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Context and significance

Cesarean section birth alters the

infant microbiota and is

associated with increased risk of

immune and metabolic disorders.

We restored the natural microbial

exposure of babies to their

mothers’ birth canal fluids right

after Cesarean section birth and

found that, perinatally, the

maternal birth canal contains very

high proportions of bacteria

typical of other body sites and that

engraftment of these maternal

bacteria normalizes microbiota

development in different infant

sites. In the context of risks and

benefits of Cesarean section

procedures, normalizing the

infant microbiota from birth might

mitigate the collateral effects of

missing colonization by important

early bacteria and reduce the

increased risk to immune and

metabolic diseases associated

with cesarean section birth.
SUMMARY

Background: Early microbiota perturbations are associated with disor-
ders that involve immunological underpinnings. Cesarean section (CS)-
born babies show altered microbiota development in relation to babies
born vaginally. Here we present the first statistically powered longitudi-
nal study to determine the effect of restoring exposure to maternal
vaginal fluids after CS birth.
Methods: Using 16S rRNA gene sequencing, we followed the microbial
trajectories of multiple body sites in 177 babies over the first year of life;
98 were born vaginally, and 79 were born by CS, of whom 30 were
swabbed with a maternal vaginal gauze right after birth.
Findings: Compositional tensor factorization analysis confirmed that
microbiota trajectories of exposed CS-born babies aligned more
closely with that of vaginally born babies. Interestingly, the majority of
amplicon sequence variants from maternal vaginal microbiomes on
the day of birth were shared with other maternal sites, in contrast to
non-pregnant women from the Human Microbiome Project (HMP)
study.
Conclusions: The results of this observational study prompt urgent ran-
domized clinical trials to test whether microbial restoration reduces the
increased disease risk associated with CS birth and the underlying mech-
anisms. It also provides evidence of the pluripotential nature of maternal
vaginal fluids to provide pioneer bacterial colonizers for the newborn
body sites. This is the first study showing long-term naturalization of the
microbiota of CS-born infants by restoring microbial exposure at birth.
Funding: C&D, Emch Fund, CIFAR, Chilean CONICYT and SOCHIPE,
Norwegian Institute of Public Health, Emerald Foundation, NIH, Na-
tional Institute of Justice, Janssen.

INTRODUCTION

Over the past few decades, we have learned much about the multitude of ways in

which microbiotas affect development of their hosts. Studies using model organisms

show that fetal development can be modulated by microbial products from the

pregnant mother’s microbiota and that early colonization is critical for immune sys-

tem development.1,2
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Table 1. Key characteristics of families included in this study for analysis

Vaginal CS CS-seeded

Number of families 97 49 28

Number of babies total 98 49 30

USA 62 23 16

Spain 7 5 8

Chile 26 18 6

Bolivia 3 3 0

Baby female sex (%) 52.0 38.8 46.7

Mean baby follow-up, months
(standard deviation)

6.2 (5.1) 8.8 (4.7) 7.1(5.2)

Baby antibiotics use within the study period (after week 1)

Any (%) 18.4 20.4 16.7

1 dose (%) 7.1 14.3 3.3

>1 doses (%) 11.3 6.1 13.4

Breastfeeding dominant within first
4 months (%)a

75.5 69.4 53.3

Mother tested positive for group B
Streptococcus (%)

8.9 11.1 0

Use of perinatal antibiotics in mother
(%)b

13.3 95.6 95.8

Any use of antibiotics during
pregnancy (%)

20 26.7 16.7

aBreastfeeding dominant is defined asmothers who reported breastfeeding exclusively ormore than 50%

breastfeeding in at least 60% of follow-up visits.
bUse of perinatal antibiotics is part of the standard of care for women undergoing CS birth.
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Natural transmission and colonization of maternal microbes is impaired by delivery

via cesarean section (CS).3–7 Furthermore, CS birth is associated with reduced levels

of various cytokines and their receptors,8 increased risk of opportunistic neonatal in-

fections,6 immune diseases,9,10 and obesity.11,12 These associations have been

shown to be causal in mouse models for conditions such as obesity13,14 and immune

disorders.15,16 Neuroendocrine abnormalities, including cognitive and behavioral

disorders, have also been associated with early microbiome perturbations.17,18 Un-

derstanding the contribution of microbiotas to healthy development remains a

crucial challenge to address the current epidemic of immune andmetabolic diseases

in urban societies.

Although used without medical indication in many countries, CS delivery is often

medically necessary and a life-saving procedure, and, thus, restoration may be

one solution to help reduce the risk of associated disorders related to the micro-

biome. Two proof-of-concept studies have demonstrated the principle of engraft-

ment of maternal bacteria on CS-born babies after deliberate microbial exposure:

the first one used maternal vaginal gauze as a source,19 and the second pilot study

used maternal feces.20 Here we present the first large observational study of the

long-term effect of maternal vaginal seeding after CS delivery to restore microbial

development during the first year of life.

RESULTS

Vaginal seeding of CS-born infants

A total of 177 infants born to 174 mothers were studied (Figure S1A), of whom 101

were born in the United States, 50 in Chile, 6 in Bolivia, and 20 in Spain (Table 1). 98

infants were born vaginally, and 79 were delivered by CS, of whom 30 who complied

with the inclusion criteria (STAR Methods), were swabbed with a maternal vaginal

gauze at birth (vaginal seeding).19 Microbiota development was followed during
952 Med 2, 951–964, August 13, 2021

mailto:mg.dominguez-bello@rutgers.edu
https://doi.org/10.1016/j.medj.2021.05.003


ll
Clinical and Translational Article
the first year of life. A total of 8,104 samples from stool, mouth, and skin of infants

and their mothers were obtained, with additional nasal and vaginal samples from

mothers (Figures S1A–S1C). None of the seeded infants had any complications,

and all children developed normally during the 12 months of the study.

Vaginal seeding partly normalizes microbiome trajectories in CS-delivered

infants

Across the different body sites, the samples yielded a good overall sequencing

depth (mean depth of 63,035 paired-end reads per sample) with a low probability

of sample contamination, as indicated by a survey of negative controls (Figure S1D).

Analysis of the vaginal gauze stored in the vagina for 1 h before the CS procedure

with which the neonates were swabbed showed that �76% of bacterial amplicon

sequence variants (ASVs; STAR Methods) contained in maternal vaginal swabs

were also present in the gauze (Figure S2A).

Some studies have reported decreased alpha diversity in CS-born versus vaginally

born infants.21 Others have reported no differences by birth mode.4,5 Using a linear

mixed-effects model, we found inconsistent results depending on the body site and

alpha diversity metric (Methods S1). One possibility for this inconsistency is that the

dynamic nature of the developing microbiome can be highly non-linear, and data

collected longitudinally often vary in frequency and timing across individuals. To ac-

count for these potential irregularities, we applied a novel method called Bayesian

sparse functional principal-component analysis (SFPCA)22 to estimate individual tra-

jectories (STAR Methods). Using SFPCA, we found that alpha diversity trajectories

did not differ among birth modes when measured as Shannon diversity (Figure S3)

or when accounting for phylogenetic relatedness (SFPCA on Faith’s Phylogenetic Di-

versity -PD-, data not shown).

However, significant birth group differences were found in beta diversity when using

an unsupervised dimensionality reduction method called compositional tensor

factorization (CTF).23 CTF accounts for repeated measurements, allowing compari-

sons of beta diversity over time (‘‘trajectory’’) while accounting for the sparse compo-

sitional nature of next-generation microbiome sequencing data.24,25 The trajectory

of gut microbiota development in CS-born infants diverged from that of vaginally

born infants through the entire first year of life (Figure 1). These results are consistent

with findings from previous studies that used more traditional analysis ap-

proaches.4,5 CTF also detected measurable differences in microbial development

of the mouth (Figure 2) and skin (Figure 3), underscoring the importance of birth

mode in affecting multiple microbial niches during human development.

Seeding CS-born infants led to a developmental trajectory that more closely resem-

bled that of vaginally born infants, most prominently in feces (Figures 1, S4A, and

S4B) and skin (Figures 3, S4A, and S4B); this trend held when considering only the

101 babies born in the United States (Figure S4C), but other countries lacked suffi-

cient sample size for individual analysis. Furthermore, a stepwise redundancy anal-

ysis based on the first three principal components of CTF ordination26 confirmed

that birth mode significantly contributed to differences in microbial community

structures in the gut and on skin but not in the mouth, with effect sizes of 0.17 (R2)

in fecal samples and 0.09 in skin samples (Methods S2). Analyzing these data using

more conventional tools for comparing beta diversity that do not account for inter-

individual variation in repeated-measure studies (Methods S3 and S4), evaluated

through PERMANOVA (on unweighted UniFrac distance) or RDA (on principal-coor-

dinate analysis [PCoA] PCs), reveals individuals as the primary driver of variation, as
Med 2, 951–964, August 13, 2021 953
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Figure 1. Fecal microbiota development during the first year of life in babies is discordant with birth mode/exposure

(A) Compositional tensor factorization (CTF) first principal component (y axis) of infant samples over age in days (x axis).

(B) Convex hull volume (y axis, median and interquantile range) on the first three principal coordinates (unweighted UniFrac distances) in mothers

(purple) and infants by birth mode or exposure (x axis). CS-born infants show the highest volumes and vaginally born the lowest, with CS-seeded babies

showing intermediate volumes; all pairwise comparisons are significant using Mann-Whitney test with Bonferroni corrections at 0.05 level (Methods S3).

(C–E) Songbird differentials for days 2, 30, and 180 after birth; ternary plots of the inverse additive log-ratio transform (inverse ALR) of Songbird

differentials give the estimated probability of a microbe being observed for CS (left axes, red), vaginal (bottom axes, blue), or CS seeded (right axes,

green). The color of the dots represents the seeding effectiveness, with yellow indicating effectively seeded/suppressed and black indicating not

effectively seeded. Below each triangle, bar plots of the top and bottom 20% Songbird differentials are summarized at genus level between CS-seeded

and CS-born babies; a positive value indicates higher association with the CS-seeded group, and a negative value indicates higher association with CS.

Bars are colored by the ASVs’ seeding effectiveness. The majority of discordant taxa overrepresented in the CS-seeded group over the CS group are

shown as yellow-orange, indicating ASVs seeded effectively in the CS-seeded group, and these are observed at all ages.

See also Figure S4 and Methods S2, S3, S4, S5, S6, and S7.
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Figure 2. Oral microbiota development during the first year of life in babies is discordant with birth mode/exposure

(A) CTF first principal component (y axis, median and interquantile range) of infant samples over age in days (x axis).

(B) Convex hull volume (y axis) on the first three principal coordinates (unweighted UniFrac distances) in mothers (purple) and infants by birth mode or

exposure (x axis). CS-born infants show the highest volumes and vaginally born infants the lowest, with CS-seeded babies showing intermediate

volumes; all pairwise comparisons are significant using Mann-Whitney test with Bonferroni corrections at 0.05 level (Table S3).

(C–E) Songbird differentials for days 2, 30, and 180 after birth; ternary plots of the inverse ALR of Songbird differentials give the estimated probability of

a microbe being observed for CS (left axes, red), vaginal (bottom axes, blue), or CS seeded (right axes, green). The color of the dots represents the

seeding effectiveness, with yellow indicating effectively seeded/suppressed and black indicating not effectively seeded. Below each triangle, bar plots

of the top and bottom 20% Songbird differentials are summarized at genus level between CS-seeded and CS-born babies; a positive value indicates

higher association with the CS-seeded group, and a negative value indicates higher association with CS. Bars are colored by the ASVs’ seeding

effectiveness. The majority of discordant taxa overrepresented in the CS-seeded group over the CS group are yellow-orange, indicating ASVs seeded

effectively in the CS-seeded group, and these are observed at all ages.

See also Figure S4 and Methods S2, S3, S4, S5, S6, and S7.
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Figure 3. Skin microbiota development during the first year of life in babies is discordant with birth mode/exposure

(A) CTF first principal component (y axis, median and interquantile range)) of infant samples over age in days (x axis).

(B) Convex hull volume (y axis) on the first three principal coordinates (unweighted UniFrac distances) in mothers (purple) and infants by birth mode or

exposure (x axis). CS-born infants show highest volumes and vaginally born the lowest, with CS-seeded babies showing intermediate volumes; all but

one pairwise comparison are significant using Mann-Whitney test with Bonferroni corrections at 0.05 level (Table S3).
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expected (PERMANOVA F-statistic = 5.45, p % 0.001; RDA adjusted R2 = 0.113;

Methods S5). High interindividual variation obscured the ability to detect differences

because of more muted factors, such as birth mode, using these methods. These

findings reveal that birth mode affects the development of microbial communities

and that this effect may be undetected upon analysis with traditional bioinformatics

tools.

Differences in microbial composition stability have been used to differentiate phe-

notypes in longitudinal studies.27,28 Accordingly, we next compared variability

across samples over time within a given individual. To leverage the dense sampling

design, we calculated the volume of the shape determined by an individual’s sam-

ples in the first 3 principal coordinates of unweighted UniFrac space using a convex

hull analysis (STARMethods). As expected, the average variability of themicrobiome

over an infant’s first year of life was much greater than the variability in the mother’s

microbiome (Figures 1B, 2B, and 3B). CS-born infants had significantly greater mi-

crobial variability than vaginally born infants, and the variability of seeded infants

was intermediate (Figures 1B, 2B, and 3B; Methods S6). This finding held true for

fecal, oral, and skin samples, suggesting that vaginal seeding may also help stabilize

microbiome development. This trend can also be observed using data within the first

6 months (Methods S7). Possible confounders, such as antibiotic consumption

(which was similar between baby groups; Table 1), were discarded; in the CS-born

and restored babies, stepwise RDA did not recognize antibiotic consumption as a

factor altering seeding efficiency. These results indicate that vaginal seeding re-

sulted in partial recovery of the microbiome in CS-delivered infants.

Bacterial taxa associated with effective seeding

To determine whether specific microbial taxonomies were being seeded well or

whether the overall seeding across all microbes was partial, we first identified which

taxa were most associated with vaginal birth compared with CS birth using Song-

bird25 and then calculated a seeding effectiveness score for those taxa (STAR

Methods; 0 indicates poor seeding, and 1 indicates effective seeding or effectively

suppressed). Effectively seeded microbes are those shared by vaginally and CS-

seeded infants. Effectively suppressed microbes are those highly associated only

with unseeded CS infants, indicating that seeding excludes that microbe. Many

taxa highly associated with CS-seeded infants had a seeding effectiveness score

of greater than 0.8, indicating that the vaginal seeding method was able to establish

microbes missing in CS-born babies (Figures 1C–1E, 2C–2E, and 3C–3E). Notably, in

the infant gut, ASVs from common gut-associated genera, such as Bacteroides,

Streptococcus, and Clostridium, were identified to be enriched in CS-seeded infants

and have high seeding effectiveness scores at early time points (Figures 1C–1E;

Methods S8 and S9). Especially of note, Bacteroides was identified consistently as

being associated with vaginal seeding (Methods S10) using other algorithms, such

as ANCOM (Methods S11), MaAsLin2 (Methods S12), and LEfSe (Methods S13). In

the mouth, bacteria with high seeding effectiveness scores included ASVs from Ge-

mellaceae, Haemophilus, and Streptococcus (Figures 2C–2E). In the skin, taxa
(C–E) Songbird differentials for days 2, 30, and 180 after birth; ternary plots of the inverse ALR of Songbird differentials give the estimated probability of

a microbe being observed in CS (left axes, red), vaginal (bottom axes, blue), or CS-seeded (right axes, green). The color of the dots represents the

seeding effectiveness, with yellow indicating effectively seeded/suppressed and black indicating not effectively seeded. Below each triangle, bar plots

of the top and bottom 20% Songbird differentials are summarized at genus level between CS-seeded and CS-born babies; a positive value indicates

higher association with the CS-seeded group, and a negative value indicates higher association with CS. Bars are colored by the ASVs’ seeding

effectiveness. The majority of discordant taxa overrepresented in the CS-seeded group over the CS group are yellow-orange, indicating ASVs seeded

effectively in the CS-seeded group, and these are observed at all ages.

See also Figure S4 and Methods S2, S3, S4, S5, S6, and S7.
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included ASVs from Streptococcus, Neisseria, Thermus, and Neisseriaceae (Fig-

ure 3c-e). However, across all three body sites, most of the taxa associated with

CS had a moderate to low seeding effectiveness score, indicating that this method

was not effective at attenuating the presence of microbes typically depleted in vagi-

nally born babies.
Maternal sites contribute to the infant microbiota

To determine which body sites from the mother were most likely to have the highest

contributions to shaping the infant microbiome, we also used the source-tracking

tool fast expectation-maximization microbial source tracking (FEAST).29 The first

2 days of life showed a prominent maternal vaginal source in the oral and skin sites

of infants exposed to vaginal fluids; however, within the first few days, a large

proportion of the microbiota colonizing the infants’ sites was shared with the corre-

spondingmaternal site regardless of birth mode or seeding status (Figure 4). Selection

by the specificbody sitewas evidencedby lackof overrepresentationof Lactobacillus, a

dominant member of the mother’s vagina, among infants born vaginally or exposed to

vaginal gauze comparedwithCS-bornbabies.Not surprisingly, we found that the infant

oral microbiota most resembled that of the mother’s mouth and areolae (Figures 4H

and 4K) and that the infant skin microbiota resembled that of the mother’s skin (Fig-

ure 4O), consistent with exposure patterns and differential selection exerted by

different body sites in the baby.

Interestingly, we observed a notable taxonomic overlap between the maternal va-

gina and other maternal body sites, especially feces, on the day of giving birth:

nearly 30% of the bacterial ASVs in vaginal samples were shared with feces (5.5%

with feces alone and 24.5% with feces and some other body sites) and 22.3% with

more distant body sites such as arm skin, mouth, and nose (Figure 5A; Methods

S14). These trends showing the pluripotent nature of the perinatal vaginal micro-

biome held true when examining the mothers in different countries from this study,

despite variations in specific proportions (Figures S2B and S2C; Methods S15). In

contrast, women who were not pregnant, from the Human Microbiome Project

(HMP) study, shared less than 20% of vaginal ASVs with other body sites, predomi-

nantly with skin, and none with fecal samples (Figure 5B). These results point to the

importance of maternal sources of microbes on the developing infant microbial

consortium.
DISCUSSION

This intervention study expands the findings of previous smaller studies, demon-

strating that microbial differences associated with delivery mode can be reduced

by exposure to a vaginal microbial source at birth. The study only included sched-

uled CSs on healthy mothers (mostly because of multiple previous CSs and malpo-

sition presentations) because infants born by emergency CS after rupture of the

chorioamniotic membrane are likely exposed to maternal microbes, given enough

time before the CS procedure.30

Using advanced and longitudinally aware methods, we found that birth mode signif-

icantly differentiated infant gut and skin microbiome development and that seeding

worked to adjust the trajectory of CS-delivered infants through partial restoration of

microbiome features associated with vaginal delivery. For example, differential

abundance analyses confirmed previous findings showing that, in the gut, Bacter-

oides and Parabacteroides, common gut-associated genera, are highly associated

with vaginally born infants. Our study further shows that seeding works to effectively
958 Med 2, 951–964, August 13, 2021
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Figure 4. Microbial source tracking of the neonate microbiome (first month) through fast

expectation-maximization microbial source tracking (FEAST)

(A–O) Contributions (y axes) of various maternal sources (rows) to the infant microbial community

(columns) are estimated across age in days (x axes) for the first month of life in 15 mother-baby pairs.

Error bars show 95% confidence interval of the mean calculated by bootstrapping; Dunn’s tests

based on Kruskal-Wallis were performed on each time point by each maternal source for each baby

sink, and significant differences are marked by different letters in each panel. The vaginal source,

prominent on day 0 for mouth and skin in babies exposed to vaginal fluid (vaginal and CS seeded; E

and F), was not prominent later in any baby site. Baby site-specific communities resemble the

corresponding maternal site (A, H, and O), consistent with specific site selection of bacteria. The

maternal right areola appears as a source for baby oral bacteria (K), which likely means that baby

oral bacteria is transmitted to the mother’s areola during lactation.
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restore these and other genera associated with vaginal birth. However, there are

several other genera that do not appear to establish well in seeded infants (e.g., Bi-

lophila). Although we observed a significant association of Enterococcus with CS-

born infants (which has been noted in previous studies as a potential opportunistic

pathogen), we did not see a weakened association of this genus or most other CS-

associated genera with seeded babies. Further research is needed to determine
Med 2, 951–964, August 13, 2021 959



Figure 5. Proportions of bacterial vaginal ASVs sharedwith other body sites in themothers of the

current study on the day of delivery and in non-pregnant women

(A) V4 sequences from vaginal swabs and gauze obtained from 97 parturient mothers in this study

on the day of birth. Current study data were sequenced by Illumina HiSeq and processed by QIIME2

using the same pipeline as for the HMP data.

(B) HMP V4 data from vaginal swabs obtained from 105 non-pregnant women; ASVs included in the

analyses were present in at least 10% of the samples in the respective body site. Roche 454 V3V5

sequences were trimmed to obtain the V4 region.

See also Figures S2B and S2C and Methods S13 and S14.
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why certain gut genera may show higher effectiveness for seeding but other taxa

may exhibit more resilience after a seeding procedure and the roles of these mi-

crobes in the developing infant microbiome.

An interesting facet of our study is the finding that vaginal seeding led to converging

microbial compositions in the infant gut despite the exposure coming from a vaginal

source. The same pattern was observed in the skin environment. Our results clearly

indicate that, from very early time points, the microbiota of an infant largely resem-

bles the same maternal site, supporting the idea of strong site selection occurring

from very early ages (i.e., that different body sites will select for specific microbes

out of a diverse population). This is further supported by the finding that Lactobacil-

laceae, the most dominant family of the mother’s vagina, was not identified as one of

the most differentially abundant among infants at any of the three body sites

observed. Site selection is also consistent with the recent evidence of successful

engraftment after fecal microbiota transplant from the mother to CS neonates31

and with previous evidence of fecal bacteria in the infant gut.32,33 Indeed, bacterial

transfer from homologous sites from the mother and other family members surely

occurs after birth. However, this may only be part of the story. Our results show

that, unlike in non-pregnant women, more ASVs from the vaginal microbiome

from parturient women overlap with those in other body sites, mostly the proximal

rectum (which, in mammals, is next to the reproductive canal), but also more distant

sites. This strongly suggests a pluripotent capacity of vaginal fluids to seed different

sites of the baby’s body. Transmission and colonization by these pioneer species

may then modulate the succession that proceeds, influencing engraftment of later

colonizers to each body site.34 Major changes in the vaginal microbiota during preg-

nancy have been described35, although the changes in the last semester have not

been deeply characterized. This begs the question of whether the vaginal micro-

biome becomes specifically primed during pregnancy to deliver key pioneer colo-

nizers tailored toward multiple body sites of the infant. This hypothesis is supported

by previous work demonstrating the bi-phasic dynamics in gestational changes in

which after decreasing diversity in the first two thirds of gestation, in the last gesta-

tional trimester diversity increases at the expense of Lactobacillus from week 24 of
960 Med 2, 951–964, August 13, 2021
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pregnancy until birth;36 increase in vaginal diversity continues in the postpartum

vaginal tract for up to 1 year following birth.37

This study provides solid evidence that deliberate, early microbial seeding can help

naturalize the microbiome developmental trajectory of CS-born infants. Although

overall trajectories do appear to head toward convergence over time, studies

show that early perturbations during the crucial developmental window of very early

life seem to have irreversible consequences.38–41 Restoring natural exposure at birth

may be one way to reduce the risk of CS-associated diseases such as obesity,

asthma, allergies, and immune disfunction. However, randomized clinical trials

with large cohorts are needed to gain conclusive evidence for microbial restoration

at birth improving health outcomes.42 Moreover, in light of recent research showing

that oral administration of maternal fecal microbes is also effective in restoring the

microbiome in CS-delivered infants,20 future research investigating the effects of

exposure to both sources explicitly compared with either single source will help

determine the best routes for restoring the neonate microbiome. In this study, we

exposed infants to freshly collected maternal vaginal/perineal microbes, but it is un-

known how storage would alter the microbiota composition. More research is

needed to determine whether it is best that they receive their own mother’s micro-

biome or achieve defined universal cocktails that can be used to restore neonates.
Limitations of study

This study is limited by the cohort size, particularly in countries outside of the United

States; the follow-up time of the first year of life because any longer-term conse-

quences of seeding were not assessed; and by 16S rDNA amplicon sequencing,

which excludes functional characterization as well as fungi and viruses. Future

studies capturing longer time frames, larger and broader cultural and geographic

representation, and additional data types are needed to gain a better understand-

ing of how seeding affects the microbiome and, ultimately, the health of CS-deliv-

ered infants.
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Illumina MiSeq/HiSeq sequencing PE150 Genewiz, New York University Genome
Technology Center, and UC San Diego
Institute for Genomic Medicine Genomics
Facility

N/A

Deposited data

Raw sequencing data European Bioinformatics Institute ENA: ERP120105, ENA: ERP016173 and ENA:
ERP120109

Raw sequencing data and processed data Qiita Qiita: Study 10894, Qiita: 10249, and Qiita:
1718

Source codes, tests, and notebooks to
generate the figures

This study https://github.com/knightlab-analyses/
seeding-study

Oligonucleotides

515f forward primer:
GTGYCAGCMGCCGCGGTAA

EMP protocol N/A

806r reverse primer:
GGACTACNVGGGTWTCTAAT

EMP protocol N/A

Software and algorithms

Qiime2-2019.8 Bolyen et al.43 N/A

FEAST Shenhav et al.29 https://github.com/ETaSky/FEAST branch:
removewritingfiles

BayestTime Jiang et al.22 https://github.com/biocore/bayestime

Gemelli Martino et al.23 https://github.com/biocore/gemelli

stepwise-rda.R This study https://github.com/knightlab-analyses/
seeding-study

Songbird Morton et al.25 https://github.com/biocore/songbird
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to

and will be fulfilled by Dr. Maria Gloria Dominguez-Bello, mg.dominguez-bello@

rutgers.edu
Materials availability

DNA or samples that are available upon request, as collaboration, subject to

availability.
Data and code availability

Sequence data have been deposited at European Bioinformatics Institute (EBI) un-

der study accession number ENA: ERP120105, ENA: ERP016173 and ENA:

ERP120109. Any Supplementary Information and Source Data files are available in

the online version of the paper. Source codes, tests, and notebooks to generate

the figures are available at https://github.com/knightlab-analyses/seeding-study.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human subjects

The study recruitment was conducted in the period 2017 to 2019, at participating

centers in themainlandUS, Puerto Rico, Chile, Spain, and Bolivia. Physician-assessed

healthymothers whowere set to deliver vaginally or by scheduled CSwere offered to

participate in this study during a physician’s visit. Inclusion criteria included healthy,

non-obese mothers with no pregnancy complications. Mothers delivering vaginally

included GBS positive subjects who received antibiotics during labor. Mothers

scheduled to have a CS were divided into two groups based on their willingness to

have their newborns swabbedwith the gauze: seededCS (CS-seeded) and unseeded

CS (CS). The mothers in the CS groups had intact amniotic membranes at the time of

delivery. For the CS-seeded group, mothers had to have negative results for stan-

dard-of-care tests for Group B Streptococcus (GBS, standard test at 36 weeks by

culturing) and STDs (including HIV and Chlamydia), no signs of vaginosis or viral in-

fections as determinedby their obstetrician, and a vaginal pH<4.5 at 1-2 h preceding

the procedure. The infants from this group received swabbing of a gauze soakedwith

maternal vaginal fluids for microbial restoration at birth. Nomock gauze was applied

to the unseeded CS babies. All mothers received standard-of-care treatment,

including preventive perinatal antibiotics (Beta lactams: mostly Cephalosporins or

Penicillin) for mothers who underwent CS section or for vaginally delivering GBS pos-

itive mothers (Table 1). The study was approved by the Institutional Review Boards

from New York University School of Medicine (S14-00377), University of Puerto

Rico Rio Piedras (1011-107) campus, Pontificia Universidad Católica de Chile

(180814027), and Hospital Universitario y Politécnico La Fe, Spain (2015/0024),

Universidad Mayor, Real y Pontificia de San Francisco Xavier de Chuquisaca, Bolivia

(02/2014).Written informed consentwas obtained fromall participants. This research

did not require authorization from the FDA or an equivalent regulatory organization.
METHOD DETAILS

Microbial restoration procedure

Restoration procedures were the same in all participating centers. Within the hour

prior to the procedure, maternal vaginal pH was measured using a sterile swab

and a paper pH strip (Fisher). Once the pH was confirmed to be < 4.5, an 8x8 cm

four-layered gauze (Fisherbrand Cat # 22028558) was folded like a fan, and then

in half, inserted in a tampon applicator and wet with sterile saline solution using a

sterile Pasteur pipette. The gauze was inserted in the maternal vagina for one

hour. Immediately before the CS surgery started, the gauze was extracted and

placed in a sterile collector and kept at room temperature. As soon as the baby

was brought to the neonate lamp and within 1 minute after delivery, the infant

was swabbed with the gauze, starting on the lips, followed by the face, thorax,

arms, legs, genitals and anal region, and finally the back. The swabbing took approx-

imately 15 s. The neonatologist then proceeded to perform the standard detailed

examination of the newborn.
Sample collection and processing

Sampling with sterile swabs in different body sites took place within the first hours

after birth in all babies (including the vaginal gauze exposed CS group, who were

sampled after the gauze swabbing procedure), then at day 1-3, weekly for the first

month and monthly up to the first year. Sampled body sites included oral mucosa,

right arm region and feces of the baby, and the same sites of the mother plus nasal,

right areola, vaginal swabs. All samples were transported to the laboratory with ice

packs within two hours of collection and stored at �80�C until further processing.
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Gauze samples for microbiota determination were obtained from one cm2 from the

center of the gauze. Together with swabs and gauzes, 399 control blanks and 249

reagent blanks were included and processed.
Sequencing and data processing

DNAextraction, amplicongeneration, and sequencingwereperformedas described in

the protocols for the Earth Microbiome Project (https://earthmicrobiome.org).44,45

Briefly, DNA was from samples using the DNeasy PowerSoil HTP 96 Kit, and the V4 re-

gion of the 16S rRNA gene was amplified using the 515f/806r primers and prepared

for sequencing http://press.igsb.anl.gov/earthmicrobiome/protocols-and-standards/

16s/. Sequencingwas performed at theUniversity of ColoradoBiofrontiers Sequencing

Facility, NewYorkUniversityGenomeTechnologyCenter, or UC SanDiego Institute for

GenomicMedicineGenomics Facility using the IlluminaMiSeq or HiSeq sequencing in-

strument. Raw reads were de-multiplexed and quality filtered using QIIME2 v2019.10

with default parameters.43 Quality-filtered reads were clustered into amplicon

sequence variants (ASVs) using deblur v1.1.0.46 A phylogenetic tree was constructed

through insertion47 with the Greengenes v13_8 as a reference backbone.48

Data used from the human microbiome project (HMP) included 16S rRNA gene

sequence data from 105 women (Methods S14) identified based on metadata pro-

vided in the HMP16SData R package.49 Sequences, which spanned the of V3-V5 re-

gion of 16S rRNA gene, were downloaded, trimmed to the corresponding 100nt of

the V4 region generated in the current study, and processed as described above.
Bacterial source tracking

To estimate the sources of the microbial communities observed in each of the three

infant groups at different body sites and time points, we used FEAST,29 based on

expectation-maximization (EM) estimation, for bacterial source tracking. Samples

from each body site in the infants were designated as sinks, and samples collected

within the first month after birth from the vagina, stool, skin, mouth and nose of the

corresponding mother were tagged as sources. The analysis was performed on rari-

fied count tables with 5000 reads per sample with 1000 EM iterations.
Alpha diversity

Shannon Diversity was calculated on rarified count tables with 5000 reads/sample

using QIIME2 v2019.10.43 The birth mode effect over time in Shannon diversity

was analyzed initially using a linear mixed-effect model and then using a novel lon-

gitudinal method, Bayesian Sparse Functional Principal Components Analysis

(SFPCA).22 Generally, a functional principal components analysis is used to investi-

gate longitudinal data with highly non-linear temporal trends,50 and Bayesian

SFPCA performs dimensionality reduction on longitudinal alpha diversity measure-

ments to reveal changes in microbial diversity over time, estimating both mean

trajectories, as well as subject-level variation around this mean. Bayesian SFPCA ex-

presses repeated-measurements from each baby in the form of a smooth function

that represents the entire time course as a single observation, and then uses a

reduced rank mixed-effects framework to handle scenarios where datapoints are

collected at irregular and sparse time points. The final inference on birth mode effect

is done based on the estimated weights that each baby receives on the first principal

component function, which captures the different growth rates in alpha diversity

among babies with different birth modes.
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Beta diversity and convex hull

The infant microbiome variability over time of infants for each birth mode were

compared to themothers through a calculation of the per subject convex hull volume

from Principal Coordinates derived from unweighted UniFrac distances.51 The

convex hull is the volume produced by considering a set of points to define the outer

surface of a shape (like stretching wrapping paper around those points), so a larger

convex hull volume indicates greater variability across the set of samples around

which the convex hull is built. The unweighted UniFrac distance was calculated on

rarefied tables with 1000 reads/sample and dimensionality reduction on the dis-

tances was performed through Principal Coordinates Analysis (PCoA) for each

body site. Per subject convex hull volume from the individuals’ data points in each

ordination using scipy v1.3.1.52 The resulting volumes were assessed by body-site

pairwise for statistical significance between mothers and infants of different birth

modes with a Bonferroni corrected Mann-Whitney rank test using scipy v1.3.1.52
Dimensionality reduction

We used compositional tensor factorization (CTF) to produce a dimensionality

reduction aware of the repeated-measure structure of the longitudinal experimental

design and the compositional nature of microbiome data.23 To reduce sparsity data

was split into two time periods being days 0-2 and 7-360 of life and subjects with

more than two missing time points were removed. CTF was run on the filtered

data through gemelli v0.0.6 (https://github.com/biocore/gemelli) on default param-

eters. The resulting ordinations first principal component (i.e., Axis 1) was plotted for

each sample type across time. To evaluate the statistical significance, a permuta-

tional multivariate analysis of variance (PERMANOVA)53 was performed on the

CTF based Aitchison distances54 separately for each time point and sample type us-

ing scikit-bio v0.5.5. Bonferroni p value correction was applied to each comparison

with PERMANOVA to correct for multiple comparisons.
Effect size analysis

In order to calculate the relative effect size of all recorded metadata within the CTF

ordinations, a stepwise redundancy analysis was performed (stepwise RDA). The

stepwise analysis was performed on the first three principal components of the

CTF sample ordination through the ordistep function in vegan v2.4-2.55 The ordiR2-

step function was run with 5000 permutation steps, with a permutation p-values limit

of 0.1 and otherwise following the procedure of Falony et al.26
Differential abundance and effectiveness score

Differential abundance analysis was performed through Songbird at days 2, 30, and

180 on each infant body site (i.e., feces, mouth, and skin).25 Optimizedmodel param-

eters were determined for each model with respect to the main factor of birth mode

and the covariate of country by the cross-validation (CV) minimization. The models

were then compared by aQ2-value defined as 1 –model CV / baseline CV. A positive

Q2-value was observed for all models indicating good predictive accuracy (Methods

S16). Differentials were obtained with the reference class as vaginal and contrast

variables as CS and CS-seeded, producing the columns log(CS/Vaginal) and

log(CS-seeded/Vaginal). The differentials from Songbird in this contrast setup can

give a rank of how much each ASV is associated with a contrast variable relative to

the reference variable. For example, for log(CS/Vaginal), positive valued ASVs are

more associated with a CS birth and negative values with vaginal birth. However, in

order to describe the probability of association of a given ASV relative to all three

groups (vaginal, CS, CS-seeded), the inverse additive log-ratio (alr) transformation56
e4 Med 2, 951–964.e1–e5, August 13, 2021
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was applied to the songbird differentials. We then defined a score for eachmicrobe’s

‘‘seeding effectiveness’’ as a measure of efficacy of seeding. We defined the score as

seeding effectiveness = b�
vaginal � b�

CS�seeded +
b�
CS

1+Nclasses

where the score can range from zero to one, with zero indicating the least effective

seeding and one indicating the most effective seeding. Effectively seeded microbes

would be those shared by vaginal and CS-seeded infants. Effectively seeded mi-

crobes can also be associated with only Caesarean infants, indicating that seeded

infants no longer contained that microbe after seeding. Poorly seeded microbes

would be those shared between CS and CS-seeded infants. Poorly seeded microbes

can also be associated only with Vaginal birth indicating that seeding did not graft

that microbe effectively.

The class probabilities were plotted as a ternary plot and colored by their ‘seeding

effectiveness’ score (Figures 1C–1E, 2C–2E, and 3C–3E). The differentials for Vaginal

versus Caesarean born infants were plotted at the genus taxonomic level for the top

and bottom 20% of ASVs based on the centered songbird differentials and colored

by the mean ‘seeding effectiveness’ score (Figures 1C–1E, 2C–2E, and 3C–3E).
QUANTIFICATION AND STATISTICAL ANALYSIS

Details on statistical tests, n numbers can be found in the figure legends and further

details can be found in the method details for specific measurement.
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