Working Document: Preliminary diagnosis in Northeast Atlantic Cephalopod Stock using Stochastic Surplus Production models

Working Document presented to the Working Group on Cephalopods Fisheries and Life History (2019)

Not to be cited without prior reference to the authors

Angela Larivain ${ }^{1}$, Ane Iriondo ${ }^{2}$, Leire Ibaibarriaga ${ }^{2}$, Michael Petroni ${ }^{3}$, Anne Marie Power ${ }^{3}$, Ana Moreno ${ }^{4}$, Graham J. Pierce ${ }^{5}$, Ignacio Sobrino ${ }^{6}$, Vladimir Laptikhovsky ${ }^{7}$, Esther Abad ${ }^{8}$, Julio Valeiras ${ }^{8}$, Jean-Paul Robin ${ }^{1}$

1. UNICAEN, Normandie Univ., Biologie des ORganismes et Ecosystèmes Aquatiques BOREA (MNHN, UPMC, UCBN, CNRS-7208, IRD-207) CS 14032, 14032 Caen, France.
2. AZTI, Sustainable fisheries management, Txatxarramendi Ugartea z/g. E-48395 Sukarrieta - Bizkaia, Spain.
3. NUI, National University of Ireland Galway, Ryan Institute, School of Natural Sciences, Galway, Ireland.
4. IPMA, Instituto Português do Mar e da Atmosfera, Divisão de Modelação e Gestão dos Recursos da Pesca, Departamento do Mar e dos Recursos Marinhos, Rua Alfredo Magalhães Ramalho no 6, 1495-006 Lisboa, Portugal.
5. IIM-CISC, Instituto de Investigaciones Marinas (Consejo Superior de Investigaciones Cientificas), Departamento de Ecologíay Recursos Marinos, Eduardo Cabello 6,36208 Vigo, Vigo, Spain
6. Centro Oceanográfico de Cadiz, Instituto Español de Oceanografía, Muelle Pesquero s/n, 11006 Cadiz, Spain
7. CEFAS, Group of Fisheries and Ecosystems Management Advice, Fisheries Division, Pakefield Rd. Lowestoft, Suffolk, NR33 0HT, U.K.
8. Centro Oceanográfico de Vigo, Instituto Español de Oceanografía, Subida a Radio Faro 50, 36390 Vigo, Spain

Abstract

The lack of management leaves fishery resources vulnerable to increases in fishing pressure. In spite of their economic importance, most Northeast Atlantic cephalopod stocks are non-quota species with no catch or effort limits in large-scale fisheries and only some harvest control rules implemented at the local scale in inshore fisheries. Specific life traits and population dynamics in cephalopods are often argued to prevent the use of classical stock assessments methods i.e. cephalopods are short-lived, fast growing species, w ith highly plastic life history characteristics and wide year to year variation in abundance linked to environmental variation. Monitoring such species is also data-demanding and some of the largest EU cephalopod fisheries are not included in fishery data collection protocols. Over the past two decades, several stock assessment exercises were carried out in European cephalopods but the wide variety of models that were tested to tackle distinctive features of different species makes it difficult to compare results.

Surplus production models are among the oldest assessment tools adapted to data-limited situations. In their basic form, the maximum sustainable yield reference points that they provide (MSY, FMSY, BMSY) correspond to the long term average, which may not be very well adapted to cephalopods. Nevertheless, such preliminary diagnostics canbe refined in a second step (for instance taking into account environmental variation).

In the present study, Generalised Surplus ProductionModels were fitted to abundance time series for several Northeast Atlantic cephalopod stocks, including loliginid and ommastrephid squid and cuttlefish, the distributions of which range from Scottish to Spanish and Portuguese fishing grounds. All models were fitted with the R package SPiCT (Stochastic production model in continuous-time) and the homogeneous protocol allowed comparisons between data sets. In
the nine cases presented, the model converged and the exercise provided useful preliminary diagnostics, allowing long-term trends in productivity to be considered reasonable in eight of them (only the exercise for Loligo at Rockall exercise showed unreliable outputs). For several loliginid stocks, results allowed statements to be made about whether biomass and fishing effort were above or below MSY reference values. How ever, results for Sepiidae and, especially, Ommastrephidae showed very wide confidence intervals, such that it w as generally not possible to be sure whether biomass and fishing effort were above or below reference levels. The possible causes for this uncertainty w ill have to be explored.

The study is a first step to better understand how fishing fleets opportunistically exploit these resources and what aspects of their population dynamics are important to take into account to ensure sustainable fishing. Several refinements to the approach taken are proposed for future work.

Key-words: Data-limited methods, Pella-Tomlinson model, SPiCT, biological reference points, cephalopods population dynamics, stock assessment.

I Introduction

Cephalopods are major resource for European fishing fleets with ~ $50000 t$ tonnes landed per year (56500 t on average in 2014-2018). Such commercially exploited stockslackscientific advice whereas their abundance, productivity and sustainability remained undetermined or highly uncertain regarding the input of solely rare local measures. The need to better understand their stocks dynamics, particularly in North-eastern Atlantic waters, will allow their consideration in Fisheries Policy.

Different assessment tools have been proposed todetermine the status of severalEU cephalopod stocks during the past two decades. Depletion methods, cohort analysis and atwo-stage biomass model were successfully applied to a range of stocks. How ever, while cohort analysis suggested that growth overfishing (and Fopt) might depend on cohort abundance, the two other methods do not include the estimation of Biological Reference Points (BRP) and thus were only used to quantify recruitment variability (Royer et al, 2002; Young et al, 2004; Royer et al, 2006; Graset al, 2014).

Cephalopods, specifically cuttlefish, loliginid and ommastrephid squids and octopods fall under ICES category 3, which comprises stocks for which relative abundance indices exist, e.g. survey indices or fishery-dependent LPUEs and CPUEs, along with information on the meanlength of animals in the catch), that can provide reliable indications of abundance trends. For a variety of reasons, quantitative assessments and forecasts for category 3 stocks are often considered to indicate only trends in fishing mortality, recruitment and biomass (ICES 2012a, b).

Since European fishing fleets are increasingly exploiting cephalopod resources, sustainable exploitation of these stocks is more and more desirable and thus diagnostics of stock status are needed. Instead of testing various tools in different cases the approach agreed was to apply a common assessment method to a series of data sets.

In the present study, we used data for loliginid squid, ommastrephid squid and cuttlefish. The Octopodidae are also important fishery resources. Among the Octopodidae species present in European shelf w aters, although Eledone spp. are of minor commercial importance, Octopus vulgaris is of substantial importance in Spanish and Portuguese fisheries, especially small-scale fisheries. In the Gulf of Cadiz, the influence of environmental variables on the population dynamics of Octopus vulgaris has been modelled (Sobrino et al 2020, see also previous WGCEPG reports). We aim to include octopus in the next round of assessment exercises.

Following the recommendations of ICES WKProxy (ICES, 2016) and WKLIFE (ICES, 2012b, 2017), the objective of this w ork w as to apply a Stochastic Surplus Production Model in Continuous Time (SPiCT) (Pedersen \& Berg, 2017) to provide a preliminary assessment for a range of cephalopods stocks in the Northeast Atlantic, thus to obtain comparable results and provide a basis for further analysis (ICES, 2016), with the ultimate aim of facilitating routine stock assessment in support of management. In contrast to other production models, SPiCT models both stock dynamics and the dynamics of the fisheries, thus enabling er ror in the catch process to be reflected in the uncertainty of estimated model parameters and reference points (Pedersen \& Berg, 2017).

II Material \& Methods

In each of the assessed stocks surplus production models require minimally total catch data and an abundance index (which can be obtained from research surveys or derived from commercial data).

1.1. Stock definition

Reflecting the fact that European cephalopod stocks are not formally assessed there is no current formal definition of stocks. Previous genetic studies have tended to confirm what might be expected based on the mobility of these species: there is less evidence of the existence of separate stocks in those species which routinely undertake longer migrations (Trites, 1983; Sims et al, 2001; W olfram et al, 2006). Thus we w ould expect fewest distinct stocks in ommastrephids, followed by loliginids, cuttlefish and octopus. Previous studies on Loligo forbesii indicate a single genetic stock throughout European coastal waters, with some evidence of differences in offshore areas (Rockall, Faroe) and only one clearly differentiated stock, in the Azores (Brierley et al. 1995; Shaw et al. 1999). However, the situation is complicated by the presence of multiple species within commercial fishery categories and often alsowithin survey data categories. Thus, the two Loligo species are rarely distinguished from each other. Therefore, decisions about stock definition for the pur poses of assessment are necessarily pragmatic. The management units (i.e. pragmatic stocks) that are selected in this study are based on groups of ICES divisions that ICES WGCEPH has used since 1992 to monitor trends in Northeast Atlantic Cephalopod fisheries.

1.2. Landings data

Total landings by country and ICES divisions are compiled by calendar year (January-December) by ICES WGCEPH. In recent years this is derived from the ICES data call (see Table 1). Nonreported values were considered as missing (NA) and limited gaps can be taken into account in the fitting procedure. Discards data suggest that discarding occurs only in areas where cephalopod catch is low (ICES, 2019). For example, onboard observations provided by the Ifremer program "OBSMER" and to France's and UK's declarations, there is a low squid discard level in the English Channel, always below 6\% (ICES, 2011; 2017). Thus, in this study, discards are considered to be negligible.

Table 1: Cephalopods stocks used for SPiCT assessments in Northeast Atlantic Waters.
ToR A table is the compilation of annual landings statistics carried out by WGCEPH. (in tw o stocks landings figures preceeded by "<" are overestimates computed for the whole 9.a division). Survey acronyms are as follow s: Marine Scotland Science (MSS), Scottish West Coast International Bottom Traw I Survey (SWCIBTS), Scottish Groundfish Survey (SCOGFS), Irish Groundfish Survey (IGFS), EValuation des ressources Halieutiques de l'Ouest Européen (EVHOE), North West Groundfish Survey (NWGFS), Channel Groundfish Survey (CGFS), Spanish Ground Fish Survey on the Gulf of Cádiz (SP-ARSA), Portuguese International Bottom Traw ISurvey (PT-IBTS). Abundance indices derived from commercial fishery statistics: France Otter Bottom Trawldelta-GLM standardized LPUE (FR-OTB std.LPUE), Spain Otter Bottom TrawILPUE (SP-OTB-LPUE) Landings figures for each group are Average Annual landings (tons) and this figures expressed as a percentage of the total Northeast Atlantic landings. See Appendix A for further details of survey indices.

Group	AREA	Figure	Landings	Data sources and time periods	
				Origin of catch data	Origin of survey abundance indices
Loliginidae	$\begin{aligned} & \text { 6.a; } \\ & \text { 7.b,c } \end{aligned}$	1	532 (6\%)	ToRA table (1992-2018)	$\begin{array}{\|l\|} \hline 2 \text { MSS (1981-2012), SWCIBTS } \\ \text { + SCOGFS (1997-2018), IGFS } \\ (2003-2018) \\ \hline \end{array}$
	6.b	2	315 (3\%)	ToRA table (1992-2018)	MSS (1981-2018)
	$\begin{array}{\|l\|} \hline \text { 7.a; 7.f; } \\ \text { 7.g,h,j,k } \\ \hline \end{array}$	3	996 (10\%)	ToRA table (1992-2018)	$\begin{aligned} & \hline \text { EVHOE (1997-2018), NWGFS } \\ & (1988-2018) \end{aligned}$
	7.d,e	4	3,577 (36\%)	$\begin{aligned} & \text { ToRA table } \\ & (1992-2018) \end{aligned}$	FR-OTB std.LPUE (19892018), CGFS (1990-2017)
	$8 \mathrm{a}, \mathrm{b}, \mathrm{d}$	5	1,856 (19\%)	ToRA table (1997-2016)	EVHOE (1992-2016)
	9.a.s	6	<962 (10\%)	$\begin{array}{\|c\|} \hline \text { PT + ES landings } \\ (1993-2018) \\ \hline \end{array}$	$\begin{aligned} & \text { SP-ARSA (March) + PT-IBTS } \\ & \text { (Nov.) (1993-2018) } \end{aligned}$
Sepiidae	7.d,e	7	10,495 (57\%)	ToRA table (2001-2018)	FR-OTB LPUE (2001-2018)
	8. abd	8	4,695 (19\%)	ToRA table (2000-2018)	FR-OTB LPUE (2000-2018)
Ommastrephidae	$\begin{array}{\|l} \hline 8 . c ; 9 . a \\ \mathrm{n} \\ \hline \end{array}$	9	<1,073* (31\%)	$\begin{aligned} & \text { ES landings } \\ & (2000-2018) \end{aligned}$	$\begin{aligned} & \text { SP-IBTS + SP-OTB-LPUE } \\ & (2000-2018) \end{aligned}$

1.3. Abundance indices from surveys

Research trawl surveys are seldom designed specifically todescribe cephalopod abundance and the seasonal timing or spatial extent may not always correspond to the species life cycle. Nevertheless, rigorous protocols and species identification make time series of survey indices a major source of time series of abundance indices. All surveys used in the assessments are listed in table 1 (with more details in Appendix A).

1.4. Commercial catch-effort data: standardised landings per unit effort (Ipue)

When fishery-independent data is not available commercial catch and effort data can be used to derive abundance indices provided biases related to changes in the fishery are properly taken into account. The standardization procedure is based on the Delta-GLM method (Stefansson, 1996; Gras et al., 2014). This a pproach is designed to extract the temporal component of the LPUE data while disentangling it from other effects such as changes in the spatial distribution of the fleet or distribution of the animals, changes in the size of the boats, changes in the seasonality of the abundance, giving the best image of inter-annual variation in the whole area.

French commercial landings and effort data were extracted from national databases maintained by the French ministry for fisheries (Direction des Pêches Maritimes et de l'Aquaculture (DPMA)) and Ifremer (Système d'InformationHalieutique (SIH)). Commercial squid and cuttlefish landings (kg) and effort (hours of trawling) for French bottom otter trawls (OTB) w ere collected by fishing sequence (i.e. groups of hauls carried out during the same day and within the same ICES rectangle), year, months, ICES statistical rectangle and engine power class.

In the case of Loliginidae, species are not distinguished in French commercial data. Therefore, the standardized times series describe the abundance of the mix of Loligo forbesii and Loligo vulgaris in the English Channel (7.d and 7.e).

In the cuttlefish Sepia officinalis, the same initial database was used (French OTB detailed catch and effort data) butengine power ship class was missing, so LPUEvalues are averaged by year (in a shorter period: 2001-2018), accounting for effects of the previously mentioned variables except for power. The assessments based on these "lpue-derived indices" are listed in table 1.

It is w orth noting that in spite of the heterogeneous distribution of fishing activities (both in time and space) commercial data is abundant and corresponds to a wider temporal extent than survey data. Besides, cephalopodsbeing no-quota species are less susceptible to misreporting than managed resources. Detailed fishery statistics needed for the standardization procedure are now included in the WGCEPH data call and in the English Channel UK beam trawl data has already been used to model cuttlefish abundance (Gras et al, 2014).

1.5. Model

The population dynamics is described in terms of biomass and the model combines the main biological processes (recruitment, growth, natural mortality) in a single function. Only catches and abundance/biomass indices are required to fit the model. The approach is based on the deterministicstate equation of the Pella-Tomlinson model(Pella and Tomlinson, 1969):

$$
\frac{d B_{t}}{d t}=r B_{t}\left(1-\left[\frac{B_{t}}{K}\right]^{n-1}\right)-F_{t} B_{t}
$$

Where r is the intrinsicgrowth rate parameter, k the carrying capacity and n the asymmetry parameter of the production curve. Thislatter parameter allows the surplus production function to be asymmetric with respect to the biomass and determines the maximum level of productivity.

SPiCT (R package, version 1.2.7) was used to fit a stochasticsurplus production model in continuous time to abundance index series for several cephalopods stocks occurring in Northeastern Atlantic waters. The model incorporates both fisheries and biomass dynamics and also observation errors for both catches and biomass indices (Pedersen and Berg, 2017). The package, available on GitHub (https://github.com/DTUAqua/spict), is still under development.

For each stock, the input data applied in SPiCT runs are listed in Table 1.
Default priors were used as follows: n around $2 ; \alpha=\beta=1$. An attempt to impose preliminary estimated priors was carried out for the stock of Loligo vulgaris in the Gulf of Biscay (8.abd) (16 runs), see supplementary material for details about the different runs for this particular stock.

III Results

Surplus production models were fitted withSPiCT for the nine stocks listed in Table 1. Fisheries characteristics have been described in WGCEPH reports (see for instance ICES 2019) and there is no need to repeat this here. However, it is worth to remind that most stocks are shared resources that can be exploited (at least at some time in the year) by different countries.

III. 1 - Loliginidae assessment

West Coast of Ireland and Scotland (6.a and 7.b,c)

For this stock, five abundance indices were included in the assessment: two derived from Marine Scotland Science (MSS) (divisions 6.a and 7.b.c, separately), two from DATRAS (divisions 6.a and 7.b.c, separately) and one from the Irish GroundfishSurvey (IGFS) (division7.b.conly). See Appendix A for description of data and sources. The MSS aggregated dataset may be less reliable than the DATRAS dataset since it is a combination of surveys not all standardised in the same way, using various gears and sampling strategies. Despite this, both data sets showed similar trends for the period in common and model would not converge without the MSS dataset.

This stock probably comprises mainly L. forbesii although the two European Loligo species are not distinguished in the landings data, as Lvulgaris is rare in the area.

The model diagnostics (Fig. 1 and Fig.1.A in Appendix B) were considered satisfactory, except that autocorrelation was evident at lag 1 for the abundance index from the Scottish Surveys (DATRAS) in division 6a. The model also provided a consistent performance until the early 2000s, after which becomes slightly noisy towards the present day (Fig 1.1.B Appendix B). The production curve (Fig. 1) was skewed slightly to the left as might be expected for cephalopod stocks, which are characterised by very high growth rates, particularly at low densities. With increasing densities, the population production might decline not only because of competition for food etc., but due to cannibalism within animals of the same generation-a particular trait of cephalopods(Ibañez \& Keyl, 2010) (Fig 1.).

Figure 1. Stock metrics of Loliginidae for West Coast of Ireland and Scotland (6.a and 7.b,c) estimated by SPiCT. Ratios of biomass (B/BMSY) and fishing mortality ($\mathrm{F} / \mathrm{F}_{\mathrm{MSY}}$) and production curve given. The relative biom ass plot axes were adjusted to provide a clear image of the confidence interval widths.

The Irish-Scottish West Coast stock status appears to be fished sustainably with in recent years the biomass above that of optimal exploitation $(\mathrm{B} / \mathrm{BMSY}>1)$ and fishing mortality below that of optimal exploitation ($\mathrm{F} / \mathrm{F}_{\mathrm{MSY}}<1$)

Rockall (6.b)

The SPiCT model produced overall unsatisfactory results whereby convergence w as achieved but produced very wide confidence intervals. Nevertheless, given the great importance given to Rockall as a squid hotspot (referred to as 'squid alley' by fishers), the results are presented here. The stock of interest was represented by mixture of two European Loligo species in the landings data, but the abundance indices effectively consisted of L. forbesii using a CPUE index generated by combining Marine Scotland Science (MSS) survey data from 1981 to 2018. The model diagnostics (Fig 2 and Fig 1.2.A in supplementary material) produced otherwise satisfactory results, other than evidence of autocorrelation in the abundance index at Lag 2. The model also provided somewhat consistent but noisy performance in retrospective (Fig 1.2.B in supplementary material) and a bizarre production curve skewed slightly to the left but extending into negative productivity values (Fig 2.).

Figure 2. Stock metrics of Loliginidae in Rockall (6.b) estimated by SPiCT. Re lative biomass and fishing mortality and production curve given.

Results suggest that $B>B$ MSY but the relation between fishing mortality and FMSY could not be assessed with any confidence. Given the degree of uncertainty, as well as the reliability of the data, it would not be recommended that outputs such as these, be used for management decisions. The lack of reliable data, however, clearly highlights the need to further surveying efforts in this area if reliable stock management advice is to be given.

Irish and Celtic Seas (7.a, 7.f and 7.g,h,j,k)

The stock of interest was represented by mixture of two European Loligo species in the landings data, but the abundances effectively consisted of L. forbesii. Two abundance indices of CPUE were input from the North West Groundfish Survey (NWGFS) covering areas 7.a,f,g from 1988 to 2018 and the French EVHOEsurvey covering area 7.g,h,j,k from 1997 to 2018.

The model diagnostics (Fig 1.3.A Appendix B) were considered satisfactory, with Catch data show ing several minor issues with autocorrelation and non-normality. The model provided a consistent performance (Fig 1.3.B Appendix B) and production curve skewed slightly to the left as expectable for cephalopod stocks (Fig 3).

The Irish and CelticSeas stock w as assessed tobe in a good condition and exploited sustainably as $\mathrm{B}>\mathrm{Bmsy}_{\mathrm{MS}}$ and $\mathrm{F}<\mathrm{F}_{\text {msy }}$ w ith favourable forecast (Fig3.). The SPiCT likely might be applied to its assessment in future.

Figure 3. Stock metrics of Loliginidae in Irish and Celtic Seas (7.a, 7.f and 7.g,h,j,k) estimated by SPiCT. Relative biomass and fishing mortality and production curve given.

English Channel (7.d and 7.e)

The stock of interest is regrouping both species of Loligo(L vulgaris and L forbesii. Data landings provided an annual coverage through January-December from 1992 to 2018. Two abundance indices were used: CPUEs from the Channel Ground FishSurvey (CGFS) from 1990 to 2017 (Sep-tember-October) and standardised French commercial LPUEs (through the all year) for selected region (7.d and 7.e). The distinction between the two Loligo species was possible and computed in the LPUEseries according to the species proportions sampled at the Port-en-Bessin fish market each month by the University of Caen, France since 1993.

The model diagnostics (Fig. 4 and Fig 1.4.A Appendix B) were considered satisfactory as the result did not point significant bias (mean of the residuals different from zero) or auto-correlation from LPUEindex. Both QQ-plotand the Shapiro test shows normality in the residuals. The retrospective pattern (Fig 1.4.B Appendix B), demonstrated reasonably consistent trend in recent biomass being at or slightly below BMSY, and fishing mortality being at or slightly above Fmsy. The shape of the production curve seems to indicate a Schaefer model $(\mathrm{n}=2)$ and according to the KOBE-plot (Fig 4. bottom right).

Bay of Biscay (8.a,b,d)

In this area Loliginid resources are most likely dominated by Loligo vulgaris. Species-specific EVHOE survey data indicate that in autumn L vulgaris represents on average 83% of biomass indices (ICES, 2019). A series of 16 different initial conditions were tested in or der to obtain convergence of the SPiCT fitting procedure (Table 2) and model selection was based on the lowest AIC.

Results of the retained model (alpha=beta=1 and $n=2$; Schaefer model) are still highly uncertain, with graphs showing huge confidence intervals(Fig.5). Thus, biological reference points derived from this exercise should be considered as preliminary indications. Fishery diagnostics suggesting $\mathrm{B} / \mathrm{BmsY}>1$ and $\mathrm{F} / \mathrm{F}_{\mathrm{mSY}}>1$ should also be considered as preliminary indications. It is worth noting however that these ratios are similar to those of a surplus production model fitted to the same stock a few years ago with a Bayesian procedure (Ibaibarriaga et al, 2015).

Figure 4. Stock metrics of Loliginidae in the English Channel (7.d and 7.e) estimated by SPiCT. Relative biomass and fishing mortality, production curve and KOBE-plot are given

Table 2. Different cases conducted. trying to fix model priors. Red cases did not converge. green did and Case $6 a^{*}$ is the one retained giving best model fitting (Schaeffer model).

SPICT	$\mathrm{n}=$ estim ated	$\mathrm{n}=2$	$\mathrm{n}=\mathrm{e}$ stimated Prior r	$n=2$ Prior r
No priors	Case 0a		Case 0b	
a estimated β estimated	Case 1a Case 2 a	Case 5a	Case 1b Case 2b	Case 5b
$\alpha=1, \beta=1$	Case 3a	Case 6a*	Case 3b	Case 6b
$\alpha=4, \beta=1$	Case 4	Case 7a	Case 4b	Case 7b

Figure 5. Stock metrics of Loliginidae in the Bay of Biscay (8.a,b,d) estimated by SPiCT. Relative biomass and fishing mortality, production curve and KOBE-plot are given.

Gulf of Cadiz (9.a south)

Combined landings of artisanal and trawl fisheries and CPUEs of 2 research surveys (March for Spain and November for Portugal) for 1993-2018 period were used.

The stock of interest was represented by mixture of two European Loligo species, but effectively consisted of L.vulgaris, as Lforbesii is rare in the south of Iberian Peninsula. The model diagnostics were considered to be satisfactory (Fig 1.5.A AppendixB).

The model also provided a consistent performance in retrospective (Fig 1.5.B AppendixB) and a production curve with the peak shifted left as expectable for cephalopod stocks (Fig 6.). The stock was assessed to be in a good condition and exploited sustainably as $\mathrm{B}>\mathrm{B}$ MSY and $\mathrm{F}<\mathrm{F}$ mSY with favour able forecast (Fig 5.). The SPiCTlikely might be applied to its assessment in future.

Figure 6. Stock metrics of Loliginidae in Gulf of Cadiz (9.a south) estimated by SPiCT. Relative biomass and fishing mortality and production curve given.

III. 2 - Sepiidae assessment

English Channel (7.d and 7.e)

Here we consider Sepia officinalis annual landings from 2001 to 2018. French Otter Bottom Trawl catch and effort data were used to compile a time series of annual average abundance index for the period 2001-2018 and for the selected area (ICES divisions7.d and7.e).

The SPiCT model seemed to be acceptable for this assessment unit. The model's output shows reasonable confidence intervals. However, although the best estimates of B and F in 2018 suggest overexploitation, confidence intervals are too wide to be certain of this (Fig.7). The model diagnostics (Fig 1.6.A Appendix B) were considered satisfactory as the result did not show significant bias (mean of the residuals different from zero) or auto-correlation from LPUE index. Both the QQ-plot and the Shapiro test showed normality in the residuals.

The stock was assessed to be in a good condition and exploited sustainably between 2001 and 2016 as $\mathrm{B}>\mathrm{B}$ ms and $\mathrm{F}<\mathrm{Fmsy}$ with favourable forecast but the possible recent overexploitation needs further investigation(Fig 7.).

Following WKLIFE and WKDLSLSS advice about the $\mathbf{1}$ over $\mathbf{2}$ rule, abundance variation was tested for cuttlefish through survey and commercial indices for 2017-2018 and 2018-2019 (Table $3)$.

Figure 7. Stock metrics of Sepiidae in English Channel (7.d and 7.e) estimated by SPiCT(1.2.7). Relative biomass and fishing mortality, production curve and KOBE-plot are given.

Table 3. Application of the 1 over 2 rule to trends in catches and in abundance in English Channel cuttlefish ($X_{t}=$ value of variable X for Year t)

		Abundance Indices							
Calculation	Total catch	$\begin{aligned} & \text { st.FR } \\ & \text { LPUE } \end{aligned}$	CGFS nb	CGFS bi- omass	BTS 7d	SW BEAM	TBB oct	TBB nov	surveyQ1
$\begin{aligned} & X_{2018} /(\text { mean } \\ & \left.\left(X_{2016}, X_{2017}\right)\right) \end{aligned}$	77.8\%	71.1\%*				74.6\%	53.4\%	89.0\%	116.6\%
$\begin{aligned} & X_{2017} /(\text { mean } \\ & \left.\left(X_{2015}, X_{2016}\right)\right) \end{aligned}$	97.3\%	102.5\%	44.94\%	35.46\%	90.08\%	115.9\%	123.9\%	105.9\%	91.6\%

*Cuttlefish declined by 28.9\%in abundance in 2018-2019 according to commercial fisheries data.

Bay of Biscay (8.abd)

The stock of interest is also mainly considering S. officinalis annual coverage landings from 2000 to 2018. French commercial landings were used to compile an abundance index averaged for 2000-2018 period for selected region (8.abd).

The SPiCT model result is uninformativefor this assessment unit as confidence intervals are very wide. Never theless, the trend of the model out put suggests overexploitation between 2000 and

2010 with $\mathrm{F}>\mathrm{F}_{\text {MSY }}$ and $\mathrm{B}<\mathrm{B}_{\text {MSY }}$, and since 2010 the exploitation seems stabilised at an underexploited level with $\mathrm{F}<\mathrm{F}_{\text {MSY }}$ and $\mathrm{B}>\mathrm{B}_{\mathrm{mSY}}$. Biomass was especially high in 2016 (Fig. 8). This model could be fur ther investigated using abundance index series from other countries like Portugal or Spain.

Figure 8. Stock metrics of Sepiidae in Bay of Biscay (8.abd) estimated by SPiCT (1.2.7). Re lative biomass and fishing mortality, production curve and KOBE-plot are given.

III. 3 - Ommastrephidae assessment

Northwest Iberian Peninsula (8.c. 9.a north)

To assess the Ommastrephid stocks off the Northwest Iberian Peninsula, landings for a period 2000-2018 and two tuning series were used: Spanish IBTS Trawl survey 8c9aN (September - October) and LPUEs of the Spanish Trawlers in the area. The model had satisfactory diagnostics
(Fig 1.8.A Appendix C) and suggested that Ommastrephid stocks are below Bmš. and fishing mortality is at or above Fmsr suggesting an overexploitation through the time series (Fig.9).

Figure 9. Stock metrics of Om mastrephidae in the Northwest Iberian Peninsula (8.c, 9.a.north) e stimated by SPiCT. Relative biomass and fishing mortality and production curve are given.

How ever, results of such exercise should be treated cautiously as Ommastrephidae in the region comprise a mixture of three species (Todaropsis eblanae, Illex coindetii and Todarodes sagittatus). Although the proportion of each species in the catches is unknown and probably very variable from year to year, T. eblanae and I. coindetii are thought to be more abundant than T. sagittatus. All these squids have wide ranges of distribution and a long pelagic "paralarval" stage when products of the spawning might be transported far away from the spawning area by oceanic currents. The reliability of the model in such a situation is questionable. Also, occasional"explosions" in abundance might lead to overestimation of BMSY and hence to underestimation of B/ВMSY and overestimation of F/FMSY.

III. 4 Overview of preliminary diagnostics

In the nine studied stocks, fitted models outputs correspond to preliminary diagnostics and candidate biological reference points. With the exception of the Rockall squid fishery (Loliginidae in area 6.b) the models seem to be valid in spite of the large confidence intervals displayed in Fig. 2 to 9. The comparison of average catches in the four last years and MSY, and the ratios B/Bmsy and F/Fmsy, seem to indicate that large stocks (English Channel Sepiidae, Bay of Biscay Loliginidae) may be more prone to overexploitation (Table 4).

Table 4. Summarised Biological Reference Points (BRP) obtained with SPiCT models ($\mathrm{C}=\mathrm{c}$ atch in tonnes, averaged over the last 4 years with available data; $\mathrm{MSY}_{s}=$ Stochastic Maximum Sustainable Yield (tonnes). Relative estimates of stochastic Biomass (B/BMSY) and Fishing Mortality (F/FMSY) refer to the final year for which data were available (refer to the index time periods in Table 1).

Cephalopod group	Area	C	MSY $_{\mathbf{s}}$	B/BMSY $^{\prime}$	F/FMSY
Loliginidae	6.a + 7.bc	360	1095	2.173	0.139
Loliginidae	6.b	873	1129	5.483	0.121
Loliginidae	7.a +7.ghjk	374	2195	3.508	0.050
Loliginidae	7.de	4359	3480	1.158	1.161
Loliginidae	8.abd	1520	1376	1.275	1.113
Loliginidae	9.a all	717	1076	2.796	0.224
S. officinalis	7.de	10920	11336	0.796	1.155
S. officinalis	8.abd	4172	4649	1.261	0.701
Ommastrephidae	8.c.+ 9.a north	1193	11254	0.084	1.153

IV Discussion

Follow ing recommendations of ICES WKProxy (ICES, 2016) and WKLIFE(ICES 2012b, 2017), a StochasticSurplus Production Model in Continuous Time (SPiCT) was applied by the WGCEPH to data available for several cephalopod stocks. This is a preliminary application and the exercises will continue during future WGCEPH meetings.
Results for Loliginidae from the West Coast of Scotland, CelticSea and Gulf of Cadiz were found to be valid in the sense that the final diagnostics were ob tained w ith confidence limits which do not overlap threshold ratios (B / B мя and $\mathrm{F} / \mathrm{Fmš}_{\text {Y }}$. Results for Sepiidae in the English Channel and Ommastrephidae in the Northwest Iberian Peninsula were considered to be satisfactory butestimated values for stock biomass and fishing mortality had wide confidence limits.
The model is applicable only to stocks for which exploitation rate is high enough to drive the stock dynamics and this might not be the case for many cephalopods in the study area. Taking into account the short-lived nature of cephalopods, for future work, the use of seasonally-averaged (i.e. by quarter) values of catches and abundance indices (by month or by quarter) rather than annual values might be recommended for the next trials. Mildenberger etal. (2019) underlined that taking into account seasonal changes in stock productivity improved the stock sustainability reference levels. A related possibility, when the seasonality of catches is clearly defined, catches are identified tospecies and the life cy cle is around 1 year in duration (the latter is not always true for cuttlefish), would be tofocus on those months during which an annual cohort is fished. Thus for Loligo forbesii in Scotland, each year of data might run from August to May. While some animals live longer than 12 months and in some years there hasbeen evidence of a second, summer breeding, cohort, use of July to June to represent a "fishing year" is probably a better option than the calendar year (e.g. Boyle et al., 1995).

Pedersen \& Berg (2017) point out that consideration of the shape of the production curve is important in order to obtain unbiased reference points and recommend trying a run without fixing the shape parameter n. Never theless, previous work by ICES WKLIFE group of ICES suggested
that fixing n (except to 1, which refers to the Fox model) could reduce estimation error and generate narrower confidence intervals. It is suggested to try first running models without a prior knowledge of n and then redo the models, fixing the n parameter based on the previous estimates, possibly also aiming for a production curve tilted to the left.

References

Boyle, P.R., Pierce,G.J., Hastie, L.C., 1995. Flexible reproductive strategies in the squid Loligo forbesi. Marine Biology 121, 501-508.

Gras, M., Roel, B.A., Coppin, F., Foucher, E., Robin, J.-P., 2014. A two-stage biomass model to assess the English Channel cuttlefish (Sepia officinalis L.) stock. ICES Journal of Marine Science 71 (9), 2457-2468.
Ibaibarriaga, L., Iriondo A., Robin, J.-P., Santurtun, M., 2015. Estimating the abundance of squid (Loligo vulgaris) in the Bay of Biscay. Working Document, ICES WGCEPH, 8-11 June 2015, Tenerife (Spain); in ICES, 2015 Interim Report of the Working Group on Cephalopod Fisheries and Life History (WGCEPH), ICES CM 2015/SSGEPD:02,129 pp.

Ibánez, C.M., Keyl, F., 2010. Cannibalism in cephalopods. Reviews in Fish Biology and Fisheries, 20(1), 123136.

ICES, 2012a. ICES Implementation of Advice for Data-limited Stocks in 2012 in its 2012 Advice. ICES CM 2012/ACOM 68.42 pp.

ICES, 2012b. Report of the Workshop on the Development of Assessments based on LIFE history traits and Exploitation Characteristics (WKLIFE). 13-17 February 2012. Lisbon. Portugal. ICES CM 2012/ACOM:36. 140 pp.
ICES, 2016. Report of the Workshop to consider MS Y proxies for stocks in ICES category 3 and 4 stocks in Western Waters (WKProxy). 3-6 November 2015. ICES Headquarters. Copenhagen. ICES CM 2015/ACOM:61. 183 pp.

ICES, 2017. Report of the ICES Workshop on the Development of Quantitative Assessment Methodologies based on Life-history traits. exploitation characteristics. and other relevant parameters for stocks in categories 3-6 (WKLIFE VI). 3-7 Oc tober 2016. Lisbon. Portug al. ICES CM 2016/ACOM:59. 106 pp.
ICES, 2019. Interim Report of the Working Group on Cephalopod Fisheries and Life History (WGCEPH), 5-8 June 2018, Pasaia, S an Sebastian, Spain. ICES CM 2018/EPDSG:12.194 pp.

Mildenberger, T.K., Berg, C.W., Pedersen, M.W., Kokkalis, A., Nielsen. J.R., 2019. Time-variant productivity in biomass dynamic models on seasonal and long-term scales. ICES Journal of Marine Science. doi:10.1093/icesjms/fsz154.S

Pedersen, M.W., Berg, C.W., 2017. A stochastic surplus production model in continuous time. Fish and Fisheries 18, 226-243.

Royer J., Pierce G.J., Foucher E., Robin J.-P., 2006. The English Channel Stock of Sepia officinalis: variability in abundance and impact of the fishery. Fisheries Research 78, 96-106.

Royer, J., Peries, P., Robin, J.-P., 2002. Stock assessments of English Channel Loliginid squid: updated depletion methods and new analytical methods. ICES Journal of Marine Science. 59 (3), 445-457.

Sims, D.W., Genner, M.J., Southward, A.J., Hawkins, S.J., 2001. Timing of squid migration reflects North Atlantic climate variability. Proceedings of the Royal Society of London. Series B: Biological Sciences 268 (1485), 2607-2611.

Sobrino, I., Rueda, L., Tugores, M.P., Burgos, C., Cojan, M., Pierce, G.J., 2020. Abundance prediction and influence of environmental parameters in the abundance of Octopus (Octopus vulgaris Cuvier, 1797) in the Gulf of Cadiz. Fisheries Research 221, 105382.

Trites, R.W., 1983. Physical oceanographic features and processes relevant to Illex illecebrosus spawning in the western North Atlantic and subsequent larval distribution. NAFO Scientific Council Studies 6, 3955

Wolfram, K., Mark, F. C., John, U., Lucassen, M., Pörtner, H.O., 2006. Micro satellite DNA variation indicates low levels of genetic differentiation among cuttlefish (Sepia officinalis L.) populations in the English Channel and the Bay of Biscay. Comparative Biochemistry and Physiology PartD: Genomics and Proteomics 1 (3), 375-383.
 Young, I.A.G., Pierce, G.J., Daly, H.I., Santos, M.B., Key, L.N., Bailey, N, Robin, J.-P., Bishop, A.J., Stowasser, G., Nyegaard, M., Cho, S.K., Rasero, M., Pereira, J.M.F., 2004. Application of depletion methods to estimate stock size in the squid Loligo forbesi in Scottish waters (UK). Fisheries Research 69, 211-227.

Supplementary material

Appendix A - Description of surveys indices:

North West Groundfish Survey (NWGFS) covered ICES Divisions 7a, 7f and 7g combined, from 1988to 2018. The CPUE w as given as an annual average number of individuals per hour of haul. For the years 2014 and 2015, no survey data w as available from the NWFS survey. To have a complete time series, 2014 was replaced by the average of 2013 and 2016 and 2015 was given the average of 2014 and 2016. Data w as sourced directly from CEFAS.

Irish Groundfish Survey (IGFS) covered ICES Divisions 6a and $7 a, b, c, g, j, k$ separately from 2003 to 2018. The CPUE w as given as an annual simple mean weight (kg) per hour of haul for each division for Loligo forbesii. Due to the patchiness of the time series, Divisions 7 c and 7 k were not used. The data for this data w as sourced from DATRAS.

South West Beam Trawl Survey Q1 (SWBEAM) data covered ICES Divisions 7.a,f,e combined from 2006 to 2018. The CPUE wasgiven as the annualmean of the number of individuals per hour of haul. Data sourced from CEFAS.

Channel Beam Trawl Survey (BTS) covered ICES Division 7.d from 1989 to 2017. The CPUE was given as the annual mean of the number of individuals per hour of haul, data sourced from CEFAS.

EVHOE data were extracted for the Celtic Sea portion of the Survey covering ICES Division 7.g,h,j,k combined, from 1997 to 2018. The CPUE was provided as an annual stratified mean weight (kg) per swept area of haul for Loligo forbesii. Data sourced from IFREMER.

Channel Groundfish Survey (CGFS) data covered ICES divisions 7.d and 7.e of the English Channel from 1990 to 2017. The CPUEs are both available as an annual average number or biomass (kg) of individuals per square kilometre. Data sourced from IFREMER.

Scottish Surveys

Data were sourced from DATRAS for the Scottish West Coast IBTS (SWC-IBTS) survey and the Scottish GroundfishSurvey (SCOGFS) (1997 to 2018) for ICES Division 6.a. The CPUE was given as the annual mean of the number of individuals per hour of haul.

In addition, previously extracted Scottish survey data from Marine Scotland Science (MSS) were provided by Graham Pierce which included the SWC-IBTS, SCOGFS, International Young Fish Survey (IYFS), Scottish Monk and Megrim Survey, Mackerel Recruitment Survey, Deepwater surveys, experimental surveys, Pre-recruit surveys and several other trawl surveys. The data was selected for ICES Divisions 6.a and 7.b, from 1981 to 2012 - more recent data has still not been provided. The abundance is expressed as an annual simple mean of the number of individuals per hour haul for each.

Rockall

As for the Scottish surveys, index data for Rockall were derived from DATRAS Scottish Rockall surveys from 2001 to 2018, with an abundance index represented as an annual simple mean weight (kg) per hour of haul, and MSS source; which included an aggregation of data from the Groundfish, Pre-recruit, Haddock, Demersal and Hydrographic surveys at Rockall, togetherproducing a continuous time series from 1981 to 2012 for ICES Division 6.b. The abundance index was represented as an annual simple mean of the number of individuals per hour of haul. Surveys took place in the $2^{\text {nd }}$ and $3^{\text {rd }}$ Quarters.

The model w ould not converge using the abovementioned datasets. Several modifications of the CPUE were attempted in or der to get convergence, with success. Instead of producing the CPUE as a number per haul, a length-weight relationship formal from Young et al. (2004), given as:

$$
\mathrm{W}(\mathrm{~g})=0.00094 \times \mathrm{L}(\mathrm{~mm})^{2.33295}
$$

Then, W (per haul) $=\mathrm{W} \times$ No. at Length class
Where the weight was calculated for each length class and multiplied by the number of individuals of that length class in a haul. So CPUE is now measured as the annual average of the calculated weight (kg) per hour of haul.

In both datasets, data were missing from 2002, 2004 and 2010 and an average of the previous and follow ing year w as used to replace each missing year. To complete the time series, the DATRAS data series from 2011 was added to the other time series. This approach is not ideal as it collates indices from different surveys, gears and calculated w eights but it w as considered to be a necessary trade-off so as to have a sufficiently long and complete time-series to allow models to converge.

Appendix B - Diagnostics and retrospective plots for Loliginidae, Sepiidae and Ommastrephidae

Figure 1.1.A. SPiCT diagnostic for Loliginid squid of West Coast of Ireland and Scotland (6.a and 7.b.c). Row 1 Log of the input dataseries. Row 2 OSA residuals with the p-value of a test for bias. Row 3 Empirical autocorrelation of the residuals with tests for significance. Row 4 Tests for normality of the residuals. QQ-plot and Shapiro test.

Figure 1.1.B. Loliginid squid of West Coast of Ireland and Scotland (6.a and 7.b.c) - 5 years retrospective analysis. Relative biomass and fishing mortality respectively on left and right.

Figure 1.2.A. SPiCT diagnostic for Loliginid squid of Rockall (6.b). Row 1 Log of the input data series. Row 2 OSA residuals with the p-value of a test forbias. Row 3 Empirical autocorrelation of the residuals with tests for significance. Row 4 Tests for normality of the residuals. QQ-plot and Shapiro test.

Figure 1.2.B. Loliginid squid of West Coast of Rockall (6.b) - 5 years retrospective analysis. Relative biomass and fishing mortality respectively on left and right.

Figure 1.3.A. SPiCT diagnostic for Loliginid squid of Irish Sea and CelticSea (7.a. 7.f and 7.g.h.j.k). Row 1 Log of the input datas eries. Row 2 OSA residuals with the p-value of a test for bias. Row 3 Empirical autocorrelation of the residuals with tests for significance. Row 4 Tests for normality of the residuals. QQ-plot and Shapiro test.

Figure 1.3.B. Loliginid squid of Irish Sea and Celtic Sea (7.a. 7.f and 7.g.h.j.k) - 5 years retrospective analysis. Relative biomass and fishing mortality respectively on left and right.

Figure 1.4.A. SPiCT diagnostic for Loliginid squid of English Channel (7.d and 7.e). Row 1 Log of the input data series. Row 2 OSA residuals with the p-value of a test for bias. Row 3 Empirical autocorrelation of the residuals with tests for significance. Row 4 Tests for normality of the residuals. QQ-plot and Shapiro test.

Figure 1.4.B. Loliginid squid of English Channel (7.d and 7.e) - 5 years retrospective analysis. Relative biomass and fishing mortality respectively on left and right.

Figure 1.5.A. SPiCT diagnostic for Loliginid squid of Gulf of Cadiz (9.a south). Row 1 Log of the input dataseries. Row 2 OSA residuals with the p-value of a test for bias. Row 3 Empirical autocorrelation of the residuals with tests for significance. Row 4 Tests for normality ofthe residuals. QQ-plot and Shapiro test.

Figure 1.5.B. Loliginid squid of Gulf of Cadiz (9.a south) - 5 years retrospective analysis. Relative biomass and fishing mortality respectively on left and right.

Figure 1.6.A. SPiCT diagnostic for Sepiidae of the English Channel (7.d and 7.e). Row 1 Log of the input data series. Row 2 OSA residuals with the p-value of a test for bias. Row 3 Empirical autocorrelation of the residuals with tests for significance. Row 4 Tests for normality ofthe residuals. QQ-plot and Shapiro test.

Figure 1.6.B. Sepiidae of the English Channel (7.d and 7.e) - 5 years retrospective analysis. Relative biomass and fishing mortality respectively on left and right.

Figure 1.7.A. SPiCT diagnostic for Sepiidae of the Bay of Bisacy (8.a,b, d). Row 1 Log of the input data series. Row 2 OSA residuals with the p-value of a test for bias. Row 3 Empirical autocorrelation of the residuals with tests for significance. Row 4 Tests for normality of the residuals. QQ-plot and Shapiro test.

Figure 1.7.B. Sepiidae of the Bay of Bisacy (8.a,b, d) - 5 years retrospective analysis. Relative biomass and fishing mortality respectively on left and right.

Figure 1.8.A.SPiCT diagnostic for Ommastrephidae of Northwest Iberian Peninsula (8.c. 9.a north). Row 1 Log of the input data series. Row 2 OSA residuals with the p-value of a test for bias. Row 3 Empirical autocorrelation of the residuals with tests for significance. Row 4 Tests for normality of the residuals. QQ-plot and Shapiro test.

Appendix C - Loligo vulgaris exercise in the Bay of Biscay

Model simulations fixing parameters - Loligo vulgaris in the Gulf of Biscay

When using the default values the models do not converge and results show wide confidence intervals. Trying to fix the model, some assumptions were made to set parameters values: for example, using Schaeffer model(fixing $n=2$). In one of the results, convergence was achievedand relatively acceptable results were obtained to estimate relative stock biomass (Table3.1.).

These results are part of an exercise and they will be considered as an example of the possible assumptions that willbe done to fix the SPiCT model.

Table 3.1. Different cases conducted. trying to fix model priors. Red cases did not converge. green did and Case $6 a^{*}$ is the one retained giving best model fitting (Schaeffer model).

SPICT	$\mathrm{n}=$ estimated	$\mathrm{n}=2$	$\mathrm{n}=$ estimated Prior r	$\begin{gathered} \mathrm{n}=2 \\ \text { Prior } \mathrm{r} \end{gathered}$
No priors	Case 0a		Case 0b	
a estimated β estimated	Case 1a Case 2a	Case 5a	Case 1b Case 2b	Case 5b
$\alpha=1, \beta=1$	Case 3a	Case 6a*	Case 3b	Case 6b
$\alpha=4, \beta=1$	Case 4	Case 7a	Case 4b	Case 7b

Diagnostics and retrospective plots for Case 6a: $\alpha=\beta=1$ and $n=2$ (Schaefer model)
Assessmentresults
Absolute biomass $\begin{aligned} & \text { Jan } \\ & \text { Apr } \\ & \text { Jul } \\ & \text { Oct }\end{aligned}$

Residualdiagnostics

Model parameters and 95\% CI

	estimate	cilow	Ciupp
alpha	1	0.998	1.002
beta	1	0.998	1.002
\mathbf{r}	1.145	0.295	4.442
$\mathbf{r c}$			
rold			
\mathbf{M}	1938	1075	3494
\mathbf{K}	6772	1589	28866
\mathbf{Q}	0.001	0	0.012
\mathbf{N}	2	1.996	2.004
Sdb	0.487	0.354	0.671
Sdf	0.224	0.135	0.369
Sdi	0.487	0.354	0.671
Sdc	0.224	0.135	0.369

Reference points: (Loliginidae in the Bay of Biscay)

Deterministic reference points

	estimate	cilow	ciupp	log.est
$\mathbf{B}_{\text {MsY }} \mathbf{d}$	3386	794	14433	8.127
$\mathbf{F}_{\text {MSY }} \mathbf{d}$	0.572	0.147	2.221	-0.558
MSYd	1938	1075	3494	7.569

Stochastic reference points

	estimate	ci ilow	ci iupp	log.est	rel.diff.Drp
$\mathbf{B}_{\text {MsY }}$	2698	665	10937	7.900	-0.255
F $_{\text {MsY }}$	0.523	0.110	2.474	-0.649	-0.095
MSYs	1376	656	2883	7.227	-0.409

Stock status

	estimate	ci $_{\text {low }}$	ci $_{\text {upp }}$	log.est
B2016.00	3441	369	32056	8.143
F2016.00	0.582	0.064	5.262	-0.542
B2016/B $_{\text {MSY }}$	1.275	0.316	5.146	0.243
F2016/F	MSY	1.113	0.417	2.973

(Note: Biomass is above $\mathrm{B}_{\text {MSY }}$ but F is above $\mathrm{F}_{\text {MSY }}$)

Retrospective plot Case 6a data until2016

\mathbf{u}^{-}

