringila. These have been 

selected to compare the impact of shading as an effect of geographical characteristics on 

solar PV energy potential in different seasons. Both suburbs are in Wollongong, New South 

Wales, Australia; Wombarra is a seaside suburb located on the north side of Wollongong, 

and Cringila is located on the south side (Figures 4a, 4b, and 4c). , They are 66 and 89 

kilometres, respectively, from Sydney via the Princes Highway. 

 

 

 

 

 

 

 

 

Figure 3: The Illawarra Escarpment elevation range from 172 metres to 311 metres is indicated 

in green inside the oval on the west side of Wollongong city (OpenStreetMap 2022). 
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In terms of sunshine hours per day, suburbs that are located adjacent to the escarpment 

experience fewer sunshine hours than other suburbs, and it varies in different seasons. In 

the Wombarra suburb, the escarpment is on the west side and adjacent to the dwellings, 

which is around 350 m tall and casts a shadow on the dwelling rooftops, and it varies across 

the seasons (Macquarie 2013). The Illawarra escarpment cast a shadow on the rooftops of 

dwellings close by, however Wollongong's southern suburbs are not exposed to the 

escarpment. As per the 2021 census data (ABS 2021a; ABS 2021d), among them, in 

Wombarra, 96% of the dwelling structures are separate houses, which is closely matched 

with Cringila (93.5%) (Table 1). While comparing the two locations, the comparison of the 

annual mean of PV energy per dwelling is appropriate when most of the dwellings are similar 

in structure. Therefore, in order to examine which suburb has higher solar PV energy 

Figure 4a: Location of Wombarra and Cringila suburbs’ red colour boundaries in Wollongong city; 

Figure 4b: Wombarra Suburb boundaries in red; Figure 4c: Cringila suburb boundaries in red. 

4a 

4b 

4c 
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potential per dwelling in all seasons, Cringila, a southern suburb without escarpment shade, 

can be compared to Wombarra, which is adjacent to the escarpment. 

Table 1: The number of dwelling structures in Wombarra and the southern suburbs of Wollongong, 

their percentage of total dwellings, and the light yellow colour indicate that Cringila has most of the 

dwelling structures similar to Wombarra (ABS 2021a; ABS 2021d).   

Dwelling structure 
Separate 
house 

Semi-detached, row 
or terrace house, 
townhouse, etc 

Flat or 
apartment 

Another 
dwelling 

Wombarra 321 0 13 0 

%Wombarra 96.4 0 3.9 0 

Mount Saint Thomas 507 36 7 0 

%Mount Saint 
Thomas 

92.3 6.6 1.3 0 

Primbee 524 68 51 0 

%Primbee 81.6 10.6 7.9 0 

Cringila 664 3 39 3 

%Cringila 93.5 0.4 5.5 0.4 

Coniston 451 159 273 4 

%Coniston 50.9 17.9 30.8 0.5 

Mangerton 748 122 168 6 

%Mangerton 71.7 11.7 16.1 0.6 

Windang 946 113 42 75 

%Windang 80.2 9.6 3.6 6.4 

Lake Heights 1,236 88 168 3 

%Lake Heights 82.5 5.9 11.2 0.2 

Warrawong 1,167 256 355 3 

%Warrawong 65.2 14.3 19.8 0.2 

Port Kembla 1,540 133 316 10 

%Port Kembla 76.7 6.6 15.7 0.5 

Wollongong 1,318 702 7,365 108 

%Wollongong 13.8 7.4 77.3 1.1 

 

The climates in both suburbs are similar. In the summer, both have average maximum and 

minimum temperatures of 25°C and 18°C, respectively (World Weather Online 2022). In 

autumn, the average maximum and minimum temperatures are 22°C and 16°C, respectively 

(World Weather Online 2022). In the winter, the average maximum and minimum 

temperatures are 16°C and 10°C, respectively (World Weather Online 2022). In the spring, 

the average maximum and minimum temperatures are 21°C and 14°C, respectively (World 

Weather Online 2022). Similarly, the average number of rainy days in these suburbs in 

summer, autumn, winter, and spring is 17, 12, 10, and 14, respectively (World Weather 
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Online 2022). Both the suburbs have direct normal irradiance (DNI) of around 4.0-5.0 

kWh/m2/day (BOM 2019). Even though the climate is same, the solar PV energy output will 

differ because the escarpment casts a shadow on one of the suburbs' rooftops. 

 

Commonly, there are four seasons in Australia (summer, autumn, winter, and spring) (Chiew 

et al. 2009), and solar radiation that falls on dwelling roofs is obstructed by escarpment and 

other impediments vary across the seasons as the solar angle changes daily and seasonally 

during a year. Hence, the average solar radiation reaching rooftops varies according to the 

season of the year. During winter, the average annual solar radiation of the area of interest 

can be as low as 2.4 kWh/m2/day, while in summer this value can be higher at around 6.3 

kWh/m2/day (BOM, 2022). Figure 5 shows DNI in Australia, and indicated area shows DNI in 

Wombarra, and Cringila, which is around 15 to 18 megajoules/m2/day and in kWh it is around 

4.0 - 5 kWh/m2/day (BOM 2019). As a result, there is a massive potential for generating 

electricity through solar PV in the Wombarra and Cringila suburbs. 
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Figure 5: Australia's DNI is highest in red (>30 MJ/m2/day) and lowest in blue (<3 MJ/m2/day). 

Wombarra and Cringila are located in the blue square indicated area by arrow and are close to Sydney, 

NSW; indicated area is green and has a DNI range of 15–18 MJ/m2/day (4.0–5 kWh/m2/day) as shown 

in the legend (BOM 2019). 
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4. Research Methodology 

The research strategy and methods used in this study are described in this section. This 

approach was chosen to fill gaps in the existing literature (described in Section 2) and to 

achieve the stated goal of estimating solar PV energy and comparing shading effects based 

on topographical obstruction by using a geospatial method and accounting for seasons. The 

model for estimating solar PV energy was created using a geospatial-based methodology for 

Wombarra and Cringila suburbs. The amount of solar radiation that reaches the surface of 

the earth fluctuates by season and even during a day. Furthermore, the shadow cast by the 

landform (escarpment) changes during the seasons and fluctuates solar radiation amount, 

having a substantial impact on the amount of power produced by solar energy (Benson et al. 

1984).  As per Chapter 3, these suburbs are in the same city, have similar solar radiation, and 

have similar kinds of dwelling structures, a comparative analysis was done to demonstrate 

the difference in the electricity produced in different seasons due to the effect of escarpment 

shading.    

Active remote sensing is widely used in attempts to locate rooftop assets and infrastructural 

features that may limit the rooftop's overall applicability (Florio et al. 2021). High-resolution 

maps of entire cities are possible with the help of active remote sensing techniques and aerial 

or satellite platforms (Taminiau & Byrne 2020). LiDAR data, which uses active remote sensing 

to construct a 3D point cloud of observations, is frequently utilized since it can create a 3D 

model with high-resolution and comprehend the profile of the chosen area. When 

calculating solar PV potential, high-suitability rooftop areas were identified using DSM data 

and solar radiation modeling. After that, ideal values for rooftop attributes (slope and aspect) 

were entered into a computer model. As a result, it was easier to quickly and accurately 

determine which rooftops are suitable for PV installation.   

Figure 6 depicts the flow of the methodology. The flow is divided into two basic stages: the 

solar radiation estimation phase and the electric potential computation phase. The 

initial stage involved gathering and processing data, which included downloading building 

footprints, Wombarra and Cringila suburb boundaries, and LiDAR data. Then, the DSM raster 

was processed and combined with the vector (suburb boundaries and building footprints) 

data. Following that, hillshade analysis and solar radiation modeling were performed on the 

combined data. The next stage was to create aspect and slope rasters, which were then 

combined with solar radiation data to estimate electricity potential. Finally, CO2 reduction 
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was calculated based on the estimated electricity potential. Figure 6 shows green colour 

blocks representing raster data, orange colour blocks representing vector data, and blue 

colour texts representing geospatial software built-in toolkits. 
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Figure 6: Computational procedure and data flow in 

two stages: (A) DSM, suburb boundaries, and 

building footprint data for Solar radiation 

estimation; (B) Aspect, slope, and solar radiation 

data to estimate electricity potential, and finally 

CO2 reduction calculation. 
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4.1 Solar radiation model validation 

Each season’s average solar irradiance data must be validated to ensure accuracy. This is due 

to the fact that the findings of seasonal solar irradiance for the area of interest during each 

season are essential input parameters for calculating the solar PV energy potential. The solar 

irradiance data obtained from the model before applying the filters for rooftop slope, aspect, 

and minimum area conditions was validated with the dataset from the Wollongong city 

weather stations by using the Mean Absolute Percentage Error (MAPE) method. This method 

compared the model data and the stations’ data and then provided the error percentage of 

the output. 

Another statistical test was performed to test the difference in solar radiation in both 

suburbs due to the topographical obstruction. The t-Test unpaired two samples for means 

was conducted for Welch’s t-Test to determine whether null hypothesis can be discarded or 

not. To perform the t-Test, a sample population of 40 buildings from Cringila and 40 buildings 

from Wombarra has been taken. In this study, the null hypothesis was that the average 

annual solar radiation per m2 obtained from the geospatial model has the sample population 

mean of Cringila equivalent to Wombarra. The alternate hypothesis indicates that means are 

significantly different due to topographical differences, and it rejects the null hypothesis, it 

also implies that the outcomes are quite accurate. If p-value is lower than 0.05, the 

alternative hypothesis is supported. 

4.2 Solar Radiation Estimation 

Inputs required for area solar radiation modeling were suburb boundaries, LiDAR data, and 

building footprints.  

4.2.1 Suburb Boundaries  

Suburb boundaries were required to analyze the rooftops of buildings within the scope of 

this study. Wollongong suburb boundaries were acquired from the Australian Bureau of 

Statistics (ABS) (2021b) in the shapefile format. It was important to extract suburb 

boundaries because it would limit the area of analysis within these boundaries and would 

reduce the computation time. The suburb boundaries shapefile was imported as vector data 

and an attribute table was used to select Wombarra and Cringila suburbs. Keeping in mind 

that any landform, building, or vegetation outside the boundaries that were casting shadows 

on the dwellings inside the boundaries must be included in the analysis. To achieve that, a 
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visual inspection of the vector data was done to include escarpment in the analysis by 

creating a buffer to extend the area of interest. 

4.2.2 LiDAR data  

The LiDAR data was collected with a resolution of 1 square metre via a cloud-based 

technology called Elvis Elevation and Depth (Geoscience Australia 2022b). According to the 

National Oceanic and Atmospheric Administration (NOAA) (2021), the underlying idea of 

LiDAR data is a remote sensing technique that employs laser beam at regular intervals to 

detect ranges (different distances) from the Earth. It provides precise information about the 

earth's surface. Specifically, a sensor would emit laser beams toward a target during the 

flight, and the laser would be reflected by the target and received by the sensor, as shown in 

Figure 7 (ESRI 2019). The sensor precisely records the time of transmission and reflection to 

calculate the distance between the target and the sensor. Post-processed spatially organized 

LiDAR data is point cloud data (NOAA 2021). With ArcGIS Pro's conversion tool LAS Dataset 

to Raster, the LAS dataset (LiDAR point cloud data) was transformed into a raster for use in 

making the 0.5 square metres DSM. To generate the DSM, the method of triangulation 

interpolation was performed, which assigned the maximum point value to each cell in the 

output raster, which represents the top surface of the terrain (Rogers et al. 2020). To 

simulate Hillshade analysis and solar radiation modeling, a digital surface model (DSM) 

model was required. A DSM model consists of surface features, which include all objects 

above ground level, such as flora, buildings, and landforms. In DSM, elevation is presented 

like a grid, and a value for elevation is assigned to each cell of the grid.  
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4.2.3 Building footprints  

A building footprint vector data displays the outline of a facility traced along its external 

surfaces, along with a description of its actual dimensions, frame, and location. In terms of 

spatial characteristics, distribution, and correlation with other buildings and other objects, it 

depicts a building's total area and gives a more accurate representation of its spatial 

properties than a point representation. To determine the rooftop points, building footprints 

were used as vector data (Zhang et al. 2006), and this provided building counts and rooftop 

areas for each building. Building footprints were acquired from Microsoft (2020), and 

Microsoft used Bing satellite imagery to create the roof outline. The satellite imagery for this 

extraction process was provided by Maxar (2020). Using a semantic segmentation and 

polygonization technique, the collection includes 11,334,866 building footprints. Microsoft 

Figure 7: Basic Principle of LiDAR data collection (ESRI 2019). 
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used self-supervised training and unsupervised domain adaptation to create a validated 

product for building footprints in Australia Microsoft (2020).  

The vector data utilized for building footprints included all rooftops in both suburbs. 

Furthermore, all portions of these rooftops are included in vector polygons of each building. 

The building footprint data was imported into the geospatial tool and clipped for the area of 

interest. Visual verification of maps in the tool is being performed to verify that all rooftops 

are covered. These polygons include spatial information that is used to calculate the overall 

rooftop area. Given that the total rooftop area of the suburbs under consideration may vary, 

comparisons will be made using annual average values expressed in kWh/m2/day per 

building. 

4.2.4 Hillshade analysis and Area solar radiation modeling 

Following the collection of building footprints, suburb boundaries, and the DSM model, these 

data points were intersected to conduct additional analysis on the area of interest.  

Since shade can drastically cut down on a "system's" power generation, it is crucial to analyze 

the effects of shading while calculating PV potential. A Hillshade function was applied to 

DSM, which results in a 3D grayscale representation of the terrain surface that is shaded 

according to the relative position of the sun (ESRI 2021c). Hillshade analysis differentiates 

between houses, trees, and other topographical characteristics, as well as roofs. Area solar 

radiation (ASR) was then used to process the DSM (ESRI 2021b).  

Solar irradiation on a rooftop is affected by a number of spatial and temporal factors, such 

as the sun's position and the presence or absence of obstacles in the path of direct sunlight. 

Irradiation on rooftops is directly proportional to the sun’s irradiation potential. While solar 

irradiation potential is not technology dependent, the PV system's ability to convert that 

potential into usable power is. The technical purpose of this phase was to estimate the solar 

radiation for each pixel on the rooftops of the buildings using the Area Solar Radiation tool 

in ArcGIS Pro (Ghosh & Vale 2006). This identified the rooftops with the feasibility of 

producing solar energy in the right position and one can find the best spot for PV panels to 

install in order to maximize energy output. The length and direction of shadows cast by 

structures change throughout the day and with the seasons, making it challenging to do 

shading analysis for each day of the year. Despite this, a monthly and annual average 

irradiation loss estimate is possible by performing shading analysis using the geospatial tool 

(ESRI 2021a).  
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The parameters that are given in the ASR model were:  

• Latitude: The default value of the area of interest was mentioned. 

• Time configuration: Multiple Days, so that the desired start and end day for the 

analysis can be defined; in this study, the multiple days parameter was chosen to 

include all of the seasons in a year. 

• Year: It is restricted to input one year at a time. To achieve the aim of the study, that 

is, seasonality analysis, the most recent full year (2021) was mentioned so that all 

the seasons could be captured. Landforms that were included in the study area by 

creating a buffer would cast shadows differently in different seasons, and thus they 

would affect the electricity and solar radiation output.  Subsequently, a comparison 

of these outputs was done to showcase the shading effect of the landform. 

• Start Day and End Day: Input was given for the four seasons separately (autumn: 

March to May; winter: June to August; spring: September to November; summer: 

December to January). 

• Day and Hour Interval: In this case, solar insolation at each season was required, and 

it should be differentiating between different times of the day. As sun tracks within 

three days usually overlap, depending on the size of the sky and the season, day 

intervals greater than three are advised (ESRI 2021b). Because of this, a default value 

of day interval of 14 days and hour interval of 1 are capable of showing the variation 

in solar radiation in a season (Falklev 2017). For every season of the year, the 

insolation was estimated at hourly intervals, and the computation can take hours or 

days to complete. 

• Topographic Parameter: The foundation for the creation of the ArcGIS Pro Spatial 

Analyst Tool (SAT) is related to viewshed and the estimation of direct and diffuse 

solar radiation (Fu & Rich 1999). Viewshed calculations for the selected location can 

be made using the ASR modeling in the SAT tool. The term "viewshed" refers to a 

map that shows how the topography in the area blocks the view of the visible sky 

with respect to the aspect, and the DSM model is the basis for viewshed calculation 

(Fu & Rich 1999). For a specific set of directions (azimuth divisions), the viewshed 

algorithm requires calculating the irradiation horizon angles, which are then 

interpolated as a hemispherical view of the sky. Valid values for azimuth divisions 

are in multiples of 8, and an increased number of azimuth divisions is a concern when 

output is required at hour or day level and for a complex topography (ESRI 2021b), 
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but in this case, output was at seasonal and annual scale as well as the complexity of 

the topography was low (Figure 8). The study area is not complex, as it has an 

escarpment on one side of Wombarra, and the height of the escarpment is constant 

between 337 m and 364 m. Hence, a fewer number of directions (16) was sufficient 

for solar radiation output, and it will also minimize the calculation time.   

 

 

Figure 8: Elevation of the escarpment to the west side of Wombarra (OpenStreetMap 2022). 

 

Model parameters for transmissivity (T) and diffusivity (D) were calibrated from the data by 

using the Solar Radiation model (Fu 2000). T and D depend on the sky condition, and the 

spatial analyst tool (SAT) estimates them automatically based on the input 

days/months/season as a parameter, in this case, 4 seasons were taken as input. ESRI 

(2021e) explains that the model estimates irradiance levels on a daily, monthly, and annual 

basis, as well as for a given time range. In this study, calibration was done for two scenarios 

with a seasonal and yearly temporal resolution of one hour each, to provide more accurate 

data for future projections. This extensive computation can take a few hours or many days 

to complete tasks such as geographic data analysis, data conversion, data administration, 

and map automation (Chow et al. 2014), and to make it efficient, the Arcpy package that is 

based on the Python scripts is used by ArcGIS Pro (ESRI 2021e). To avoid having to manually 

run and cycle through all of the possible combinations of D and T values, the ArcPy package 

has the capability to perform all permutations and combinations to evaluate all atmospheric 

parameters of the model. 

Wombarra 
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The horizontal solar insolation values are based on pixel with a watt hours per sq. metre 

(Wh/m2) unit as this is the default result of the ASR module in ArcGIS Pro. To make these 

calculations more manageable, the measured solar radiation in pixels was converted to area-

based values in kilowatt-hours per sq. metre (kWh/m2). To do this, the "Zonal Statistics as 

Table" feature was used, which generates an aggregate statistical representation of all pixel 

values. New columns were added to the original table to display information like the average 

solar radiation value in kWh/m2 for each building polygon feature over a specified time 

period, the total number of pixels in the feature, and the total area of the rooftop feature in 

square metres.  

Since the ideal slope of a surface for PV systems varies with latitude, these classifications are 

crucial when determining eligible locations. So essentially, based on the orientation, this 

stage identified rooftops that would get the most solar radiation throughout the season 

and span of the year. 

4.3 Electricity Potential 

4.3.1.  Rooftop slope and aspect 

The degree to which a surface drops off abruptly is measured in terms of its slope. No slope 

(flat) corresponds to a value of 0 degrees, whereas a value of 90 degrees represents a 

perfectly vertical surface. According to ESRI (2021d), the surface slope is determined by 

averaging the elevation differences between a particular cell and its eight neighbouring cells. 

After determining the slope using the Spatial Analyst tool, the results were organized using 

a classification scheme based on how well they would support the installation of a PV system. 

While many prior studies divide houses into two categories—those with flat roofs (slope of 

less than 10 or 20 degrees) and those with sloped roofs (slope of greater than 10 or 20 

degrees and less than 60 degrees) (Alexander et al. 2009). For this study, as shown in Table 

2, reclassification was done for five classes. The minimum value of the first class and 

maximum value of the last class was defined by default as per the min and max slope values 

available in the area of interest. Since the ideal slope of a surface for PV systems varies with 

latitude, these classifications were crucial when determining eligible locations. Within these 

classes, results do not vary much, and on the basis of these classes, results can be generated 

to demonstrate the optimum tilt angle. So essentially, based on the orientation, this stage 

identified rooftops that would get the most solar radiation throughout the season 

and span of the year. 
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Table 2: Slope values reclassification. 

Slope Class 

0.018-10 1 

10-20 2 

20-40 3 

40-60 4 

60-87.323 5 

 

The aspect of a slope is its relative orientation, and solar radiation varies on the basis of the 

aspect. In this case, the area of interest lies in the southern hemisphere. As the sun stays the 

majority of the year in the northern direction in the sky, north-facing roofs are recommended 

for the construction of solar PV systems (in the southern hemisphere) (Li & Liu 2017). The 

aspect of the surface slope at the dwellings is identified by the cardinal and ordinal 

directions, and these directions must be aligned with the sun’s path in order to maximize the 

energy outcome. The evaluation of each building's aspect and slope served to offer 

additional rooftop attributes so that the output of the solar radiation analysis could be 

merged with these parameters. Aspect ranges from 0 to 360 degrees, in a clockwise 

direction. As shown in Figure 9, the aspect was categorized into 8 categories: (i) (337.5-22.5) 

north, (ii) (22.5–67.5) northeast, (iii) (67.5–112.5) east, (iv) (112.5–157.5) southeast, (v) 

(157.5–202.5) south, (vi) (202.5–247.5) southwest, (vi) (247.5–292.5) west, (viii) (292.5-

337.5) northwest.  A flat roof was assigned an aspect ratio of -1. Aspect values were derived 

from DSM using the aspect tool in the Spatial Analyst Toolbox. 
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4.3.2 Solar electricity potential calculation  

Once the solar radiation layer was generated and slope and aspect were calculated, filtering 

was done to extract suitable rooftops on the basis of the four factors applied to rooftop 

slope, rooftop aspect, area of a single dwelling, and a minimum value of solar radiation. 

Rooftops with a slope of less than 10 degrees were considered flat. Given that higher slopes 

receive less sunlight, the rooftop slope should be less than or equal to 60 degrees. Above 60-

degree slopes were categorized as unsuitable because they had very steep angle values for 

installation and energy production from solar radiation would be very low, thus not 

economical (Yesilmaden & Dogru 2019). As per the Bureau of Meteorology’s climate data 

provided by the weather station (068219 Wollongong (Appin) NSW), the mean of monthly 

solar radiation data calculated for the years (1990 to 2022), mentioned in Table 3, the annual 

mean solar radiation in Wollongong is 4.4 kWh/m2/day and the lowest is 2.4 kWh/m2/day 

(876 kWh/m2/year) in the month of June (BOM 2022). Hence, rooftops in Wollongong are 

getting at least 800 kWh of average solar radiation per square metre annually and the same 

cut-off is kept for solar radiation while calculating electricity potential. The roof shouldn't 

have a south-facing aspect because southern hemisphere rooftops absorb less sunshine (Li 

& Liu 2017). Rooftops with a roof area smaller than 10 square metres are not worth the 

investment for solar PV installation, as the cost would be higher than the profit made by solar 

energy production. Hence, the space required for the roof must be greater than 10 square 

Figure 9: Azimuth angle and direction (SolarSena 2021). 
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metres (Bergamasco & Asinari 2011). Thus, an expression where AREA is greater than or 

equal to 10 was built in the Select by Attributes window. 

 

 

Statistic Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Annual 

Mean 6.1 5.3 4.5 3.7 2.9 2.4 2.7 3.6 4.6 5.4 5.8 6.3 4.4 

Lowest 5.3 4.5 3.2 2.7 2.3 1.9 2.2 2.9 4 4.6 4.3 5.1 4 

Highest 7.6 6.2 5.8 4.5 3.2 2.8 3.1 4.1 5.4 6.8 7.4 7.3 4.8 

 

Following the application of the parameters, viable building rooftop locations were found, 

and maps of seasonal and annual radiation were created for the targeted area. In order to 

calculate the energy potential of each selected rooftop, the results were then compiled. 

This PV system model is essentially a calculation to determine a PV system's solar energy 

output. The worldwide formula to estimate the electricity produced in the output of a PV 

system is (Markos & Sentian 2016): 

E = As * Ys * Sr * Pr                                                      - - - - - - - (3.1) 

Using Eq. (3.1), the solar energy potential in kWh was calculated. As denotes the total area 

of the PV panels in metres square. Performance ratio coefficient and PV panel efficiency are 

denoted by Pr and Ys respectively, these are two additional factors that depend on the PV 

panel feature. Values for these parameters were chosen based on construction material and 

PV panel efficiency. Annual solar radiation Sr in kW h/m2 was estimated in the ArcGIS zonal 

statistics table tool. 

The function of the zonal statistics table is explained below: 

The power per building was calculated in this study using the Zonal Statistics Table tool. This 

tool aggregates all suitable cells found inside the footprint polygon of each building. The 

building_id had been set as a zone field so that every building had been taken into account 

since each had a unique Id. The raster input value was set to suitable_cells. The average solar 

radiation (kWh/m2) for each building was calculated using the mean field of statistics type, 

and the results were presented as a table. The Join Field tool would connect AREA and MEAN, 

the average solar radiation, to the map based on the building footprints. The selected 

buildings were exported into a new feature class using the Export Features function in the 

   Table 3: Monthly mean solar radiation in Wollongong (kWh/m2/day) (BoM 2022). 
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Contents pane. The usable solar radiation was calculated and displayed in the attribute table. 

The usable solar radiation was then calculated as MEAN times AREA, divided by 1000, and 

expressed in megawatt-hours. Another field that represents electricity production was 

calculated. The data type and number format would be the same as the usable solar 

radiation. There was an 86 percent performance ratio for the solar panels, allowing them to 

convert 17.5% of the sun's energy into power. Thus, the available solar radiation was 

multiplied by 0.175 and 0.86 to get the amount of electricity produced (dcceew 2022b). 

In Australia, the two most common varieties of panels are polycrystalline and 

monocrystalline (Solar Market 2022). In a solar panel, each cell contains silicon that uses the 

photovoltaic effect to transform sunlight into direct current (DC). The performance of solar 

PV panels is measured in efficiency, which is the fraction of the solar radiation that is 

converted into energy output. Polycrystalline panels are made from several silicon crystals, 

whereas monocrystalline panels are made from a single continuous silicon crystal structure. 

As per the website of the Australian Government, while polycrystalline panels are marginally 

less efficient than monocrystalline ones, with an efficiency range of 13 to 17%, 

monocrystalline panels are more efficient, with a range of 15 to 20% (dcceew 2022b). The 

average value of monocrystalline panels’ efficiency (17.5%) was taken into the final 

electricity calculation. 

4.4 CO2 reduction calculation 

The reduction of CO2 emissions is the main goal of using solar energy, as was indicated in the 

introduction. In the years 2016–17, the consumption of fossil fuels was the primary 

contributor (78%) to the overall emissions of Wollongong (Wollongong City Council 2020). 

Residential structures account for 16% of fossil fuel emissions, commercial buildings account 

for 7%, and the industrial sector accounts for 55% (Wollongong City Council 2020). CO2 

emissions from electricity generation totaled 3.07 million tonnes in the fiscal year 2018-19, 

accounting for 37% of total emissions (Ironbark Sustainability 2021). As a result of the COVID-

19 epidemic, which temporarily reduced emissions, emissions fell to 2.84 million tonnes in 

2020–21 (Ironbark Sustainability 2021). However, it is expected to grow beginning in 2022 

(Knight et al. 2021). This study assessed the viability of the sustainable Wollongong 2030 

strategy plan and sought to determine whether or not the suburbs of Wollongong City 

Council are capable of establishing a sustainable future for the city by utilizing the full 

potential of solar energy. In NSW, the average amount of CO2 released by the power sector 
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for the production of energy in 2021 was 0.81 Kg of CO2 per kWh (Zhao et al. 2021). The 

annual CO2 emission reduction was calculated by multiplying 0.656 Kg and the annual solar 

electricity potential output in kWh for two suburbs. Then, this result was divided by the 

number of dwellings to find out the volume of CO2 emission reductions per building  
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5. Results 

5.1 Solar radiation model validation 

To measure the accuracy of the model, error variance for direct normal irradiance (DNI) was 

produced. The method for calculating the model’s error was Mean Absolute Percentage 

Error (MAPE). To calculate MAPE, the absolute errors of measured and predicted numbers 

are calculated. These absolute errors are shown as a percentage of what was measured. 

MAPE is often employed because it is simple to understand and comprehend (Wargon et al. 

2009). For instance, a MAPE value of 10% indicates that there is an average 10% discrepancy 

between the measured and estimated values. It is determined by the absolute difference to 

actual ratio. The daily average DNI for each month is used to calculate the variance. 

For calculating MAPE of DNI data, the predicted mean irradiance (kWh/m2/day) values from 

each season were compared with two weather stations’ datasets (Table 4). First, data from 

Woonona (Popes Rd) weather station with station number 68108 and another from Bellambi 

AWS with station number 68228, with the input parameter from 2021 (BoM, 2022) were 

used in the validation process. 

Table 4 Monthly mean DNI data from Wollongong weather stations (kWh/m2/day) (BOM 2022).  

2021 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Woonona (Popes 
Rd) (68108) 

5.7 4.6 3.8 3.9 2.8 2.5 2.8 3.6 4.6 5.6 4.4 5.5 

Bellambi AWS 
(68228) 

5.7 4.6 3.8 3.9 2.8 2.5 2.8 3.6 4.6 5.6 4.4 5.5 

 

Table 5 compares average seasonal DNI data from weather stations in both suburbs to the 

predicted average DNI data from this study; both data are in kWh/m2/day. Table 5 shows 

that both sets of data exhibit a similar trend. However, when the model's average solar 

irradiance data is compared to the data from both stations, there is a minor difference. For 

example, the daily mean solar irradiance value in winter and autumn is lower in the predicted 

data.  

Table 5: Observed and predicted solar radiation data from Bureau stations. 

Season/Station Woonona (Popes Rd) Bellambi AWS Predicted 

Winter 2.97 2.97 2.0 

Autumn 3.50 3.50 2.6 

Spring 4.87 4.87 4.2 

Summer 5.27 5.27 4.9 
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The MAPE of the data was calculated in a spreadsheet, and its result is 19.7%. As shown in 

Table 6, Blasco et al. (2013) proposed four categories to evaluate MAPE results for assessing 

a forecasting model. The solar radiation modelling could be considered as a reliable model 

as it falls into a good forecasting model according to Blasco et al. (2013) explanation. 

 

Table 6: MAPE table interpretation. 

MAPE (%) Explanation 

<10 Highly accurate forecasting 

10-20 Good forecasting 

20-50 Reasonable forecasting 

>50 Inaccurate forecasting 

 

 

The independent variable t-test on the sample population of 40 structures from each of the 

two suburbs revealed that the yearly means for Cringila and Wombarra were 1106.09 

kWh/m2 and 943.07 kWh/m2, respectively. If p-value is less than 0.05, the null hypothesis 

would be discarded. The result of p-value is 0.000002049, which supports the idea that the 

null hypothesis would be rejected. Here, p-value is significantly lower than 0.05, supporting 

the alternative hypothesis that the solar radiation annual means of the two suburbs are 

significantly different due to the escarpment shadow. 
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5.2 Solar Radiation Estimation 

By performing solar PV energy simulations using the geospatial method with the aid of LiDAR 

data, building footprints, and suburb boundaries, the solar radiation output for each building 

rooftop was identified for Wombarra and Cringila suburbs, and variation in results due to the 

effect of seasons and escarpment in solar distribution at suitable rooftop areas is 

demonstrated. 

5.2.1 Suburb boundaries 

Figure 10 depicts the extracted suburb boundaries of Wombarra and Cringila. It is clear from 

the figure that the Wombarra suburb is located in the northern part, and the Cringila suburb 

is located in the southern part of Wollongong city.  

 

 

 

As shown in Figure 11a, the Wombarra suburb is adjacent to the escarpment, and the 

escarpment is outside the suburb boundaries. This escarpment cast a shadow on the 

Figure 10: Wombarra and Cringila suburb boundaries in dark red. 

Wombarra 

Cringila 
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Wombarra suburb's dwelling rooftops and to include the escarpment and ground features in 

the solar radiation analysis, a minimum 400-metre buffer was created. The escarpment is 

about 350 m tall (Macquarie 2013), and the maximum length of shadow in the summer is 

equal to the object's height, while the maximum length of shadow in the winter is 2.5 times 

the object's height (Williams 2020). Hence, the maximum length of the shadow would be 875 

m (2.5 times 350 m) or approximately 1 km due to the escarpment. As a result, unlike 

Wombarra, the escarpment would not cast a shadow on the Cringila suburb's dwelling 

rooftops because it is 7 kms away from Cringila (Figure 11b). 
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Wombarra 

11a 
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5.2.2 LiDAR data 

Figure 12 is the 2D view of the LiDAR point cloud in the study area. The points with high 

elevation are shown in dark red, and points with low elevation are shown in green and blue. 

The raw LiDAR data contains many undesirable points that represent the environment, like 

water and even cars on the street. Those points were out of scope for the analysis and 

unfiltered for the process. The useful points were gone through a series of classifications and 

separations. 

Cringila 

11b 

Figure 11: Suburb boundaries are in red, 400 metres buffer boundaries are in purple, building 

footprints are blue, and the escarpment is indicated with a dark blue colour block and arrows; 

Figure 11a: Escarpment is outside the Wombarra suburb boundary and inside the buffer boundary; 

Figure 11b: Escarpment is 7 kms away from Cringila suburb boundary.   
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To include the above ground features in the analysis, LiDAR data was converted to a digital 

surface model (DSM) (Figure 13). The dark areas represent low elevations, and the light areas 

represent high elevations. The DSM model for the Wombarra suburb (Figure 13a) shows the 

elevation with light shading touching the west boundary due to the effect of the escarpment. 

Cringila, on the other hand, has a low elevation throughout and across its surroundings 

(Figure 13b). 

 

High elevation points 

Low elevation points 

Figure 12: Visualization of LiDAR data (Wombarra); high elevation points are in red and low 

elevation points are in blue. 
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5.2.3 Building footprints 

Figures 14a and 14b show the building footprints of the suburbs of Wombarra and Cringila, 

respectively. These figures show that all rooftops of selected suburbs are covered in the 

assessment. There are 416 rooftop segments in Wombarra with an area of 48415 m2 and 

1178 rooftop segments in Cringila with an area of 118429.5 m2. As a result, 1594 rooftop 

segments with a total rooftop area of 166844.5 metres square were identified.  

 

 

 

Figure 13: Light grey areas represent high elevation and dark grey areas represent low elevation; 

suburb boundaries are presented in red colour lines; Figure 13a: Wombarra DSM depicting high 

and low elevation; Figure 13b: Cringila DSM depicting high and low elevation. 

Figures 14a and 14b: Building footprints in blue and suburb boundaries in red for the Wombarra 

and Cringila suburbs. 
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Figures 15 shows the intersection of the DSM model and the building footprints of the 

Wombarra and Cringila suburbs. The high elevation points are presented in light grey and 

the low elevation points presented in dark grey with suburb boundaries in red (Figure 15). In 

Wombarra dwellings are close to high elevation points on the west side and are close to low 

elevation points on the east side (Figure 15a). Whereas, In Cringila all dwellings are on low 

elevation points (Figure 15b). 

 

 

 

 

5.2.4 Hillshade analysis and area solar radiation modeling 

Figure 16 shows the result of the Hillshade analysis of shadow done by considering the 

effects of the local horizon at each cell. Shadow is observable mainly in the escarpment, tree 

canopy, and on the roof edge. The escarpment is clearly visible in Figure 16a, and shading 

can be observed more on Wombarra than on Cringila (Figures 16b and 16c). This is because 

Wombarra's western boundary is adjacent to the escarpment, and vegetation is dense, thus 

casting more shadow on rooftops than in Cringila, which is far from the escarpment. 

Apparently, the raster cells that are in the shadow do not have access to the incoming solar 

radiation. Thus, those areas are not considered suitable for solar PV installation. 

Figure 15: Light grey areas represent high elevation and dark grey areas represent low elevation; 

suburb boundaries are presented in red colour lines; buffer boundaries are in purple; building 

footprints are in blue; Figures 15a and 15b: Intersection of DSM model and footprints in the 

Wombarra and Cringila suburbs. 
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In the next step, solar radiation on building rooftops was calculated for four seasons (Winter, 

Autumn, Spring, and Summer). Figure 17 shows the comparison of solar radiation in these 

two suburbs and across the four seasons. In the Wombarra suburb, solar radiation density is 

lower than in Cringila due to the escarpment and high vegetation density, which cast 

shadows on building rooftops across the seasons. Figure 17 depicts solar radiation per unit 

area for Cringila and Wombarra, with blue representing the lowest solar radiation, yellow 

Figure 16: The grayscale 3D representation of the terrain surface using the Hillshade tool; suburb 

boundaries are presented in red colour lines; buffer boundaries are in purple; Figure 16a: 

Grayscale representation of the escarpment and surrounding high vegetation in Wombarra; 

Figure 16b: Grayscale representation of Wombarra suburb buildings and surroundings; Figure 

16c: Grayscale representation of Cringila suburb buildings and surroundings.   
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being the medium, and red representing the maximum solar radiation. Each of the Cringila 

maps (Figures 17a, 17c, 17e, and 17g) has a higher intensity of solar radiation than the 

Wombarra maps (Figures 17b, 17d, 17f, and 17h), as seen by the colours, which are darker 

in Cringila. When comparing the intensity of solar radiation in each season, the colours 

intensify from winter (Figures 17a and 17b) to autumn (Figures 17c and 17d) to spring 

(Figures 17e and 17f) to summer (Figures 17g and 17h). Maps therefore indicate that the 

intensity of solar radiation is highest in the summer and lowest in the winter.  
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Figure 17: Cringila and Wombarra mean solar radiation maps for each building in all seasons, blue 

represents the lowest solar radiation, yellow is the median, and red represents the highest solar 

radiation; Figures 17a and 17b show solar radiation for Cringila and Wombarra in winter; Figures 

17c and 17d show solar radiation for Cringila and Wombarra in autumn; Figures 17e and 17f show 

solar radiation for Cringila and Wombarra in spring; and Figures 17g and 17h show solar radiation 

for Cringila and Wombarra in summer.   

 

Wombarra Cringila 
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Note that solar radiation was only calculated for buildings because the raster of building 

footprints was used as a mask. This auto-generated raster was in watt-hours per square. To 

make the raster easy to read, the unit was converted to kilowatt-hours per square metre 

(kWh/m2). Figure 18a for Cringila and Figure 18b for Wombarra show the annual solar 

radiation of each building in blue and average annual solar radiation per building in orange. 

In Cringila, the average annual solar radiation is 1087 kWh/m2/building, and in Wombarra it 

is 909 kWh/m2/building. Given a certain minimum level of annual radiation, these numbers 

give an idea of how many buildings could have the feasibility of PV systems installed. Also, 

figures 18a and 18b show that average annual solar radiation per building in Cringila is higher 

than Wombarra. 
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Table 7 shows the comparison of annual and seasonal mean solar radiation in Wombarra and 

Cringila. Wombarra suburb Mean solar radiation (kWh/m2) on building rooftops is 10.8 % 

lower in winter, 2.6% lower in autumn, 6.9% lower in spring, and 7.4% lower in summer than 

in Cringila. As mentioned in section (Regional Setting Chapter 3), both the suburbs are similar 

in terms of dwelling structures, as 93.5% of dwelling structures in Cringila are matched with 

96.4% of dwellings in Wombarra, but solar distribution varies because Wombarra is right 

beside the escarpment.  Figure 19 shows season-wise per dwelling average solar radiation in 

Cringila and Wombarra (kWh/m2). For every season it is lesser in Wombarra than in Cringila 
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Figure 18a: Cringila annual solar radiation (kWh/m2) for each building in blue and average annual 

solar radiation (kWh/m2/ building) in orange; Figure 18b: Wombarra annual solar radiation 

(kWh/m2) for each building in blue and average annual solar radiation (kWh/m2/ building) in 

orange. 
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(annual mean solar radiation: 1087 kWh/m2 (Cringila), and 909 kWh/m2 (Wombarra)). In 

winter, Wombarra in orange has 12.45 kWh/m2 lesser solar radiation than Cringila in blue 

(Figure 19). In autumn, Wombarra in orange has 5.44 kWh/m2 lesser solar radiation than 

Cringila in blue (Figure 19). In spring, Wombarra in orange has 23.17 kWh/m2 lesser solar 

radiation than Cringila in blue (Figure 19). In summer, Wombarra in orange has 30.19 

kWh/m2 lesser solar radiation than Cringila in blue (Figure 19). 

  

 

Season Cringila Wombarra 

Winter 128.16 115.71 

Autumn 217.63 212.19 

Spring 361.16 337.99 

Summer 436.05 405.86 

Annual 1087.00 909.00 

 

                                                                           

 

 

Wombarra has more shading than Cringila due to the escarpment. This shading across the 

seasons varies and decides the suitable rooftop area to be used in estimating the value of 

the rooftop solar PV energy. It is clear from Figure 20 that dwelling roofs in Cringila have a 
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Table 7: Annual and seasonal mean solar radiation in Wombarra and Cringila. 

Hillshade tool 

 

Figure 19: Annual and seasonal mean solar radiation chart for Wombarra in orange and Cringila 

in blue. 
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higher distribution of suitable rooftop areas than in Wombarra. In summer (Figure 20a), the 

distribution of suitable rooftop area for Cringila is more between 70 to 80% (average for all 

the rooftops is 75%), while in Wombarra (Figure 20b) distribution is between 60 to 70% 

(average for all the rooftops is 60%). In spring (Figure 20c), for Cringila, the distribution is 70 

to 80% (average for all the rooftops is 69%), while in Wombarra (Figure 20d), the distribution 

is between 50 and 60% (average for all the rooftops is 48%). In autumn, for Cringila (Figure 

20e) distribution is 50 to 60% (average for all the rooftops is 57%), while in Wombarra (Figure 

20f), it is at 20% and between 40 to 50% (average for all the rooftops is 33%). In winter, for 

Cringila (Figure 20g) distribution is 50 to 60% (average for all the rooftops is 59%), while in 

Wombarra (Figure 20h), it is at 20% and between 50 to 60% (average for all the rooftops is 

36%). This shows that, in every season, Cringila has a more suitable rooftop area for solar PV 

installation than Wombarra.  
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Figure 20: Suitable rooftop area distribution comparison at various seasons; Figures 20a and 20b 

show suitable rooftop area distribution for Cringila and Wombarra in summer; Figures 20c and 20d 

show suitable rooftop area distribution for Cringila and Wombarra in spring; Figures 20e and 20f 

show suitable rooftop area distribution for Cringila and Wombarra in autumn; and Figures 20g and 

20h show suitable rooftop area distribution for Cringila and Wombarra in winter. 
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Figure 21 shows the comparison of both the suburbs with the number of buildings falling 

into the bracket of high and low solar radiation. In Summer, most of the buildings (count: 

866) are having solar radiation of between 400 – 500 kWh/m2, while in Wombarra most of 

the buildings (count: 215) are falling into the bracket of 300 – 400 kWh/m2 (Figure 21a). In 

Spring, most of the buildings (count: 933) are having solar radiation of between 300 – 400 

kWh/m2, also in Wombarra most of the buildings (count: 220) are falling into the same 

bracket (Figure 21b). In Autumn, most of the buildings (count: 713) are having solar radiation 

of between 200 – 300 kWh/m2, while in Wombarra most of the buildings (count: 270) are 

falling into the bracket of 100 – 200 kWh/m2 (Figure 21c). In Winter, most of the buildings 

(count: 923) have solar radiation of between 100 and 200 kWh/m2, while in Wombarra most 

of the buildings (count: 202) fall into the bracket of 0–100 kWh/m2 (Figure 21d). As a result, 

Wombarra buildings are falling into a lower solar radiation bracket than Cringila buildings in 

each season. Figure 21 also depicts how the distribution of solar radiation varies throughout 

the year.  
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Figure 21: Count of buildings in the bracket of solar radiation (unit: kWh/m2); Figures 21a, 21b, 

21c, and 21d depict the number of buildings in various solar radiation brackets for Cringila and 

Wombarra in the summer, spring, autumn, and winter, respectively. 
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5.3 Electricity Potential 

5.3.1.  Rooftop slope and aspect 

Slope values were divided into five groups (0.018°- 10°, 10°- 20°, 40°- 60°, and 60°- 87.323°) 

in order to find suitable rooftop slopes. A slope value of 0° indicates a level surface, while a 

value of 90° designates a perfectly vertical surface. The colour-coded classification of the 

rooftop slope is shown on the map in Figure 22.  

 

 

  

 

 

This slope raster is one of the necessary parameters to eliminate unsuitable roofs. Figures 

23a and 23b show the classification and distribution of rooftops in these classes. Most of the 

rooftops fall into the classes (0.018-10) and (10-20), which shows that most of the rooftops 

are suitable for solar PV installation. Roofs with a slope of more than 60 degrees are seen as 

being too steep, and their installation and upkeep are expensive. Hence, rooftops having a 

slope of less than 60 degrees were considered for solar PV energy estimation.   

Figure 22: The Slope raster of the study area is created by the Surface Parameter Tool using DSM 

as input; yellow depicts the slope range of 0.018-10 degrees; pink depicts the slope range of 10-

20 degrees; brown depicts the slope range of 20-40 degrees; green depicts the slope range of 40-

60 degrees; black depicts the slope range of 60-87.323 degrees.  
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Figure 23: 23a. Classification of rooftop slopes; 23b. Distribution of Rooftops in the slope 

classes. 
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The average tilt angle of most of the rooftops in Cringila lies between 20 and 40 degrees as 

shown in the Figure 24a with orange dotted line, and in Wombarra, it is between 20 and 50 

degrees as shown in the Figure 24b with orange dotted line. These ranges fall within the 

range of the optimum tilt angle of the PV panel, as shown in Figures 24a and 24b. 

 

 

 

 

 

 

The aspect was categorized into standardized 8 categories: (i) (337.5 - 22.5) north, (ii) (22.5 

– 67.5) northeast, (iii) (67.5 – 112.5) east, (iv) (112.5 – 157.5) southeast, (v) (157.5 – 202.5) 

south, (vi) (202.5 – 247.5) southwest, (vi) (247.5 – 292.5) west, (viii) (292.5 - 337.5) 

northwest. The aspect raster was used to filter out rooftops facing south. Figure 25 depicts 

north facing rooftops in red, south facing rooftops in cyan, east facing rooftops in yellow, and 

west facing rooftops in blue.   
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Figures 24a and 24b: The average tilt angles of rooftops in Cringila and Wombarra; blue line depicts 

the actual slope of buildings; orange dotted line depicts the average slope trend; Figure 24a: 

Arrows pointing the average range of slopes in Cringila between 20 and 40 degrees; Figure 24b: 

Arrows pointing the average range of slopes in Wombarra between 20 and 50 degrees. 
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5.3.2 Solar electricity potential calculation 

There are 1178 building footprints in Cringila and 416 building footprints in Wombarra, with 

a total area of 118430 and 48415 square metres respectively. To determine the appropriate 

rooftop area for calculating electricity potential, roofs with slopes greater than 60 degrees, 

roofs facing south, and roofs with solar radiation less than 800 kWh/m2 were eliminated. As 

a result, the suitable rooftop area for Cringila and Wombarra comes down to 55887 m2 (47% 

of total rooftop area) and 19594 m2 (40% of total rooftop area), respectively. Once the 

suitable rooftop area was derived, it was used to calculate potential electricity by multiplying 

area (m2), mean solar radiation (kWh), panel efficiency (17.5%), and performance ratio (86%) 

for each rooftop. As a result, the annual electricity potential for Wombarra is 2778.3 Mwh 

and for Cringila is 9926.7 Mwh. 

Figure 26 shows the electricity potential at different seasons and a comparison of both 

suburbs. Figure 27 shows the comparison of the estimated average electricity generation 

from solar PV in each season in kWh/day for a building. According to the Australian Govt. 

Energy Made Easy statistics, the annual electricity consumption per household in 

Figure 25: The aspect raster of the study area generated using the Surface Parameters tool; red 

roofs facing north, cyan roofs facing south, yellow roofs facing east, and blue roofs facing west 

(colour legend is provided in the figure). 
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Wollongong is 5707.6 kWh (Australian Energy Regulator 2022). For 1178 buildings, Cringila’s 

total electricity consumption would be around 6723.6 Mwh. If all suitable rooftops were 

covered with solar PV panels, about an extra 48% of electricity consumption could be offset 

by solar PV energy for Cringila. In the case of Wombarra, for 416 buildings, total electricity 

consumption would be 2374.4 Mwh, if all suitable rooftops were covered with solar PV 

panels, about an extra 17% of electricity consumption can be offset by solar PV energy. The 

two suburbs could generate enough solar power to meet their energy needs and would have 

surplus power of 48% and 17%, respectively. It should be noted that the yearly energy 

numbers include both the commercial and residential segments. Hence , surplus energy 

generated by rooftop PV panels in these two suburbs could offset the gap in the 

neighbouring suburbs. 
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Figure 26: Electricity potential at different seasons for Cringila in blue and for Wombarra in orange. 

 

 

Figure 27: Seasonal trend of average electricity generation per day per building for Cringila in blue 

and for Wombarra in orange. 
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6. Discussion  

This chapter summarizes the key findings and compares the solar PV energy output of two 

suburbs. In addition, it discusses the role that topographic features and the seasons play in 

the overall energy output. 

 

6.1 Solar radiation and suitable rooftop area distribution for the area 

of interest 

The findings demonstrate that electricity production in Wombarra is affected not only by the 

rooftop area but also by the amount of solar radiation reaching the roof surfaces, which is 

affected by the shading of the escarpment. Both suburbs share the same weather patterns, 

the number of rainy days, and types of buildings (ABS 2021a; ABS 2021d; World Weather 

Online 2022). However, the escarpment casts shadows on the Wombarra suburb's dwelling 

rooftops, and Cringila does not experience any escarpment-related shadowing. 

Consequently, even though the meteorological circumstances are the same, the solar PV 

energy output varies because of the escarpment's shadow. It is clear that the building 

rooftops in the Cringila suburb are better suited for the installation of rooftop solar PV panels 

since the majority of buildings have suitable rooftop areas greater than 55% in all seasons 

(Table 8). According to Table 8, buildings in the Cringila suburb have an average roof suitable 

area of 59 to 75% for solar panel installation, compared to 36 to 60% in the Wombarra 

suburb. 

 

Season / Suburb Cringila Wombarra 

Summer 75% 60% 

Spring 69% 48% 

Autumn 57% 33% 

Winter 59% 36% 

  

The ratio of the total suitable rooftop area to the total area of each suburb indicates which 

suburb is more suitable for installing solar PVs. In comparison to Wombarra, which has a 

suitable rooftop area of 19594 m2 out of a total rooftop area of 48415 m2, representing 40%, 

Cringila has a suitable rooftop area of 5587 m2 out of a total rooftop area of 118429 m2, 

representing 47%. These results suggest that the amount of solar energy that may reach the 

PV panel arrays in the suburb of Wombarra is constrained by the escarpment's shadow. 

Similar results were found in previous studies, Paidipati et al. (2008) conducted study in the 

Table 8: Average suitable rooftop area per dwelling. 
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United states and determined that 46% of total rooftops area is suitable for rooftop PV. 

Ladner-Garcia & O'Neill-Carrillo (2009) conducted study in Puerto Rico and came to the 

conclusion that suitable rooftop area for PV installation is 50%. According to the research by 

Hofierka & Kanuk (2009) on rooftops in Bardejov, Slovakia, 59% of the overall rooftop surface 

area is suitable for solar panel installation. Santos et al. (2011) conducted study on Lisbon, 

Portugal and found that 49% of total rooftop area for PV installation is suitable. Odeh & 

Nguyen (2021) conducted study on Sydney, Australia and concluded that suitable rooftop 

area for the installation of solar PV is 50%. 

 

The findings indicate that the solar radiation in Cringila is higher than in Wombarra in every 

season. As per the results, the average annual solar radiation for each dwelling in Wombarra 

is 178 kWh/m2 lower than in Cringila (Cringila: 1087 kWh/m2, Wombarra: 909 kWh/m2). 

Consequently, the average annual potential electricity generation per dwelling in Wombarra 

is 20.6 kWh/m2/day, while it is 27.6 kWh/m2/day in Cringila. This escarpment shading effect 

is visible on solar radiation maps,  that is, Cringila has a higher level of solar radiation in each 

season than Wombarra as shown in Figure 17. The results suggest that the role of shadowing 

is important in accurately estimating solar PV energy values along roofs. This research shows 

that the average yearly potential solar PV electricity is 7 kWh/m2/day lesser in Wombarra 

than Cringila due to escarpment shadow cast on Wombarra rooftops. According to research 

by Ko et al. (2015), the output of solar panels is significantly impacted by the shadow effect 

created of adjacent building structures. Mishra et al. (2020) addressed that PV sites should 

not be under any kind of shade. Since the shadow is constantly shifting owing to the sun’s 

motion, Alam et al. (2012) proposed that when shadow falls on PV, it rapidly reduces the 

performance of the Photovoltaic system. 

 

According to the findings of the study, the amount of solar radiation varies seasonally 

throughout the year. Additionally, Figure 17 shows the seasonal variation in the solar 

radiation output, which is increasing from winter to autumn to spring to summer. Total solar 

potential for both suburbs come 4965.99 Mwh, 2188.04 Mwh, 1463.21 Mwh, and 4087.79 

Mwh from summer, autumn, winter and spring respectively. Therefore, Cringila has a higher 

potential for solar rooftop installation per dwelling in each season. Other researches (Mishra 

et al. 2020, Chow et al. 2014) have found a similar trend that summer has the most prolonged 

hours of sunlight, with the fewest shadows, while winter has the least quantity of solar 

radiation due to short days and the sun’s positioning casts a high number of shadows. 
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This study used a geospatial model to predict the seasonal and annual solar PV energy output 

of all types of buildings in the Wombarra and Cringila suburbs, using DSM, building 

footprints, and suburb boundaries. This model estimated and compared the solar PV energy 

output of two suburbs, taking into account seasonal patterns and topographical effects. The 

key findings show that topographic features and seasons have an impact on the distribution 

of solar radiation and suitable rooftop area, which in turn has an impact on the power 

generation capacity of solar PV panels (Dolara et al. 2015). 

 

6.2 Solar PV energy potential of the area of interest 

The results of this study show that Wombarra and Cringila have significant potential for 

producing electricity. It is possible to generate about 2778.3 Mwh for Wombarra and 9926.7 

Mwh for Cringila from the 369 suitable building rooftops in the Wombarra suburb and the 

983 suitable building rooftops in the Cringila suburb, each of which has an area of 19594 and 

55887 m2, respectively. If the potential rooftop areas of both suburbs were considered for 

solar PV electricity production, then the result shows that it could meet the total energy 

demand of these suburbs, and surplus power of 48% and 17% can be exported back to the 

grid, where it can be used by surrounding suburbs. 

 

6.3 Possible change in CO2 emissions 

According to Zhao et al. (2021), in NSW, the average amount of CO2 released by the power 

sector for energy production in 2021 was 0.81 kgCO2e/kWh. The total estimated annual 

electricity potential from solar PV panels on all the suitable rooftop areas for both suburbs 

is 12705 Mwh. This estimate could prevent 10291.1 tonnes of carbon dioxide emissions in 

both suburbs. In addition, the unused solar power of the dwellings could be exported back 

to the grid, reducing dependency on coal-fired power stations. 

6.4 Validation 

In terms of validation, the model employed achieved a MAPE of 19.7%  which falls within the 

range of what is considered a good forecasting model; 10-20% (Blasco et al. 2013). This 

performance is similar to those in previous studies, for example, Rana & Rahman (2020) 

calculated MAPE of 18.14%, Chupong & Plangklang (2011) calculated MAPE of 16.83%, 

Pamain et al. (2022) calculated MAPE of 19.74%, and Lahouar et al. (2017) calculated MAPE 

of 18.95%. As a result, this model is considered to accurately represents the yearly solar PV 

energy potential of the rooftops in this study. However, there is a minor difference between 
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forecasted and actual mean solar irradiance output in winter and summer (winter: 0.97 

kWh/m2/day; summer: 0.37 kWh/m2/day). Therefore, conducting a detailed analysis by 

physically inspecting the building rooftops of the chosen sites in each season would be 

recommended in order to make final decisions (Colak et al. 2020). 

6.5 Implications of the findings 

This model effectively incorporates seasonal effects as well as the slope and orientation of 

rooftops, surface characteristics in the area surrounding the target, and shading effects of 

topographic features. Therefore, the model could make it possible to anticipate PV output 

levels more accurately, while also providing a wealth of additional information, i.e., variation 

in energy output due to seasons and topographic features, and suitable building rooftops to 

install solar PV panels. In this regard, this method may assist in reducing the number of time-

consuming site visits for data collection and also utilizes hidden spatial patterns in the area 

of interest. This would be beneficial because these site visits tend to take a significant 

amount of time. Further research could take into account the regional climatic 

characteristics, such as the amount of precipitation that occurs during the day in the chosen 

area. 

 

This research provides a method for calculating the potential technical loss of rooftop PVs 

output by analyzing topographical structures via LiDAR data, building footprints, suburb and 

buffer boundaries. The framework offers an approach to the geospatial assessment of 

rooftop PV potential that is economical, efficient, and simple to apply on a suburban scale of 

a regional area. As the case study in Wollongong's suburbs demonstrates, the framework's 

distinguishing feature is its scalability between exact locations or vast areas, spanning 

multiple time scales and possessing topographical structure. In addition, the assessment 

results under this framework are credible; for instance, the calculated suitable rooftop areas 

are consistent with those found in studies by Paidipati et al. (2008), Ladner-Garcia & O'Neill-

Carrillo (2009), Jofierka & Kanuk (2009), Santos et al. (2011), and Odeh & Nguyen (2021), 

indicating that the accuracy meets the criteria for a good forecasting model. 

 

The implementation of solar panels in suburban areas will be the primary driver of innovation 

for Wollongong's renewable energy strategy, as outlined in the sustainable planning vision 

for Wollongong City 2030 (Wollongong City Council 2020). This model could be an integral 

part of the local government’s strategic decisions to install more solar panel systems for 
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maximum energy output and increased efficiency. This research suggests that municipal 

planners should prioritize the construction of buildings with large, undisrupted north-facing 

roof areas that can produce electricity from solar PV throughout the year and maximize the 

efficiency of solar panels. This is especially important in the suburbs, which are often located 

near any topographical feature and have demanding solar energy goals. 
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7. Conclusion  

In view of growing energy demand and the fact that solar energy is an efficient and 

advantageous source of electricity, this study provides a framework to comprehend and 

determine the potential of solar power to produce electricity (Salahuddin & Alam 2015; 

Sampaio & González 2017). This report reviewed the existing literature on the subject, 

focusing on the studies that showed how vital an examination of topographical features and 

seasonality was to the overall energy output. All of the data sets were obtained from 

trustworthy sources. 

 

This study identifies and estimates the solar radiation and suitable areas for rooftop PV and 

solar PV potential in the Wombarra and Cringila suburbs. The study area, located in the 

southeast region of Australia, receives abundant solar radiation throughout the year (BOM 

2019). The study region includes a high building density and a high number of suitable 

building structures for solar PV systems, which means there is a significant opportunity for 

community solar initiatives. ArcGIS Pro is used to remove the areas that are not suitable for 

PV installation and to compute the solar radiation. This is accomplished by using the LiDAR 

data-based DSM model and processing it. The accurate calculation of topographic features, 

slope, aspect, and the orientation of the building rooftops in consideration of seasonality are 

critical points (Park et al. 2015) for the estimation of solar energy that was assessed using a 

GIS-based method. This algorithm promises a result with high accuracy in less data and less 

time for estimating solar energy production on flat and tilted surfaces, as well as classifying 

the ideal building to place solar PV panels to fulfil the user's energy requirements during a 

particular time period. It does this by avoiding assumptions, manual and machine-learning-

based methods, and relying instead on empirical data. 

The findings of this study also have implications for the estimation of the solar potential of 

suburban regions to a reasonable degree of precision. As was covered in chapter 2, 

estimating solar potential can be done in a variety of ways, with each method being tailored 

to a unique set of research areas and scales. For calculations of vast areas, a systematic 

method with numerous assumptions is frequently employed. The parameters that are used 

for calculating a city filled with tall structures are distinct from those used for calculating 

suburban areas in regional areas. As a result, the findings of this study offer a strategy for 

planning suburban areas that have a high building density but a height that is relatively low. 

It is clear that the geospatial method of separating the structure from its surroundings and 
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taking topographical features into account with seasonality analysis is particularly significant 

in this research region and may be duplicated elsewhere. Furthermore, while a manual 

correction is appropriate for large areas, it only serves to improve accuracy. In other words, 

when the study region is expansive, the level of accuracy may not be as great as it is in this 

study, and calculation time is frequently compensated.  

The findings of the study have demonstrated that solar photovoltaic panels have the 

potential to play a considerable part in the studied areas in the process of displacing 

conventional fossil fuels. Overall, these solar panels have the capacity to meet one hundred 

percent of the peak energy demand in the suburb, as well as to supply any excess electricity 

to the requirements of the adjacent suburbs. There is room for additional investigation into 

this subject. For instance, one could estimate how much it would cost to put solar 

photovoltaic panels in the research regions and how long it would take for those panels to 

pay for themselves. In addition, this research does not take into account the fact that solar 

panels may already be installed in some buildings that are suited for their use. In future 

studies, a comparison between the currently installed PV panels on rooftops and their 

maximum capacity could be made. Future work might potentially involve creating a model 

by physically examining individual building rooftops. To encourage the development of solar 

energy, technical potential assessment is only the first step. Multiple obstacles are included 

in the road plans for PV integration in the built environment that are intended to be 

overcome. The effects of PV installations on building roofs on the economy and society 

should therefore be the subject of future research. 
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Appendices 

Appendix A. 

The literature sources that make up the various components of the “section 2.2: Extent of 

study area” are listed in the table below. It is a comparison of studies with their methodology, 

and more significantly, it examines whether or not these studies include seasonality, 

topographic feature, rooftop characteristic, impediments, and shading analysis. Additionally, 

it examines whether or not any validation is being done. 
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