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Abstract

Underwater mines are a cost-effective method in asymmetric warfare, and are

commonly used to block shipping lanes and restrict naval operations. Conse-

quently, they threaten commercial and military vessels, disrupt humanitarian

aids, and damage sea environments. There is a strong international interest in

using sonars and AI for mine countermeasures and undersea surveillance. High-

resolution imaging sonars are well-suited for detecting underwater mines and

other targets. Compared to other sensors, sonars are more effective for undersea

environments with low visibility.

This project aims to investigate deep learning algorithms for two important

tasks in undersea surveillance: naval mine detection and seabed terrain segmen-

tation. Our goal is to automatically classify the composition of the seabed and

localise naval mines.

This research utilises the real sonar data provided by the Defence Science and

Technology Group (DSTG). To conduct the experiments, we annotated 150 sonar

images for semantic segmentation; the annotation is guided by experts from the

DSTG. We also used 152 sonar images with mine detection annotations prepared

by members of Centre for Signal and Information Processing at the University of

Wollongong.

Our results show Faster-RCNN to achieve the highest performance in object

detection. We evaluated transfer learning and data augmentation for object de-

tection. Each method improved our detection models mAP by 11.9% and 16.9%

and mAR by 17.8% and 21.1%, respectively. Furthermore, we developed a data

iv



augmentation algorithm called Evolutionary Cut-Paste which yielded a 20.2% in-

crease in performance. For segmentation, we found highly-tuned DeepLabV3 and

U-Nett++models perform best. We evaluate various configurations of optimisers,

learning rate schedules and encoder networks for each model architecture. Addi-

tionally, model hyper-parameters are tuned prior to training using various tests.

Finally, we apply Median Frequency Balancing to mitigate model bias towards

frequently occurring classes. We favour DeepLabV3 due to its reliable detection

of underrepresented classes as opposed to the accurate boundaries produced by

U-Nett++. All of the models satisfied the constraint of real-time operation when

running on an NVIDIA GTX 1070.
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Chapter 1
Introduction

Chapter contents

1.1 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Research Contributions . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Surveying underwater regions is a crucial task in a wide range of defence and

industrial applications. Seabeds are composed of many distinctive materials and

are home to flora, fauna and man-made devices. The composition of seabeds is

of special interest to defence and infrastructure operations due the build up of

hazardous devices and weaponry from past conflicts.

Naval mines are an effective means of controlling waterways that provide sig-

nificant strategic and commercial benefits. From 1950 to 1998, naval mines caused

more casualties to U.S Navy personnel than missiles, torpedoes, and aerial attacks

combined [1]. Mines are an increasing threat in the world, with the number of

mine-producing countries increasing by 75% between 1988 and 2000 [2]. Ad-

ditionally, there are WW1 era mines that are still capable of causing substantial

damage to modern warships. For example, the USS Tripoli and Princeton together

sustained $125 million in damage after colliding with vintage mines off the coast

of Iraq during the Gulf War [3].
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In recent years, sonar-equipped autonomous underwater vehicles (AUVs)

have made it possible to survey seafloor regions automatically. This has greatly

improved the rate at which sonar seafloor data is obtained. As a result, the main

bottleneck for MCM operations is now the number of trained operators that are

available for data analysis. Currently, operators must manually examine a sonar

image feed to detect mine-like objects (MLOs) in real time. This task is extremely

time consuming. Additionally, MLOs rarely occur which causes boredom and

fatigue [4]. Integrating deep learning models into advanced robotics systems can

completely automate the search phase of MCM operations: saving time, money,

and lives.

Deep learning models are very large artificial neural networks. They learn

to make predictions by tuning a non-linear function that maps inputs to their

desired outputs. This process, called training, generally requires that the network

observers millions of input-output pairs. Models are prone to memorising inputs

when given too few data points. This phenomenon is known as overfitting. It

is characterised by poor model performance on unseen data. Furthermore, a

key assumption of machine learning is that unseen data comes from the same

distribution as training data. Both of these issues arise when considering sonar

data.

Collecting sonar data involves laying mines, deploying a sonar-equipped

AUV, and image labelling by a specialist. The result is small sonar datasets (hun-

dreds or thousands of samples) that contain very few unique MLOs and seafloor

environments. Conversely, real world MCM operations deal with highly variable

mine types and seafloor environments [2]. This means that the already small

datasets are not representative of possible deployment scenarios. Furthermore,

environmental factors, such as temperature, salinity, water clarity and bathymetry

can severely impact sensor performance [5, 6], which skews the data distribution

of otherwise comparable scenarios.

2



1.1. Research Objectives

Several techniques have been used to overcome sonar data limitations. Trans-

fer learning makes use of large datasets to train CNNs that are then fine-tuned

for underwater mine detection [7–11] or used as feature extractors for specialised

classifiers [7, 10]. Data augmentation, which involves applying image processing

transformations to increase the size of the training dataset, has been successfully

applied to underwater mine detection in multiple works [10, 12]. Compact CNNs

have been found to reduce network overfitting by lowering the number of tunable

weights [12, 13].

1.1 Research Objectives

The aim of this research project is to investigate, implement and evaluate current

deep learning algorithms to detect naval mines and classify seabed regions in

real-time. The project combines the sonar imaging technology, object detection

and image segmentation to create robust computer vision models.

1.2 Research Contributions

The contributions of the thesis can be highlighted as follows:

• We combine sonar imaging with object detection and semantic image seg-

mentation algorithms for real-time naval mine detection and sea floor clas-

sification.

• We propose a novel data synthesis algorithm, called evolutionary cut-paste,

as a way of generating additional data samples from our training data.

• We annotate a set of 156 sonar images to prepare them for training a semantic

segmentation model.

• We evaluate SOTA object detection and semantic segmentation methods and

evaluate their performance with our sonar dataset.
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1.3. Thesis Organization

1.3 Thesis Organization

The thesis is structured as follows:

• Chapter 1 introduces our research approach and objectives, and outlines

our major contributions.

• Chapter 2 highlights the importance of our research problem and gives a

review of relevant literature.

• Chapter 3 describes our dataset, experimental method and results for sonar

mine detection.

• Chapter 4 describes our dataset, experimental method and results for seabed

semantic segmentation.

• Chapter 5 summarises our research findings and proposes future research

directions.
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Chapter contents
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This section provides an overview of the literature from fields related to

underwater surveillance and deep learning. Section 2.1 gives an overview of

mine-countermeasure operations and sonar technology. Section 2.2 focuses on

object detection methods. Section 2.3 explores deep learning architectures for

image segmentation.
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2.1 Overview of mine counter-measure operations

2.1.1 Sonar technology

Active sonar is a remote sensing technique that uses acoustic waves to observe

underwater regions. The word sonar is an abbreviation for sound navigation and

ranging [14]. Since the development of the first prototype echo sounder [15] in

1935, acoustic waves have been the dominant medium for underwater imaging.

The main reason being that acoustic waves travel through water more effectively

than electromagnetic waves [16].

The fundamental principle in sonar is reflection. Similarly to echolocation in

bats [17] and dolphins [18], sonar works by emitting a pulse of sound waves and

measuring the difference in the transmitted and received wave forms. In the case

of side scan sonar, a side-mounted ceramic transducer is excited by an electronic

signal to produce a monochromatic or chirp pulse. The pulse then propagates

into the environment where it is reflected back to a receiving transducer that

converts the signal back into an electronic waveform, as shown in Figure 2.1. The

sonar equation [6] characterises how sonar images are produced considering all

elements of the transmission. Equation 2.1 describes how much energy must be

returned to the transducer for a detection to occur.

DT ≤ SL−2×TL+TS− (NL−DI) (2.1)

The detection threshold (DT) represents the minimum return signal strength

for a reflection to be registered and the source level (SL) is the strength of the

transmitted wave. The remaining terms describe the transmission of the acoustic

wave - from source to target and back. The transmission loss (TL) is the loss of the

sound wave as it propagates through water, target strength (TS) is the amount of

sound reflected back by the target, noise level (NL) is a measure of background

noise at the transmitter and directivity index (DI) is a measure of the concentration

of a signal in a certain direction.
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Figure 2.1: A representation of a side-scan sonar sensor suite mounted on an autonomous
underwater vehicle. The triangle originating from the sonar fish show the acoustic beams
(white beams are emitted, yellow beams are reflected).

A functional understanding of sonar technology is useful to interpret sonar

images correctly. Each object in a sonar image is made up of a highlight region

and a shadow. The highlight is the portion of the object that reflects acoustic

waves back to the sonar fish. The intensity of pixels in a highlight are determined

by target strength, which itself is governed by the object’s reflectivity. Reflectivity

is based on the target object’s size, shape, composition and thickness as well

as the sonar’s frequency, pulse duration and angle of incidence with the object

[16]. Shadows are highly descriptive characteristics of sonar images due to the

geometry of the sidescan sonar imaging method. Figure 2.2 shows that the height

of an object on the seafloor can be deduced from the length of the shadow relative

to the distance from the tow-fish.

The quality of sonar images are highly dependent on environmental condi-

tions. The noise level and transmission loss from Equation 2.1 are the major

factors that determine sonar image quality. Both variables affect image contrast

and the noise level introduces additional image artifacts. Contrast is measured as

the signal-to-noise (SNR) ratio of the system. It is the ratio of the intensity of an

object highlight against its shadow.
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Figure 2.2: An example scenario where there is an object on either side of a sonar fish.
From the figure, we can see how the shadow conveys information about the objects height.
The distance of the object from the sonar fish also plays a role in shadow length, as objects
that are further away will cast a longer shadow due to simple geometry.

2.1.2 Traditional mine-detection methods

Historically, mine detection algorithms mainly employed traditional image pro-

cessing techniques from the 1980s to late 2000s. These early systems divide mine

detection into four interconnected processing tasks: (1) preprocessing, (2) de-

tection, (3) feature extraction, and (4) classification. Table 2.1 shows common

preprocessing and detection techniques that are found across many works. This

review focuses on novel detection, feature extraction and classification stages of

traditional mine detection systems.

Russell and Lane [27] were among the first to propose an automated mine

detection. They developed a knowledge-based system that uses hierarchical

data representations of the environment and the vessel’s state to automatically

generate an operating rule-set. The system is based around a globally accessible

memory unit called the blackboard that could be written to by rule-generating

modules, called knowledge sources (KS). At each time step, the KS modules can be

triggered to create an agenda for updating the blackboard. The authors state that

the feedback structure of the blackboard cell framework demonstrated basic AI

functionality by automatically inferring expert knowledge. However, the system
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Approach Representative
Works

Description

Preprocessing Median Filter Ciany & Huang [19] Remove speckle and random
Johnson & Deaett [4] noise by averaging neighb-
Dobeck et al. [20] ouring pixels.
Lane & Stoner [21]

Image Normalisation Improve the contrast between ob-
- Range normalisation Dobeck et al. [20] ject highlights and shadows
- Histogram

equilisation
Chang et al. [22]

Detection Thesholding Identify important image regions
- Fixed amplitude Johnson & Deaett [4] using simple inequalities to group

Dobeck et al. [20] pixels based on intensity.
- Adaptive amplitude Ciany & Huang [19] Additionally, the size of groupings
- Pixel count Dobeck et al. [20] are used to eliminate insignificant

regions.

Matched Filter Dobeck et al. [20] Compare an image region to tem-
Williams et al. [23] plates to determine whether the
Pinto et al. [24] region is likely to contain a similar

object.

Anomaly Detector Nevis et al.[25] Identify rare objects by identifying
Strand [26] statistical outliers.

Table 2.1: Common preprocessing and detection stage techniques.

was far ahead of its time and lacked proper testing to substantiate the claim.

Johnson and Deaett [4] proposed a toxic-waste deposit recogniser that uses

three manually selected features and rules based on novice-operator knowledge.

The aim was to identify regions of interest for further analysis by an expert

operator. Three features were established through conversations with operators

who outlined the decision making process. The features were: (1) first and second

geometric moments, (2) the shape factor (a ration of perimeter to area), and (3) the

distinctiveness (the SNR of a particular region). These features are passed into

a function to produce a composite score, which, if greater than a predetermined

threshold, is marked for expert analysis.

Dobeck et al. [20] developed a multi-classifier system that selects features from

a shared feature pool, called the AMDAC. The AMDAC uses a stepwise feature

selection strategy to evaluate subsets of features for two unique classifiers in

parallel. Each step involves evaluating the performance of a classifier, then adding
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or removing features to the subset until no improvements occur. This strategy

combines the outputs of two classifiers (K-NN and ODF) that have complimentary

features due to the difference in mathematical formulation. The rate of false

positives was reduced by a factor of four by using two classifiers in parallel.

Reed et al. [28] proposed a novel co-operating statistical snake (CSS) model

for extracting object highlights and shadow regions. Prior information regarding

typical mine shapes and geometry were used for a detection-orientated unsuper-

vised MRF to segment the image into regions of shadow, seafloor reverb and object

highlights. This method proved successful in more complex scenes (sand ripples).

The authors then designed a classification model [29] based on Dempster-Shafer

information theory using the improvement from [28].

Williams et al. [30] identified data imbalance as a major challenge for under-

water mine detection. They proposed labelling clutter objects as a way to reduce

the number of false detections. Mines were made easier to distinguish by training

a classifier to recognise the features of clutter objects, such as rocks. Two matched

filters detect regions that are likely to contain targets, then two additional filter

kernels calculate statistical qualities of the regions. The authors found that targets

were generally well represented by their mean values.

2.2 Object Detection

The goal of generic object detection algorithms is to localise and classify all object

instances for known classes that are present in a given image. Detection is a

preliminary task for systems performing complex reasoning tasks in the real-

world. As such, natural images are the main focus of generic object detection

algorithms since they are applicable to a wide range of problem domains and

contain many common object classes. In the past decade, deep convolutional

neural networks have been the leading solution for object detection due to their

ability to learn object representations across many levels of abstraction. [31].
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Current SOTA deep learning algorithms need millions of training samples to

learn robust object representations that are invariant to scale, rotation, orientation

and context. Open-source benchmark datasets, such as Pascal VOC [32], MS

COCO [33], ImageNet[34] and Open Images[35], have driven progress in generic

object detection. A summary of popular benchmark datasets is given in Table 2.2.

The benefits of large open-sourced datasets is three-fold. First, they provide the

data needed to train large deep learning models. Secondly, they standardise the

evaluation of competing SOTA models. Finally, new datasets progress the field

of object detection by introducing increasingly challenging scenes.

Table 2.2: A summary of popular object detection benchmark datasets.

Dataset name Year
Started

Total
images

Categories Description

PASCAL VOC [32] 2005 11,540 20 The first standard object detection used as a
benchmark in research. Images often contain
multiple objects. Objects may be obscured or
occluded.

ImageNet [34] 2009 ∼ 14 mil-
lion

21,841 A significant increase in categories and total
images. Images are centered around objects
and are less object-dense.

MS COCO [33] 2014 ∼ 330,000 91 Images are very close to real-world scenarios
with a high density of objects per image. Im-
ages are frequently clustered and overlap.

Open Images [35] 2017 ∼ 9 million ∼ 500 Semi-automatically annotated dataset with
only 2 million human-annotated images. Ob-
ject density is similar to MS COCO. The only
dataset to have variable image size.

Modern deep learning approaches to object detection can be divided into two

categories: unified detection methods and region-based detection methods. The

key difference between the categories is that unified algorithms transform inputs

image directly to output bounding boxes and classes with regression, whereas

region-based systems require a separate method for generating region proposals.

In the following sections we will cover the major contributions to both single-stage

and two-stage object detection algorithms.

11



2.2. Object Detection

2.2.1 Unified detection algorithms

Unified detection algorithms frame object detection as a regression problem from

image pixels directly to class predictions and bounding box coordinates. Detection

involves a single forward pass through the network which allows much faster

inference times than two-stage algorithms. Additionally, single-stage networks

can be optimised end-to-end during training which leads to easier implementation

and optimisation.

Szegedy et al. [36] were the first to formulate object detection as a regression

task. Their proposed D-CNN, DetectorNet, replaces the softmax classification

layer in AlexNet [37] with a regression layer. DetectorNet uses five networks in

total. The first network generates a coarse binary mask indicating foreground

regions. The binary mask is used to produce image crops. Each crop is passed

through the four remaining networks to predict masks for the objects’ top, bottom,

left and right halves. Finally, the four masks are converted to a single bounding

box through simple inference. Using multiple image crops results in slower

inference but reduces the uncertainty of the model.

Sermanet et al. [38] proposed OverFeat, the first single-stage object detector

based on fully convolutional networks (FCNs). OverFeat introduced the idea

of using 1 × 1 sized convolutional kernels to replace the fully connected layers

that were standard for regression. This change allows the use of multiscale

input images because FCNs are not limited to fixed-size inputs to ensure correct

feature map dimensions. Predictions across multiple scales are combined using a

greedy merge strategy to improve performance. OverFeat was a significant leap

forward in single-stage detectors, winning ILSVRC2013 and directly inspiring

newer single-stage detectors such as YOLO and SSD.

Redmon et al. [39] proposed YOLO (You Only Look Once), a novel framework

that detects objects with a single forward pass. Unlike OverFeat, YOLO only needs

to see one full-sized image without upsampling. YOLO divides the input image
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into an S × S grid. B bounding boxes, C class probabilities and a confidence

score for each box are predicted within each grid cell. The output predictions are

filtered by a confidence score threshold, and duplicate detections are eliminated

with non-maximal suppression (NMS). It is important to note that the size of

the grid is dependent on the input resolution. The original paper used 448 ×

448 images that are down-scaled to a 7 × 7 grid through strided convolution

operations. The coarseness of the grid leads to poor detection of small objects

that only take up a fraction of a grid cell. YOLO’s unified framework led to faster

training and inference but was less accurate than two-stage detectors.

Figure 2.3: YOLO architecture, as proposed in [39].

Redmon and Farhadi [40] advanced the YOLO architecture with YOLOv2.

Most notably, batch normalisation, multiscale training and anchor boxes gener-

ated with k-means greatly improved accuracy. The computational cost of these

improvements were negated by replacing GoogLeNet with a smaller network,

DarkNet19. Finally, Redmon and Farhadi [41] address the shortcoming of the

YOLO architecture in detecting small objects by adding multi-scale predictions in

the new DarkNet53-based YOLOv3 architecture.

Liu et al. [42] proposed SSD, a single shot multibox detector that builds

upon OverFeat and YOLO by performing detections at multiple object scales

from feature maps of varying sizes. SSD adds additional convolutional layers to a
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pre-trained VGG16 backbone feature extractor network. Feature maps produced

by both the backbone VGG16 network and added convolutional layers are used

to make predictions. The network predicts offsets to a fixed number of default

boxes for each cell of the various feature maps. Similarly to YOLO, SSD uses

non-maximum suppression to remove duplicate predictions.

Figure 2.4: SSD architecture, as proposed in [42].

Tan et al. [43] proposed EfficientDet, a combination of recent AutoML learned

feature extractor networks, called EfficientNets [44], and a novel bi-directional fea-

ture pyramid network (BiFPN). The EfficientDet architecture employs a uniform

scaling coefficient to adjust the overall network shape. The coefficient, ϕ, scales

the backbone network width and depth, the BiFPN depth and number of chan-

nels, the box and class prediction networks, and the input image resolution. The

result is a flexible, fast and accurate single stage detector that fuses features at five

feature map scales.

Figure 2.5: EfficientDet architecture, as proposed in [43].
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2.2.2 Region-based detection algorithms

Region-based algorithms are characterised by the additional region proposal op-

eration for generating candidate regions. Early algorithms use traditional im-

age processing techniques to generate class-agnostic region proposals. Selective

search [45] generates thousands of region proposals by over-segmenting images

based on colour, texture, shape and size then iteratively grouping similar seg-

ments. More recently, selective search was replaced by region proposal networks

(RPNs) [46], which are FCNs specifically trained to generate region proposals.

Historically, two-stage detectors have achieved higher accuracy across bench-

mark detection, however they are slower due to the quantity of image region

crops that need to be processed.

Girshick et al. [47] were the first to merge CNNs with a region proposal

network to develop the region-based object detection framework, R-CNN. R-

CNN uses selective search [45] to generate regions which are then warped into a

standard size and passed into a CNN model for feature extraction. The features are

used to train a bounding box regressor network and class specific SVM classifiers

for each object category. The multistage pipeline achieves very good levels of

recall and precision but is slow and difficult to train due to its disparate stages.

Furthermore, R-CNN is memory intensive since features need to be extracted for

each region proposal.

Figure 2.6: An overview of the R-CNN [47] detection model.

The speed and detection of the R-CNN family of models was improved in Fast

R-CNN [46]. The main contribution of Fast R-CNN was the sharing convolutions

across region proposals and the addition of a Region of Interest (RoI) pooling layer
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before the fully connected layer. RoI pooling minimises data loss due to warping

by approximating the distortions. Faster R-CNN [48], the next iteration of the R-

CNN algorithm, replaces the selective search algorithm for region proposal with

a separate RPN. The RPN uses the same backbone network to perform region

proposals by initialising and tuning k anchor boxes with regression.

Figure 2.7: An overview of the Faster R-CNN [48] detection model.
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2.3 Semantic Segmentation

Semantic segmentation is a fundamental task in computer vision applications such

as autonomous driving, medical image analysis, surveillance and augmented re-

ality. Semantic segmentation algorithms generate pixel-wise masks that assign

each pixel in the input image with a value corresponding to the class the pixel

belongs to. Recently, deep learning methods have dominated semantic segmen-

tation tasks, vastly outperforming traditional image processing techniques.

In this chapter, we discuss the current SOTA approaches to semantic seg-

mentation using deep learning. We will cover encoder-decoder, feature pyramid,

attention-based and atrous convolution networks.

2.3.1 Encoder-Decoder networks

Encoder-decoder networks are made up of two components. As the name sug-

gests, they are the encoder and decoder. Fundamentally, an encoder-decoder net-

work compresses an input image into a low-dimensional representation, called a

feature map, which is then up-scaled into a segmentation mask. The encoder is

responsible for producing the feature map. Input images are compressed by ap-

plying consecutive convolution and pooling operations. Conversely, the decoder

takes the feature map as input and up-scales it through deconvolution operations.

The output of the decoder is a segmentation mask with equal resolution to the

input image.

Long et al. [49] were the first to apply an encoder-decoder architecture to

semantic segmentation. Their FCN is composed of convolutional and pooling

layers, and can be trained end-to end. FCN performs upsampling in a single step,

unlike modern encoder-decoder networks. Upsampling is performed by learned

deconvolutional kernels. The final feature map is fused with high resolution

feature maps from previous layers to give a fine-grain segmentation map.
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Figure 2.8: FCN architecture, as proposed in [49].

Badrinarayanan et al. [50] proposed a new encoder-decoder architecture

called SegNet. The main contribution of SegNet is a deeper decoder network

which mirrors the encoder. For each pair of convolution and pooling operations

in the encoder, there is a corresponding deconvolution operation in the decoder.

Pooling indicies from the encoder are passed to the decoder to perform non-linear

upsampling. The upsampling layer contains sparse feature maps which are made

dense through convolution in subsequent layers. This removes the need for

learned deconvolution kernels which increase the memory requirements of the

network.

Figure 2.9: SegNet architecture, as proposed in [50].

Ronneberger et al. [51] proposed U-Net, an encoder-decoder network for

medical image analysis. U-Net follows the mirrored encoder-decoder architecture
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introduced by SegNet. The main difference between the two architectures is that

U-Net passes feature maps rather than pooling indices between the encoder and

decoder part. Feature maps are passed directly between the layers with skip

connections. Additionally, U-Net uses a large number of channels in the decoder

part which conserves contextual information throughout the upscaling process.

Figure 2.10: U-Net architecture, as proposed in [51].

2.3.2 Multi-scale and pyramid networks

Deep learning models often struggle to segment small objects accurately. Multi-

scale and pyramid networks aim to improve the performance of segmentation

models by making predictions at multiple image scales and combining the pre-

dictions.

Lin et al. [52] proposed the feature pyramid network (FPN) for object de-

tection. The architecture was later extended by Kirillov et al. [53] for image

segmentation. FPN uses strided convolutions to extract features while down

scaling the feature map. Contextual information is preserved through the use

of increasing channels throughout the feature extraction process. The high di-
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mensional feature maps are projected to a lower dimensional space with 1-by-1

convolution. Feature maps in the top-down pathway are upscaled using near-

est neighbour interpolation and combined to the projections from the bottom-up

pathway. Finally, the feature maps from each scale are assembled to produce the

final segmentation mask.

Figure 2.11: FPN architecture, as proposed in [53].

2.3.3 Atrous convolution networks

Even for humans, interpreting images accurately requires a spread focus over the

entire content of the image. It is easy to incorrectly classify a surface if we are

zoomed in too far on the region. For a deep learning model, this is analogous to

having a feature with a small receptive field (RF). The RF describes how many

pixels in the input image have had an effect on a given feature of the feature map.

Convolutions are applied across subsequent layers in deep networks such that a

single feature in a feature map can be influenced by a large number on pixels in

the input image. Figure 2.12 shows a simple example of the receptive field.
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Figure 2.12: The receptive field of a single feature in a 2-by-2 feature map.

Atrous convolution networks were created as a way to achieve a larger re-

ceptive field without increasing computation or memory requirements. First

proposed by Chen et al. [54], DeepLab has been iterated three times [55–57] and

continues to be a prevalent model in segmentation tasks. DeepLabV1 [54] aimed

to solve the issue of poor localisation in DNN segmentation models by combining

the output of the final layer of their model with a long-range conditional random

field (CDF) [58]. Up-scaling is applied to the output segmentation mask by means

of bilinear interpolation between the fields nodes. In this iteration of DeepLab,

atrous convolutions are applied to 1-D vectorised representations of the images

rather than by 2-D convolution kernels used in later DeepLab models. Figure 2.13

shows the atrous algorithm implemented in [54].

Figure 2.13: An example of the atrous algorithm in 1-D where kernel size = 3, input stride
= 2 and output stride =1.
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DeepLabV2 [55] extended the idea of atrous convolution into the 2-D plane

with the introduction of the atrous spacial pyramid pooling (ASPP) module. The

ASPP works by fusing feature maps with varied levels of contextual information

contained in each. Atrous convolutions are a means to control the size of the

receptive field that a feature map has. As such, the amount of the image that is

seen by each feature map can be predetermined, as we see in Figure 2.15.

Figure 2.14: An illustration of the ASPP module [55].

The DeepLab model is further iterated on by Chen et al. with the introduction

of DeepLabV3 [56] with two main contributions, which are multi-scale context

and the removal of CRFs from the final layer of the network. In DeepLabV3, the

authors also propose the implementation of atrous convolutions in cascade and

parallel configurations for more fine-grained control of receptive fields. CRFs

are replaced by image-level features that provide global context and improve

localisation while also boosting performance.

Figure 2.15: The DeepLabV3 model architecture [56].
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Naval Mine detection
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Our first objective is to evaluate existing deep learning algorithms in underwater

mine detection. Section 3.1 provides an overview of the sonar detection dataset.

Section 3.2 outlines the proposed approaches to applying deep learning. Sec-

tion 3.3 details our proposed data synthesis algorithm. Section 3.4 describes the

experimental methods. Finally, Section 3.5 presents the results of our experiment.
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3.1 Detection dataset overview

Our research uses the Sonar Mine Detection Dataset (SMDD) provided by the

Defence Science and Technology Group. The SMDD was compiled during a naval

mineshape recovery operation in Jervis Bay, NSW, Australia. The sonar data was

captured using a Sea Scan® ARC Scout Mk II side scan sonar (Figure 3.1) with

dual frequency channels operating at 900kHz and 1800kHz. The 900kHz channel

has 0.2m vertical resolution and a maximum horizontal range of 30m while the

1800kHz is configured for half those values (0.1m vertical resolution and 15m

horizontal range). Only the 900kHz channel was used when collecting data for

the SMDD.

Figure 3.1: The Sea Scan® ARC Scout Mk II sonar sensor modules (black) and on-board
processor unit (white).

A REMUS 100 AUV was used as the mounting platform for the Scout Mk

II sonar sensor. The REMUS 100 is a compact autonomous underwater vehicle

designed for coastal ocean environments up to a depth of 100 meters. It can

sustain a cruising speed of 1.5m/s for up 12 hours of continuous operation. The

REMUS 100 has adaptive path planning and is capable of coordinating search

operations in groups of four.
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Figure 3.2: The REMUS 100 AUV in a deployment scenario. In this image the vehicle is
traveling to the right and out of the page. The black bar on the side of the vehicle is the
sonar sensor.

The dataset consists of three data categories: labelled images, unlabelled images

and labelled snapshots. A brief outline of each category of data can be found in

Table 3.1. Examples are shown in Figure 3.3 and 3.4.

Table 3.1: An overview of the SMDD.

Data category Total
images

Total
objects

Image
resolution

Description

Labelled sonar images 152 198 1024×1000 Full size sonar images with at least
one labelled object. There are 133
MLOs and 65 OSOs.

Unlabelled sonar images 11705 - 1024×1000 Full size unlabelled sonar images.

Labelled snapshots 196 116 101×101 Small sonar image crops centered
around a labelled object (83 MLO
and 33 OSO).

(a) (b) (c)

Figure 3.3: Three labelled sonar images from the SMDD. Labelled objects are outlined in
red. The difficulty of seafloor environment is presented in ascending order. (a) Smooth
sand seafloor, (b) Ripple sand seafloor, and (c) Sand seafloor with dense rock formations.
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(a) (b) (c)

Figure 3.4: Three sonar snapshots from the SMDD. Each snapshot contains a labelled
object at its center. These examples illustrate the variance of labelled MLOs. From left to
right: (a) a semi-spherical MLO, (b) a cylindrical MLO parallel to sonar sensor and (c) a
cylindrical MLO perpendicular to sonar sensor.

3.2 Proposed approach

The main focus of this research is underwater mine detection in which the main

challenge is applying deep learning to real-world sonar image data. The obstacles

we face with the SMDD are relevant to many other computer vision problems. It

is, therefore, important that we outline the characteristics of sonar data that make

it difficult to use deep learning, then move on to how we plan to address them.

• Small data: The number of labelled samples in our sonar dataset is very low

relative to other deep learning tasks. This can lead to model overfitting.

• Under-representative data: The mine types and seafloor environments cap-

tured in the dataset are not representative of all possible scenarios. This

means that the object representations formed by the network may not cap-

ture all MLO salient features.

• Covaritae shift: Imaging conditions greatly affect the quality of sonar im-

ages. This means that samples of identical scenes taken in the same location

on separate occasions may not fall into the same data distribution.

26



3.2. Proposed approach

Small data: Our dataset is comprised of 152 annotated sonar images which

were provided by the DSTG. Compared to typical object detection datasets (see

Table 3.1), this number is very low. The simplest method for generating additional

image data is data augmentation. Initially, we investigate the effects of vertical

and horizontal flipping when training sonar mine detection models. The SMDD is

extended to 608 labelled images using only these two transformations. Figure 3.5

gives some examples of the vertical and horizontal flip transformations. Intensity

transformations and more complex geometric transforms will be included in

future experiments.

(a) (b)

(c) (d)

Figure 3.5: A sample sonar image (a) that has been: (b) horizontally flipped, (c) vertically
flipped and (d) flipped both horizontally and vertically. The labelled object is outlined in
red. The red arrows provide a frame of reference for the transformations
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Next, we investigate transfer learning methods to adapt pretrained generic

detection models to underwater mine detection. We use asymmetric transfer

learning to train each model with weights that have been pretrained on the Ima-

geNet detection task. Asymmetric transfer learning is chosen due to the difference

in the source task and target task. Namely, generic detection models are trained

with natural images while mine detection models deal with sonar images. A

combined latent feature space will not be beneficial since detecting objects in the

two tasks involve identifying very different high-level features.

Under-representative data: There are two challenges in terms of data represen-

tativeness with the sonar images. First, the diversity of seafloor environments

is immense. The ocean makes up a majority of the earths surface, consisting of

sand, rocks, clay and coral in different proportions. The SMDD does not have

enough samples to adequately represent the diversity of the oceans. This is com-

parable to training a model that detects dogs on a grassy field during the day and

expecting the model to perform well with dogs in the rain, at night, in the desert

or underwater.

Second, the MLOs found in the SMDD dataset are not representative of a

large portion of the MLOs found in the ocean. The ocean contains hundreds

of varieties of underwater mines. These mines have distinct shapes, sizes and

material compositions that lead to different highlights and shadows. Continuing

on with the analogy of dogs, this is like training a model to detect only small

brown dogs and attempting to detect all dog breeds.

In this research, we attempt to overcome the first problem of under-representative

data pertaining to seafloor diversity. Models trained with a diverse dataset are

less likely to make false detections in unknown environments. The SMDD has

over 11,000 unlabelled sonar images. We propose an evolutionary data augmen-

tation method to generate additional training images from unlabelled data and

sonar snapshots. A detailed description of the algorithm is given in Section 3.3.
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3.3 Evolutionary Data Synthesis

In this section, we provide a detailed explanation of our proposed data synthesis

algorithm, called evolutionary cut-paste (ECP). The ECP algorithm generates

additional sonar data by cutting objects from labelled sonar images and sonar

snapshots then pasting the objects onto unlabelled seafloor environment. This

approach has been used extensively in generic object detection [59–61] and more

recently in underwater mine detection [12]. Our major contribution is framing

cut-paste data synthesis as an optimisation problem and applying evolutionary

algorithms as a search method.

3.3.1 Problem formulation

Given a set O of n labelled objects on and and a set U of m unlabelled sonar images

im, generate a set S of n synthetic images sn that minimised the validation loss L

of a detection model M with loss function F:

L =
n∑

i=1

F(si) (3.1)

The image generation constraints are:

• Each synthetic image si can only contain a single labelled object oi.

• Each labelled object oi must appear only once in the set of synthetic images

S.

• Unlabelled images in are divided into a W ×H uniform grid Gw,h (see

Figure 3.6).

• With W = 7, H = 7 , the center column of the grid contains the nadir region

and so it can be ignored. This functionally makes the grid Gw−1,h

• A labelled object oi can only by overlaid at the center of a grid cell.
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Given these constrains, the space of all synthetic images SS is:

SS = (W−1)×H×n×m, (3.2)

In our case, there are n = 312 labelled objects, m = 11202 unlabelled images and

the grid has dimensions W = 6 , H = 7. Therefore, the space of synthetic images

SS is made up of 146,791,008 possible images.

Figure 3.6: A synthetic sonar image with a 7×7 grid overlay. A MLO has been pasted in
the center of the grid cell at column 5, row 5. The nadir region (row 4) is highlighted in
red and is excluded.

3.3.2 Algorithm details

We propose to search the space of synthetic images SS with an evolutionary

algorithm. In this section, we outline the main algorithmic steps. The pseudo-

code of the ECP algorithm is given in Algorithm 1. Table 3.2 provides a brief

description of evolutionary algorithm terms in our context.
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Algorithm 1 ECP - evolutionary data synthesis algorithm

1: Start training epoch:
2: Set counter c = 1
3: Set totalGenerations = x
4: Generate initial population P of p individuals
5: while (c < x) do
6: Train model M with training samples si of a single individual
7: Evaluate individual based on validation loss L
8: Select n fittest individuals Such that n < p
9: Breed individuals with crossover

10: Randomly mutate offspring
11: Create new population Q w/ offspring and generate random individuals
12: Increment c
13: end while

The ECP algorithm is a meta-heuristic optimisation algorithm in that it does

not make any assumptions about the fitness landscape for our problem. Assump-

tions on which specific synthetic images contribute most to model performance

are likely to be incorrect due to the stochastic nature of network training. For this

reason, the ECP algorithm is more likely to converge to a good solution.

The search is initialised randomly upon the creation of the first generation of

individuals. Subsequent generations are produced from selected individuals from

the previous generation using three evolutionary mechanisms: crossover, muta-

tion and recombination. Crossover involves breeding selected pairs of individu-

als by mixing their chromosomes randomly. The simplest method of crossover is

single-point crossover. Alternatively, we can perform k-point crossover. Figure

3.7 shows examples of the crossover method. The ECP algorithm uses k-point

crossover, where k is an integer in the range [1,10] and is chosen randomly before

each crossover operation.

Mutations occur to individuals directly after crossover is performed. Muta-

tion is a process that alters the chromosomes of individuals in a random way.

Chromosomes are mutated randomly based on a variable that determines the

likelihood of mutation. We define two operations for mutating a synthetic image:

replacement and shifting. Replacement involves simply replacing the labelled
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(a) (b)

Figure 3.7: (a) Single-point and (b) two-point crossover between pairs of selected indi-
viduals. In this example, each pair produces two children.

object in the image with another object from the SMDD. Shifting involves moving

the labelled object in the synthetic image randomly to an adjacent grid cell. The

goal of mutation is to extend the search to neighbouring regions of the search

space.

Table 3.2: Evolutionary algorithm terms defined in the context of data augmentation.

Term Definition

Chromosome A single synthetic image.

Individual A set of synthetic images that are evaluated to-
gether.

Generation A group of individuals that can breed and mutate
to create the next generation.

Population The entire set of individuals across all generations.

In biological evolution, recombination is the exchange of genetic material be-

tween two individuals that produces a trait in the offspring that is not present in

either of the parents. We propose incorporating recombination into the ECP algo-

rithm by splicing images together. Since all side-scan sonar images are divided

by a nadir region, we can freely mix and match the left half of an image with the

right half of a different image.
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(a) (b) (c)

Figure 3.8: An example of mutation applied to a synthetic image. (a) Original synthetic
image, (b) Synthetic image mutated with shifting, (c) Synthetic image mutated with
replacement.

3.4 Experiment details

3.4.1 Introduction

We conducted preliminary experiments in underwater mine detection. There are

four main goals:

• To compare the performance of current state-of-the-art detection algorithms.

• To determine the applicability of pretrained generic detection models.

• To measure the impact of data augmentation on model detection accuracy

and overfitting.

• To evaluate our proposed data synthesis algorithm.

3.4.2 Dataset

We performed experiments with the SMDD. The SMDD consists of labelled and

unlabelled sonar images as well as smaller labelled snapshots. The dataset has

two labelled object classes: MLOs and other significant objects (OSOs). Table

3.1 gives an overview of the SMDD. For our experiments, we use 4-fold cross-

validation. The labelled images are divided into four folds which corresponds to
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splitting the dataset into 75% train and 25% test data. No validation set is used

since the experiments do not involve any hyper-parameter tuning.

3.4.3 Evaluation metrics

We used MS COCO detection metrics [33] for evaluating model performance. The

accuracy of individual predictions are based on intersection over union (IoU).

IoU is a measure of overlap between two bounding boxes, as shown in Figure 14.

Detections are grouped into one of three categories: A true positive (TP), false

positive (FP) and false negative (FN).

• A TP occurs when a prediction specifies the correct class for an object and

has an IoU score higher than the predefined threshold.

• A FP occurs when a prediction specifies the incorrect class for an object.

• A FN occurs when an object is not detected when it should have been.

Figure 3.10 contains an example of each category. Only the bounding box

with the highest IoU score is counted as a TP if multiple boxes detect the same

object. The remaining boxes are classified as FPs.

Figure 3.9: A visual example of the IoU calculation. In this example, the IoU score will
be 1

7 since the overlapping region is one-seventh the size of the total area made by the
two boxes.
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The two main indicators of detection performance across an entire dataset

are mean average precision (mAP) and mean average recall (AR). The metrics are

more advanced variants of precision (P) and recall (R) that treat each object class

independently. Precision and recall are defined mathematically as

P =
TP

TP+FP
, (3.3)

R =
TP

TP+FN
, (3.4)

Figure 3.10: An image containing two objects (one person and one dog) with ground-
truth labels and bounding boxes drawn (red and purple). In this example the detector
model has made three predictions, shown in blue and numbered. Prediction 1 is a TP.
Prediction 2 is a FP. Prediction 3 is a FN.

3.4.4 Experimental method

We compared four state-of-the-art detection algorithms for underwater mine de-

tection. For YOLO, an implementation from GitHub was used [62]. For all other

algorithms, Tensorflow object detection API was used [63].

• YOLOv3 [41]: Single-stage detector with DarkNet-53 as the backbone.

• Tiny YOLOv3 [41]: Single-stage detector with DarkNet-19 as the backbone.
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• Faster R-CNN [48]: Two-stage detector with ResNet-50 as the backbone.

• SSD [42]: Single-stage detector with ResNet-50 as the backbone

• EfficientDet-d1 [43]: Single-stage detector with ResNet-50 as the backbone.

Each model was trained with 4-fold cross-validation in one of four ways: (1)

from scratch without data augmentation, (2) from scratch with data augmentation,

(3) transfer learning without data augmentation, (4) transfer learning with data

augmentation. We chose only two simple image transformations, horizontal

flip and vertical flip, to simplify the experiment and enable easy performance

comparison between different training approaches.

3.4.5 Network training

The models are trained for 100 epochs per fold. Default learning rates as per

the TensorFlow object detection API [63] were used when transfer learning. For

training from scratch, the learning rates were reduced by a factor of four to avoid

unstable gradients. A detailed description of the complete training configuration

for each model can be found in Appendix A.

3.5 Results

3.5.1 Transfer learning

Results: Table 3.3 and 3.4 present the performance of the models based on mAP

and mAR with an IoU threshold of 0.5. Scores are averaged across the four

folds. The performance of every detection model was improved by both data

augmentation and transfer learning in each training configuration, as shown in

Figure 3.12. We can process the values in Table 3.3 and 3.4 to conclude that data

augmentation improved the tested models mAP by 16.9% and mAR by 21.1%

while transfer learning lead to an increase of 11.9% in mAP and 21.1% in mAR.
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This result validates the use of these techniques in future experiments with sonar

data.

Overall, Tiny YOLOv3 achieved the best mAP and mAR scores out of the

five models except for in the transfer learning mAR metric, where Faster R-

CNN achieved 0.3204 mAR with data augmentation. This indicates that the

pre-trained weights for the region proposal network of Faster R-CNN may be

useful in identifying key regions in sonar images. We use Tiny YOLOv3 in the

next experiment on evolutionary data augmentation.

Table 3.3: The mAP @ 0.5 IoU scores of the detection models

Train from scratch Transfer learning

Model No data
aug-
ment

Data
aug-
ment

No data
aug-
ment

Data
aug-
ment

YOLOv3 [41] 0.0421 0.1124 0.06153 0.1756

Tiny YOLOv3 0.0671 0.1461 0.0972 0.2143

Efficientdet d1[43] 0.0246 0.0943 0.0671 0.1912

Faster R-CNN [48] 0.0142 0.0505 0.0966 0.1936

SSD [42] 0.0336 0.1163 0.0728 0.1300

Table 3.4: The mAR scores of the detection models

Train from scratch Transfer learning

Model No data
aug-
ment

Data
aug-
ment

No data
aug-
ment

Data
aug-
ment

YOLOv3 [41] 0.0724 0.1623 0.1277 0.2514

Tiny YOLOv3 0.0813 0.221 0.1642 0.2882

Efficientdet d1 [43] 0.0621 0.1549 0.1136 0.2092

Faster R-CNN [48] 0.0712 0.1051 0.2121 0.3204

SSD [42] 0.0766 0.1936 0.1365 0.2674
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Our results indicate that a smaller network is suitable for the task of mine

detection. We suggest that the reduced number of parameters prevents overfitting

and encourages the learning of more generalisable features. EfficientDet has

the lowest precision and recall out of the single stage detectors when trained

from scratch, suggesting that the pre-trained weights for the bi-directional feature

pyramid are beneficial. We also note that the region proposal network in Faster-

RCNN requires additional training and should only be used with pre-trained

weights from a large detection dataset. Given these results, we are motivated

to incorporate a bi-directional feature pyramid in the Tiny YOLOv3 architecture.

Figures 3.17 and 3.18 give some visual examples of the Tiny YOLOv3 model

outputs.

Figure 3.11: A comparison of mAP and frames per second of the models. Tiny YOLOv3
has the fastest inference time (46ms) and highest precision (21.43%).
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Figure 3.12: A plot showing the mAR and mAP of the detection models with different
training configurations. As expected, models trained from scratch with no data aug-
mentation performed poorly. Both transfer learning and data augmentation lead to an
improvement, however transfer learning had a greater benefit. Models trained with
transfer learning and data augmentation performed on average 4 times better than the
baseline.

3.5.2 Data synthesis experiment

In this experiment, we evaluate our proposed evolutionary data synthesis method.

The aim is to compare the performance of evolutionary selected sets of synthetic

images and randomly selected synthetic images against a baseline of no synthetic

images. To do this, we first generate four sets of synthetic images with the pro-

posed augmentation algorithm from Section 3.3.1. Next we train a Tiny YOLOv3

model with the same configuration as in the previous experiment (transfer learn-

ing with data augmentation). The model will be trained eight times: four times

with evolutionary synthetic images (one time for each set), and four times with

randomly generated synthetic images.

Data synthesis: We use the ECP algorithm from Algorithm 1 in Section 3.3.2 to

39



3.5. Results

generate four sets of synthetic images. The algorithm is run for 40 generations

with each generation containing 16 individuals. The eight fittest individuals from

each generation are selected and randomly sorted into pairs. K-point crossover

is performed three times on each couple which yields a total of 12 individuals

for the next generation. For our experiment, we choose k to be an integer in the

range [1,10]. The remaining four individuals needed for the next generation are

generated randomly. In this experiment, we exclude 25% of the SMDD from the

ECP algorithm to avoid including objects from the test set into the data synthesis

process.

Fitness evaluation: Individuals are evaluated after three epochs of training a

YOLOv3 Tiny model with synthetic images. The training is initialised with a

checkpoint obtained in the transfer learning experiment from Section 3.5.1. The

checkpoint is at the point where training and validation loss diverge. We use this

checkpoint instead of training from scratch to avoid variance caused by randomly

initialised model weights. At the end of the three training epochs, the models are

shown a test set to calculate the loss.

Our initial results indicate that the ECP algorithm is effective at finding bene-

ficial sets of synthetic images. The average fitness scores of individuals decreases

with each generation. This indicated that the sets of synthetic individuals are

improving as the algorithm progresses.

40



3.5. Results

Figure 3.13: Mean individual fitness across subsequent generations. The fitness score is
based on validation loss (lower is better). We observe a clear downward trend over 40
generations.

It can be observed from Figure 3.14 that useful synthetic images (chromo-

somes) propagate through the population by tracking chromosomes across gener-

ations. We refer to the number of generations that a chromosome has propagated

through as the age of the chromosome. For example, if a certain chromosome

has been selected during reproduction from generation 12 to generation 15, we

say that the chromosome has an age of 3. The difference between the mean and

the medium age curve is caused by resilient sets of chromosomes that survive for

many generations. It is interesting to note that a small group of images propagated

over 38 generations.

Next, we discuss the effect of synthetic images on model detection perfor-

mance. Figure 3.16 shows the precision-recall curve of the Tiny YOLOv3 mod-

els trained with synthetic images. The curves are averaged across four runs of

evolved and random synthetic images. We also include a baseline of no synthetic

images for comparison. The models are evaluated based on the area under the

curve (AUC) of the precision-recall curve. The models trained with evolutionary

synthetic images perform consistently better across training runs with an AUC
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Figure 3.14: Mean and median chromosome age across subsequent generations. The
mean age of chromosomes in the population settled higher than the median age after
initially increasing at the same rate. This is due to resilient chromosomes that last through
many generations while new chromosomes are introduced to the gene pool.

value of 0.2471. This value is 6.86% higher than the AUC of the model trained

with random synthetic images and 20.2% higher than the model with no synthetic

images. The result supports our hypothesis that evolutionary algorithms are a

viable method for synthesising additional data.
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Figure 3.15: Precision-Recall curve for the three models.

Finally, sample visual results of underwater mine detection are shown in

Figures 3.17 and 3.18. The trained detector (Tiny YOLOv3) works reasonably

well on the sand seabed. It still produces some false detections, which could be

eliminated by training the detector with more labelled sonar images.
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Figure 3.16: Two synthetic images (chromosomes) that survived for 37 generations.
Bounding boxes are left loose so as to not occlude the object boundary. The objects
blend well into the scene which makes for a realistic synthetic image.
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(a) Ground-truth 1 (b) Ground-truth 2

(c) Tiny YOLOv3 output of (a) (d) Tiny YOLOv3 output of (b)

Figure 3.17: Visual results of underwater mine detection produced by Tiny YOLOv3. Top
row: Sonar images with manually annotated MLO ground-truths. Bottom row: Detection
predictions of Tiny YOLOv3.
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(a) Ground-truth 3 (b) Ground-truth 4

(c) Tiny YOLOv3 output of (a) (d) Tiny YOLOv3 output of (b)

Figure 3.18: Further visual results of underwater mine detection produced by Tiny
YOLOv3. Top row: Sonar images with manually annotated MLO ground-truths.
Bottom row: Detection predictions of Tiny YOLOv3.
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Seabed segmentation
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Our second objective is to investigate SOTA segmentation models and en-

coders in the seabed segmentation task. In section 4.1 we give a detailed overview

of our segmentation dataset. In section 4.2 we outline the process used for data

annotation. In section 4.4 we cover specific details regarding our experiments. In

section 4.5 we discuss results.
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4.1 Segmentation dataset overview

Understanding the composition of the seabed is critical in underwater surveying

tasks. We identified nadir, sand, sand ripple, and rock to be the four predominant

types of regions in the SMDD. As such, We created a new dataset, called the

seabed segmentation dataset (SBSD). The SBSD is an extension of the SMDD (dis-

cussed in Section 3.1) that includes images from the SMDD plus other previously

unlabelled samples. We purposefully excluded some images from the SMDD that

were mostly sand to avoid over-representation in the dataset. From the full-size

annotations, we created an additional dataset of non-overlapping image patches.

An overview of the SBSD is give in Table 4.1. Reasoning behind the decision to

make an additional image patch dataset will be discussed in Section 4.4.

Table 4.1: An overview of the SBSD.

Data category Total
images

No.
Classes

Image
resolution

Description

Full-size images 137 5 1024×1000 Full size sonar images.

Patch images 2,192 5 256×256 Non-overlapping patches

For each image, we produced a corresponding pixel-wise ground-truth mask.

Each pixel in the image is assigned a value which corresponds to the class that

the pixel belongs to. The masks can be visualised by colour coding the pixels of

each class. Some examples from the dataset can be seen in Figure 4.1.
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Figure 4.1: Three annotated images from the SBSD.
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4.2 Data annotation

We used an open-source software tool called LabelMe for data annotation. The

tool provides a GUI that lets us draw polygons over a sample image. Each polygon

is assigned a class that classifies the pixels contained within the polygon. Other

useful features include image zoom, contrast and saturation sliders. Figure 4.2

shows the LabelMe GUI with an example image.

Figure 4.2: LabelMe UI displaying an annotated sonar image.

LabelMe exports the ground-truth masks in JSON format. The tool provides

an example function that converts a single JSON to a PNG image, but does not

natively support large-scale conversions. Hence, we developed multiple auxiliary

files to automate data conversion.
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4.3 Proposed approach

The goal of our experiment is to compare SOTA segmentation architectures and

encoders in sonar image segmentation. Furthermore, we use various techniques

to optimise the performance of our models. The techniques will be discussed in the

paragraphs to follow. Given the number of model configurations we are testing, it

was crucial to ensure that good hyper-parameters were found prior to evaluating

the models. Leslie and Topin [64] proposed a novel hyper-parameter optimisation

technique called the learning rate range test (LRRT). The LRRT is used to find

optimal values for learning rate and weight decay for model configurations.

The LRRT involves training a model with linearly increasing hyper-parameters

over a small number of training steps, typically less than 10% of a full training run.

A wide range of values for each hyper-parameter are selected prior to initialising

the test. The range is chosen to start from a small value, one that hardly allows

the model to begin converging, up to a large value that you would not normally

consider to use for training. For example, if we know that 5× 10−4 is a “good”

learning rate for a generic U-net model, we would test values from 5×10−5 to 0.5.

The goal of the test is to find the point where gradients explode. Figure 4.4 gives

an example of exploding gradients. This indicates that the hyper-parameter has

grown to be too large. A more suitable learning rate can be chosen based on this

information.

The hyper-parameters found by the LRRT are applied by using either the

OneCycleLR [64] scheduler or cyclic learning rates [65]. The OneCycleLR sched-

uler leverages high learning rates as a form of regularisation. At the beginning

of training, the model is trained with a small learning rate, min lr. The learn-

ing rate increases linearly after each training step until it reaches its maximum

value, max lr. At this point, the learning rate decreases linearly back down to

the min lr. Finally, the learning rate is reduced further in what is called the anni-

hilation phase, where the learning rate approaches zero. The annihilation phase
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allows the model to converge to a local minima. An example of the OneCycleLR

is shown in Figure 4.3. It is important to note that the duration and magnitude of

each phase can be adjusted.

Figure 4.3: The OneCycleLR scheduler.

Six encoders were chosen for testing. The encoders are MobileNet v2 [66],

EfficientDet-d0 [43], ResNet18 [67], DPN68 [68], VGG13 bn [69] and DenseNet18

[70]. For each encoder, we found optimal values for the learning rate and weight

decay. This involves performing two runs of the LRRT for each encoder. The first

run attains a value for the learning rate, and the second gives us the corresponding

weight decay. The experiment uses the same model architecture, U-Net, with each

of the encoders. All other parameters are kept the same.
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Figure 4.4: An example of exploding gradients.

Next, we investigate deep learning optimiser algorithms. Optimisers play an

important role in DNN training. Several algorithms such as Adam [71], Ada-

grad [72], and Rmsprop have become increasingly popular in the past. These

algorithms improve upon stochastic gradient descent (SGD) by adapting train-

ing parameters after each step of training. Smith and Topin [64] discovered that

models can be trained faster and with better performance by combining the SGD

and OneCycleLR schedule. We compare popular optimisers with the previously

discussed method in section 4.5.2. We will briefly discuss each algorithm before

moving to the main point of this section.

Stochastic gradient descent is the main approach for training deep neural

networks. First introduced by Robbins and Monro [73], it updates the weights

of the network depending on the loss after each training step. The weights θ of

a DNN are updated to minimise an objective function J(θ), which is computed

from input-output pairs (x j, y j). Learning rate α directly scales magnitude of the

change as

θi+1 = θi−α×∇θJ(θ;x j; y j). (4.1)
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The Adagrad (adaptive gradient) algorithm [72] improves SGD by replacing

the fixed learning rate with a per-parameter learning rate. Weights are updated

based on how much change has occurred in previous iterations. This is achieved

by taking an element-wise product of the objective function J(θ) and a vector G.

G is defined as the sum of the outer product of gradients 1 for steps up to t:

G =
∑t
τ=11τ1

⊺
τ . (4.2)

The weights of the network, θ, are updated after every iteration as

θi+1 = θi−α diag(G)
−1
2 ⊙1. (4.3)

RMSprop is an extension of Adagrad first proposed by Geoff Hinton. It

builds on top of Adagrad by using the decaying exponential moving average of

the partial derivatives of network weights rather than the sum. A new coefficient,

ρ, is introduced which affects the momentum of the moving average. The moving

average of squared gradients is calculated as follows:

E[g2]t = ρE[12]t−1+ (1−ρ) δLδW
2

, (4.4)

The moving average of the squared gradients, E[12], is then used to scale the

magnitude of the change in gradients for the next step:

wt = wt−1−
η
√

E[12]
δL
δW . (4.5)

The Adam (adaptive moment estimation) optimiser [71] makes use of a run-

ning average of first and second-order gradients to speed up training convergence.

It combines the benefits of the two previously mentioned optimisers and controls

the decay using two momentum constants, β1 and β2. The first- and second-order

gradients, mt and vt, are calculated as in Equation 4.4.

Bias correction and momentum are factored into the moving averages as
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follows:

m̂t =
mt

1−β1
. (4.6)

v̂t =
vt

1−β2
. (4.7)

A very small constant, ϵ, is used to avoid division by zero. Finally, the network

weights are updated as

wt = wt−1−α
m̂t√
v̂t−ϵ
. (4.8)

Next, we focus on the problem of class imbalance in the SDD. MLOs and

rocks occur much less frequently than the three classes. Additionally, they are

visually very similar to each other. This results in two unwanted consequences.

The first problem is that the model has less data to train with for segmenting

the under-represented regions. Secondly, the dominance of rock occurrence over

MLO occurrence leads to the model segmenting many MLO regions as rocks due

to their similar appearance. An overview of the frequency of pixels for each class

can be found in Table 4.2.

Table 4.2: Class distribution in the SSD.

Class Total pixels Percentage of
dataset (%)

Nadir 16,301,601 11.62

Sand 93,530,325 66.67

Sand ripple 29,222,092 20.83

Rock 1,192,560 0.85

MLO 41,422 0.03

Total 140,288,000 100
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Median frequency balancing (MFB) [50] helps to minimise the tendency of

models to bias their outputs towards more common classes. We propose using

median frequency balancing (MFB) as a way to counteract class imbalance. MFB

is a technique for scaling the impact specific classes have on back propagation.

This is achieved by adding a coefficient to scale each class’s contribution to the loss

function. The coefficients are determined by considering each classes frequency

in the dataset compared to the median class, hence the name median frequency

balancing. The collection of these coefficients is called a weight tensor. MFB

produces a weight tensor W as

wi =
Nm
Ni
, (4.9)

where wi is the scaling coefficient of the i-th class, Nm is the number of pixels

belonging to the median class, Ni is number of pixels belonging to the i-th class.

The final stage of our experiment is a comparison of SOTA segmentation

architectures and encoders. We start by evaluating the U-net with six different

encoders. Next, we choose the best performing encoder as the baseline when

comparing segmentation architectures. We use optimal hyper parameters from

previous experiments.

4.4 Experimental details

4.4.1 Introduction

We conducted experiments in seabed segmentation. There are four main goals:

• To compare the performance of current state-of-the-art segmentation algo-

rithms and encoder architectures.

• To evaluate the LRRT for hyperparameter optimisation.

• To evaluate alternate learning rate schedules for model training.

• To investigate methods for overcoming data imbalance.
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All our code was written in Python and used the Pytorch deep learning library.

Additionally, we used pretrained models from the segmentation models Pytorch

repository [74].

4.4.2 Dataset

The experiments in this section were conducted using the SBSD patch dataset (See

Section 4.1). We used the patch dataset for three reasons.

1. Dividing the images into patches increases the total number of samples

available.

2. The segmentation models that we tested are not suitable for 1000×1024 px

images.

3. A larger number of patches can be batched together which speeds up train-

ing and improves regularisation.

4.4.3 Evaluation metrics

We use standard segmentation evaluation metrics to evaluate the outcomes of

our experiments. The metrics are pixel accuracy, mean accuracy, intersection over

union (IoU or Jaccard index), and F1 score (Dice score). Additionally, we will

compare the inference speed and overall model size.

Pixel accuracy is the ratio of correctly classified pixels over the total number

of pixels in a segmentation mask. Let ni j be the number of pixels of class i that

are classified as class j. Furthermore, let ti be the total number of pixels of class i.

Pixel accuracy is calculated as

Pixel accuracy =

∑
i ni j∑
i ti
. (4.10)

Mean accuracy is similar to pixel accuracy but the accuracy of each class is

treated separately. The pixel accuracy score for each class is summed and then
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divided by the total number of classes N as follows:

Mean accuracy=
1
N

N∑
i=0

∑
i nii∑
i ti
. (4.11)

Furthermore, per-class accuracy adds weights to the less frequent classes, and

therefore is a valuable indicator in applications with imbalanced classes.

IoU (Jaccard index) is a measure of overlap between two sets. In segmen-

tation, we have two sets A and B which correspond to the ground-truth mask

and predicted mask, respectively. Intuitively, the IoU describes the proportion of

overlapping between two regions (intersection) relative to their total area (union):

IOU = J(A,B) =
| A∩B |
| A∪B |

. (4.12)

Equation 4.12 is suitable for evaluating a binary segmentation output. We

can extend the equation to multi-class segmentation by calculating the mean IoU

across all classes as follows:

mIOU =
1
N

N∑
i=0

| Ai∩Bi |

| Ai∪Bi |
. (4.13)

F1 score (Dice score) is similar to IoU, except that the nominator term (inter-

section) is multiplied by 2:

F1(A,B) =
2 | A∩B |
| A∪B |

. (4.14)

The two metrics F1 score and IOU are positively correlated.

4.4.4 Experimental method

We begin by giving a brief outline of the experimental steps, listed in chronological

order of how they are performed. In section 4.5 we will go into more detail on

each of the steps.
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1. Find optimal learning rate and weight decay for our selected encoders and

a baseline segmentation architecture (U-Net).

2. Investigate five learning optimiser configurations.

3. Evaluate median frequency balancing and data augmentation.

4. Compare deep learning segmentation architectures and encoders.

4.5 Results
4.5.1 Learning rate range test

Firstly, we investigated the usefulness of the LRRT in finding optimal values of

learning rate and weight decay for each encoder. This involved two separate runs

of the LRRT. For the first run, we used a fixed value of weight decay (1× 10−4)

and linearly increased the learning rate over 10 epochs. The results of the first

run are given in Table 4.3. Additionally, Figure 4.5 shows the loss curves for each

encoder as the learning rate is increased.

Figure 4.5: Baseline results for the LRRT.

It is discussed in [64] that although the LRRT can find the max LR, that value

should not be used for training because it will lead to instability. Therefore, we
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choose the optimal LR by selecting a point for each line in Figure 4.5 such that the

loss has started to plateau.

Table 4.3: Baseline results for the LRRT.

Encoder Max LR Optimal LR

Mobilenet v2 4.4×10−2 3.5×10−2

Efficientnet-b0 3.8×10−2 1×10−2

Dpn68 2.1×10−3 1.5×10−3

Resnet18 5.8×10−3 3×10−3

Densenet121 1.5×10−2 1.1×10−2

Vgg13 bn 1.4×10−2 1×10−2

Next, we find optimal values for weight decay. We perform a grid search

with five possible values for weight decay. The values are 1× 10−5, 5× 10−5, 1×

10−4, 5×10−4, 1×10−3. Optimal learning rates from table 4.3 are used in each run.

A full list of values for each encoder can be seen in table 4.4.

Surprisingly, weight decay had varying effects depending on the choice of

encoder. Of the six encoders that were tested, two performed better with a larger

value for weight decay, three with a smaller value, and one with the baseline

value. We reserve the discussion as to why this might be the case until after

an individual examination of each encoder. Let’s start by examining the outlier,

DenseNet121. Figure 4.6 shows that the baseline value for weight decay, 1×10−4,

results in the lowest overall loss value. While the run with a learning rate of

1× 10−3 takes longer to explode, it shows signs of instability at higher learning

rates. Therefore, the baseline learning rate is chosen for future experiments.
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Figure 4.6: Weight decay LRRT for densenet121

Mobilenet v2 (Fig 4.8), VGG 13bn (Fig 4.9) and EfficientNet-b0 (Fig 4.7) per-

formed best by using a smaller weight decay value. The aforementioned encoders

achieved the minimum loss when trained with a weight decay value of 1×10−5.

For EfficientNet-b0, the network performance deteriorates at large weight decay

values, and does not converge. We can also notice that MobileNet v2 is relatively

stable for all tested values.

61



4.5. Results

Figure 4.7: Weight decay LRRT for efficientnet-b0.

Figure 4.8: Weight decay LRRT for mobilenet v2.
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Figure 4.9: Weight decay LRRT for vgg13 bn.

Finally, we investigated if a large value of weight decay was beneficial. ResNet18

and DenseNet121 perform best with large weight decays, compared to the other

networks. Most notably, ResNet18 does not experience exploding gradients for

three of the runs. Further experiments are needed to investigate the cause of this

anomaly.
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Figure 4.10: Weight decay LRRT for rensenet18.

Figure 4.11: Weight decay LRRT for dpn68.

Table 4.4 summarises the training hyper-parameters that are found experi-

mentally in this section. The values in this table will be used when comparing

encoders in Section 4.5.4.
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Table 4.4: Optimal learning rate and weight decay for each model.

Encoder Optimal LR Optimal WD

MobileNet v2 3.5×10−2 1×10−5

EfficientNet-b0 1×10−2 1×10−5

DPN68 1.5×10−3 5×10−4

ResNet18 3×10−3 1×10−3

DenseNet121 1.1×10−2 1×10−4

VGG13 bn 1×10−2 5×10−4

4.5.2 Cyclic and OneCycle learninig rate schedules

We investigate if models trained with SGD and cyclic/OneCycleLR schedulers can

outperform the popular optimisers that are discussed in Section 4.3. We select

a U-net model with a MobileNet v2 encoder for testing to minimise experiment

run-time. Each model was trained for 100 epochs with a batch size of 24 for

a range of learning rate values. For brevity, we will compare the best runs for

each optimiser. Each model will be evaluated using the four metrics described in

Section 4.4.

Our results indicate that the OneCycle learning rate with SGD achieved the

best performance across the four metrics. Cyclic learning rate with SGD also

showed a modest improvement over other optimiser methods. Our intuition is

that the OneCycle learning rate facilitated the model to generalise and distinguish

between similar classes, namely MLO and rock. As a result, the cool-down

annihilation phase (see Figure 4.3) was initiated next to a local minima in the loss

landscape.
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Figure 4.12: Optimiser and learning rate scheduler comparison: Accuracy.

Figure 4.13: Optimiser and learning rate scheduler comparison: Mean accuracy.
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Figure 4.14: Optimiser and learning rate scheduler comparison: Mean IoU.

Figure 4.15: Optimiser and learning rate scheduler comparison: F1 score.
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4.5.3 Median frequency balancing

In this section, we evaluate the MFB technique. A U-net model with a MobileNet v2

encoder is used, similarly to Section 4.5.2. All other training parameters are also

kept the same. Each configuration will be run three times. The weight vector is

calculated according to Equation 4.9.

We obtain a weight vector, W, with values [1.06, 0.18, 12.16, 0.52, 438.55] given

the class distribution shown in Table 4.2. Additionally, we modify the weight

vector by reducing the large value which may lead to instability during training.

We apply an arbitrary rule to scale down values greater than 10 by a factor of 2,

and values greater than 100 by a factor of 10. This results in a weight vector with

the following values - [1.06, 0.18, 6.08, 0.52, 43.855]. Each weight vector is run

three times for 100 epochs each. The two weight vectors are compared to three

runs without MFB.

First, we observe from Figure 4.16 that accuracy is the highest when no MFB

is used. Interestingly, the runs with no MFB performed the worst across three

other evaluation metrics. This indicates that the common classes, such as nadir,

sand and sand ripple, are more accurately segmented when MFB is not applied.

A possible explanation is that poor accuracy in the rare classes has little impact

on the overall accuracy. For example, our model has 0% accuracy for the rock and

MLO class, but it still produces a maximum accuracy of 99.12%.

68



4.5. Results

Figure 4.16: Median frequency balancing - accuracy.

Overall, we observed that MFB consistently improves the mean accuracy of

our models. The full MFB and adjusted MFB models achieved on average a mean

accuracy that was 25.1% and 27.3% higher, respectively. This is shown in Figure

4.17. Similarly, both the F1 score and mIOU metrics achieve their best scores when

our scaled MFB technique is used, as shown in Figure 4.18 and Figure 4.19.

Figure 4.17: Median frequency balancing - mean accuracy.
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Figure 4.18: Median frequency balancing - F1 score.

Figure 4.19: Median frequency balancing - mIoU.

4.5.4 Comparing encoders

In this section, we present the results from our encoder evaluations. We found

EfficientNet-b0 to the best encoder in terms of segmentation performance. The

model with the EfficientNet-b0 encoder performed the best in three metrics. The

model using an EfficientNet-b0 backbone takes 15.8ms to process a batch of 16

image patches. This corresponds to 63 frames per second, which satisfies the

requirement of real-time processing. It is also the second smallest model in terms
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of parameters, which means it will require less resources from the deployed

hardware.

It is interesting to note that all of the encoders performed comparably. We

attribute the similarity to the hyper-parameter optimisation that was performed

before this experiment. In Section 4.5.5, we will use the best performing en-

coder, EfficientNet-b0, to compare the performance of the selected segmentation

architectures.

Table 4.5: The results of the encoder test.

Encoder mAcc F1 mIoU Latency
(ms)

Params (M)

Mobilenet v2 0.767 0.738 0.685 10.2 2.5

Efficientnet-b0 0.781 0.746 0.692 15.8 4.8

Dpn68 0.764 0.729 0.678 21.3 11

Resnet18 0.761 0.730 0.676 6.1 11.2

Densenet121 0.763 0.734 0.684 24.4 6.2

Vgg13 bn 0.763 0.736 0.685 5.5 9

Figure 4.20: Encoder test mean accuracy.
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Figure 4.21: Encoder test F1 scores.

Figure 4.22: Encoder test mean IoU.
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4.5.5 Comparing architectures

In this section, we evaluate seven segmentation architectures in combination with

EfficientNet-b0, the best encoder from Section 4.5.4. The architectures are: U-Net

[51], U-Net++ [75], DeepLabV3 [56], DeepLabV3+ [57], MA-Net [76], PAN [77]

and FPN [53]. Table 4.6 gives a summary of our experimental results. Addition-

ally, we plot the metrics during training in Figures 4.23 to 4.25.

We focus on U-Net++ and DeepLabV3 because they score the highest on the

selected metrics. DeepLabV3 achieves a mean accuracy score that is 1.5% higher

than U-Net++. However, U-Net++ has a similar improvement over DeepLabV3

in F1 score and mIoU, with an improvement of 1.9% in both metrics. The com-

parison is further complicated if we consider latency and model size. U-Net++

is 44.9% faster and 133% smaller. Despite this, both models operate at real-time

speed, and have a small enough memory size to fit into embedded hardware.

Table 4.6: The results of the architecture comparison experiment.

Architecture mAcc F1 mIoU Latency
(ms)

Params (M)

U-Net 0.791 0.726 0.675 15.4 4.8

U-Net++ 0.791 0.735 0.683 14.7 5.4

DeepLabV3 0.803 0.721 0.670 21.3 12.6

DeepLabV3+ 0.777 0.709 0.662 14 4.3

MA-Net 0.785 0.725 0.676 16.2 6.1

PAN 0.776 0.702 0.660 15.5 5.8

FPN 0.781 0.710 0.670 14.3 4.2

It is difficult to determine what the best overall model is from the results in

Table 4.6. U-Net++ is best in terms of F1 score and mIoU which are the two most

popular metrics in semantic segmentation. On the other hand, DeepLabV3 has the

highest mean pixel accuracy across all classes. We weight mean accuracy above

the other two metrics and deem DeepLabV3 to be the best model for the following
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reason. F1 score and IoU take into consideration false positives in the calculation.

For the seabed segmentation application, some classes such as rock and MLO are

under-represented. Hence, the segmentation model is penalised heavily when

predicted regions are larger than ground-truth regions, as in Example 4 and 5 of

Figure 4.26. Predictions of MLO or rock regions that go beyond the border of the

ground-truth cause a large decrease in mIoU and F1, whereas the same cannot be

said for mAcc.

Figure 4.23: Architecture test mean accuracy.
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Figure 4.24: Architecture test F1 scores.

Figure 4.25: Architecture test mean IoU.
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Figure 4.26: A visual comparison of the outputs from the two best segmentation models.
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Figure 4.27: A visual comparison of the outputs from the two best segmentation models
cont.
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Chapter 5
Conclusion

Chapter contents

5.1 Summary of work . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.2 Future research directions . . . . . . . . . . . . . . . . . . . . . . . 79

5.1 Summary of work

In this project, we have investigated deep learning algorithms for two important

tasks in undersea surveillance: i) naval mine detection; and ii) seabed terrain

segmentation.

Our experiments indicate that deep learning is a promising approach in both

naval mine detection and seabed terrain segmentation. General purpose object

detection models (e.g. YOLO, EfficientDet, and R-CNN) were found to be applica-

ble to sonar images. Furthermore, models that were pretrained on the ImageNet

dataset were better at detecting mines than models trained with randomly ini-

tialised weights across all metrics. We found that data augmentation techniques

consistently improved the performance of the naval detection models. Addition-

ally, our ECP algorithm provided a means to generate additional labelled data

from our large database of unlabelled data. The use of ECP led to a slight im-

provement in performance. Data augmentation only incurs a computational cost
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at training time which solidifies its usefulness in real-time applications.

Similar conclusions can be drawn for seabed segmentation. We found that

general purpose segmentation models (e.g. MobileNet, EfficientNet, and DenseNet)

can be readily applied to sonar data. Our experimentation showed that median

frequency balancing mitigated the negative effect of imbalance in the represen-

tation of classes throughout the dataset. Comparing model configuration was a

major focus in our experiment. Here we applied various methods such as the

learning rate range test and weight decay range test to find optimal model train-

ing configurations. We established that alternate learning rate schedules (e.g.

OneCycle and Cyclic) minimised overfitting while training on small datasets.

5.2 Future research directions

There are several promising directions for future research related to this project.

The first direction is to investigate recent object detection algorithms (e.g. YOLOv5,

YOLOv7, YOLOvX, and Swin Transformers) and apply them for naval mine

detection. The second direction is to investigate recent semantic segmentation

algorithms (e.g. HRNet-OCR and HSMA) and apply them for seabed terrain

segmentation. The third direction is to develop few-shot machine learning al-

gorithms to train a mine detection model using only a small number of labelled

images. The fourth direction is to investigate data augmentation techniques (e.g.

RandAugment and AutoAugment) and apply them to both our detection and

segmentation datasets.
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