

On board automatic identification and quantification of the total catch: the iObserver

iSEAS http://lifeiseas.eu C. Vilas*, L.T. Antelo, X. Morales, T. Ordóñez, R.I. Pérez-Martín, A.A. Alonso, J.

Valeiras, E. Abad, M. Quinzán, J.M. Casas, J.L. del Río

Marine Research Institute, IIM-CSIC, Vigo (Spain)
Instituto Español de Oceanografía, IEO, Vigo (Spain)
E-mail: carlosvf@iim.csic.es

INTRODUCTION AND OBJECTIVE

- Fish discards constitute a waste of marine resources with adverse socio-economic and environmental impacts
- The European Common Fisheries policy (CFP) has been set up to:
 - Mitigate/prohibit discards [1]
 - o Find alternative uses for unavoidable discarded biomass [2]
- Innovative technologies are required to monitor and quantify the level of compliance of the CFP [3]
- Objective: To develop an automated system for registering the whole catch: the iObserver
 - o Located over the conveyor belt
 - User friendly GUI
 - o Fish species recognition from pictures
 - o Individual size/weight estimation
 - Real-Time transmission to in-land analysis center

THE iOBSERVER

- Hardware: camera, computer, lights, protection case (18 kg)
 - **Software**: different functionalities
 - o Species identification from images
 - Identification automatically starts after pushing "start haul" button
 - o Easy training of new species
 - o Calibration for different lightning conditions

Main screen (easy to use – two buttons):

- Start haul
- End haul

RESULTS AND DISCUSSION

Training of iObserver for recognition:

- Use of a GUI
- Different views (dorsal, ventral, lateral) for each species
- Several individuals per species (minimum 20)
- Up to 17 species were already trained

Recognition:

- Recognition based on color, texture and shape
- · A CSV file with the identification results is generated
- Sensors in the belt to control camera/images acquisition
- Recognition accuracy up to 90% (non-overlapped)

Identification results comparison

1	Me	Measured		Identified		Comparison	
	Sp.	L [cm]	Sp.	L [cm]		Err L [%]	
	GUX	21,5	GUX	21	✓	2,3	
	MAC	23	MAC	22,4	✓	2,6	
	HKE	26	HKE	24,8	✓	4,6	
	ВОС	7	ВОС	6,9	✓	1,4	
	SYC	28	SYC	26,4	✓	5,7	
	BRF	10,5	BRF	10,4	✓	1	
	MEG	17,5	MEG	17	✓	2,9	

CONCLUSIONS I

- iObserver provides highly accurate results with separated individuals. Data (csv file) is transmitted (in real time) to in-land servers
 - o Entire catch can be fully documented
 - o Ships can act as "on-line sensors", getting real fishing activity information.
 - Data from ships can be used by fishing sector, scientists and policymakers to decide the best fishing grounds, to assess the status of the stocks or to develop efficient regulations/laws
- Currently working on:
 - o Recognition improvement when individuals are overlapped
 - o Shape recognition when texture/color is similar
 - o Automatically start and finish the haul

REFERENCES

- [1] Sigurðardóttir, S. et al. (2015). Marine Policy, 51:366-374.
- [2] Ordóñez-Del Pazo, T., Antelo, L.T., Franco-Uría, A., Pérez-Martín, R.I., Sotelo, C.G., Alonso, A.A. (2014). *Trends Food Sci. Technol.*, 36 (1):29–43
- [3] Johnsen, J.P., Eliasen, S. (2011). *Marine Policy*, 35:130-139.

ACKNOWLEDGEMENTS

The authors thank the financial support received from the LIFE+ Program of the European Union (FAROS Project – LIFE08 ENV/E/000119 & LIFE ISEAS Project – LIFE13 ENV/ES/000131) and the intense work carried out by the different research groups belonging to LIFE ISEAS consortium:

