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Abstract

Symmetric positive definite (SPD) visual representations are effective due to their ability
to capture high-order statistics to describe images. Reliable and efficient calculation of
SPD matrix representation from small sized feature maps with a high number of channels
in CNN is a challenging issue. This thesis presents three novel methods to address the
above challenge. The first method, called Relation Dropout (ReDro), is inspired by the fact
that eigen-decomposition of a block diagonal matrix can be efficiently obtained by eigen-
decomposition of each block separately. Thus, instead of using a full covariance matrix as
in the literature, this thesis randomly group the channels and form a covariance matrix per
group. ReDro is inserted as an additional layer preceding the matrix normalisation step
and the random grouping is made transparent to all subsequent layers. ReDro can be seen
as a dropout-related regularisation which discards some pair-wise channel relationships
across each group. The second method, called FastCOV, exploits the intrinsic connection
between eigensytems ofXX> andX>X. Specifically, it computes position-wise covariance
matrix upon convolutional feature maps instead of the typical channel-wise covariance
matrix. As the spatial size of feature maps is usually much smaller than the channel
number, conducting eigen-decomposition of the position-wise covariance matrix avoids
rank-deficiency and it is faster than the decomposition of the channel-wise covariance
matrix. The eigenvalues and eigenvectors of the normalised channel-wise covariance
matrix can be retrieved by the connection of the XX> and X>X eigen-systems. The third
method, iSICE, deals with the reliable covariance estimation from small sized and high-
dimensional CNN feature maps. It exploits the prior structure of the covariance matrix
to estimate sparse inverse covariance which is developed in the literature to deal with the
covariance matrix’s small sample issue. Given a covariance matrix, this thesis iteratively
minimises its log-likelihood penalised by a sparsity with gradient descend. The resultant
representation characterises partial correlation instead of indirect correlation characterised
in covariance representation. As experimentally demonstrated, all three proposedmethods
improve the image classification performance, whereas the first two proposed methods
reduce the computational cost of learning large SPD visual representations.
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Chapter 1

Introduction

Feature representation is an important task in computer vision. For the past several
decades, extracting semantic information from visual data such as images and videos
with low-level descriptors and representing them with a global representation method has
been popular. The low-level descriptors are based on pixels or image regions and usually
contain information about gradients, edges, intensities, locations, etc. By nature, these
low-level descriptors are noisy and large in size so they need to be aggregated into a global
representation for achieving compactness and robustness against noise. However, how to
effectively aggregate low-level descriptors into a global representation has been a great
challenge in many vision tasks. The global representation has to capture information from
the descriptors and express a robust summary of them. Furthermore, it should produce
a fixed-size representation regardless of the number of descriptors so that consistent
comparisons between visual data can be made.
Recently, there has been an interest in the computer vision community for exploiting

symmetric positive definite (SPD) matrix as a global representation with Convolutional
Neural Networks (CNNs) for end-to-end training [1]–[7]. A well-known example of the
SPD matrix is the covariance matrix, which has been successfully used in many visual
applications such as image classification [8], action understanding [9] and object detection
[10]. There are several advantages of using covariance matrix as a global representa-
tion of CNN local descriptors: (1) it exhibits statistical correlations between descriptor
components. Its diagonal entries exhibit variances of each descriptor components and
off-diagonal entries exhibit covariances between the components of different descriptors;
(2) it computes a fixed size representation regardless of the number of components (i.e.,
features) in the descriptors; (3) it is not affected by the order of features in the descriptors
or the information about the number of descriptors. This characteristic is useful to achieve
some form of invariance against scaling or rotations in the image data even when the
descriptors are itself do not have any such property [8].
Another example of an SPD matrix is the kernel matrix, which has been proposed to

characterise statistical correlations between the components of descriptors with a non-

1



CHAPTER 1. INTRODUCTION 2

linear kernel. It has several advantages over the covariance matrix: (1) it is able to model
the non-linear correlation between the components of descriptors. Given a set of CNN
descriptors, it computes a kernel matrix with a pre-selected kernel. Each entry of the
matrix contains a kernel value realised between the two feature values of all descriptors;
(2) its type of non-linear corrections between descriptor components can be flexibly chosen
with different kernel functions. The covariance matrix is a special type of kernel matrix
which uses linear kernel; (3) it is more robust towards the matrix singularity issue caused
by the small sample of CNN descriptors; (4) it has the same size as the covariance matrix.
A recent work [6] has demonstrated that it is significantly superior to its covariance matrix
counterpart on fine-grained image recognition and scene recognition tasks.
Motivated by the effectiveness of the SPD matrix in characterising second-order in-

formation in the visual descriptors, several works integrated it with CNN and conducted
end-to-end training [1], [3]–[5]. These works investigated several important issues as-
sociated with SPD matrix estimation from CNN feature maps, such as matrix function
backpropagation [11] and matrix normalisation [4]. These advancements improved the
effectiveness of SPD representation and lead to better visual recognition performance.
Despite the success of visual recognition tasks with the SPD matrix representation,

its effective and efficient end-to-end learning with CNN is still a challenging task. The
challenges come from the following issues: (1) covariance matrix estimated from a large
number of small spatially small-sized convolutional feature maps becomes biased, (2)
the size of covariance matrix increases quadratically with the number of channels in a
convolutional feature map and (3) eigen-decomposition is often needed to normalise the
covariance matrix for each training sample during end-to-end learning. Considering that
recent advanced deep neural networks such as ResNet [12] use many spatially small-sized
channels in their final convolutional layer, the first factor leads to the unreliability of
estimated covariance matrix and the other two factors lead to significant computational
overheads.

1.1 Research Questions

This thesis focuses on the following two key questions related to the SPD visual represen-
tation:

1. Efficient matrix normalisation of large-sized SPD matrix. Matrix normalisation
has received considerable attention in recent years for its effectiveness in reducing
the swelling effect in SPD matrices computed from CNN feature maps. However,
it is computationally challenging to perform matrix normalisation of large SPD
matrices on GPU based on eigen-decomposition. This is because the existing
eigen-decomposition algorithm has limited GPU acceleration support. This thesis
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explores the eigen structure of SPD matrices to reduce the computational burden of
performing normalisation using eigen-decomposition in CNN.

2. Integration of sparse inverse covariancematrixwithCNN.The covariance and kernel
SPD matrices effectively characterise pairwise correlations of CNN descriptors.
Recently, it has been shown that sparse inverse covariance is more effective than
the covariance and kernel SPD matrices in dealing with small feature samples and
higher dimensionality [13]. Sparse inverse covariance is estimated by solving an
optimisation problem involving the minimisation of a log-likelihood penalised by
sparsity. How to integrate the sparse inverse covariance into the CNN is still an
unexplored issue. This thesis explores a way to integrate sparse inverse covariance
into the CNN and conduct end-to-end training.

1.2 Contributions

The key contributions of this thesis are as follows.

1. This thesis proposes a scheme called Relation Dropout (ReDro) to efficiently carry
out matrix normalisation for end-to-end learning of large SPD visual representation.
It is inspired by the fact that eigen-decomposition of a block diagonal matrix can be
efficiently obtained by eigen-decomposition of each block separately. Thus, instead
of using a full covariancematrix as in the literature, this scheme randomly groups the
channels and forms a covariance matrix per group. ReDro is inserted into the CNN
as an additional layer preceding the matrix normalisation step and makes its random
grouping transparent to all subsequent layers. It can be seen as a dropout-related
regularisation which discards some pair-wise channel relationships in each group.
Experimental studies on several image datasets reveal that ReDro can be beneficial
to significantly reduce the computational cost of performing matrix normalisation
of large SPD matrices using eigendecomposition without sacrificing performance.

2. This thesis proposes another scheme called FastCOV to efficiently carry out matrix
normalisation for end-to-end learning of large covariance matrix representation. It
exploits the intrinsic connection between eigensystems of XX> and X>X. Specifi-
cally, it computes position-wise covariance matrix upon convolutional feature maps
instead of the typical channel-wise covariance matrix. As the spatial size of feature
maps is usuallymuch smaller than the channel size, conducting eigen-decomposition
of the position-wise covariance matrix avoids rank deficiency, while being faster
than the decomposition of the channel-wise covariancematrix. Finally, the eigenval-
ues and eigenvectors of the normalized channel-wise covariance matrix are retrieved
by the connection of the XX> and X>X eigen-systems. Experimental studies reveal
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that FastCOV is significantly faster than the ReDro scheme in computing covari-
ance representation when it is used with CNNs that has small spatial sized feature
maps with the higher number of channels. Furthermore, it achieves competitive
performance with respect to the existing methods.

3. This thesis integrates sparse inverse covariance estimation as a novel structured
layer into CNN. To realise end-to-end training of the resultant CNN, this thesis
develops an iterative method based on Newton-Schulz iteration to solve the sparse
inverse covariance estimation during backpropagation. By doing so, this thesis
mitigates the small sample problem for the covariance estimation in CNN. On top
of that, the developed method is fully compatible with GPU and with the presence
of a large number of CNN feature channels. Extensive experiments on various
hyperparameters of the proposed method are performed using one scene and three
fine-grained image datasets to assess its robustness. Experimental results confirm
that the proposed method significantly outperforms its covariance matrix based
counterparts.

1.3 Outline of this Thesis

Chapter 1 of this thesis begins with a general introduction of SPD visual representation,
which enables to discuss its several key issues when integrated with deep neural networks,
specially CNNs. In Chapter 2, a detailed discussion on how SPD visual representation
is computed from local CNN descriptors in the recent literature is given for a better
understanding of the problems targeted in this thesis. Since SPD visual representation
has already been used for many computer vision applications, a brief overview of current
application areas of SPD representation is also provided in this chapter.
Chapter 3 and 4 present two methods from different perspectives to mitigate the high

computation time of large-sized SPD matrix normalisation and facilitate efficient end-to-
end CNN training. Specifically, Chapter 3 presents the Relation Dropout method which
performs matrix normalisation on small block-diagonal SPD matrices instead of the full
SPD matrix to improve the training efficiency of large-sized SPD matrices. Chapter 4
presents the FastCOV method which performs matrix normalisation on the position-wise
matrix instead of the channel-wise matrix to improve the training efficiency of large-sized
SPD matrices. In deep networks such as ResNets [12] where the spatial resolution of
feature maps is significantly smaller than the number of feature channels, the FastCOV
method can greatly improve the SPDmatrix computation efficiency. The Relation Dropout
method does not take the spatial resolution of featuremaps into the account but still reduces
the SPD matrix computation time by resorting to the block-diagonal matrix trick.
While the above two chapters make an effort to efficiently deal with large-sized SPD
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matrices, there are tools in the literature such as Sparse InverseCovariance Estimate (SICE)
to deal with the reliable SPD matrix estimate from the small number of samples which is
commonly encountered in CNNs. Chapter 5 presents Iterative Sparse Inverse Covariance
Estimation (iSICE) method which targets estimating reliable covariance matrix based
SPD visual representation. SICE can not be directly integrated into deep networks due to
the unavailability of efficient and differentiable solvers in the literature. iSICE presents a
scalable GPU-compatible solver and a framework for computing sparse inverse covariance
based SPD visual representation. Extensive experiments demonstrate that iSICE estimates
better SPD representation than the existing methods.
In the final chapter (Chapter 6), a conclusion is given outlining a summary of each

chapter and the key contributions of this thesis to the existing literature. In addition
to that, future extensions of the proposed methods in Chapters 3, 4 & 5 and research
directions are discussed. For a better understanding of the contents of each chapter, a
logical connection between chapters is given in Figure 1.1 and a chapter-wise summary is
given below.

• Chapter 2 gives an overview of literature related to the SPD matrix based represen-
tation (or SPD representation, in short). It introduces global feature representation
in CNNs and presents SPD representation as a second-order global feature repre-
sentation. Then it gives a discussion on how the existing methods are approaching
the key issues of SPD representation learning with CNN. Finally, it discusses some
application areas of SPD representation. The chapter also gives a visual illustration
of recent research progress of CNN based end-to-end SPD representation.

• Chapter 3 proposes the ReDro scheme. It introduces the key motivations for ReDro
and discusses the related literature. Following that, the working principle of ReDro
and how it helps to reduce the computational cost of performingmatrix normalisation
on large SPD matrices are discussed. Then, its forward and backward propagations
are derived, and the key parameters are discussed. Three major sets of experiments
are presented. The first set of experiments shows the computational advantages of
ReDro when integrated with two SPD matrix based representations, i.e., covariance
and kernel matrix based representations. Then it shows experiments using and not
using ReDro with two CNN backbones and four popular datasets. Finally, it shows
experiments where ReDro is integrated with a few existing SPD representation
methods. In addition to the above experiments, it also presents an ablation study on
key parameters of ReDro. The experimental study shows that ReDro can effectively
improve the efficiency of eigen-decomposition based matrix normalisation of large
sized SPD matrices.

• Chapter 4 proposes the FastCOV scheme. Similar to the previous chapter, it starts by
introducing the motivation and the related works. Then it introduces the FastCOV
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scheme and discusses the forward and backward propagations with CNN. After that,
it gives a discussion on the computations savings with FastCOV from a theoretical
viewpoint, i.e., computational complexity. Finally, it presents the experiments with
two popular CNN backbones. The experiments are divided into three parts. The first
part contains the experiments related to the computational advantage of FastCOV
over ReDro and existing SPD representation methods. The second part compares
the performance of FastCOV with regular covariance matrix based representation.
The third part compares FastCOV with ReDro and state-of-the-art SPD representa-
tion methods. The experimental studies demonstrate that FastCOV can efficiently
perform matrix normalisation of covariance matrices than the existing methods.

• Chapter 5 proposes a method for learning sparse covariance matrix representation
with CNN. Starting with motivation, it gives an overview of the current efforts
in estimating robust covariance matrix representation. Then it discusses the key
idea of sparse covariance matrix representation and the challenges of integrating it
onto CNN with the existing optimisation problem solvers. After that, it presents
the proposed idea of learning sparse covariance matrix estimation with CNN and
discusses its details. Finally, it shows the experiments where the following items are
comprehensively discussed: (1) the robustness of proposed methods with respect
to key hyper-parameters; (2) the performance of medium and large sized sparse
covariance matrix representations; (3) comparison with the methods from previous
chapters and state-of-the-art SPD methods. The experimental study shows that
the proposed idea can effectively improve the existing covariance representation
with the sparse inverse covariance estimation and lead to better image recognition
performance.

• Chapter 6 summarises the key contributions in this thesis and discusses future works.
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Chapter 1
Introduction to SPD Visual Representation

Chapter 2
Literature review and applications

Chapter 3
Relationship Dropout method

Chapter 4
FastCOV method

Chapter 5
Sparse covariance estimation method

Chapter 6
Conclusions and Future work

Introduction

Efficient matrix 
normalisaiton

Reliable SPD 
matrix estimation

Summary

Figure 1.1: Logical connections between chapters.



Chapter 2

Literature Review

Learning good visual representation remains a challenging task in image classification due
to variations in illumination, geometry, and background in image data. Describing images
with local feature descriptors and aggregating them into a global representation with an
appropriate pooling method remains an effective approach. The rise of deep learning
based methods, in particular, the ones based on convolutional neural networks (CNNs)
further enhanced this approach with automatic feature learning. This thesis focuses on
obtaining effective global representations based on the symmetric positive definite (SPD)
matrix with CNN. This chapter begins with an introduction to the common CNN based
global representation methods. Then it will discuss the major developments in SPDmatrix
based representation learning with CNN. Finally, it will discuss some application areas of
SPD matrix based representation.

2.1 Global Image Representation Learning with CNN

The idea of a global image representation from a set of local visual descriptors has been
in the literature for more than two decades. Some of the popular methods for obtaining
global image representation from a set of local image features include Fisher Vectors (FV)
[14], Vector of Locally Aggregated Descriptors (VLAD) [15] and Sparse Coding (SC)
[16].
Suppose, an image � is represented using a set of local feature descriptors {x1,x2, ...,x=} ⊂

R3 . These methods aggregate these descriptors into a global image representation k(�)
and ensure that k(�) is compact and discriminative. Generally, k(�) uses two steps:
embedding and aggregation. In the embedding step, the local descriptors x= are mapped
to higher dimensional vectors with a mapping function q(·) as q(x) ∈ R� . Then the ag-
gregation step aggregates the mapped vectors {q(x1), q(x2), ..., q(x=)} ⊂ R� . One simple
operation for the aggregation step could be a summation operation k(�) = ∑#

8=1 q(x8),
however, more complex operations such as Fisher kernel [14] can be used.

8
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The aggregation step plays an important role in obtaining an effective global image
representation. To obtain better global image representations from CNN feature descrip-
tors, a large amount of research has been conducted on feature aggregation in recent years.
Some of the popular feature aggregation methods (also known as pooling methods) used in
existing CNN architectures such as AlexNet [17], VGGNet [18], GoogleNet [19], ResNet
[12] and DenseNet [20] include max pooling, average pooling and global average pooling.
The latter received much attention recently due to its effectiveness with a large number
of feature channels commonly seen in ResNet-inspired architectures such as ResNet-101.
Given a convolutional feature channel x ∈ '=×= of the same width and height, the global
average pooling computes an output y as follows.

y =
1

=×=

=∑
8=1, 9=1

G8 9 (2.1)

The above common aggregation methods characterise first-order information in the de-
scriptor components. In this thesis, we refer to them as first-order feature aggregation
methods or simply first-order representation methods. In traditional image classifica-
tion problems such as ImageNet classification [17], first-order representation methods
have shown impressive performance. However, in more difficult problems such as fine-
grained image classification where the availability of labelled training images is limited,
higher-order representation methods are found to be more effective [4]. They characterise
higher-order, i.e., pairwise, triple-wise, or even higher, correlations between descriptor
components which help to improve the classification performance.
As a higher-order representation method, the SPD matrix based representation methods

has shown promising performance in recent years. They characterise pairwise, i.e., second-
order, correlations in the descriptor components. The most common SPD matrix based
representation method in the literature is covariance matrix based representation. Given
a set of feature descriptors {x1,x2, ...,x=} ∈ R3 , covariance matrix � represents them as a
3 × 3 matrix

� =
1

=−1

=∑
8=1
(x8 − `) (x8 − `)>, (2.2)

where ` = 1
=

∑=
8=1 x8. The matrix � contains the second-order statistical information of

feature descriptors. The off-diagonal and diagonal entries of � represent the covariance
and variance between the descriptor components, respectively. Another key feature of �
is it is symmetric, therefore, only its upper or lower triangular entries can be used as a
representation. The other type of SPD matrix representation used in the literature is ker-
nel matrix-based representation which depicts nonlinear correlations between descriptor
components. A covariance matrix can be regarded as a special case of a kernel matrix,
where a linear kernel is used for characterising feature relationships. This thesis focuses on
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SPD matrix based representation (or ‘SPD representation’, in short) learning with CNN.
Below we discuss its developments in recent years.

2.2 SPD Representation Learning with CNN

After the promising success of covariance representation with pre-extracted CNN de-
scriptors on texture classification [21] and material recognition [22], several pioneering
works developed end-to-end trainable CNN based covariance representation frameworks.
Among them, Bilinear CNN [1] and DeepO2P [11] have inspired many researchers to
make the SPD representation more effective under an end-to-end learning framework.
One of the key focuses of these frameworks was reliable covariance matrix estimation

from low resolution feature maps and a larger number of feature channels. Modern CNNs
have less number of features and large feature dimensions which makes the covariance
matrix biased. When the covariance matrix becomes biased, its large eigenvalues become
larger and its smaller eigenvalues become smaller, resulting in unreliability. This issue is
also known as the swelling effect [23]. Bilinear CNN has applied element-wise square root
normalisation to each entry of the covariance matrix to combat this issue by considering
the Riemannian geometry of the covariance matrix, but it did not help them to achieve
a very good performance. The covariance matrix resides on a Riemannian manifold,
therefore, its geometrical structure must be considered before applying normalisation.
DeepO2P proposed matrix logarithm normalisation of eigenvalues to combat the matrix
swelling issue. It also shows gradient rules for performing matrix normalisation on the
eigenvalues with backpropagation. Though their work has achieved better performance
than the Bilinear CNN, the matrix logarithm has an issue of changing the magnitudes of
eigenvalues which affects their significance (a comprehensive analysis on this is available
in [4]).
Motivated by the drawbacks of matrix logarithm, the idea of matrix power normalisation

is proposed in [3], [4]. Given the covariance matrix �, the matrix power normalisation is
performed by taking the square root of the eigenvalues

�U = UDUU>, (2.3)

where U and D are the eigenvectors and eigenvalues, respectively, and U is set to 0.5 for
performing square rooting. Matrix power normalisation does not change the magnitudes
or the significance of the eigenvalues, therefore, it ensures the reliability of the estimated
covariance matrix from small samples. One of the key issues with matrix power nor-
malisation is the computation of eigenvalues and eigenvectors with eigen-decomposition.
Existing eigen-decomposition algorithms are not well paralleisable which limits their fast
computation with both the central processing unit (CPU) and graphics processing unit
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Method Normalisation Complexity Support GPU Compactness

DeepO2P [11] Matrix Logarithm O(33) Unsatisfactory Unsatisfactory

MPN [4] Matrix Sqrt. Root O(33) Unsatisfactory Unsatisfactory

I-BCNN [3] Matrix Sqrt. Root O(33) Unsatisfactory Unsatisfactory

iSQRT [5] Matrix Sqrt. Root O(:33) Satisfactory Unsatisfactory

DeepKSPD [5] Matrix U Root O(33) Unsatisfactory Unsatisfactory

RUN [24] Matrix Sqrt. Root O(:33) Satisfactory Satisfactory

Table 2.1: Summary of existing matrix normalisation methods. Satisfactory and unsat-
isfactory mean limited and good, respectively. : is the number of iterations and 3 is the
number of feature channels.

(GPU). In a survey by Li et al. [5], it has been demonstrated that eigen-decomposition
with CPU is much faster than the GPU. This computational burden increases with the size
of the covariance matrix which will be shown in the following chapters.
To improve the above condition with eigen-decomposition, Lin et al. [3] proposed

to perform matrix power normalisation with approximate square root based on Newton-
Schulz iterations instead of the exact root. They show that performing matrix power
normalisation on CPUwith approximate square root using a few Newton-Schulz iterations
is faster than eigen-decomposition. Given A0 = � and B0 = I, Newton-Schulz iterations
normalise � with its approximate root as follows

A8+1 =
1
2

A8 (3I−B8A8),B8+1 =
1
2
(3I−B8A8)B8, (2.4)

where I is an identity matrix, and A8 and B8 quadratically converge to �
1
2 and �−

1
2 ,

respectively. They also show that matrix power normalisation with approximate square
root can achieve similar performance as with the exact root in significantly less time.
However, the method proposed in [3] computes square root with Newton-Schulz iterations
only in the forward propagation of CNN. During the backward propagation, they still need
to perform eigen-decomposition or solve a Lyapunov equation which takes almost equal
time as eigen-decomposition.
Motivated by the limitation of work in [3], Li et al. [5] proposed a method to perform

Newton-Schulz iterations in both forward and backward propagations. They showed that
Eq. (2.4) and its gradients can be efficiently computedwith GPU. Furthermore, they solved
the numerical instability issue encountered in the work of [3]. Their method inspired other
researchers to developmore efficient iterativematrix normalisationmethods. For example,
normalisation with the rank-1 update [24] considers multiplication between matrix and
vector for more efficient computation.
Another focus in existing frameworks is learning kernel matrix representation. A key
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work in this direction is kernel pooling [25]. They use a Taylor expansion of the RBF
kernel on convolutional features and show promising performance with a fourth-order
kernel. Another key work is DeepKSPD [6] which computes an RBF kernel based
second-order matrix representation and proposes to normalise it with a U-square root
normalisation. U-square root normalisation is different from the square root normalisation
used in the previous works in two ways, 1) the value of U is learned with backpropagation,
therefore, the matrix power can be adjusted according to the data instead of fixing it to 1

2
and 2) it is free from the numerical instability issues faced in [3], [4]. We summarise the
above progress on matrix normalisation in Table 2.1.
While the above works focus on computing effective SPD representation, a few re-

searchers worked on the problem of higher dimensionality incurred with SPD represen-
tation since it outputs 3 (3 + 1)/2 dimensional vectors, where 3 is the number of feature
channels. In recent CNNs, 3 can be as high as 2048. These researchers mainly con-
centrate on reducing the dimension of SPD representation, specifically, covariance matrix
representation. The first key work in this direction is compact bilinear pooling [2]. It uses
tensor sketch [26] and random Maclaurin [27] projections for reducing the dimension of
Bilinear CNN without compromising its performance. Another key work in this direc-
tion is low-rank bilinear pooling [28]. It uses a factorised low-rank bilinear classifier for
performing classification with bilinear representation. These two works do not consider
matrix normalisation in their proposed methods. Motivated by the performance improve-
ments brought by the matrix square normalisation in the works of [3]–[5], the following
methods have been developed to perform matrix normalisation methods on compact SPD
representations. The existing matrix square normalisation methods discussed above can
not be applied to compact SPD representations since they do not have a strict SPD or
square matrix structure.
The first method is based on rank-1 matrix update [24]. It performs the normalisation

of convolutional feature maps prior to the computation of compact covariance represen-
tations. Since the normalisation method involves only matrix and vector multiplication,
it takes less time than the Newton-Schulz iterations [5]. The second method is based on
Newton-Schulz iterations and shifted random Maclaurin [7]. It applies shifted random
Maclaurin projection to the normalised covariance matrix for computing compact covari-
ance representation. The performance and efficiency of work in [24] is better than the
work in [7]. More relevant work in this direction is by Li et al. in [29]. After applying
matrix square root normalisation to the covariance matrix and then vectoring, they used
group convolution [17] to reduce the final dimension. Since the idea is straightforward
and relies on linear projection, the selection of the number of convolutional kernel groups
must be decided carefully for better performance.
In Figure 2.1, we summarise the current research progress on SPD representation

discussed above. We show how the end-to-end SPD representation frameworks have
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evolved over the years.

2.3 Application of SPD Representation

As a generic representation, SPD Representation can be used in any computer vision
application. However, in application areas such as fine-grained image classification where
the number of labelled training data is limited, SPD representation is used to exploit the
relationship between feature descriptors so that the performance can be improved. Some
of the application areas of end-to-end learned SPD representation include fine-grained
image classification, generic image classification, few-shot learning, image retrieval, action
understanding, image segmentation, video classification, image set classification, person
re-identification, domain adaptation, visual question answering and so on. Below we give
a brief discussion on a few of them.

Fine-grained image classification. It is one of the most active areas to use SPD repre-
sentation. Classification of fine-grained image datasets remains a challenging task due to
their lower intra-class variations and higher inter-class variations. In addition, the number
of images in fine-grained datasets is also limited. In fine-grained image classification,
SPD representation is used to characterise second-order information of visual descriptors.
The second-order information acts as prior knowledge of objects in the images which
helps to improve classification performance. Some popular and recent SPD representation
methods for fine-grained image classification are Bilinear CNN [3], Compact BCNN [2],
DeepKSPD [6], iSQRT-COV [5], G2DeNet [30], HBP [31] GSoP-Net [32], MOMN [33],
SVD by Padé Approximants [34], squeezed bilinear pooling [35], semantic bilinear pool-
ing [36], MOFS [37], Kernelized random projection based compact bilinear pooling [38],
FBC [39], Hierarchical Biquadratic Pooling [40], adaptive bilinear pooling [41], WAM
[42] and HM-CNN [43].

Large-scale image classification. Covariance representation has been successfully used
for large-scale ImageNet classification [17]. Similar to fine-grained image classification,
it exploits second-order information in the visual descriptors to improve the image classi-
fication performance. CNN models that have been trained with covariance representation
are found to be more effective during the transfer learning tasks, e.g., [4]. Some no-
table examples of SPD representation based large-scale image classification methods are
MPN-COV [4] and iSQRT-COV [5], MPA-Lya [44], SVD-Taylor [45] and SVD by Padé
Approximants [34].

Single and Few-shot learning. Single and few-shot learning are two challenging areas
of computer vision. The challenges are due to the availability of limited training samples.
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SPD representation has been successfully used for single and few-shot learning tasks. It
helps one and few-shot learning frameworks to capture rich second-order information from
limited visual data in order to achieve better performance. Some key examples of SPD
representation based single and few-shot learning methods are SoSN [46], SalNet [47],
MsSoSN [48], LR-PABN [49], MlSo [50], DSN [51] and SmCT [52].

Action recognition. It is one of the popular areas in computer vision. One of the
primary challenges in this area is spatio-temporal encoding of visual information. SPD
representation has been used to characterise second-order information from the action
descriptors. The works in [53], [54] and [55] have confirmed that incorporation of second-
order kernel based representation improves the classification performance of actions in
well-known datasets.

PersonRe-identification. Similar to action recognition, person re-identification in video
has become one of the popular research areas in computer vision due to its application
in crime prevention. SPD representation has been found to be effective in improving the
person re-identification performancewith the characterisation of second-order information
in cases where persons are generally hard to distinguish. An example of a person re-
identification method with SPD representation is SCCT [56]. It uses second-order colour
transformation information to improve classification performance. Another example is
HOReID [57].

Domain adaptation. Generalisation of knowledge learned for a task in a specific envi-
ronment and applying it to perform the same task in a slightly different environment is of
great interest in machine learning. SPD representation has been found to be effective in
performing the above goal [58]. In the work of [58], it has been shown that higher-order
information encoding can have a positive impact on performing better domain adaptation.

Visual attention learning. Recently, visual attention mechanism learning has become
popular due to its wide application with CNNs. It helps the network to learn better
representation. Second-order information based visual attention mechanisms has been
proposed in the literature to exploit the rich higher-order statistics in the data. Several
works have shown that second-order attention maps help the network learn better features.
Examples of some notable second-order notable methods include mixed attention [59],
SAN [60], GSoP [32], SONA [61], SOLAR [62] and bilinear attention [63].

Student-teacher learning. It is an efficient mechanism for knowledge transfer from
large to small machine learning models and has a wide application. Recently, Li et al.
have successfully used SPD representation to improve the performance of CNN using an
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intuition from the student-teacher learning mechanism. Their method shows how second-
order information can be only used at the training stage to learn better features. The
method achieves competitive performance on a large-scale dataset.

Visual-question answering. It is one of the challenging research areas in computer
vision. One of the key problems in this area is how to combine visual and text information
and represent them in a shared space. An early work by Akira et al. [64] has shown that
fusingmulti-modal information to a common feature space using covariance representation
leads to better performance. Their work demonstrated good performance using SPD
representation of multi-modal data on visual-question answering. Following this work,
many researchers such as FBC [39] employed SPD representation.

2.4 Conclusion

This chapter summarises recent progress on end-to-end learned SPD visual representation.
It discusses the key challenges associated with SPD matrix estimation from CNN feature
maps and how existing methods are solving those challenges. It gives a detailed discussion
of research directions for SPD matrix normalisation, a step to reduce the impact of the
swelling effect. In the end, it discusses some application areas of SPD representation.



Chapter 3

ReDro for Efficiently Learning
Large-sized SPD Visual Representation

The preliminary work of this chapter has been published at the 2020 European
Conference on Computer Vision (ECCV 2020) and an extended version is
currently under the review of IEEE Transactions on Pattern Analysis and
Machine Intelligence (T-PAMI).

Symmetric positive definite (SPD) matrix has recently been used as an effective visual
representation. When learning this representation in deep networks, eigen-decomposition
of the covariance matrix is usually needed for a key step called matrix normalisation. This
could result in significant computational costs, especially when facing the increasing num-
ber of channels in recent advanced deep networks. This chapter proposes a novel scheme
called Relation Dropout (ReDro). It is inspired by the fact that eigen-decomposition of
a block diagonal matrix can be efficiently obtained by decomposing each of its diagonal
square matrices, which are of smaller sizes. Instead of using a full covariance matrix as in
the literature, we generate a block diagonal one by randomly grouping the channels and
only considering the covariance within the same group. We insert ReDro as an additional
layer before the step of matrix normalisation and make its random grouping transparent
to all subsequent layers. Additionally, we can view the ReDro scheme as a dropout-like
regularisation, which drops the channel relationship across groups. As experimentally
demonstrated, for the SPD methods typically involving the matrix normalisation step,
ReDro can effectively help them reduce computational cost in learning large-sized SPD
visual representation and also help to improve image recognition performance.

3.1 Introduction

Learning good visual representation remains a central issue in computer vision. Repre-
senting images with local descriptors and pooling them into a global representation has

17
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been effective. Among the pooling methods, covariance matrix based pooling has gained
substantial interest by exploiting the second-order information of features. Since the co-
variance matrix is symmetric positive definite (SPD), the resulting representation is often
called SPD visual representation. It has shown promising performance in various tasks,
including fine-grained image classification [1], image segmentation [11], generic image
classification [4], [65], image set classification [66], activity and action recognition [67],
[68] and few-shot learning [47], [69], to name a few. With the advent of deep learning,
several pieces of pioneering work have integrated SPD representation into convolutional
neural networks (CNNs) and investigated a range of important issues such as matrix func-
tion back-propagation [11], compact matrix estimation [2], matrix normalisation [3], [70],
[71] and kernel-based extension [6]. These progresses bring forth effective SPD visual
representations and improve image recognition performance.
Despite the successes, the end-to-end learning of SPD representation in CNNs poses

a computational challenge. This is because i) the size of the covariance matrix increases
quadratically with the channel number in a convolutional feature map and ii) eigen-
decomposition is often needed to normalise the covariance matrix in back-propagation for
each training sample. This results in significant computation, especially considering that
many channels are deployed in recent advanced deep networks. Although a dimension
reduction layer could always be used to reduce the channel number beforehand, we are
curious about if this computational challenge can be mitigated from another orthogonal
perspective.
This work is inspired by the following fact: the eigen-decomposition of a block diagonal

matrix can be obtained by simply assembling the eigenvectors and eigenvalues of its
diagonal square matrices [72]. Each diagonal matrix is smaller in size and the eigen-
decomposition needs less computation. Motivated by this, we propose to replace a full
covariance matrix with a block diagonal one. To achieve this, all channels must be
partitioned into mutually exclusive groups and the covariance of the channels in different
groups shall be omitted (i.e., set as zero). A question that may arise is how to optimally
partition the channels to minimise the loss of covariance information or maximise the
final recognition performance. Although this optimum could be pursued by redesigning
network architecture or loss function (e.g., considering the idea in [73]), it will alter
the original SPD methods that use matrix normalisation and potentially increase the
complexity of network training.
To realise a block diagonal covariance matrix with the minimal alteration of the original

methods, negligible extra computation and no extra parameters to learn, we resort to a
random partitioning of channels. This can be trivially implemented, with some house-
keeping operation to make the randomness transparent to all the network layers after the
matrix normalisation step. To carry out the end-to-end training via back-propagation, we
derive the relevant matrix gradients in the presence of this randomisation. The saving
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on computation and the intensity of changing the random partitioning pattern are also
discussed.
In addition, we conceptually link the proposed random omission of relationship (i.e.,

covariance) of channels to the dropout scheme commonly used in deep learning [74]. We
call our scheme “Relation Dropout (ReDro)” for short. It is found that besides serving
the goal of mitigating the computational challenge, the proposed scheme could bring
forth an additional advantage of improving the network training and image recognition
performance, which is consistent with the spirit of the extensively used dropout techniques.
The main contributions of this chapter are summarised as follows.

• To mitigate the computational issue in learning large-sized SPD representation for
the methods using matrix normalisation, this chapter proposes a scheme called
ReDro to take advantage of the eigen-decomposition efficiency of a block diagonal
matrix. To the best of our survey, such a random partition based scheme is new for
the deep learning of SPD visual representation.

• Via the randomisation mechanism, the ReDro schememaintains the minimal change
to the original network design and negligible computational overhead. This work
derives the forward and backward propagations in the presence of the proposed
scheme and discusses its properties.

• Conceptually viewing the ReDro scheme as a kind of dropout, we investigate its
regularisation effect and find that it could additionally help improving network
training efficiency and image recognition performance.

Extensive experiments are conducted on one scene dataset and three fine-grained image
datasets to verify the effectiveness of the proposed scheme.

3.2 Related Work

In this section, we review the methods related to SPD visual representation learning, SPD
matrix normalisation and dropout regularisation.

Learning SPD visual representation. SPD visual representation can be traced back to
covariance region descriptor in object detection, classification and tracking [8], [10], [75].
The advent of deep learning provides powerful image features and further exhibits the
potential of SPD visual representation. After early attempts which compute covariance
matrix on pre-extracted deep features [21], research along this line quickly enters the
end-to-end learning paradigm and thrives. Covariance matrix is embedded into CNNs as
a special layer and jointly learned with network weights to obtain the best possible SPD
visual representation.
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DeepO2P [11] and Bilinear CNN (BCNN) [1] are two pieces of pioneering work that
learn SPD visual representation in an end-to-end manner. The framework of DeepO2P is
largely followed and continuously improved by subsequent works. It generally consists of
three parts. The first part feeds an image into a CNN backbone and processes it till the
last layer of 3D convolutional feature maps, with width F, height ℎ and channel number
3. Viewing this map as a set of F × ℎ local descriptors of 3 dimensions, the second
part computes a (normalised, which will be detailed shortly) 3 × 3 covariance matrix to
characterise the channel correlation. The last part is routine, usually consisting of fully
connected layers and the softmax layer for prediction.

Matrix normalisation. The step of matrix normalisation in the second part above plays
a crucial role. It is widely seen in the recent work to learn SPD visual representation
due to three motivations: i) Covariance matrix resides on a Riemannian manifold, whose
geometric structure needs to be considered; ii) Normalisation is required to battle the
“burstiness” phenomenon—a visual pattern usually occurs more times once it appears
in an image; iii) Normalisation helps to achieve robust covariance estimation against the
small sample.
After element-wise normalisation, the recent work turns to matrix-logarithm or matrix-

power normalisation because they usually produce better SPD representation.a Nev-
ertheless, both of them involve the eigen-decomposition of covariance matrix, whose
computational complexity can be up to O(33). This operation has to be applied for each
training sample in every forward and backward propagations. The step of matrix nor-
malisation becomes a computational bottleneck in the end-to-end learning of SPD visual
representation.
The recent literature has made an effort to reduce the computation of matrix normal-

isation. They consider a special case of matrix power normalisation, that is, matrix
square-root normalisation. In the work of [3], this is approximately calculated by applying
Newton-Schulz iteration for root finding. It makes forward propagation computationally
more efficient since only matrix multiplications are involved. The backward propagation
still needs to solve a Lyapunov equation, which has the complexity at the same level
of eigen-decomposition. After that, the work in [5] solves matrix square-rooting more
efficiently. It proposes a sandwiched Newton-Schulz iteration and implements it via a set
of layers with loop-embedded directed graph structure to obtain an approximate matrix
square-root. It can be used for both forward and backward propagations.
Although the work in [3], [5] achieves computational advantage and promising perfor-

mance by usingmatrix square-root, theirmethods do not generalise tomatrix normalisation

aLet C be a SPD matrix and its eigen-decomposition is C = UDU>. The columns of U are eigenvectors
while the diagonal of the diagonalmatrixD consists of eigenvalues. Matrix normalisationwith a function 5 is
defined as 5 (C) = U 5 (D)U>, where 5 (D) means 5 is applied to each diagonal entry of D. Matrix-logarithm
and matrix-power based normalisations correspond to 5 (G) = log(G) and 5 (G) = G? .
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with other power value ? or other normalisation function 5 . In addition, the applicability
of iterative Newton-Schulz equation to large-sized covariance matrix is unclear since only
smaller-sized covariance matrices (i.e., of size 256× 256) are used in that two works.
These motivate us to mitigate the computational issue of matrix normalisation from other
perspectives.
Finally, there are also research works to address the complexity of learning large-

sized SPD representations by focusing on the parts other than matrix normalisation.
Compact, low-rank and group bilinear pooling methods [2], [28], [73] address the high
dimensionality of the feature representation after vectorising covariance matrix, and group
convolution is used in [29] for the similar purpose. Linear transformation is designed
in [29], [76]–[79] to project large covariance matrices to more discriminative, smaller
ones. To efficiently capture higher-order feature interactions, kernel pooling is developed
[25]. Furthermore, the work in [80] develops a new learning framework to directly
process manifold-valued data including covariance matrix. For our work, instead of
competing with these works, it complements them and could be jointly used to mitigate the
computational issue of eigen-decomposition of large SPD matrices when needed. In this
work, we focus on the frameworks in [3]–[6] which typically employ matrix normalisation
as an important step in learning SPD representation.

Dropout schemes. Dropout [74] is a common regularisation technique that randomly
drops neuron units from fully connected layers to improve generalisation. Several new
schemes have extended this idea to convolutional layers. SpatialDropout [81] randomly
drops feature channels. DropBlock [82] drops a block of pixels from convolutional
feature maps. Weighted channel dropout [83] randomly drops feature channels with lower
activations. Conceptually, the proposed “Relation Dropout (ReDro)” can be viewed as
another scheme. Unlike the above ones, it randomly drops the covariance relationship
of the channels across groups. It yields block-diagonal variants of a covariance matrix,
and could produce dropout-like regularisation effect in training, as will be experimentally
demonstrated.

3.3 The proposed method

In this section, we describe our relation dropout (ReDro) method. We also provide their
forward and backward propagation steps. Furthermore, we discuss their computational
advantages and key parameters.
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3.3.1 Relation Dropout (ReDro)

We start by providing an overview of our first proposed scheme, called ReDro, for matrix
normalisation, which is shown in Figure 3.1. From the left end, an image is fed into a CNN
backbone, and the last convolutional feature map of 3 channels is obtained. ReDro firstly
conducts a random permutation of these channels and then evenly partitions them into :
groups by following the channel number. Restricted to group 8 (8 = 1,2, · · · , :), smaller-
sized covariance matrices C8 are computed and their eigen-decompositions evaluated as
C8 = U8D8U>8 . The eigenvectors in U1,U2, · · · ,U: are then arranged to form a larger, block-
diagonal matrix U1. The same procedure applies to the eigenvalues in D1,D2, · · · ,D: to
form D1. Note that U1 and D1 are just the eigen-decomposition of the 3×3 block-diagonal
covariance matrix C1 = diag(C1,C2, · · · ,C: ). At the last step of ReDro, U1 and D1 are
permuted back to the original order of the channels in the last convolutional feature map.
This is important because it makes the random permutation transparent to subsequent
network layers. This completes the proposed ReDro scheme.
In doing so, the eigen-decomposition of a covariance matrix, with part of the entries

dropped, can be more efficiently obtained by taking advantage of the block-diagonal
structure of C1. Then matrix normalisation can be readily conducted with any valid
normalisation functions.

Forward propagation in the presence of ReDro

Let X3×=, where ==Fℎ, be a data matrix consisting of the 3-dimensional local descriptors
in the last convolutional feature map. Recall that 3 is the channel number while F and ℎ
are the width and height of the feature map. A random partitioning of the 3 channels can
be represented by : index sets, G1, G2, · · ·, G: , which contain the IDs of the channels in
each group.
Let a roster of all the IDs in these : index sets be {A1, A2, · · ·, A3}. It is a permutation of

the original channel IDs {1,2, · · ·, 3}, and therefore induces a permutation matrix P3×3 .b
The 8th row of P is e>A8 = (0, · · ·,0,1,0, · · ·,0), which is a standard basis vector with “1”
at its A8th entry and zeros elsewhere. The effect of P can be intuitively interpreted. By
left-multiplying P to X, the rows of X will be permuted. A more intuitive interpretation,
which will be used later, is that it permutes the 3 axes of an original coordinate frameF to
form a new frame F ′. For a quantity (e.g., eigenvector) represented in F ′, we can inverse
the permutation by left-multiplying P−1 to it. It is known in matrix analysis that for any
permutation matrix P, it satisfies PP> = I. Therefore, P−1 can be trivially obtained as P>.
This result will be used shortly.

bIn matrix analysis, a permutation matrix P is a square binary matrix. It has one and only one “1” entry
in each row and each column, with all the remainder being “0”. It is easy to verify that PP> = P>P = I,
where I is an identity matrix.
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Now, for the channels within each group G8 (8 = 1, · · · , :), we compute a covariance
matrix C8. Collectively, they form a 3×3 block-diagonal matrix

C1 = diag(C1,C2, · · ·,C: ). (3.1)

Let the eigen-decomposition of C8 be C8 = U8D8U>8 . It is well-known from matrix analysis
[72] that the eigen-decomposition of C1 can be expressed as

C1 = U1D1U>1 , (3.2)

U1 = diag(U1,U2, · · ·,U: )
and D1 = diag(D1,D2, · · ·,D: ).

(3.3)

Note that the eigenvectors in U1 are obtained in the new coordinate frame F ′. To retrieve
their counterparts Û1 in the original frame F (i.e., corresponding to the original order of
the 3 channels), we apply the inverse permutation as

Û1 = P−1U1 = P>U1 . (3.4)

The eigenvalue matrix D1 does not need to be permuted back because an eigenvalue
represents the data variance along the corresponding eigenvector. It is not affected by the
permutation of the coordinate axes.
In this way, we obtain the eigen-decomposition of C1 under the original order of the

channels (i.e., 1,2, · · ·, 3) as

Û1 = P> ·diag(U1,U2, · · ·,U: );
D̂1 = diag(D1,D2, · · ·,D: ).

(3.5)

With this result, matrix normalisation with any valid function 5 can now be applied.
Algorithm 1 summarises the steps of the proposed ReDro scheme.

Backward propagation in the presence of ReDro

To derive the gradients for back-propagation, the composition of functions from feature
map X to the objective function � (X) is illustrated as follows.

X→ PX︸︷︷︸
Y

→ (YY>) ◦S︸      ︷︷      ︸
C1

→ (P>C1P)︸     ︷︷     ︸
A(Auxiliary)

→ 5 (A)︸︷︷︸
Z

→ ·· · layers · · · → � (X)︸︷︷︸
Objective

(3.6)

P is the permutation matrix. Y is the feature map with its channels permuted. S =

diag(11,12, · · ·,1: ) is a block-diagonal binary matrix, where 18 is a square matrix of all
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Algorithm 1: Relation Dropout (ReDro)
Input: Convolutional feature map X3×(Fℎ); The number of groups : .
1. Randomly partition the 3 channels to groups G1, G2, · · ·, G: ;
2. Create the permutation matrix P accordingly;
3. foreach group G8 do

1. Compute the covariance matrix C8;
2. Calculate its eigen-decomposition C8 = U8D8U>8 ;

end
4. Form the eigenvectors and eigenvalues of the block-diagonal matrix C1:
U1 = diag(U1,U2, · · ·,U: ),D1 = diag(D1,D2, · · ·,D: );
5. By permuting back, the eigen-decomposition of C1 corresponding to the
original order of the 3 channels are Û1 = P>U1 and D̂1 = D1.

“1”s and its size is the same as that of channel group G8. Noting that “◦” denotes element-
wise multiplication, S represents the selection ofC1 out of the full covariancematrixYY>.
The letter under each term is used to assist derivation. A is an auxiliary variable and not
computed in practice. 5 (A) is the step of matrix normalisation. Its result Z is used by the
subsequent fully connected and softmax layers. Our goal is to derive m�

mX . Once obtained,
all the gradients before the convolutional feature map X can be obtained.
According to the process shown in Equation (3.6), � is a composite function of X and

it can be equally expressed as a function of each of the intermediate variables as follows.

� (X) = �1(Y) = �2(C1) = �3(A) = �4(Z) (3.7)

By the rules of differentiation, the following results can be obtained

XY = PXX, (3.8)

XC1 = [(XY)Y> +Y(XY)>] ◦S, (3.9)

XA = P>XC1P (3.10)

By the differentiation rule of a scalar-valued matrix function, we know that

X� =

〈
vec

(
m�3
mA

)
,vec(XA)

〉
= trace

((
m�3
mA

)>
XA

)
(3.11)

where vec(·) denotes the vectorization of a matrix and 〈·, ·〉 denotes the inner product.
Combining the result with XA = P>XC1P in Equation (3.10), we can obtain



CHAPTER 3. LEARNING SPD REPRESENTATION WITH REDRO 26

X� = trace
((
m�3
mA

)>
XA

)
= trace

((
m�3
mA

)>
P>XC1P

)
= trace

((
P
m�3
mA

P>
)>
XC1

)
= trace

((
m�2
mC1

)>
XC1

)
(3.12)

The last equality holds because from Equations (3.7) and (3.11) we know that X� can
also be equally written as trace

( ( m�2
mC1

)>
XC1

)
. Noting that Equation (3.12) is true for any

XC1, we can therefore derive that

m�2
mC1

= P
m�3
mA

P> (3.13)

Note that m�3
mA can be computed as m�3

mA = Û1

(
G◦ (Û>

1

m�4
mZ Û1))Û>1 , where Û1 and D̂1 are

the inverse permutated eigenvectors and eigenvalues, respectively, andG is a matrix whose
(8, 9)th entry 68 9 is defined as 5 (_8)− 5 (_ 9 )

_8−_ 9
if _8 ≠ _ 9 and 5 ′(_8) otherwise, where _8 is the

8th diagonal element of D̂1. Readers are referred to [6] for the proof of m�3
mA .

Again, combining X� = trace
( ( m�2
mC1

)>
XC1

)
with XC1 = [(XY)Y>+Y(XY)>] ◦S in Equa-

tion (3.9), it can be obtained that

trace
((
m�2
mC1

)>
XC1

)
= trace

((
m�2
mC1

)>
( [(XY)Y> +Y(XY)>] ◦S)

)
(3.14)

By the identity that trace(A>(B◦C)) = trace((B◦A)>C), we can obtain

trace
((
m�2
mC1

)>
XC1

)
= trace

((
S◦ m�2

mC1

)>
((XY)Y> +Y(XY)>)

)
(3.15)

Denoting
(
S ◦ m�2

mC1

)
with Q, and applying the identity that trace(A +B) = trace(A) +

trace(B), trace(ABC) = trace(CAB) and trace(ABC) = trace((ABC)>), we can further
simplify Equation (3.15) as

trace
((
m�2
mC1

)>
XC1

)
= trace

(
Q>((XY)Y> +Y(XY)>)

)
= trace

(( (
Q+Q>

)
Y
)>
XY

)
= trace

((
m�1
mY

)>
XY

)
(3.16)
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Again, because we know X� can also be equally expressed as trace
( ( m�1
mY

)>
XY

)
and the

last result is valid for any XY, it can be obtained that

m�1
mY

= (Q+Q>
)
Y (3.17)

By substituting the value of Q in Equation (3.17) and using the identitiy (A ◦B)> =

A> ◦B>, we then obtain

m�1
mY

=

((
S◦ m�2

mC1

)>
+

((
S◦ m�2

mC1

)>)>)
Y

=

(
S◦

(
m�2
mC1

+
(
m�2
mC1

)>))
Y (3.18)

Again, combining X� = trace
((
m�1
mY

)>
XY

)
with XY = PXY in Equation (3.8), it can be

obtained that

trace
((
m�1
mY

)>
XY

)
= trace

((
m�1
mY

)>
PXX

)
= trace

((
P>
m�1
mY

)>
XX

)
= trace

((
m�

mX

)>
XX

)
(3.19)

Again, because we know X� can also be equally expressed as trace
( (
m�
mX

)>
XX

)
and the

last result is valid for any XX, it can be obtained that

m�

mX
= P>

m�1
mY

(3.20)

This completes the proof. As can be seen, given m�
mZ , we can derive m�

mA ,
m�
mC1

, m�
mY and

then m�
mX . In the whole course, only Û1, D̂1, P, and S are needed. The first two have

been efficiently obtained via the proposed scheme ReDro in Sec. 3.3.1, while the latter
two will become known once the random grouping is performed. Now, we have all
the essential elements for back-propagation. An end-to-end learning with ReDro can be
readily implemented.

Discussion on the proposed ReDro scheme

Computational savings. As aforementioned, a computational bottleneck in SPD repre-
sentation learning is the eigen-decomposition of a 3×3 full covariance matrix. Generally,



CHAPTER 3. LEARNING SPD REPRESENTATION WITH REDRO 28

its complexity is in the order of O(33).c Without loss of generality, assuming that 3
can be exactly divided by the number of groups : , the size of each group will be 3/: .
The complexity incurred by using ReDro, which performs eigen-decomposition of the :
smaller-sized covariance matrices, will be O(33/:2). Therefore, in the theoretical sense,
the ReDro scheme can reduce the computation cost by up to :2 times.
The implementation of ReDro only requires a random permutation of the IDs of the 3

channels. For the gradient computation, it appears that compared with the case of using a
full covariance matrix, ReDro incurs extra computation involving the multiplication of P
or S in m�

mC1
, m�
mY and m�

mX (note that m�
mA needs to be computed for any eigen-decomposition

based matrix normalisation, even if ReDro is not used). Nevertheless, both P and S are
binary matrices simply induced by the random permutation. Their multiplication with
other variables can be trivially implemented, incurring little computational overhead.
Two key parameters. One key parameter is the number of groups, : . Since the

improvement on computational efficiency increases quadratically with : , a larger : would
be preferred. Meanwhile, it is easy to see that the percentage of the entries dropped by
ReDro is (1− 1

:
) ×100%. A larger : will incur more significant loss of information. As a

result, a value of : balancing these two aspects shall be used, which will be demonstrated
in the experimental study.
When : is given, the other key parameter is the “frequency” of conducting the random

permutation. Conducting it for every training sample leads to the most frequent change
of the relation dropout pattern in the ReDro scheme. As will be shown, this could make
the value of the objective function fluctuate violently, which will affect the convergence of
network training. To show the impact of this frequency, we will carry out experiments on
the random permutation at three levels, namely, epoch-level (EL), batch-level (BL), and
sample-level (SL) and hold this frequency for various intervals. For example, batch-level
with interval of 2 (“BL-2”) uses the same random permutation pattern for two consecutive
batches before refreshing. Similarly, SL-1 conducts random permutation for every training
sample during the end-to-end training process.
In addition, ReDro could bring less biased eigenvalue estimates. As is known, when

eigen-decomposition is applied to a large full covariance matrix, eigenvalue estimation
will become considerably biased (i.e., larger/smaller eigenvalues are estimated to be over-
large/over-small) when samples are not sufficient. When ReDro is used, eigenvalues (with
respect to the corresponding subspace though) will be estimated from each block sub-
matrix on the diagonal. Because the matrices are smaller in size, eigenvalue estimate
could become less biased. This property can be regarded as a byproduct of the ReDro
scheme.

cFor a symmetric matrix, the complexity of eigen-decomposition could be improved up to the order of
O(32.38) by more sophisticated algorithms though [84].



CHAPTER 3. LEARNING SPD REPRESENTATION WITH REDRO 29

3.4 Experimental Results

We conduct extensive experiments on scene classification and fine-grained image classi-
fication datasets to investigate the proposed ReDro scheme. For scene classification, the
MIT Indoor dataset [85] is used. For fine-grained image classification, the commonly used
Birds [86], Airplanes [87], and Cars [88] datasets are tested. For all datasets, the original
training and testing protocols are followed, and we do not utilise any bounding box or part
annotations. Following the literature [3], [5], we resize all images to 448× 448 during
training and testing. More details on datasets, and implementation of ReDro are provided
in the Appendix A and C.
Our experiments consist of two main parts. The first part in Sec. 3.4.1 describes

the experiments with ReDro, including its computational advantage, the impact of key
parameters, and its performance on several typical deep architectures for learning SPD
representation. The second part in Sec. 3.4.2 compares the classification performance
achieved by the two proposed methods with that of the state-of-the-art SPD representation
based methods.

3.4.1 Experiments with ReDro scheme

In this section, we present experiments with ReDro scheme. We divide the experiments
in three main parts. The first part shows the computational advantage brought by the
proposed ReDro scheme. The second parts investigates the efficiency of ReDro versus the
intensity level at which it is applied. Finally, the third part validates the performance of
ReDro via multiple typical SPD representation learning methods that explicitly use matrix
normalisation. Furthermore, we show an additional ablation study on the group number
: .

On the computational advantage of ReDro

This part compares the computational cost between the case without ReDro and the case
with ReDro. The former means that a full SPD matrix (i.e., covariance or kernel matrix)
is used.
Specifically, we experiment with (i) four typical SPD representation learning methods

based on covariance matrix, namely, MPN-COV [4], DeepCOV [6], Improved BCNN
(IBCNN) [3], and iSQRT-COV [5] and (ii) one SPD representation learning method based
on kernel matrix, namely, DeepKSPD [6]. The MPN-COV, DeepCOV, and DeepKSPD
methods conductmatrix normalisation via eigen-decomposition, while IBCNNand iSQRT-
COV realise matrix normalisation by the matrix square-rooting operation. These five
methods represent the case without using ReDro. To compare with them, we implement
ReDro within the DeepCOV and DeepKPSD methods with the ResNet-50 network as
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SPD Matrix
Dimensions

No ReDro used
Deep
-COV [6] Deep-KSPD [6] MPN-COV [4] IBCNN

[3]
iSQRT
-COV [5]

128×128 0.004 0.008 0.004 0.006 0.001
256×256 0.013 0.016 0.013 0.014 0.006
512×512 0.031 0.045 0.031 0.032 0.030
1024×1024 0.097 0.189 0.097 0.121 0.097

SPD Matrix
Dimensions

DeepCOV [6] using ReDro DeepKSPD [6] using ReDro
with
: = 2

with
: = 4

with
: = 8

with
: = 16

with
: = 2

with
: = 4

with
: = 8

with
: = 16

128×128 0.007 0.009 0.011 0.015 0.010 0.012 0.018 0.031
256×256 0.011 0.011 0.013 0.020 0.015 0.016 0.022 0.037
512×512 0.030 0.022 0.023 0.030 0.031 0.029 0.035 0.054
1024×1024 0.090 0.076 0.056 0.062 0.087 0.084 0.082 0.094

Table 3.1: Comparison of computational time (in second) for SPDmatrix estimation and
matrix normalisation by using or not using the proposed ReDro scheme. The reported
time is the sum of one forward and one backward propagations (individual propagation
time is given in the Sec. A.2 of Appendix A). The four methods to the left represent the
case not using ReDro. The case using ReDro is implemented upon the DeepCOV [6] and
DeepKSPD [6] methods with various : . The boldface numbers shows that ReDro saves
computational time compared with the cases on the left.

backbone. To this end, we only modify their COV and KSPD layers with the proposed
ReDro scheme, leaving all the other settings unchanged.
In the SPD matrix layer of these methods, computation and matrix normalisation op-

erations are often tightly coupled. It is difficult to exclude the normalisation step so as
to exactly compare with ReDro for computational cost. To be fair, the total time taken
by both steps of ReDro and matrix normalisation is used for comparison. To test the
computational cost over the covariance or kernel matrix of various sizes, we follow the
literature by applying an additional 1×1 convolutional layer to vary the number of channels
when necessary. The comparison is conducted on a computer with a Tesla P100 GPU,
12-core CPU, and 12 GB RAM. ReDro is implemented with the MatConvNet library [89]
on MATLAB 2019a.
Table 3.1 shows the timing results. Firstly, along the size of the SPD matrix, we can

observe that (i) when the size is relatively small (i.e., 256×256), ReDro is unnecessary.
This is because the eigen-decomposition does not incur significant computation cost.
Using ReDro in this case complicates the procedure and adds computational overhead;
(ii) however, when the matrix size increases to 512×512, the advantage of using ReDro
emerges, and it becomes more pronounced with a matrix size of 1024×1024. In these
cases, ReDro is computationally more efficient by 20% up to 50% than the counterparts
without ReDro (see the results in bold). In addition, in terms of the total training time,
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ReDro can significantly shorten the time. For example, on the Birds dataset, ReDro
reduces the training time of the DeepCOV method from 52.4 hours down to 24.3 hours,
with 1.3 percentage point improvement on classification accuracy, as will be detailed in
Figure 3.2.
Secondly, we test different values for the group number : in ReDro. As can be

seen, ReDro shows higher computational efficiency with : = 4 or 8 for both Deep-
COV and DeepKSPD. Specifically, the computational advantage of ReDro on DeepCOV
mainly comes from eigen-decomposition of small-sized covariance matrices, while on
DeepKSPD the advantage comes from both smaller-sized kernel matrix computation and
eigen-decomposition. The computation of kernel matrix involves more arithmetic op-
erations than that of covariance matrix, hence, it takes more computation time. ReDro
significantly reduces the computation time by replacing a full kernel matrix with a block-
diagonal one. For : = 2, we can expect from the earlier complexity analysis that its
efficiency shall be lower. For : = 16, the overhead for processing many small matrices
becomes non-trivial, not to mention the loss of more information. Since : = 4 gives rise to
a high computational efficiency (and overall good classification results, as will be shown
later), the following experiments will focus on this setting, with more discussion on : left
in Sec. 3.4.1.

On the efficiency of ReDro vs. the frequency of redrawing the channel groups

This experiment investigates the impact of the frequency of redrawing the channel-wise
grouping for ReDro on the classification performance. Based on the findings in the
previous experiment, we focus on 512×512 and 1024×1024-sized SPD matrices in this
experiment. Again, we implement ReDro with DeepCOV and DeepKSPD [6]. We begin
our investigation with DeepCOV by applying ReDro at 15 different redrawing frequency
levels, i.e., epoch-level (EL)-{100,50,20,10,5,2,1}, batch-level (BL)-{20,10,5,2,1}, and
sample-level (SL)-{6,3,1}, whose meaning is explained in Sec. 3.3.1. Their classification
accuracy is compared with those of the original DeepCOV [6].
The left part of Table 3.2 shows the results when the covariance matrix size is 512×512.

Firstly, along the frequency level, we can observe that, (i) the efficiency of ReDro indeed
varies with the frequency of redrawing channel-wise grouping; (ii) multiple frequency
levels lead to improved classification over the baseline “No ReDro.” In particular, EL-1
and EL-2 work better than others across all datasets; (iii) also, EL-1 works well with the
MIT and Cars datasets, and SL-6 works well with the Airplane and Bird datasets though.
This suggests that for some datasets, a less intensive change of random permutation, i.e.,
at epoch level (EL), is preferred when applying ReDro. We observe that in this case, using
more intensive changes, i.e., at the sample level (SL), could cause the objective function
to fluctuate violently and affect the convergence.
Secondly, we observe that DeepCOV trained with ReDro improves classification over
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its baseline on all datasets, with the improvement of 0.5∼1.3%. For example, on the
Birds dataset with the frequency level of SL-6, ReDro improves the accuracy from the
baseline 85.4% to 86.7%. The improvement could be attributed to two factors: (i) The
dropout-like regularisation effect in ReDro helps the network learn better features, and (ii)
ReDro estimates smaller covariance matrices, instead of a full 3 × 3 one, from the local
descriptors in the convolutional feature map. This helps mitigate the bias issue in the
estimation of the eigenvalues of the covariance matrix.
Beside of improving classification, ReDro at various frequency levels also shortens

the total network training time. At each epoch of training DeepCOV, ReDro saves about
40% of the GPU time. We find that it also helps the network to converge faster. Figure
3.2 shows that DeepCOV with ReDro achieves lower classification errors with a smaller
number of epochs than the baseline “No ReDro” on the Birds dataset. As seen, (i) when
ReDro is used, training the network, including the one achieving the highest accuracy,
generally takes about half of the time of the baseline (indicated by the vertical dotted line),
regardless of the frequency level; (ii) with ReDro, to train a network to achieve comparable
performance with the baseline, it only takes about 36% (i.e., down from 52.4 hours to
19.0 hours) of the baseline training time. The similar observations are also made on other
datasets.
The middle part of Table 3.2 shows the result when the covariance matrix size is

increased to 1024×1024. Note that few existing networks have ever tried such a large
matrix. We use the DeepCOV network with ResNet-50 as the backbone, and apply 1×1
convolution to reduce the number of feature channels from 2048 to 1024. We call this
network “DeepCOV-ResNet”. We would like to highlight that the DeepCOV-ResNet
used in this experiment is an improved variant of the one reported in our ECCV paper
[90]. The improvements are as follows: (i) the 1×1 convolution operation now has a bias
term, (ii) batch normalisation and ReLU activation are applied after the 1×1 convolution
operation, and (iii) the network is trained with the Adam optimiser instead of SGD. The
improved DeepCOV-ResNet performs better across all datasets as can be seen from the
baseline results. Due to the longer training time caused by the larger covariance matrix,
we sample eight out of the 15 frequency levels in Table 3.2 and test them. From the results,
we can observe that, (i) DeepCOV-ResNet with ReDro achieves comparable results with
the baseline consistently across all datasets; (ii) The difference between the results of
DeepCOV-ResNet with ReDro and DeepCOV-ResNet without ReDro varies in the range
of 0.1∼1% across different frequency levels. Though there is a slight degradation in
performance, ReDro helps reduce the training time of DeepCOV-ResNet by up to 50%.
This performance degradation can be partially reduced by switching to a smaller : value.
The results shown in Table 3.2 is with : = 4, i.e., four blocks in the block-diagonal
covariance matrix. A higher : value may remove some important feature relationships
from the covariance matrix and cause the degradation of classification performance. We
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perform further experiments to investigate the impact of : values on DeepCOV-ResNet in
Sec. 3.4.1. Nevertheless, using a smaller value of : in ReDro does not save much training
time as compared to a larger value. A thorough investigation on a smaller value, i.e., : = 2,
is presented in the right part of Table 3.2 and described below.
The right part of Table 3.2 shows the result of ReDro applied to a kernel matrix via

the DeepKSPD network. This network produces a 512×512-dimensional kernel matrix.
Again, considering the longer training time in this case, we focus on testing the frequency
levels used in the DeepCOV-ResNet experiments but use the setting of : = 2 instead.
The obtained classification accuracy is compared with the reproduced results using the
source code supplied by the original work [6]. From the results, we can observe that,
(i) for all frequency levels, DeepKSPD with ReDro outperforms the baseline results on
the Cars dataset (the best performance is achieved by both EL-20 and BL-20); (ii) on
the Airplane dataset, one frequency level (i.e., EL-5) outperforms the baseline and the
rest achieve equal or comparable results with respect to the baseline; (iii) on the Birds
dataset, only one frequency level (i.e., EL-5) achieves equal result as the baseline and the
rest achieve comparable results to baseline; iv) on the MIT dataset, all frequency levels
do not perform as well as the baseline. This degradation could be due to the removal of
pairwise relationships between visual descriptors from the kernel matrix by ReDro. We
also perform experiments with : = 4 on some frequency levels across all datasets. We
found that a larger value of : could further deteriorate the ReDro performance.

On the performance of ReDro with typical methods

The above experiments investigates the performance of ReDro by integrating it into Deep-
COV and DeepKSPD. Below, we further integrate ReDro into other typical SPD repre-
sentation methods that use matrix normalisation as an important step, namely, Improved
BCNN [3], MPN-COV [4], and iSQRT-COV [5]. Since iSQRT-COV uses the matrix
square-rooting normalisation without involving eigen-decomposition, we investigate the
regularisation effect of ReDro for it. This also applies to BCNN [1] which does not have
a matrix normalisation step. Since most of these methods are originally proposed for
fine-grained image classification, we focus on the datasets of Airplane, Cars, and Birds.
Table 3.3 shows the results usingReDro in typical SPDvisual representationmethods. In

total, six scenarios are implemented with these methods, using differently sized covariance
matrices. For each scenario, ReDro is used at the same frequency level. We compare
the baseline “No ReDro” with the cases in which ReDro is integrated. As can be seen,
(i) except iSQRT-COV, networks trained with ReDro generally outperform their baseline
counterparts. ReDro-based iSQRT-COV is comparable with the baseline; (ii) except for
a few cases, the improvement is consistent across all datasets. Overall, improvements
higher than 1% can be commonly seen, with the maximum one being 2% (i.e., IBCNN
with ReDro (: = 2) on the Cars dataset); (iii) for the results from ReDro with : = 2 and



CHAPTER 3. LEARNING SPD REPRESENTATION WITH REDRO 36

Dataset Training mode DeepCOV-ResNet
(1024×1024)

DeepKSPD
(512×512)

DeepCOV
(512×512)

Airplane
No ReDro 87.7* 90.0* 88.7

ReDro (: = 2) 86.8 89.2 89.3*
ReDro (: = 4) 86.5 89.1 89.2

Cars
No ReDro 91.6 91.6 91.7

ReDro (: = 2) 92.0* 92.6* 90.8
ReDro (: = 4) 91.1 91.7 92.2*

Birds
No ReDro 86.7 84.8 85.4

ReDro (: = 2) 86.9* 84.8 86.5
ReDro (: = 4) 86.2 83.0 86.7*

Dataset Training mode IBCNN
(512×512)

BCNN
(512×512)

MPN-COV
(256×256)

iSQRT-COV
(256×256)

Airplane
No ReDro 87.0 85.3 86.1 91.1

ReDro (: = 2) 88.8* 86.6* 87.4 90.6
ReDro (: = 4) 88.6 86.6* 88.2* 91.1

Cars
No ReDro 90.6 89.1 89.8 92.6

ReDro (: = 2) 92.6* 90.9* 91.4 92.3
ReDro (: = 4) 91.2 90.5 91.7* 92.6

Birds
No ReDro 85.4 84.1 82.9 88.5

ReDro (: = 2) 85.5* 84.6* 83.5* 88.0
ReDro (: = 4) 84.6 83.9 83.2 88.6*

Table 3.3: Results using ReDro in typical SPD visual representation methods. The
results higher than the baseline (indicated with “No ReDro”) are shown in bold. The
IBCNN [3], BCNN [1], and iSQRT-COV [5] networks are trained (including the baseline)
with the settings in their original papers. As for MPN-COV [4], it is trained with the
same pretrained network as IBCNN, BCNN, DeepCOV, and DeepKSPD for consistency.
Note that to ensure a fair of comparison, we report the classification result obtained by
softmax predictions as usual, and do not utilise the additional step of training a separate
SVM classifier. The highest results on each method are marked by asterisks.

4, they are comparable or the latter is slightly better (e.g., higher in 10 out of the total 18
results). Taking the computational saving into account, : = 4 is an overall better option.
Below, we provide some explanations regarding the performance of iSQRT-COV.All the

methods except iSQRT-COVuse a backbonemodel that is pretrainedwithout incorporating
the SPD representation layers. That is, these layers are only incorporated later and just
fine-tuned with a fine-grained image dataset. On the other hand, the backbone model in
iSQRT-COV has incorporated the SPD representation layers when it is pretrained, and
these layers are also further fine-tuned with the fine-grained image dataset. This helps
iSQRT-COV achieve better performance. Meanwhile, as noted previously, iSQRT-COV
[5] utilises a special matrix normalisation without eigen-decomposition. Our ReDro
could provide a general power normalisation by the eigen-decomposition based matrix
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Datasets→ MIT Airplane

Methods→ DeepCOV-ResNet DeepCOV DeepCOV-ResNet DeepCOVver. 1024 ver. 512 ver. 1024 ver. 512
No ReDro 84.6 84.6 79.2 87.7 84.9 88.7

Va
lu
e
of
:

fo
rR

eD
ro 2 84.0 84.3 81.2 87.0 86.2 89.3

3 84.3 84.0 80.3 86.4 86.1 89.2
4 84.3 83.0 80.5 87.3 86.2 89.2
8 82.7 81.4 78.6 86.3 85.6 88.1
16 79.7 78.5 73.6 85.8 85.0 87.3

Datasets→ Cars Birds

Methods→ DeepCOV-ResNet DeepCOV DeepCOV-ResNet DeepCOVver. 1024 ver. 512 ver. 1024 ver. 512
No ReDro 91.6 89.9 91.7 86.7 86.1 85.4

Va
lu
e
of
:

fo
rR

eD
ro 2 91.3 91.3 90.8 86.8 86.3 86.5

3 91.2 90.6 92.3 86.3 86.1 85.7
4 91.4 90.2 92.2 86.2 85.6 86.7
8 89.8 87.9 91.0 85.4 84.2 83.4
16 87.1 84.1 87.2 84.0 81.9 81.0

Table 3.4: Impact of the group number : in ReDro with DeepCOV [6] and DeepCOV-
ResNet. The results higher than without the ReDro are shown in bold.

normalisation and even access a wider range normalisation functions.

On the performance of ReDro vs. group number :

To gain more understanding about the group number : in ReDro, we implement Re-
Dro using different values of : with DeepCOV-ResNet and DeepCOV. Two versions of
DeepCOV-ResNet are used for the experiments. The first version learns a 1024×1024
covariance representation which has been used in the previous experiments. The second
version learns a 512×512 covariance representation by reducing the number of feature
channels of ResNet-50 from 2048 to 512 with the 1×1 convolution. We denote the first
and second version as DeepCOV-ResNet version 1024 and DeepCOV-ResNet version
512, respectively. Table 3.4 shows that, (i) for different methods, in most of the cases,
: = {2,3,4} yields overall better performance than the baseline. These settings of : take
less computational time during training than the baseline; (ii) for different matrix sizes,
overall the setting of : = 2 performs better. Though there is less computational benefit
with : = 2, it is still faster than the baseline; (iii) larger values of : , i.e., 8 and 16, pro-
duce inferior results because they cause a significant amount of information loss from the
original full covariance matrix. Furthermore, if the matrix size is not large enough (i.e.,
256×256), the computational benefit with a larger : value may be limited. Overall, our
ReDro with a setting of smaller : value is able to achieve comparable performance with
the baseline at a reduced computational cost.
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Methods Backbone Airplane Cars Birds
VGG-16 [18]

VGG-16

76.6 79.8 70.4
NetVLAD [91] 81.8 88.6 81.6
NetFV [92] 79.0 86.2 79.9
BCNN [1] 83.9 90.6 84.0
CBP [2] 84.1 91.2 84.3
LRBP [28] 87.3 90.9 84.2
KP [25] 86.9 92.4 86.2
HIHCA [93] 88.3 91.7 85.3
Improved BCNN [3] 88.5 92.0 85.8
SMSO [79] – – 85.0
MPN-COV [29] 89.9 92.2 86.7
G2DeNet [29] 89.0 92.5 87.1
iSQRT-COV [5] (reproduced)† 88.5 86.4 78.5
DeepCOV [6] 88.7 91.7 85.4
DeepKSPD [6] 90.0 91.6 84.8
DeepCOV+ ReDro (ours) 89.2 92.2 86.7
CBP [2]

ResNet-50

81.6 88.6 81.6
KP [25] 85.7 91.1 84.7
SMSO [79] – – 85.8
iSQRT-COV [5] 89.5 91.7 87.3
DeepCOV-ResNet 87.7 91.6 86.7
DeepCOV-ResNet+ ReDro (ours) 86.8 92.0 86.9

Table 3.5: Comparison between the proposed methods and other SPD representation
methods in terms of classification accuracy (%). The performance of existing SPD
representation methods are quoted from the original papers. The best methods across
datasets and CNN backbones are marked in bold. †With the same hyper-parameter
settings, CNN backbone and training strategy as [6], and default iSQRT-COV iterations
of 5 times.

3.4.2 Comparison with Other Methods

In this section, we compare our proposed methods with the existing SPD representation
methods. Specifically, we compare with fifteen state-of-the-art methods, namely, VGG-16
[18], NetVLAD [91], NetFV [92], BCNN [1], CBP [2], LRBP [28], KP [25], HIHCA
[93], Improved BCNN [3], SMSO [79], MPN-COV [29], G2DeNet [29], iSQRT-COV [5],
DeepCOV [6], and DeepKSPD [6]. For fairness, we divide them into two groups based
on which CNN backbone they have used, i.e., VGG-16 or ResNet-50.
The comparison is shown in Table 3.5. For ReDro based DeepCOV methods, we report

the best results from Table 3.2. The top part of Table 3.5 shows the results of the methods
that uses the VGG-16 network as the backbone. As shown in the table, (i) our ReDro
based DeepCOV method (indicated as “DeepCOV+ReDro” in the table) achieves compa-
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rable results with the existing methods on all three datasets; (ii) Our DeepCOV+ReDro
performs better than many existing methods. In terms efficiency, our DeepCOV+ReDro
is significantly faster than the exiting methods involving matrix normalisation of larger
SPD matrices, i.e., Improved BCNN, MPN-COV, G2DeNet, iSQRT-COV, DeepCOV, and
DeepKSPD. The better result of G2DeNet [29] on the Cars and Birds datasets than our
proposed methods could be due to the fact that its backbone network is pre-trained with
the second-order representation while the backbone networks pre-trained in our methods
are just the commonly used ones which do not involve any second-order representation.
Using a backbone network pre-trained in the way of G2DeNet may further improve the
performance of our proposed methods.
The bottom part of Table 3.5 shows the results of the methods that use the ResNet-50

network as the backbone. As can be seen, (i) our DeepCOV-ResNet+ReDro (indicated as
“DeepCOV-ResNet+ReDro” in the table) method outperforms other methods on the Cars
dataset and performs comparably to state-of-the-art methods on the other two datsets.
Note that, DeepCOV-ResNet+ReDro is significantly faster than the existing methods; (ii)
On the Birds dataset, iSQRT-COV attains better results than the proposed methods. This
is again due to the use of a backbone network that has been pre-trained with second-
order representation in the method. However, our DeepCOV-ResNet+ReDro is faster than
iSQRT-COV and will enjoy the performance improvement if the same the pre-trained
backbone model is used.

3.5 Conclusion

In this chapter, we propose a method for efficient eigen-based normalisation in SPD
visual representations, i.e., covariance and kernel matrix representations. The proposed
method, ReDro, exploits the efficiency of computing the eigen-decomposition of the
block-diagonal matrix to shorten the end-to-end SPD matrix normalisation time. In our
conducted experiments, we demonstrated the benefits of ReDro with SPD matrix sizes up
to 1024× 1024 dimensions. In those experiments, we show how ReDro can effectively
reduce the matrix normalisation time of large SPD matrices during network training. By
principle, ReDro can also be applied to SPD matrix size larger than 1024× 1024 for
reducing the matrix normalisation cost during training time.
We also show that besides improving the matrix normalisation time, ReDro also im-

proves the network performance and significantly reduces the network convergence time.
The performance improvement and reduced convergence time may be attributed to the
following factors: (1) The small matrices it estimates are from a lesser number of channels
than a full matrix. Therefore, the estimated eigenvalues in those small matrices become
less biased which leads to better SPD matrix estimate. (2) The dropout-like regularisation
of ReDro encourages the network to learn better representation.
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In the future, we plan to apply ReDro to perform matrix normalisation of much larger
SPD matrices. In addition, we would like to apply ReDro to other applications besides
image classification such as object detection, semantic segmentation and object tracking.



Chapter 4

FastCOV for Efficiently Learning
Large-sized SPD Visual Representation

The work of this chapter is under the review of IEEE Transactions on Pattern
Analysis and Machine Intelligence (TPAMI).

Symmetric positive definite (SPD) visual representations are effective and popular due
to their ability of capturing high-order statistics describing images. When computed over
features of deep networks, eigen-decomposition of multiple SPD matrices is typically
required to perform a key step, called matrix normalisation. This results in a significant
computational cost, especially when the number of channels used to compute matrices
is large. In this chapter, we propose a novel scheme, called FastCOV, which exploits
the intrinsic connection between eigensytems of XX> and X>X to address this situa-
tion. Specifically, it computes position-wise covariance matrix upon convolutional feature
maps instead of the typical channel-wise covariance matrix. As the spatial size of feature
maps is usually much smaller than the channel size, conducting eigen-decomposition of
the position-wise covariance matrix avoids rank-deficiency, while being faster than the
decomposition of the channel-wise covariance matrix. Finally, the eigenvalues and eigen-
vectors of the normalised channel-wise covariance matrix are retrieved by the connection
of the XX> and X>X eigen-systems. As experimentally demonstrated, the proposed
scheme reduce the computational cost of learning large SPD visual representations with
advanced CNNs that have higher number of feature channels but low resolution feature
maps and improve the recognition performance.

4.1 Introduction

In computer vision, learning quality visual representation is challenging. In recent years,
representing images with local descriptors and pooling each into a global representation
has been proven effective. Among the pooling methods, covariance matrix based pooling,

41
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which exploits the second-order information of local descriptors, has gained substantial
popularity. Since covariance matrix is symmetric positive definite (SPD), such a represen-
tation is often called an SPD visual representation. It has been successfully used in many
vision tasks, including generic image classification [4], [65], image set classification [66],
image segmentation [11], activity recognition [67], [68], few-shot learning [47], [69], and
fine-grained image classification [1]. Inspired by the success of deep learning, several
pieces of pioneering work have incorporated SPD visual representation into convolutional
neural networks (CNNs) and performed investigation on important issues such as matrix
function back-propagation [11], compact matrix estimation [2], matrix normalisation [3],
[70], [71], and kernel-based extension [6]. These advances improve both the effectiveness
of SPD visual representations and image recognition performance.
Despite the above successes, end-to-end learning of SPD visual representations within

CNN remains a computationally challenging task because (i) the number of coefficients of
covariance matrix increases quadratically with the number of channels in a convolutional
feature map, and (ii) eigen-decomposition is often needed to normalise the spectrum of
covariance matrix for each training sample during end-to-end learning. The latter factor
leads to significant computational overheads, especially considering that recent advanced
deep neural networks use many channels in their final convolutional layers. Efforts
have recently been made to address this situation. For example, a dimension reduction
layer is used to reduce the channel number beforehand for decreasing the size of the
resulting covariance matrix [4]. In addition, square rooting of a covariance matrix via so-
called Newton-Schulz iterations [3], [5], and the spectral power normalisation via matrix-
matrix multiplications, called MaxExp(F) [70], [71], have been shown to be effective and
fast. Orthogonal to this line of research, we are interested in whether this computational
challenge can be mitigated by better exploiting the properties of eigen-decomposition of
an SPD matrix.
With the above motivation, we propose a method to efficiently carry out matrix normal-

isation for end-to-end learning of large SPD visual representation. Our method, called
“fast covariance (FastCOV)”, is inspired by the fact that the eigensystems of two SPD ma-
trices XX> and X>X are intrinsically connected [94]. To take advantage of the connection
between these two eigensystems, we first compute a position-wise covariance matrix from
a convolutional feature map instead of the channel-wise covariance matrix i.e., instead of
the commonly used outer product over features, we apply the inner product. This eigen-
decomposition of such amatrix captures the spectrum of the featuremaps of deep networks
very fast if the spatial size of feature maps (e.g., 7×7) is smaller than their channel number
(e.g., 1024), which is very common in CNNs. Moreover, the eigen-decomposition on
this much smaller position-wise covariance matrix is not only faster but it does not suffer
from the rank deficiency. Finally, the matrix normalisation is performed on eigenvalues,
and the eigenvalues and eigenvectors of the normalised channel-wise covariance matrix
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Figure 4.1: The classification accuracy (average over Airplane [87], Birds [86] and Car
[88] datasets) vs. training time (per single image) of our methods and popular SPD
representation methods. The size of the SPD matrix produced by different methods is
displayed in square brackets. Among the methods that produce the same SPDmatrix size,
our methods achieve comparable or better performance than competitors while taking less
time for training. More details are given in Sec. 4.4.

can be retrieved by the connection of the two eigensystems. This step is very efficient
as it only requires a matrix-matrix multiplication. Finally, we derive the required matrix
gradients to facilitate end-to-end training of this method via back-propagation, and discuss
computational savings of FastCOV.
Similar to ReDro in the previous chapter, FastCOV facilitates efficient learning of SPD

representation and provides improved image recognition performance (Fig. 4.1 illustrates
this point and Sec. 4.4 provides further experimental details). The proposed scheme can
be formulated as network layers to be readily inserted into the existing SPD representation
methods with almost no changes in the network architecture.
Our main contributions are summarised as follows:

• To improve the efficiency of learning large SPD visual representation with matrix
normalisation, FastCOV scheme is proposed. It utilises the connection between the
eigensystems of the SPD matrices XX> and X>X. To the best of our knowledge,
the proposed scheme is new with respect to the related literature.

• FastCOV is designed to ensure only minimal changes to the original network and
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negligible computational overheads. We provide the forward and backward propa-
gation formulas for the proposed method, and discuss its properties.

Extensive experiments are conducted on one scene classification dataset and three fine-
grained image classification datasets to verify the network training efficiency and image
recognition performance of the proposed scheme.

4.2 Related Work

In this section, we provide a review of the existing methods relevant to our proposed
FastCOV for SPD visual representation learning. In particular, we will review the methods
that perform covariance matrix computation since it is directly related to our proposed
method. We will analyse those methods from the perspective of their covariance matrix
computation and matrix normalisation.
In the literature, several works have proposed methods for conducting efficient covari-

ance representation learning. Based on their focus they can be divided into three main
groups: efficient matrix normalisation, compact covariance estimation and dimension
reduction. Below we present a brief review of methods in three groups.
Efficient matrix normalisation methods focus on developing efficient and effective

normalisation methods for covariance representation estimation. The early ideas were
based on element-wise normalisations [1], [70], [95]. More recent ideas are based on
matrix logarithm [11] and matrix power normalisation [4], [70], [95], [96] because they
usually produce better covariance representation. However, both matrix-logarithm and
matrix-power normalisations typically involve the eigen-decomposition of a covariance
matrix, whose worst-case computational complexity O(33) is prohibitive. As the matrix
normalisation has to be applied for each training sample in both forward and backward
propagation steps, the long runtime of matrix normalisation, therefore, becomes a com-
putational bottleneck in the end-to-end learning of SPD visual representation.
Therefore, recent literature has focused on reducing the computation of matrix nor-

malisation. For example, a special case of matrix power normalisation, called matrix
square-root normalisation [3], [5], [24], approximately calculates the matrix square root
by the Newton-Schulz iteration. In [3], the Newton-Schulz iteration makes the forward
step computationally more efficient (only matrix-matrix multiplications are involved) but
the backward propagation step still relied on solving a Lyapunov equation, which has the
complexity at the same level as eigen-decomposition. In contrast, the work in [5] solved
matrix square-rooting by unrolling the Newton-Schulz iteration for forward and backward
propagation steps. Orthogonal to these steps, a more versatile case of matrix power nor-
malisation, called MaxExp, performs an approximate matrix-power normalisation [70]. It
has been solved by a loop of matrix-matrix multiplications [70] and a tree-structured set
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of matrix-matrix multiplications [71].
Although approaches in [3], [5] have computational advantage and achieve promising

performance by using matrix square-rooting, their methods do not generalise to a generic
matrix power normalisation. Moreover, while approaches [70], [71] can realise an approx-
imate matrix power normalisation by mere matrix-matrix multiplications, their spectral
profile cannot generalise to an unrestricted family of normalisation functions. These
limitations motivate us to mitigate the computational issue of matrix normalisation from
different perspectives.
Compact covariance estimation methods focus on developing lower dimensional

covariance representation. Three pioneering methods in this line are compact bilinear
pooling (CBP) [2], factorised bilinear pooling (FBP) [97] and low-rank bilinear pooling
(LRBP) [28]. CBP uses random projection based Random Maclaurin [27] and Tensor
Sketch [26] techniques to reduce the matrix dimension. FBP and LRBP use low-rank
projections of the covariance matrix in the classifier. Two more recent works [7], [98]
improved the efficiency of CBP while maintaining its effectiveness. Different from the
CBP, FBP and LRBP methods, DBT-Net [73] proposes to compute compact group-wise
covariance matrices. Their idea was to partition the feature channels into several groups
based on their similarity and calculate a covariance matrix from each group. They show
that a simple concatenation of those group-wise covariance matrices results in a lower
dimensionality. Several works such as [99]–[101] also adopted channels grouping. Our
FastCOV, instead of competing with these works, complements them and could be jointly
used to mitigate the computational issue of matrix normalisation of these works.
Dimension reduction methods focus on reducing the computation cost of covariance

matrix estimation from a different perspective. The primary motivation of these methods
is to help the above methods to reduce their feature dimension. One of the dimension
reduction techniques widely used in covariance matrix based representation literature is
a linear projection of higher dimensional feature channels to lower dimensional feature
channels using 1×1 convolution operation. The idea was first seen in a seminal work by
Li et al. [4] and the motivation was to obtain a compact channel-wise covariance matrix
from a less number of channels for efficiency since existing deep networks such as ResNet
have a large number of feature channels. In a more recent work by the authors of [4] ,
the idea of group convolution is proposed for reducing the dimension of the covariance
matrix further without much sacrifice on the performance [29]. Orthogonal to the ideas
in [4], [29], other transformations are also proposed such as non-linear structured matrix
transformation [76]–[79]. Our work is compatible with these techniques and can be jointly
used to obtain better covariance representation.



CHAPTER 4. LEARNING SPD REPRESENTATION WITH FASTCOV 46

4.3 The Proposed Method

In this section, we describe our fast covariance (FastCOV) method. We also provide
its forward and backward propagation steps. Furthermore, we discuss its computational
advantages.

4.3.1 Fast Covariance (FastCOV)

Let X3×= be a data matrix consisting of ==Fℎ feature vectors of dimension 3. It is well
known that the eigensystems of X>X and XX> have the following relationship [94]:

i. The two matrices share the same set of non-zero eigenvalues {_1,_2, · · ·,_A}, where
A is the rank of X;

ii. Let u8 be the eigenvector of X>X corresponding to eigenvalue _8. The unnormalised
and normalised eigenvector v′

8
and v8 of XX> corresponding to _8 can be expressed

as v′
8
=Xu8 and v8 = 1√

_8
Xu8 respectively.

During learning the SPD visual representation, 3 is the number of channels while ==Fℎ,
which is the product of the width and height of a convolutional featuremap. Since typically
= � 3, the above relationship between eigensystems motivates us to efficiently conduct
matrix normalisation as follows. For a given convolutional feature map, we first compute
X>X and obtain its eigenvalues and eigenvectors. Subsequently, matrix normalisation can
be conducted based on these eigenvalues as they are shared between two eigensystems
according to point (i). Finally, the eigenvectors for the full covariance matrix XX> are
obtained according to the relationship detailed in point (ii) above. The whole process
incurs significantly less computation as eigen-decomposition of X>X of size =×= is much
faster than eigen-decomposition of XX> of size 3 × 3.
An overview of the proposed FastCOV is shown in Figure 4.2. From the left end,

an image is fed into a CNN backbone, and the last convolutional feature map with a
size of F×ℎ and with 3 channels is obtained. FastCOV firstly computes a position-wise
covariance matrix �0 with a size of =× = (where ==Fℎ). The eigenvalue matrix D and
eigenvector matrix U of matrix �0 are then obtained by applying eigen-decomposition.
A normalised position-wise covariance matrix �1 is then created by applying matrix
normalisation operation on the eigenvalues as �1 = U 5 (D)U>, where 5 (·) can be any
valid normalisation function such as matrix-square rooting [3] or matrix logarithm [11],
simply applied to diagonal elements ofD. Finally, the normalised channel-wise covariance
matrix is restored by left and right multiplying the data matrix X to �1 as �2 = X�1X>.
This completes the proposed FastCOV scheme.
To conclude, when the number of channels, 3, in a convolutional feature map is large

in comparison to =, computing the channel-wise covariance matrix yields a large matrix,
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Figure 4.2: Proposed FastCOV scheme for mitigating the computational issue of the
matrix normalisation in learning large SPD visual representation. EIG denotes eigen-
decomposition.
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and the matrix normalisation step is costly due to the high cost of eigen-decomposition.
By computing the position-wise covariance matrix instead, FastCOV obtains a small
matrix whose eigen-decomposition is very fast by comparison. To recover the normalised
channel-wise covariance matrix, mere two matrix-matrix multiplications are required.

The forward propagation in FastCOV

Recall that X3×=, where ==Fℎ, is the data matrix obtained by reshaping a convolutional
feature map. The position-wise covariance matrix �0 is computed as

�0 = X>X. (4.1)

Matrix normalisation is applied to matrix �0 as

�1 = 5 (�0) = U 5 (D)U>, (4.2)

where matrices D and U consist of the eigenvalues and eigenvectors of �0, respectively,
and 5 (·) is a matrix normalisation function.
The normalised channel-wise covariancematrix is obtained by left and right multiplying

the matrix X to the normalised position-wise covariance matrix �1 as

�2 = X�1X>. (4.3)

Algorithm 2 summarises the forward steps of FastCOV.

Algorithm 2: The forward steps of proposed Fast Covariance representation
scheme (FastCOV)
Input: Convolutional feature map X3×=.
1. Compute a position-wise covariance matrix �0 = X>X;
2. Apply matrix normalisation operation on �0 and obtain normalised
position-wise covariance matrix �1 = U 5 (D)U>;
3. Obtain normalised channel-wise covariance matrix �2 = X�1X>.

The backward propagation in FastCOV

To derive the gradients for back-propagation in FastCOV, the composition of functions
from the feature map X to the objective function � (X) is illustrated as follows:

X→ X>X︸︷︷︸
�0

→ 5 (�0)︸︷︷︸
�1

→ X�1X>︸  ︷︷  ︸
�2

→ ·· · layers · · · → � (X)︸︷︷︸
Objective

. (4.4)
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�2 is used by the subsequent fully connected and softmax layers. Our goal is to derive
m�
mX . Once obtained, all gradients before the convolutional feature map X can be routinely
obtained.
According to Equation (4.4), � is a composite function that has been applied to X and

it can be equally expressed as a function of each of the intermediate variables as follows.

� (X) = �1(�0) = �2(�1) = �3(�2) (4.5)

By the rules of differentiation, the following results can be obtained

X�0 = (XX)>X+X>(XX) (4.6)

X�1 = 5 (X�0) (4.7)

X�2 = X(X�1)X> +X�1(XX)> + (XX)�1X> (4.8)

By the differentiation rule of a scalar-valued matrix function, we know that

X� =

〈
vec

(
m�3
m�2

)
,vec(X�2)

〉
= trace

((
m�3
m�2

)>
X�2

)
(4.9)

where vec(·) denotes the vectorization of a matrix and 〈·, ·〉 denotes the inner product.
Combining the result with X�2 = X(X�1)X> +X�1(XX)> + (XX)�1X> in Equation (4.8),
we can obtain

X� = trace
((
m�3
m�2

)>
X�2

)
= trace

((
m�3
m�2

)>
(X(X�1)X> +X�1(XX)> + (XX)�1X>)

)
(4.10)

By the identity that trace(A+B) = trace(A) + trace(B), we can obtain

X� = trace
((
m�3
m�2

)>
X(X�1)X>

)
+ trace

((
m�3
m�2

)>
(X�1(XX)> + (XX)�1X>)

)
(4.11)
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Denoting m�3
m�2

with A, we can further simplify Equation (4.11) as

X� = trace
(
A>(X(X�1)X>)

)
+ trace

(
A>(X�1(XX)> + (XX)�1X>)

)
= trace

(
A>X(X�1)X>

)
+ trace

(
A>X�1(XX)>

)
+ trace

(
A>(XX)�1X>

)
= trace

(
X>A>X(X�1)

)
+ trace

(
(XX)�1X>A

)
+ trace

(
�1X>A>(XX)

)
= trace

(
X>A>X(X�1)

)
+ trace

(
�1X>(A+A>) (XX)

)
= trace

((
m�3
m�1

)>
(X�1)

)
+ trace

((
m�3
mX

)>
(XX)

)
(4.12)

The last equality holds because from Equations (4.5) and (4.9) we know that X� can

also be written as trace
((

m�3
m�1

)>
(X�1)

)
+ trace

((
m�3
mX

)>
2
(XX)

)
. Substituting the value of A,

from Equation (4.12) we can therefore derive that

m�3
m�1

= (X>A>X)> = X>AX = X>
m�3
m�2

X (4.13)

m�3
mX

= (�1X>(A+A>))> = (A> +A)X�1 =

((
m�3
m�2

)>
+

(
m�3
m�2

))
X�1 (4.14)

Note that m�2
m�0

can be computed as m�2
m�0

= U
(
G◦ (U> m�3

m�1
U))U>, where U and D are the

eigenvectors and eigenvalues, respectively, and G is a matrix whose (8, 9)th entry 68 9 is
defined as 5 (_8)− 5 (_ 9 )

_8−_ 9
if _8 ≠ _ 9 and 5 ′(_8) otherwise, where _8 is the 8th diagonal element

of D. Readers are referred to [6] and [11] for the proof of m�2
m�0

.

Again, combing X� = trace
((

m�1
m�0

)>
X�0

)
with X�0 = (XX)>X +X>(XX) in Equation

(4.6), it can be obtained that

X� = trace
((
m�1
m�0

)>
X�0

)
= trace

((
m�1
m�0

)>
((XX)>X+X>(XX))

)
= trace

(((
m�1
m�0

)
X> +

(
m�1
m�0

)>
X>

)
(XX)

)
= trace

(((
m�1
m�0

)
+

(
m�1
m�0

)>)
X>(XX)

)
= trace

((
m�1
mX

)>
(XX)

)
(4.15)
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The last equality holds because from equations (4.5) and (4.15) we know that X� can

also be equally written as trace
((
m�1
mX

)>
(XX)

)
. Noting that Equation (4.15) is true for any

XX, we can obtain that
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(4.16)

However, since �2 involves matrix X and �1, i.e., �2 = X�2X>, m�
mX is comprises of m�3

mX
from Equation (4.12) and m�1

mX from Equation (4.15). Combining m�3
mX and m�1

mX , it can be
obtained that

m�1
mX

=
m�1
mX
+ m�3
mX

= X
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m�1
m�0

)>
+

(
m�1
m�0

))
+

((
m�3
m�2

)>
+

(
m�3
m�2

))
X�1 (4.17)

This completes the proof. In this way, when m�
m�2

is computed, we can obtain m�
m�1

, m�
m�0

, and
then m�

mX . Only U and D are needed in the whole process. They can be efficiently obtained
via the proposed FastCOV scheme described in Sec. 4.3.1. An end-to-end learning can be
readily implemented with this result of back-propagation.

Discussion on computational savings by FastCOV

The computational complexity of eigen-decomposition of a 3 × 3 matrix is generally in
the order of O(33). Since FastCOV performs eigen-decomposition on a position-wise
covariance matrix with a size of = × =, where = = Fℎ, the computational complexity
becomes O((Fℎ)3). Given that in recent CNNs such as ResNet [12], Fℎ is much smaller
than 3, that is Fℎ � 3, the computational cost of performing eigen-decomposition on a
position-wise covariance matrix is substantially lower than that performed on a channel-
wise covariance matrix with a size of 3 × 3. Thus, the improvement is in the order of
( 3
Fℎ
)3 times.

The implementation of FastCOV involves one extra step with two matrix-matrix multi-
plications (i.e., X�1X>) to compute the normalised channel-wise matrix �2. However, the
step is insignificant compared to eigen-decomposition overheads of ordinary SPD repre-
sentations. The gradient computation of m�

mX also involves the extra step of computing m�
m�1

,
some additional matrix multiplications with X and �1, and matrix addition with the term
related to m�

m�2
. These matrix addition and multiplication operations are computationally
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inexpensive. In fact, the step for obtaining m�
m�0

is required for any based matrix normali-
sation method based on eigen-decomposition, regardless of whether FastCOV is used or
not. Moreover, since the size of the matrix m�

m�1
is smaller in our case, the computation of

m�
m�0

takes significantly less runtime.

4.4 Experimental Results

We conduct extensive experiments on scene classification and fine-grained image clas-
sification datasets to investigate the proposed ReDro and FastCOV schemes. For scene
classification, the MIT Indoor dataset [85] is used. For fine-grained image classification,
the commonly used Birds [86], Airplanes [87], and Cars [88] datasets are tested. For all
datasets, the original training and testing protocols are followed, and we do not utilise any
bounding box or part annotations. Following the literature [3], [5], we resize all images
to 448×448 during training and testing. More details on datasets and implementation of
FastCOV are provided in the Appendix B and C.
Our experiments consist of two main parts. Sec. 4.4.1 describes the experiments with

FatCOV, including its computational advantage, and its performance on several typical
deep architectures for learning SPD representation. Sec. 4.4.2 compares the classification
performance achieved by the two proposed methods with that of the state-of-the-art SPD
representation based methods.

4.4.1 Experiments with the FastCOV scheme

This section presents experiments with the FastCOV scheme. We divide the experiments in
two main parts. The first part shows the computational advantage brought by the proposed
FastCOV scheme. The second part shows the performance of the FastCOV scheme with
the two main-stream CNN networks widely used in the literature.

Computational advantage of FastCOV

This part compares the computational cost of obtaining covariance representation with
FastCOV and other methods that use matrix normalisation. Specifically, we compare
it with four typical covariance matrix based representation methods, namely, iSQRT-
COV, IBCNN, MPN-COV, and DeepCOV. We do not compare with DeepKSPD since
it focuses on SPD representation based on kernel matrix. All four covariance matrix
based methods compute the channel-wise covariance matrix while the FastCOV method
computes position-wise covariance matrix. In this comparison, we implement all methods
with the ResNet-50 network as backbone.
Similarly to the experiments in Sec. 3.4.1 of previous chapter, we use the total computa-

tional time taken by the covariance computation and matrix normalisation for comparison.
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No. of feat. channels (3) 128 256

Size of feat. maps (F×ℎ) 7×7 14×14 28×28 7×7 14×14 28×28

iSQRT-COV [5] 0.001 0.001 0.006 0.006 0.006 0.013

I-BCNN [3] 0.004 0.004 0.006 0.010 0.012 0.016

MPN-COV [4] 0.005 0.006 0.007 0.013 0.016 0.017

DeepCOV [6] 0.006 0.007 0.009 0.014 0.017 0.019

FastCOV (ours) 0.005 0.011 0.077 0.006 0.012 0.073

No. of feat. channels (3) 512 1024

Size of feat. maps (F×ℎ) 7×7 14×14 28×28 7×7 14×14 28×28

iSQRT-COV [5] 0.028 0.030 0.041 0.094 0.097 0.114

I-BCNN [3] 0.027 0.030 0.050 0.110 0.115 0.182

MPN-COV [4] 0.029 0.040 0.047 0.125 0.133 0.157

DeepCOV [6] 0.033 0.040 0.058 0.137 0.147 0.199

FastCOV (ours) 0.007 0.014 0.106 0.016 0.027 0.153

Table 4.1: Comparison of computational time (in second) for covariance computation
and matrix normalisation by using vs. not using the proposed FastCOV scheme. The
reported time is the sumof the times taken by the forward and backward propagations. The
first four methods represent the cases not using FastCOV. All methods use the ResNet-50
network as backbone. The boldface shows that FastCOV saves computational time.

During comparison, when necessary, we apply the 1×1 convolution operation to reduce
the number of channels and change the size of the input image to vary the size of feature
maps. We perform this experiment with a computer with a Tesla P100 GPU, 12-core
CPU, and 12 GB RAM. FastCOV is implemented with the MatConvNet library [44] on
MATLAB 2019a.
Table 4.1 shows the timing result. Along the number of feature channels and the spatial

size of feature maps, we can observe that (i) when the number of feature channels is small
(i.e., 128) or the spatial size of the feature maps is large (i.e., 28×28), FastCOV is not
needed. In the first case, a small channel-wise covariance matrix is computed and its
eigen-decomposition cost is insignificant. In the second case, computing a position-wise
covariance matrix incurs high matrix dimensions and eigen-decomposition cost of such
a matrix is high; (ii) however, when the number of feature channels increases and the
spatial size of feature maps decreases, the advantage of FastCOV becomes pronounced.
For example, when the number of feature channels is 512 and the spatial size of feature
maps is 7×7 or 14×14, FastCOV is ∼400% and ∼250% faster than that of other methods,
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Methods Backbone MIT Airplane Cars Birds

DeepCOV [6]
VGG-16

79.2 88.7 91.7 85.4

FastCOV-VGG (ours) 79.9 90.9 90.8 86.0

DeepCOV-ResNet
ResNet-50

84.6 87.7 91.6 86.7

FastCOV-ResNet (ours) 84.9 90.1 92.8 86.5

Table 4.2: Performance comparison of our FastCOV method with typical CNNs.

respectively. Furthermore, when the number of feature channels increases to 1024 and
the spatial size of feature maps is 7×7 or 14×14, FastCOV becomes ∼580% – ∼860% and
∼360% –∼540% faster than that of other methods, respectively. These two cases of feature
maps correspond exactly to the situation in the advanced deep convolutional networks used
in recent literature. Therefore, the above results demonstrate the computational advantage
of the proposed FastCOV method. In addition, more details on the reduction of training
time by FastCOV for learning large covariance matrix representation is given in the
Appendix B.

On the performance of FastCOV with typical CNNs

Based on the findings of the previous experiment, we now focus on learning large covari-
ance matrix representation using our FastCOV. For this experiment, we choose ResNet-50
as it produces 2048 feature channels and 14×14-sized feature maps when fed with an image
of 448×448 pixels. We call this method as “FastCOV-ResNet”. The obtained results are
compared with our DeepCOV-ResNet network from the previous chapter. Additionally,
we perform experiments with VGG-16 and compare them with the DeepCOV network.
Note that FastCOV incurs more computational cost with VGG-16 due to its large feature
map size, i.e., 28×28, with 448×448 pixels input image, and lower feature channels, i.e.,
512. We call this VGG-16 based FastCOV method as “FastCOV-VGG”.
Table 4.2 shows that (i) Overall, FastCOV based methods achieve comparable perfor-

mance with the DeepCOV and DeepCOV-ResNet across all datasets; (ii) Regardless of the
size of the input feature maps in VGG-16 and ResNet-50, the performance of FastCOV
based methods are comparable to DeepCOV based methods; (iii) Though the performance
of FastCOV-ResNet is comparable with DeepCOV-ResNet, it is significantly faster than the
other variant due to the efficient normalisation with FastCOV. Furthermore, these results
suggest that our FastCOV performs similarly to regular covariance representation schemes
such as DeepCOV.
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Methods Backbone Airplane Cars Birds

VGG-16 [18]

VGG-16

76.6 79.8 70.4

NetVLAD [91] 81.8 88.6 81.6

NetFV [92] 79.0 86.2 79.9

BCNN [1] 83.9 90.6 84.0

CBP [2] 84.1 91.2 84.3

LRBP [28] 87.3 90.9 84.2

KP [25] 86.9 92.4 86.2

HIHCA [93] 88.3 91.7 85.3

Improved BCNN [3] 88.5 92.0 85.8

SMSO [79] – – 85.0

MPN-COV [29] 89.9 92.2 86.7

G2DeNet [29] 89.0 92.5 87.1

iSQRT-COV [5] (reproduced)† 88.5 86.4 78.5

DeepCOV [6] 88.7 91.7 85.4

DeepKSPD [6] 90.0 91.6 84.8

DeepCOV+ ReDro (Chapter 3) 89.2 92.2 86.7

FastCOV-VGG (ours) 90.9 90.8 86.0

CBP [2]

ResNet-50

81.6 88.6 81.6

KP [25] 85.7 91.1 84.7

SMSO [79] – – 85.8

iSQRT-COV [5] 89.5 91.7 87.3

DeepCOV-ResNet (Chapter 3) 87.7 91.6 86.7

DeepCOV-ResNet+ ReDro (Chapter 3) 86.8 92.0 86.9

FastCOV-ResNet (ours) 90.1 92.8 86.5

Table 4.3: Comparison between the proposed methods and other SPD representation
methods in terms of classification accuracy (%). The performance of existing SPD
representation methods are quoted from the original papers. The best methods across
datasets and CNN backbones are marked in bold. †With the same hyper-parameter
settings, CNN backbone and training strategy as [6], and default iSQRT-COV iterations
of 5 times.
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4.4.2 Comparison with Other Methods

In this section, we compare our proposed method with the existing SPD representation
methods and ReDro based methods proposed in the previous chapter. Specifically, we
compare with fifteen state-of-the-art methods, namely, VGG-16 [18], NetVLAD [91],
NetFV [92], BCNN [1], CBP [2], LRBP [28], KP [25], HIHCA [93], Improved BCNN
[3], SMSO [79], MPN-COV [29], G2DeNet [29], iSQRT-COV [5], DeepCOV [6], and
DeepKSPD [6]. For fairness, we divide them into two groups based on which CNN
backbone they have used, i.e., VGG-16 or ResNet-50.
The comparison is shown in Table 4.3. For ReDro based DeepCOV methods, we report

the best results from Table 3.2. The top part of Table 4.3 shows the results of the methods
that uses the VGG-16 network as the backbone. As shown in the table, (i) our FastCOV-
VGG achieves comparable results with the existing methods on all three datasets; (ii) on
Airplane dataset, our FastCOV-VGGmethod performs better than many existing methods,
i.e., Improved BCNN, MPN-COV, G2DeNet, iSQRT-COV, DeepCOV, and DeepKSPD.
However, in terms efficiency, our FastCOV is slightly lower than the existing methods
due to the larger spatial feature map size of VGG-16. The better result of G2DeNet
[29] on the Cars and Birds datasets than our proposed method could be due to the fact
that its backbone network is pre-trained with the second-order representation while the
backbone networks pre-trained in our methods are just the commonly used ones which do
not involve any second-order representation. Using a backbone network pre-trained in the
way of G2DeNet may further improve the performance of our proposed method.
The bottom part of Table 4.3 shows the results of the methods that use the ResNet-50

network as the backbone. As can be seen, (i) our FastCOV-ResNet method performs
comparably to other methods across all datasets. Note that, our FastCOV-ResNet is
significantly faster than the existingmethods; (ii) On the Birds dataset, iSQRT-COV attains
better results than the proposedmethods. This is again due to the use of a backbone network
that has been pre-trained with second-order representation in the method. However, our
FastCOV-ResNet is significantly faster than iSQRT-COV and will enjoy the performance
improvement if the same pre-trained backbone model is used.

4.5 Conclusion

In this chapter, we propose a method dubbed FastCOV for efficient eigen-based normal-
isation in SPD visual representations. Opposite to ReDro in the previous chapter which
uses channel-wise block-diagonal matrix trick to reduce the matrix normalisation time,
FastCOV uses a position-wise matrix trick to reduce the matrix normalisation time. In
recent deep networks such as ResNet [12], the spatial resolution of feature maps is low
and the size of position-wise SPD matrices on those smaller feature maps is significantly
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smaller than channel-wise SPD matrices, e.g., a channel-wise SPD matrix from 1024
channels of 14×14 sized feature maps has a size of 1024×1024 but a position-wise SPD
matrix has a size of only 196× 196. Performing matrix normalisation on such a small
SPD matrix is computationally less expensive.
Very recent deep networks such as ResNet and ConvNeXt [102] which have small

spatial feature map resolution but a higher number of channels can take advantage of
FastCOV for effective second-order statistics estimation. By principle, for networks with
small spatial feature maps, FastCOV can be significantly faster than ReDro in estimating
SPD matrix estimation. In addition, it is general purpose and has no learnable parameters,
therefore, can be directly integrated with existing SPD representation frameworks without
any difficulty for better second-order representation learning. Extensive experiments on
multiple datasets demonstrate that FastCOV is able to achieve competitive results compared
with existing methods, including ReDro.
In our current work, we have applied FastCOV on fine-grained image classification and

scene classification problems. However, FastCOV is a general-purpose SPD representation
method. In the future, we plan to apply it to problems beyond image classification, such
as image segmentation, object detection and video classification.



Chapter 5

Learning SICE based Visual
Representation

The work of this chapter has been accepted at the 2023 IEEE/CVF Interna-
tional Conference on Computer Vision and Pattern Recognition (CVPR 2023)
to be held in Vancouver, Canada.

Covariance matrix based visual representation with convolutional neural networks
(CNNs) has attracted significant research interest in the past several years. Despite the
success, reliable covariance matrix estimation from convolutional feature maps is still a
challenging issue due to the small spatial size of feature maps and the large number of fea-
ture channels in advanced CNNs. Sparse inverse covariance estimation (SICE) has been
developed in the literature to address this situation. However, how to integrate this process
into the CNNs to address this covariance estimation issue for visual representation has
not been investigated before. This chapter integrates SICE optimisation as a novel struc-
tured layer into CNN. To realise end-to-end training of the resultant CNN, we develop an
iterative method based on Newton-Schulz iteration to solve the SICE optimisation during
backpropagation. By doing so, we mitigate the small sample problem for the covariance
estimation in CNN. On top of that, our proposed method is fully compatible with GPU
parallelisation and a large number of CNN feature channels. We perform extensive exper-
iments with various hyperparameters of the proposed method using one scene and three
fine-grained image datasets to assess its robustness. Our experimental results confirm that
the proposed method significantly outperforms its covariance matrix based counterparts.

5.1 Introduction

Learning effective visual representation has been a challenging issue in computer vision.
In the past several years, describing images with local features and pooling them into a
global representation has shown promising performance. Among the pooling methods,

58
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the covariance matrix has attracted much attention in recent years due to its exploitation of
second-order information of features. Due to the symmetric positive definite (SPD) char-
acteristic of the covariancematrix, the resulting representation is also known as SPD visual
representation. Various tasks such as fine-grained image classification, image segmenta-
tion, generic image classification, image set classification, action recognition and few-shot
learning have shown excellent performance using covariance matrix based representation.
Motivated by the powerful representation ability of deep learning, a few pioneering works
have integrated covariance matrix as a pooling method with convolutional neural network
(CNN) and investigated several associated issues such as matrix function backpropagation
[11], matrix normalisation [4], [92], compact matrix estimation [25] and kernel based
extension [6]. This progress has improved the effectiveness of covariance matrix based
representation in the tasks mentioned above.
Regardless of these achievements, estimating a reliable covariance matrix from the local

descriptors of a CNN feature map is still a challenging task. The challenges primarily
come from small spatial size, i.e., sample size, and higher number of channels, i.e.,
feature dimension, which becomes more pronounced for advanced CNN models. These
challenges critically affect the effectiveness and precision of the covariance matrix as
a visual representation. Furthermore, it also sometimes leads to the issue of matrix
singularity. One might argue that by increasing the size of the input image and using the
dimension reduction layer to reduce the number of feature channels, the above issues can
be resolved. In this paper, we are interested in whether these challenges can be reduced
from a different point of view.
The work in this paper is motivated by the use of prior knowledge in the covariance

matrix estimation process to address the above challenges. Prior knowledge is a form of
domain knowledge that can come from the domain theory of a specific vision application.
For example, the “structure sparsity” of tree-like shaped structure of human skeletons and
the general principles of estimating the structure of high dimensional data such as “Bet on
Sparsity”. This leads to the following technique, called sparse inverse covariance estima-
tion (SICE). It solves an optimisation on the SPDmatrix to estimate the inverse covariance
matrix by imposing a sparsity constant on its entries. It has demonstrated excellent ef-
fectiveness in dealing with the small sample problem. In the literature, some researchers
have used SICE to improve covariance estimation on handcrafted and pre-extracted CNN
features to demonstrate the promising performance of SPD visual representation [13].
Their work has demonstrated that SICE has the following advantages over the covariance
matrix: (1) it has more robustness against a smaller sample; (2) it is guaranteed to be free
frommatrix singularity issue; (3) it can better characterise the underlying structure of high
dimensional data with the use of prior information; (4) it can give better classification
performance; (5) when it comes to interpretation of feature relationship, SICE reveals it
better than covariance matrix.
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However, SICE is applied only to handcrafted or pre-extracted CNN features. It has not
been integrated into CNN for end-to-end training. Without fully integrating SICE into
CNN in this way, it can not fully take advantage of the automatic feature learning capability
offered by CNN. Unlike the covariance matrix, which is obtained with simple arithmetic
operations, SICE is obtained by solving an SPDmatrix based convex optimisation problem.
How to incorporate this optimisation problem into CNN as a layer is an interesting issue.
This SICE needs to be done for each image during each forward and backward phase.
An off-the-shelf package such as cvxpylayers [103] can be used for SICE, but they still
largely depend on the CPU and are not scalable to large SICE problems (will be discussed
in more detail in the following sections). To improve this condition, we propose a fast
end-to-end training method for SICE by taking inspiration from Newton-Schulz iteration
[104] and gradient descent algorithm. Our method solves the SICE optimisation with a
smooth convex cost function. The cost function does not have any non-smooth term as the
standard SICE cost function (please see the Eq. (5.1)) and can be optimised with standard
optimisation algorithms such as gradient descent. Furthermore, it effectively enforces
SPD constraints during the optimisation process so that the optimisation solution remains
SPD. We call our method “Iterative Sparse Inverse Covariance Estimation (iSICE)”. We
will discuss our method in detail in the following sections. iSICE involves simple matrix
arithmetic operations and is fully compatible with GPU. It can approximately solve large
SICE problems with CNN effectively.
The main contributions of this paper are summarised as follows.

i. To address the challenges of covariance matrix estimation in the presence of small
feature maps and a higher number of channels in CNN, this paper proposes a
method called iSICE for SICE. To the best of our survey, we are the first to develop
an end-to-end trainable method for conducting SICE within deep neural networks.

ii. Our iSICE method requires minimal change in the existing network architecture, so
it can be integrated with existing covariance matrix based representation without
any significant effort. It is easily implementable with modern deep learning libraries
such as PyTorch and trainable with automatic differentiation.

We have conducted extensive experiments on one scene recognition dataset and three
fine-grained image recognition datasets to demonstrate the effectiveness of the proposed
method.

5.2 Related works

Since the advent of deep learning based covariance representation methods such as Bi-
linear CNN (BCNN) [1] and compact BCNN [2], reliable and robust estimation of the
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covariancematrix fromCNN feature channels remains an issue. Early work such as BCNN
and compact BCNN focused more attention on the end-to-end learning of the covariance
matrix with CNN. They used signed square root normalisation [1] to minimise the impact
of unreliability, e.g., the biased issue of eigenvalue. More recent works use matrix power
normalisation which normalises the eigenvalues of the covariance matrix. Matrix power
normalisation helps to estimate reliable covariance matrix by reducing the swelling effect,
i.e., large eigenvalues become more large and small eigenvalues become smaller. One
group of these methods include DeepO2P [11], Improved BCNN [92], MPN-COV [4]
and DeepKSPD [6]. These methods perform matrix square root or logarithm normalisa-
tion using eigendecomposition. Two major issues encountered by these methods are (1)
Numerical instability during backpropagation: when two eigenvalues become very close
to each other, one cancels out the other which raises the infinity issue while performing
backpropagation. Most works appended a small value to the eigenvalues and the work
in [6] used the Daleckii-Krein formula to avoid this problem. (2) Limited acceleration
with GPU: the existing algorithm implementation of eigendecomposition in well-known
libraries such as PyTorch has limited GPU acceleration support. The work in [5] con-
ducted a thorough investigation on the acceleration of eigendecomposition with GPU and
commented that the CPU is more efficient than the GPU to perform eigendecomposition.
The other group of matrix power normalisation methods includes Improved BCNN

[92], iSQRT-COV [5] and RUN [24]. These methods use Newton-Schulz or other iterative
methods to perform approximate matrix square root normalisation. Compared to methods
in the previous group, Newton-Schulz iteration based methods are magnitude faster with
GPU. In terms of performance, they give comparable performance to eigen-decomposition
based matrix power normalisation methods with only a few iterations. Furthermore, they
do not face any numerical instability issues during backpropagation. There are also other
types of methods such as the ones in [105], [106] that are related to the works of the above
two groups.
Research progress in the above works shows that reliable covariance estimation from

small feature maps and higher number channels in modern CNN is an important task. The
following parts try to achieve that with our proposed method.

5.3 Proposed method

In this section, we begin by discussing the background of SICE. Then we discuss how it
can be estimated from CNN feature descriptors. Finally, we describe our proposed method
which is trainable end-to-end with a CNN.
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5.3.1 The basic idea of sparse inverse covariance estimation

As a representation, the covariance matrix captures the underlying structure of a visual
feature set. Assuming a Gaussian model, it uses a covariance estimated from samples
to capture this structure. SICE focuses on the suitability of such estimation of covari-
ance. Specifically, it focuses on the following two issues: (1) instability or singularity of
estimated sample based covariance from a small number of higher dimensional feature
vectors. These conditions make it less effective in capturing the underlying structure
of data. As an example, under these conditions the smaller and larger eigenvalues of
covariance become biased, therefore, suitable regularisation is needed to reduce the bias;
(2) rigid estimation of covariance from the complex structure of higher dimensional fea-
ture vectors is not always appropriate. Sometimes, there is task-specific prior knowledge
available. The incorporation of such knowledge improves the covariance estimation from
a small number of samples.
In terms of prior knowledge of higher-dimensional data, structure sparsity [107] and

‘bet on sparsity’ principle [108] are the two common knowledge used in the literature.
Suppose that we have a probabilistic graphical model and we describe its distribution with
graphs, where each node belongs to a feature and the statistical dependence between two
nodes is expressed with an edge. Structure sparsity would specify how sparse a graph is,
e.g., only a few edges are connected in a skeletal model of a human body. More generally,
the bet on sparsity principle focuses on estimating the structure of the graph by imposing
a sparsity prior. If the graph is indeed sparse, it will estimate its underlying structure
with a correct prior and if the graph is dense, it will not estimate the underlying structure
accurately. However, in the latter case, the loss will not be significant because we have
known that we do not have enough samples to estimate the dense structure. SICE tries to
improve the covariance estimation with the use of prior knowledge.
To incorporate prior knowledge, SICE switches to the inverse of the covariance matrix

from the covariance matrix. In principle, the covariance matrix captures the correlation
between feature components without paying attention to their correlation type, i.e., direct
and indirect. In comparison, the inverse of the covariance matrix only captures direct
(partial) correlations between feature components by removing the irrelevant ones and
allows the convenient incorporation of sparsity priors. Below we discuss the details of
computing SICE.

5.3.2 SICE estimation with CNN

Suppose, we have the covariance matrix � computed from CNN descriptors (the details
of computing covariance matrix will be discussed in the following section) and �−1 is its
inverse. The off-diagonal entries of�−1 capture the partial (i.e. direct) correlation between
different descriptor components. They will be zero if two features are independent in terms



CHAPTER 5. LEARNING SICE BASED VISUAL REPRESENTATION 63

of conditions in the presence of the remaining ones. In the literature, [13], the estimation
of �−1 has been effectively resolved by the maximisation of a penalised log-likelihood of
data with an SPD constraint on �−1. The optimal solution to the above problem is known
as SICE.

S∗ = argmax
S�0

log[det(S)] − trace(�S) −_‖S‖1, (5.1)

where � is a sample based covariance matrix, and det(·), trace(·) and ‖·‖1 denote the
determinant, trace and ℓ1-norm of a matrix, respectively. To obtain reliable and faithful
SICE, the term ‖S‖1 imposes structure sparsity on S. _ is the sparsity value which
controls the trade-off between the amount of sparsity and the log-likelihood estimation.
A large value of _ induces a sparser S and q small value of _ induces a less sparse S.
The maximisation problem in Eq. (5.1) is convex and can be straightforwardly solved
by the off-the-shelf packages such as GLASSO [109] and CVXPY [110]. However,
these optimisation packages can not be readily used with CNN layers to conduct training
with backpropagation. A recent extension of CVXPY called cvxpylayers [103] provides
differentiable optimisation layers but based on our investigation, it has the following issues:
(1) it can not efficiently solve large SICE problems, i.e., of size 128× 128 or higher; (2)
it relies on multiple CPU based libraries including CVXPY to solve the optimisation
problem and obtain gradients for backpropagation. This greatly limits its efficiency with
GPU. The above limitations motivate us to develop a SICE method suitable for end-to-end
training with GPU. Below we discuss the details of our proposed method.

5.3.3 Proposed end-to-end trainable SICE method

Let � be the objective function of Eq. (5.1). It can be optimised by taking the gradient
with respect to S as follows.

m�

mS
=
m

mS
(log[det(S)]) − m

mS
trace(�S) −_ m

mS
‖S‖1

= S−1−�−_( m
mS

S+− m

mS
S−)

= S−1−�−_(sign(S+) − sign(S−)) (5.2)

where S+ = max(0,S) and S− = max(0,−S) contain the positive and negative parts of S,
respectively. Eq. (5.2) is optimisable with projected gradient descent. These algorithms
have native backpropagation support and can take advantage of GPU parallel computing
to improve their speed. Below discuss how Eq. (5.2) can be effectively optimised using a
few consecutive structured CNN layers in four steps. We begin from the initial phase.
The overview of our method is given in Fig. 5.1. From the left, we give an input image
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Figure 5.1: Proposed iterative sparse inverse covariance estimation (iSICE) method.

to the CNN and process it till the last convolution layer to obtain the feature maps. The
feature maps are obtained as a ℎ×F×3 tensor, where ℎ is the height, F is the width, and 3
is the number of channels. By converting the feature maps to long vectors of =-dimension,
where = = F× ℎ and stacking them as a row, we can create a 3×= dimensional data matrix
X. A covariance matrix � based on the samples in X is computed as follows.

� = XĪX, (5.3)

where Ī = 1
=
(I− 1

=
1) performs centering of matrix X, I and 1 are =×= dimensional identity

matrix and matrix of ones, respectively. Now, we apply the following four steps in
sequential order.

Pre-normalisation of sample based covariance matrix � with trace. Similar to
Newton-Schulz method [5], our proposed method ensures the local convergence of SICE
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under the condition that ‖�− I‖ < 1. To fulfil this condition, we normalise the covariance
matrix � with its trace and obtain the trace normalised covariance matrix �′

�′ =
�

trace(�) (5.4)

Estimation of inverse covariancematrix�′−1. Weassume�′ is an invertible covariance
matrix and estimate its inverse�′−1 using an algorithm based on Newton-Schulz iterations.
We resort to Newton-Schulz iterations due to its computational benefits with GPU, as
shown in the work of Li et al. [5]. The algorithm works in three steps: (1) Pre-
normalisation with trace, (2) Approximate matrix root estimation with power −1

2 , (3)
post-normalisation with trace and (4) Estimation of �′−1 with the output of the third step.
To improve the reliability of �′−1 estimation, we add a small constant (i.e., 1e-9) to the
diagonal entries of �′ before Newton-Schulz iterations. We iterate our algorithm seven
times. Algorithm 3 shows the details of the above steps.

Algorithm 3: Computation of matrix inverse with Newton-Schulz iterations (mat-
Inv)
Input: Covariance matrix �, Number of iterations N
Output: Inverse covariance matrix �−1

�′ = �/trace(�) ; /* Pre-normalisation using trace */

P = 1
2 (3I−�′);

Y0 = �′P;
Z0 = P;
for 8 = 1 to N−1 do

P = 1
2 (3I−Z8−1Y8−1);

Y8 = Y8−1P;
Z8 = PZ8−1;

Q = 1
2 (3I−ZN−2YN−2)ZN−2;

Q′ = Q/
√

trace(�) ; /* Post-normalisation using trace */

�−1 = Q′Q′> ; /* Inverse covariance matrix */

Estimation of sparse inverse covariance S. We apply sparsity to the�′−1 by solving the
optimisation problem in Eq. (5.2) with projected gradient descent (PGD). We decompose
�′−1 into its positive and negative parts and optimise them separately with PGD in several
iterations by enforcing the sparsity and SPD constraint. Denoting �′−1 with �0, for
8 = 1, ..., # , the solution of optimisation problem in Eq. (5.2) with PGD takes the following
form:
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�+8 = max(0,max(0,�+8−1) −[V∇�
+
8−1)

�−8 = max(0,max(0,�−8−1) −[V∇�
−
8−1)

�8 = �+8 −�−8 ,�8 = (�8 +�>8 )/2, (5.5)

where max(0, ·) is a projection function replaceable with ReLU(·) operator, [ is learning
rate, V is a regularisation parameter, and ∇�+ & ∇�− are the positive and negative
parts of ∇�, respectively, and are defined as follows: ∇�+ = �′−1 +�(H<+ +_, ∇�− =
−(�′−1 +�(H<+) +_.
The sparse inverse covariance S can be obtained from sample based covariance and the

optimised � with PGD as follows.

S = �= (5.6)

Post-normalisation of sparse inverse covariance matrix S with trace. To ensure that
the changes of magnitude of the data by the pre-normalisation step earlier do not affect
the performance or convergence of the network, we perform post-normalisation of S with
trace

S′ =
S√

trace(S)
(5.7)

Based on Eq. (5.5), S′ is SPD, therefore, only its upper-triangular entries can be
processed by fully connected layers for classification purposes. The above steps are
further summarised in Algorithm 4. Algorithm 4 is fully supported by GPU and we
optimise it with the autograd package. Due to the involvement of iterations for solving S,
we call our method iterative SICE (iSICE).

5.4 Experiments

In this section, we first describe our datasets and then discuss the implementation of our
proposed method. After that, we present our experimental results and ablation study
on key hyper-parameters. Finally, we compare our proposed method with the existing
methods.

5.4.1 Datasets

We conduct experiments using one scene and three fine-grained image datasets. For
scene image classification, we have used the MIT Indoor dataset [85]. For fine-grained
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Algorithm 4: Iterative sparse inverse covariance estimation (iSICE)
Input: Sample based covariance matrix �, Sparsity constant _, Learning rate [,
Number of iterations N, Small constant U, i.e., U = 1e-9
Output: Sparse inverse covariance matrix S′ �′ = �/trace(�) ;
/* Pre-normalisation using trace */

�−1 = matInv(�′+UI) ; /* Compute inverse of �′ */
�0 = �−1;
for 8 = 1 to N do

�+
8
= ReLU(�8−1), �−8 = ReLU(−�8−1) ; /* Projection onto set */

∇1 = matInv(�′+UI);
∇2 = (�′+�′>)/2;
∇12 = ∇1 +∇2;
∇+3 = ∇12 +_, ∇−3 = −∇12 +_;
V = 1− (8/N−1);
�+
8
= ReLU(�+

8
−[V∇+3), �

−
8
= ReLU(�−

8
−[V∇−3 ); /* Re-projection */

�8 = �+
8
−�−

8
;

�8 = (�8 +�>8 )/2;
S = �=;
S′ = S/

√
trace(S) ; /* Post-normalisation using trace */

image classification, we have used airplane [87], birds [86] and cars [88] datasets. For all
datasets, we have used their pre-defined splits for training and testing in our experiments.
We do not take advantage of the provided annotations such as bounding boxes or parts.
The details of the datasets are given in Appendix C.

5.4.2 Implementation details

We implement our method using the PyTorch library. We use the pretrained CNN models
provided in the torchvision package. We resize the images to 448×448 pixels following the
widely used experimental protocol introduced by [1]. We implement our iSICE method
in four computational blocks: pre-normalisation, inverse covariance estimation, SICE
optimisation and post-normalisation. All of our blocks are implemented using Python
to take advantage of the native GPU support provided in PyTorch. We experiment with
VGG-16 [18] andResNet-50 [12]CNNarchitectures. On both architectures, for computing
iSICE efficiently, we add a 1×1 convolution layer (with ReLU and batch normalisation)
after their last convolution layer to reduce the number of feature channels to 256. This
results in a 28× 28× 256 sized tensor in the case of VGG-16 and a 14× 14× 256 sized
tensor in the case of ResNet-50. Therefore, for both architectures, we compute a 256×256
size SICE matrix and use only the upper-triangular entries as a visual representation for
image classification.
For training our model, we have used only horizontal flipping as a data augmentation

technique. We have a batch size of 50 for all VGG-16 based experiments and a batch size
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Name of hyper-parameter Values

Sparsity constant _ 1.0, 0.5, 0.1, 0.01, 0.001, 0.0001, 0.00001

Learning rate [ 0.001, 0.01, 0.1, 1.0, 5.0, 10.0, 20.0

No. of iterations N 1, 5, 10

Table 5.1: iSICE hyper-parameters values used in our experiments. For the ‘iSICE (Bold
HP)’ variant, we choose the middle values of each hyper-parameter (highlighted in bold).

of 40 for all ResNet-50 based experiments. All of our models are trained using twelve
CPUs and four P100 GPUs for 100 epochs with an initial learning rate of 0.00012. We
also use learning rate decay with a factor of 0.1 at the 15th and 30th epochs. All of our
CNN architectures are optimised using the AdamW optimiser [111].

5.4.3 On the performance of the proposed method with its related
counterparts

Our first experiment is to compare our proposed iSICEmethod with the regular covariance
and inverse covariance representations. Since our method is inspired by Newton-Schulz
(NS) iterations, for consistency, we compare it with NS iterations based on covariance
and inverse covariance representation methods. We use the iSQRT-COV method [5] for
obtaining covariance representation and Algorithm 3 for obtaining inverse covariance rep-
resentation. For all methods, after obtaining convolutional feature channels, we compute
the appropriate SPD matrix representation and process its upper-triangular entries with a
fully connected layer for obtaining classification scores.
To understand the robustness of our iSICEmethod, we run experiments with its different

hyper-parameters, i.e., sparsity constant _, learning rate [ and number of iterations N. The
combinations of iSICE hyper-parameters we experiment with are shown in Table 5.1.
Since there are 147 combinations of hyper-parameter values shown in the Table, for the
case of presentation, we report the performance of iSICE in two variants. The first variant
is with the median values from the range of hyper-parameter values shown in Table 5.1,
i.e., _ = 0.01, [ = 1.0 and N = 5. This variant shows how our proposed method performs
across different datasets are CNN backbones with the consistent hyper-parameter setting.
We denote this variant by ‘iSICE (Bold HP)’. The second variant is with the inconsistent
hyper-parameter setting. We run our method with all hyper-parameter combinations from
Table 5.1 and choose the combination that gives the highest performance (i.e., on the test
splits) among others. This variant shows how our method would perform when the best
hyper-parameters are available. We denote this variant with ‘iSICE (Best HP)’. More
discussion on the performance of our proposed method using other hyper-parameters will
be given in the following paragraphs.
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Based on VGG-16 backbone Based on ResNet-50 backbone
Average

Method MIT Airplane Birds Cars MIT Airplane Birds Cars

COV 76.12 90.01 84.47 91.21 78.81 90.88 84.26 92.13 85.99

Inv. COV 80.15 89.44 83.36 92.04 80.75 91.15 84.67 91.99 86.69

iSICE (Bold HP) 78.66 92.23 86.52 94.03 80.52 92.74 85.90 93.51 88.01

iSICE (Best HP) 80.52 93.28 86.90 94.11 82.09 93.55 86.61 93.92 88.87

Table 5.2: Classification accuracy of our proposed method using two CNN backbones.
We report two variants of iSICE. The iSICE (SameHP) variant is based on the bold hyper-
parameters (HP) in Table 5.1 and iSICE (Best HP) variant is based the HP combinations
that gives the best performance in our experiments. Our performance is compared with
iSQRT-COV [5] (denoted with ‘COV’) and Algorithm 3 (denoted with ‘Inv. COV’).

Table 5.2 compares the performance of our method with its covariance counterparts. On
the left side, we compare both of our iSICE variants with regular covariance and inverse
covariancemethods. It is clear that on average, our proposedmethod clearly achieves better
performance than its covariance counterparts. This achievement is consistent across our
iSICE variant with the same hyper-parameters, i.e., iSICE (Bold HP), and iSICE variant
with best hyper-parameters, i.e., iSICE (Best HP). The iSICE (Best HP) outperforms
iSICE (Bold HP) by ∼ 0.9%. It is interesting to see that except a few cases, the inverse
covariance method, i.e., Inv. COV, performs slightly better than the covariance method,
i.e., COV. This improved performance shows that the inverse covariance matrix improves
the effectiveness of the covariance matrix by characterising partial correlations of feature
components instead of indirect correlations of feature components. Our iSICE makes the
inverse covariance matrix more robust and reliable by enforcing sparsity, as shown by the
improved performance.
From the top, we divide our performance on various datasets based on CNN architec-

tures. The results using both CNN architectures are comparable. VGG-16 based iSICE
appears to receive better performance than the ResNet-50 based iSICE. This is probably
due to the larger feature map size, i.e., sample size, of VGG-16 than ResNet-50 which
results in a more reliable sample based covariance estimate. Across some fine-grained
datasets, inverse covariance appears to have an adverse effect on classification perfor-
mance. This is maybe due to the unreliable inverse matrix estimation on these datasets.
On the contrary, the MIT dataset receives significant performance improvement using
an inverse matrix. The improvement is possibly due to the better discriminative capa-
bility of resultant representation with the characterisation of partial corrections between
feature components by an inverse matrix. iSICE improves the performance of inverse
matrix on fine-grained datasets by applying sparsity. Another interesting observation is
the performance of iSICE on MIT when the Bold HP variant is used.



CHAPTER 5. LEARNING SICE BASED VISUAL REPRESENTATION 70

If we have the most optimal iSICE hyper-parameters available, the performance on
MIT can be further improved. The deterioration of iSICE performance with respect to its
covariance counterparts on MIT with the Bold HP variant was due to the use of a lower
learning rate (more discussion on this is provided in the following section). However, in
other datasets, we did not experience the same. Overall, our method is robust to a large
range of hyper-parameters (it will be demonstrated in the following experiments). We
experimentally found that the performance of iSICE significantly drops across all datasets
only when the learning rate becomes excessively large, i.e., 5.0, 10.0 and 20.0, and the
sparsity constant becomes higher, i.e., 0.1, 0.5 and 1.0.

5.4.4 On the impact of changing hyper-parameters to the perfor-
mance of iSICE

Based on hyper-parameters selected for the iSICE (Bold HP) variant, we perform the
following experiments to demonstrate the robustness of our proposed method: 1) changing
the sparsity constant, 2) changing the learning rate and 3) changing the number of iterations
(i.e., for computing SICE).

Changing the sparsity constant. In this experiment, we change the sparsity constant
while keeping the learning rate and the number of iterations fixed. Our experimental
results are shown in Table 5.3. We present results with both VGG-16 and ResNet-50 CNN
backbones. From the results, we can clearly see that across all datasets, the change of
sparsity constants does not significantly impact the performance of iSICE. The VGG-16
based iSICE shows more robustness toward sparsity constant changes. The classification
performance of the MIT dataset appears to have been more significantly impacted due
to sparsity constant changes than the other three fine-grained datasets. Specifically, on
fine-grained datasets, the standard deviation of results is significantly low, i.e., less than
0.51. This confirms that our method can be used for fine-grained image classification
purposes with a reasonable sparsity constant.

Changing the learning rate. In this experiment, we change the learning rate while
keeping the sparsity constant and the number of iterations fixed. Our experimental results
are shown in Table 5.4. From the results, we can see that across all datasets, the change
in learning rate does not significantly affect performance. Two datasets, namely Birds
and Cars, have shown less impact on performance, as shown by the standard deviation
of 0.15. The other two datasets also show a low standard deviation of results. The low
standard deviation across a wide range of rates (0.001 to 20.0) shows that our method is
robust to the changes in learning rate and a small learning rate such as 0.01 can be used
for computing SICE with our method.
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Method No. of iterations
Based on VGG-16 backbone

MIT Airplane Birds Cars

COV – 76.12 90.01 84.47 91.21

Inv. COV – 80.15 89.44 83.36 92.04

iSICE

2 78.28 92.68 86.66 93.63

5 78.66 92.23 86.52 94.03

10 78.36 92.56 86.62 93.89

Mean ± Std. 78.43±0.20 92.49±0.23 86.60±0.07 93.85±0.20

Method No. of iterations
Based on ResNet-50 backbone

MIT Airplane Birds Cars

COV – 78.81 90.88 84.26 92.13

Inv. COV – 80.75 91.15 84.67 91.99

iSICE

2 80.52 92.89 93.68 85.92

5 80.52 92.74 93.51 85.90

10 80.22 92.74 93.30 85.74

Mean ± Std. 80.42±0.17 92.79±0.09 93.50 ±0.19 85.85 ± 0.10

Table 5.5: Performance of iSICE with two CNN backbones on changing the learning
rate [ while fixing the sparsity constant [ and number of iterations N to 0.01 and 5,
respectively.

Changing the number of iterations. In this experiment, we change the number of
iterations while keeping the sparsity constant and the learning rate fixed. Our experimental
results are shown in Table 5.5. From the results, we can see that regardless of the CNN
backbones used, the change in the number of iterations can vary the performance to
0.20%. It is also noticeable that our method is able to give good performance with only
two iterations. This experiment shows that our method is robust to the changes in the
number of iterations.

5.4.5 Comparison with the state-of-the-art SPD representationmeth-
ods

In this section, we compare our proposed method with existing state-of-the-art SPD rep-
resentation methods and the proposed methods in the previous two chapters. Specifically,
we compare with fifteen state-of-the-art methods, namely, VGG-16 [18], NetVLAD [91],
NetFV [92], BCNN [1], CBP [2], LRBP [28], KP [25], HIHCA [93], Improved BCNN
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Methods Backbone Airplane Birds Cars

VGG-16 [18]

VGG-16

76.6 70.4 79.8
NetVLAD [91] 81.8 81.6 88.6
NetFV [92] 79.0 79.9 86.2
BCNN [1] 83.9 84.0 90.6
CBP [2] 84.1 84.3 91.2
LRBP [28] 87.3 84.2 90.9
KP [25] 86.9 86.2 92.4
HIHCA [93] 88.3 85.3 91.7
Improved BCNN [3] 88.5 85.8 92.0
SMSO [112] – 85.0 –
MPN-COV [29] 89.9 86.7 92.2
G2DeNet [29] 89.0 87.1 92.5
iSQRT-COV [5] (reproduced)† 90.0 84.5 91.2
DeepCOV [6] 88.7 85.4 91.7
DeepKSPD [6] 90.0 84.8 91.6
DeepCOV+ ReDro (Chapter 3) 89.2 86.7 92.2
FastCOV-VGG (Chapter 4) 90.9 86.0 90.8
Inverse COV (Alg. 3) 89.4 83.4 92.0
iSICE (Bold HP) 92.2 86.5 94.0
iSICE (Best HP) 93.3 86.9 94.1

CBP [2]

ResNet-50

81.6 81.6 88.6
KP [25] 85.7 84.7 91.1
SMSO [112] – 85.8 –
iSQRT-COV [5] 89.5 87.3 91.7
iSQRT-COV [5] (reproduced)† 90.9 84.3 92.1
DeepCOV-ResNet 87.7 86.7 91.6
DeepCOV-ResNet+ ReDro (Chapter 3) 86.8 86.9 92.0
FastCOV-ResNet (Chapter 4) 90.1 86.5 92.8
Inverse COV (Alg. 3) 91.2 84.7 92.0
iSICE (Bold HP) 92.7 85.9 93.5
iSICE (Best HP) 93.6 86.6 93.9

Table 5.6: Comparison between the proposed methods and other SPD representation
methods in terms of classification accuracy (%). The performance of existing SPD
representation methods is quoted from the original papers. The best methods across
datasets and CNN backbones are marked in bold. †With the same hyper-parameter
settings, CNN backbone, and default iSQRT-COV iterations of 5 times.



CHAPTER 5. LEARNING SICE BASED VISUAL REPRESENTATION 75

[3], SMSO [112], MPN-COV [29], G2DeNet [29], iSQRT-COV [5], DeepCOV [6], and
DeepKSPD [6]. We only compare these methods on fine-grained image datasets since a
majority of these methods perform evaluations on only fine-grained image datasets. For
fairness, we divide them into two groups based on which CNN backbone they have used,
i.e., VGG-16 or ResNet-50.
We present our comparison in Table 5.6. The top part of the table shows VGG-16 based

methods. It is clear to see that both our iSICE (Bold HP) and iSICE (Best HP) methods
significantly outperformed other methods on Airplane and Cars datasets. For the Birds
dataset, the performance of our methods is lower than MPN-COV and G2DeNet. These
two methods use CNN backbones pre-trained with second-order pooling and we use CNN
backbones pre-trained with first-order pooling. Other methods use same backbone as ours
and we achieve better performance than them. Overall, on Birds dataset, our methods
rank second among others. The bottom part of the Table shows ResNet-50 based methods.
Here also we can see that our iSICE (Bold HP) and iSICE (Best HP) methods give better
performance on Airplane and Cars datasets. On the Birds dataset, we receive slightly poor
performance than the original iSQRT-COV method. As mentioned above, the original
iSQRT-COV method is based on a CNN model pre-trained with second-order pooling.
We re-train iSQRT-COV with the backbone we used in our methods which is pre-trained
with first-order pooling and find that it performs inferior to our methods on the Birds
dataset. Our method may further improve with second-order pooling based on pre-trained
backbones.

5.4.6 Ablation study on the size of sparse inverse matrix

In the above experiments, we use the 256× 256-dimensional iSICE matrix. In Table
5.7, we show our results when the dimension of the iSICE matrix becomes double, i.e.,
512× 512 while keeping the hyper-parameter setting the same, and compare them to its
covariance counterparts. It is interesting to see that except in a few cases, switching to a
higher dimensional matrix improves the performance. The improvement is significant for
the MIT dataset in the case of our iSICE. This indicates that in the case of the MIT dataset,
it is better to apply sparsity to a larger inverse covariance for obtaining better performance.
On average, both VGG-16 and ResNet-50 based iSICE and its covariance counterparts

have received performance improvement by switching to a higher dimensional matrix.
Overall, the improvement is more significant with the VGG-16 backbone. It is also
noticeable that iSICE performs better with VGG-16. However, its covariance counterparts
perform better with ResNet-50 than VGG-16. It is important to mention that switching to
a larger iSICE significantly increases the computation cost.
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5.5 Conclusion

In this paper, we propose a method for learning sparse inverse covariance representation
with CNN.Ourmethod estimates SICEwithin the CNN layers and facilitates backpropaga-
tion for end-to-end training. We show that our proposed method significantly outperforms
its covariance counterparts and state-of-the-art covariance representation methods on sev-
eral datasets. Our method is of general purpose and can be readily applied to existing SPD
representation methods to improve their performance. In the future, we plan to extend
our method to other vision tasks such as image retrieval, image segmentation and object
tracking.



Chapter 6

Conclusions and Future Work

6.1 Conclusion

This thesis focuses on developing CNN based robust and efficient SPD visual representa-
tion learning methods. Due to the small sized feature maps (i.e., samples) and the large
number of channels (i.e., dimensionality) at the last convolutional layer, the SPD matrix
computed from CNN often suffers from the matrix swelling issue and becomes unreliable.
In the literature, matrix normalisation is used for combating this issue which requires
eigen-decomposition operation. However, the computation cost of eigen-decomposition
increases significantly as the size of the covariancematrix increases. This makes it difficult
to learn large-sized SPD representation. This thesis contributes to the existing efforts of
applying matrix normalisation for obtaining reliable SPD matrix based visual representa-
tion. It proposes two novel methods to make the matrix normalisation step more efficient
for large-sized SPD matrices. In addition to that, it proposes sparse inverse covariance
estimation (SICE) for more reliable SPD matrix estimation and presents a novel method
for integrating the SICE process into the CNN.
The first method is ReDro which performs eigen-decomposition on block-diagonal SPD

matrices instead of regular full-sized SPDmatrix to reduce the computation time of matrix
normalisation. It is based on the fact that the computational cost of performing eigen-
decomposition on a block-diagonal SPD matrix is less than the eigen-decomposition of a
full SPD matrix. In the experimental study, it has been shown that the benefits of ReDro
are more significant when the size of SPD matrices becomes large. Apart from saving the
computation time, it also helps to reduce the bias issue in SPD matrix estimation. The
block matrices are estimated for a small number of the components of the descriptors,
therefore, their eigenvalues become less biased. Also, ReDro can be seen as a dropout-like
regularisation for SPD representation which helps CNNs to achieve better classification
performance.
The second method is FastCOV which exploits the intrinsic connection between eigen
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systems of XX> and X>X to reduce the computation time by applying matrix normal-
isation on a position-wise covariance matrix. In CNNs that have smaller feature maps
such as ResNets [12], the position-wise covariance matrix becomes small and the eigen-
decomposition time of the small covariance matrix is low. The advanced CNNs such as
ResNet and DenseNet [20] have a higher number of channels with small feature maps
in the last convolutional layers. The proposed FastCOV method can efficiently compute
covariance representation from those CNNs than the existing methods. In contrast, the
first method ReDro is more advantageous when the spatial size of feature maps becomes
large since it does not take the spatial size of feature maps into the account.
The third method is iSICE which computes end-to-end sparse inverse covariance repre-

sentation from CNN feature maps. It applies sparsity on the prior structure of covariance
to estimate sparse inverse covariance. Based on our survey, sparse inverse covariance
representation has not been previously learned in an end-to-end manner in the previous
works. The direct (i.e., partial) relationships between feature components characterised by
sparse inverse covariance have significantly improved the covariance estimation in terms
of its reliability and discriminative capacity, as evidenced by the experimental results.
Furthermore, iSICE is robust with respect to its hyper-parameters. This method validates
that exploiting prior information can effectively improve the covariance representation and
lead to competitive performance with the existing SPD representation methods.

6.2 Future Work

This thesis proposes methods for efficient learning of SPD matrix based visual repre-
sentation with CNNs. While the proposed methods achieve competitive performance
with state-of-the-art, there are still many important aspects of SPD matrix based visual
representation that require further investigation. One of the key aspects is the better
understanding of global representation modelled from CNN descriptors by SPD visual
representation and how it is different from other representation methods. Another key
aspect is how to learn optimal or effective SPD representation from visual descriptors.
iSICE method proposed in Chapter 5 of this thesis leverages prior knowledge to learn
effective SPD visual representation. In the literature, there are also efforts on SPD ma-
trix optimisation on manifold and kernel learning for effective SPD visual representation
learning. Finally, the computation aspect of SPD matrix based representation requires
more investigations. Existing SPD visual representations have higher dimensionality and
require high computing time. More investigations are required to design compact and ef-
fective SPD representation. It is also worth mentioning that SPD representation captures
second-order information, however, even higher-order information can be captured with
rectangular matrix based representation methods for obtaining better performance.
The following extension plan can be used to improve the proposed methods. The first
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method ReDro can be extended as follows. Conceptually, ReDro can be applied to very
high dimensional SPD matrices to reduce their normalisation or processing time. In our
experiments, we consider ReDro with medium sized matrices. However, it can be used in
cases where the computation of a large matrix from a big data corpus is needed but cannot
be performed due to storage limitations. The ReDro idea can effectively solve this issue by
splitting data into groups and computing separatematrices from each group and processing
them independently. However, deep learning of those matrices requires further research
investigation. Furthermore, the channel partitioning of the CNN feature map in ReDro
does not consider any semantic information such as parts related to objects in the image.
The semantic information based grouping may further improve the discriminativeness
of the SPD representation produced by ReDro. The semantic information can be pre-
generated or produced on the fly with an appropriate method. Additionally, the attention
mechanism during the block-diagonal matrix construction can also be incorporated to
further improve the SPD representation.
The second method FastCOV can be extended as follows. Theoretically, the concepts of

FastCOV are based on eigensystems of XX> and X>X, and applicable to only covariance
representation. Such connections may also exist for other types of SPD matrices such
as kernel matrices and may be leveraged to perform efficient matrix normalisation of
those matrices. In FastCOV, we used eigen-decomposition based matrix normalisation.
However, by principle, we can also use iterative matrix normalisation such as Newton-
Schulz iteration [5] for better GPU support.
The third method iSICE can be extended as follows. Currently, hyper-parameter selec-

tion in iSICE is done empirically. However, they can be jointly learned with iSICE by
a simple neural network based on single or multiple perceptrons. The perceptron based
network can be added as a branch network to the CNN and it will receive its input from
the last convolution layer. The output of the perceptron based network will be transformed
with a simple squashing function to ensure its meaningful learning. In our work, we
applied iSICE only to image classification problems. However, iSICE can have more
applications including graph models, skeleton models, etc., where domain knowledge can
improve the task performance.
This chapter summarises the key contributions of this thesis. Besides these contri-

butions, a literature review covering the existing progress of SPD representation is also
provided. The future extensions of the proposed methods are also discussed.
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Appendix A

Implementation Details and
Computational Advantage of ReDro

A.1 Implementation of ReDro

In this section, we provide the implementation steps of ReDro mentioned in Section of
the Chapter 3. Following the Algorithm 1 in the Chapter 3, we implement ReDro in four
phases:

i. Channel permutation. Given feature channels from the last convolutional layer of the
backbone CNN model and a permutation matrix randomly generated at a run-time,
we perform permutation of the feature channels with the permutation matrix.

ii. Block-diagonal matrix computation. The permuted feature channels in phase 1
are partitioned into : equally sized groups and on each group, a small covariance
matrix is computed. Next, eigen-decomposition is computed for each of the small
covariance matrices, and the resultant eigenvalues and eigenvectors are assembled
in a block-diagonal manner.

iii. Back-permutation of eigenvectors. Using the permutation matrix from phase 1,
we then permute back the eigenvectors obtained in phase 2 to make the random
permutation in ReDro transparent to the subsequent network layers.

iv. Matrix normalisation. Given the eigenvalues and eigenvectors from phases 2 and
3, we then apply the matrix normalisation.

Depending on the SPD visual representation methods (used in Section 3.4.1 of 3) and
the availability of source code, we implement the above four phases by MatConvNet [89].
Our source code containing the layer implementations, experimental frameworks and
dataset protocols will be available online.
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A.2 Computational advantage of ReDro

In this section, we provide the forward and backward propagation time of the methods
compared in Table 3.1 of the Chapter 3. Table A.1 in this supplement material shows the
forward propagation time (indicatedwith “F.P.”) and backward propagation time (indicated
with “B.P.”) alongside with the total (i.e., forward propagation+backward propagation)
time (indicated with “Total”).
From the table, in addition to the discussions provided in the Section 3.4.1 of Chapter 3,

we can observe that ReDro saves the computation time of forward propagation in learning
large-sized covariance matrices, i.e., of the size of 512×512 and 1024×1024. Meanwhile,
note that as expected, ReDro will not save any computation time for backward propagation
since it is only applied to deal with the eigen-decomposition in the forward propagation.
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Appendix B

Implementation Details and
Computational Advantage of FastCOV

B.1 Implementation of FastCOV

In this section, we provide the implementation steps of FastCOV mentioned in Sec. 4.4.
Following the Algorithm 2 in chapter 4, we implement FastCOV in three phases:

i. Postion-wise covariance matrix computation. Given feature channels from the last
convolutional layer of the backbone CNNmode, we reshape it to a datamatrix whose
rows contain feature channels. Using the data matrix, we compute a position-wise
covariance matrix.

ii. Normalisation of postion-wise covariance matrix. Matrix normalisation is applied
on the postion-wise covariance matrix computed in phase 1.

iii. Restoration of normalised channel-wise covariance matrix. By multiplying data
matrix from phase 1 to the left and right of the normalised postion-wise covariance
matrix obtained in phase 2, we recover the normalised channel-wise covariance
matrix.

We implement the above three phases using MatConvNet [89]. Our source code
containing the layer implementations, experimental frameworks, and dataset protocols
will be available online.

B.2 Computational advantage of FastCOV

In this section, we discuss the reduction of training time by the proposed FastCOVmethod
for learning large-sized covariance matrix representation mentioned in Sec. 4.4.1 of the
chapter 4. To show the computational savings of FastCOV, we performed the following
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Methods Backbone Training time/epoch Processing time/image
DeepCOV-ResNet ResNet-50 26.49 mins. 0.29 secs.
FastCOV-ResNet 8.51 mins. 0.11 secs.

Table B.1: Comparison of computation time for covariance representation using
DeepCOV-ResNet and FastCOV-ResNet on the MIT Indoor dataset. The boldface results
show that FastCOV saves the computation time.

experiment. We train DeepCOV-ResNet and FastCOV-ResNet on the MIT Indoor dataset
and compare their training times for the completion of one training epoch. BothDeepCOV-
ResNet and FastCOV-ResNet produce 1024×1024 sized covariance representation, which
is large.
Table B.1 shows the results. As can be seen, FastCOV-ResNet computes covariance

representation more than three times faster than the DeepCOV-ResNet in terms of training
time. Also, it is significantly efficient than DeepCOV-ResNet in computing covariance
representation per image.



Appendix C

Dataset Information

In this section, we provide the dataset information. We perform experiments on fourwidely
used public image datasets, namely, MIT Indoor [85], Stanford Cars [88], CalTech-UCSD
Birds (CUB 200-2011) [86], and FGVC-Aircraft [87] to demonstrate the performance of
the proposed methods. Figure C.1 shows the sample images from these datasets and more
details are given below.
The MIT Indoor dataset is one of the most widely used datasets in the literature for

scene classification. It has a total of 15,620 images and 67 classes. Each image class
contains a minimum of 100 images. The images are collected from various types of stores
(e.g., grocery and bakery), private places (e.g., bedroom and living room), public places
(e.g., prison cell, bus, and library), recreational places (e.g. restaurant, bar, and cinema
hall) and working environments (e.g. office and studio).
The Caltech-UCSD Birds dataset or simply ‘Birds’ is one of the most reported datasets

in the fine-grained image classification (FGIC) literature. It has a total of 11,788 images
and 200 image classes. There are subtle differences between these classes and they are
indistinguishable by human observers. This dataset comes with bounding box annotations;
however, we do not use any annotations in our experiments.
The FGVC-Aircraft or ‘Airplane’ dataset is a relatively small dataset but widely used in

recent FGIC methods. It has only 10,000 images distributed among 100 aircraft classes,
and each class has precisely 100 images. Similar to the Birds dataset, the classes have
subtle differences between them and are hard for humans to distinguish from each other.
However, compared to the Birds dataset, the size of airplanes, i.e., objects, are relatively
larger in each image.
The Stanford Cars or simply ‘Cars’ dataset has a total of 16,185 images and 196 classes.

The classes are organized as per the car production year, car manufacturer, and car model.
The Cars dataset has relatively small objects, i.e., cars, than those of the airplane dataset.
Furthermore, the objects are in cluttered backgrounds. Table ?? gives a more concise
summary of the datasets.
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Dataset Total classes Total images
Predefined protocol

Major difficultyTraining images Testing images
MIT Indoor 67 6700 5,360 1,340 difficult environment
Birds 200 11,788 5,994 5,794 subtle class difference
Airplane 100 10,000 6,600 3,400 subtle class difference
Cars 196 16,185 8,144 8,041 cluttered background

Table C.1: Summary of datasets.

Figure C.1: Sample images from the datasets used in our experiments. Rows 1, 2, 3,
and 4 have the images from the MIT Indoor, CalTech-UCSD Birds, FGVC-Aircraft, and
Stanford Cars datasets, respectively.
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