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Abstract
Aim: Previous analyses of marine fish species richness based on presence-absence data 
have shown changes with latitude and average species size, but little is known about 
the underlying processes. To elucidate these processes we use metabolic, neutral and 
descriptive statistical models to analyse how richness responds to maximum species 
length, fish abundance, temperature, primary production, depth, latitude and longitude, 
while accounting for differences in species catchability, sampling effort and mesh size.
Data: Results from 53,382 bottom trawl hauls representing 50 fish assemblages.
Location: The northern Atlantic from Nova Scotia to Guinea.
Time period: 1977–2013.
Methods: A descriptive generalized additive model was used to identify functional 
relationships between species richness and potential drivers, after which nonlinear 
estimation techniques were used to parameterize: (a) a ‘best’ fitting model of species 
richness built on the functional relationships, (b) an environmental model based on 
latitude, longitude and depth, and mechanistic models based on (c) metabolic and (d) 
neutral theory.
Results: In the ‘best’ model the number of species observed is a lognormal function of 
maximum species length. It increases significantly with temperature, primary produc-
tion, sampling effort, and abundance, and declines with depth and, for small species, 
with the mesh size in the trawl. The ‘best’ model explains close to 90% of the deviance 
and the neutral, metabolic and environmental models 89%. In all four models, maxi-
mum species length and either temperature or latitude account for more than half of 
the deviance explained.
Main conclusions: The two mechanistic models explain the patterns in demersal fish 
species richness in the northern Atlantic almost equally well. A better understanding 
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1  | INTRODUC TION

Although much has been learned about the richness and distri-
bution of marine species, a mechanistic understanding of the 
processes responsible for generating and maintaining species 
richness over evolutionary time-scales remains elusive. There is 
no generally accepted theory to explain the spatial distribution 
of marine species richness and no general understanding of why 
some species are more abundant than others (Fine, 2015). This 
lack of understanding is somewhat surprising. Strong latitudinal 
gradients in species richness are observed at global and regional 
scales and these often correlate significantly with environmental 
variables and life-history traits. Hillebrand (2004) conducted a 
meta-analysis of gradients in marine biodiversity and found signif-
icant relationships between marine species richness, latitude, and 
species size, while Tittensor et al. (2010) found water temperature 
to be the main environmental predictor of species richness across 
a number of marine taxonomic groups. Why latitude, tempera-
ture and species size are important is unclear, but size and max-
imum body size influence the trophic position, mortality, growth, 
and reproduction of many marine species (Andersen et al., 2016), 
temperature affects their metabolism and food uptake (Gillooly, 
Brown, West, Savage & Charnov, 2001), and latitude determines 
the amplitude of the seasonal changes in solar energy input af-
fecting primary production, average temperature, and annual tem-
perature range (Cullen, Franks, Karl & Longhurst, 2002).

Bony fish and elasmobranchs are among the best taxonomically 
resolved groups of marine animals and are therefore well suited for 
studies of marine species richness. Estimates suggest that on a global 
scale around 79% of the species have now been described (Mora, 
Tittensor & Myers, 2008) and very few species have been declared 
extinct due to human activities (Davies & Baum, 2012). However, 
most inventories of fish species richness are based on single record-
ings of individuals with little consideration of differences in indi-
vidual density and sampling effort. Including density and sampling 
effort is important for at least two reasons. The number of species 
recorded is known to depend statistically on the number of indi-
viduals and number of samples examined (Gotelli & Colwell, 2001), 
and high-density areas may have higher species richness because 
they harbour more individuals able to maintain a higher number 
of viable populations (Brown, 2014). Based on species inventories, 
MacPherson and Duarte (1994) found fish species richness and av-
erage maximum fish species size to increase with depth and decline 
with latitude in the northern Atlantic and Fisher, Franks, and Leggett 
(2010) found the geometric mean fish species size to covary with 
species richness. While Blowes, Belmaker, and Chase (2017) found 
the latitudinal change in reef fish richness to scale with abundance, 
no one has so far analysed how species richness of marine fish found 
on soft or sandy bottoms is related to density or abundance on a 
basin-wide scale.

To understand how fish species richness in different fish com-
munities is related to density or abundance, species length and 
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environmental conditions, we analyse an extensive dataset, gen-
erated by collating results from 31 standardized bottom trawl 
surveys from the continental shelves of the northern Atlantic and 
adjacent areas (Figure 1). Our analysis is based on 123 million indi-
vidual demersal or benthopelagic fish caught in 53 thousand hauls 
taken within a total survey area of 3.1 million km2. Bottom trawl 
surveys are often stratified to account for spatial or depth related 
differences in fish assemblage composition and density. We retain 
the stratification used in the surveys, correct for differences in 
catchability, and further stratify species into log maximum spe-
cies length intervals. Using a generalized additive model (GAM) 
to identify significant variables and relationships, we construct a 
‘best’ descriptive model of the number of species caught per log 
maximum species length interval and survey stratum by trans-
forming the significant relationships identified by the GAM into 
functional relationships. We also fit an environmental model to 
the data in which latitude, longitude, depth, total catch and mesh-
size are used as independent variables without invoking any bio-
logical hypotheses. Using the two descriptive models as reference 
points we investigate how well mechanistic equilibrium models 
of species richness based on metabolic (Allen, Brown & Gillooly, 
2002; Allen & Gillooly, 2007) and neutral theory (Hubbell, 2001) 
fit the survey data. Both theories explain the present difference 
in species richness among fish communities from individual den-
sity or abundance, and from fundamental evolutionary processes 
such as speciation, dispersal, and extinction. Recently, they have 
been combined and used to simulate the latitudinal gradient in 
species richness in the oceans (Tittensor & Worm, 2016; Worm & 
Tittensor, 2018).

In brief, the basic assumption of metabolic theory is that tem-
perature enhances species richness by increasing mutation rates 
and reducing generation times, while extinction rates are inversely 
related to the average density per species. In contrast to meta-
bolic theory, neutral theory includes a spatial component and as-
sumes that richness is determined by local abundance and random 

extinctions among functionally equivalent species counterbalanced 
by immigration from a surrounding meta-community where spe-
ciation takes place. Functionally equivalent species are defined as 
species that share the same probabilities of death and reproduction 
(see Supporting Information Appendix S1 for further information on 
the two models). Because natural mortality and reproductive output 
depend on body size in fish, we follow Reuman, Gislason, Barnes, 
Mélin, and Jennings (2014) and assume that functional equiva-
lence primarily applies for species of similar maximum length. We 
therefore treat each maximum species length group separately. 
Comparing the results from the neutral and metabolic models with 
the two descriptive models, our aim is to elucidate the mechanisms 
behind the richness differences we observe across fish communities 
in the northern Atlantic.

2  | METHODS

2.1 | Survey data

Average catch in number of individuals per species and haul was 
provided from 31 scientific bottom trawl surveys. The time period 
from which data were obtained from each survey was selected to 
provide temporal overlap between the surveys and as long a time 
period from each survey as feasible to minimize the influence of ran-
dom fluctuations in recruitment and population abundance. Surveys 
with less than eight years of data were hence excluded. Although the 
earliest trawl hauls were taken in 1977 and the most recent in 2013, 
the period from 2001 to 2006 was covered by all surveys. Slightly 
more than half of the surveys took place in the period from October 
to March, a third in the period from April to September, and the re-
maining surveys included hauls obtained throughout the year (see 
Appendix: Data sources, and Supporting Information Appendix S2: 
Table S2.1). Different bottom trawls were used in the surveys. Cod-
end mesh sizes ranged from 13 to 40 mm, horizontal trawl openings 

F I G U R E  1   Pie charts showing 
the locations of the surveys and the 
relative number of species recorded 
in each of the maximum length groups 
indicated in the lower right-hand corner 
of the map (plotted with the R package 
marmap (Pante & Simon-Bouhet, 
2013).
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(wing spread) from 13 to 28 m, vertical openings from 1.9 to 7 m 
and towing speeds from 3 to 4.5 knots. Many of the surveys used a 
stratified random sampling design to account for spatial and depth 
related differences in species composition. We retained the major 
strata used in the surveys, providing us with richness and density 
data from 50 different strata. The average depth in these strata 
ranged from 28 to 950 m.

2.2 | Environmental data

Sea surface temperature, average temperature in the upper 200 m 
of the water column and near bottom temperatures (Kelvin) were 
obtained from the World Ocean Atlas 2013 (Locarnini et al., 2013) 
based on decadal average temperature at 0.25° resolution cov-
ering the period 1955–2012 for annual, boreal summer (Jul–Sep) 
and boreal winter (Jan–Mar). Bottom temperatures were defined 
as the temperature in the layer closest to the bottom. Spatial aver-
ages were calculated for each survey stratum, and the seasonal 
amplitude calculated as the difference between summer and win-
ter values. Estimates of depth integrated pelagic net primary pro-
duction (npp, gC/m2/year) based on the satellite-derived vertically 
generalized production model (VGPM; Behrenfeld & Falkowski, 
1977) were downloaded from http://www.scien​ce.orego​nstate.
edu/ocean.produ​ctivity at 1/12 degree monthly resolution for the 
period 2002–2012, from which estimates of mean annual npp were 
derived for each survey area. Latitude and longitude were calcu-
lated as the average of the minimum and maximum coordinates 
of each survey. Average depth was calculated as the midpoint 
of the depth range of each stratum (see Supporting Information 
Appendix S2: Table S2.1).

2.3 | Fish species data

Among the fish taxa recorded some individuals had not been identi-
fied to species. If possible, we allocated these individuals to species, 
assuming that their relative species composition would be identical 
to that of the individuals identified within the same survey stratum, 
and family or genus. Where no species from the family or genus had 
been identified in a stratum, the family or genus name was retained. 
Information about the maximum length of each species was down-
loaded from FishBase (Froese & Pauly, 2016) and used to bin the 
observations into 11 log maximum length intervals of equal width 
(from now on denoted log maximum length groups). In 1% of the 
species records no maximum species length was available. These re-
cords were excluded from further calculations.

To estimate absolute fish density and abundance in a given 
stratum or area we first calculated swept area density for each 
species. This was done by dividing the average number of indi-
viduals caught per haul by the average area swept per haul, esti-
mated by multiplying the wing spread of the trawl by the average 
distance covered per haul. Swept area abundance was calculated 

by multiplying swept area density by the size of the survey area. 
Swept area density and abundance can be converted to absolute 
density and abundance if catchability is known. Catchability, the 
fraction of the population in the path of the trawl that is retained 
and caught by the gear, can be estimated by dividing the swept 
area estimate of abundance by the absolute abundance provided 
by a stock assessment. Catchability is likely to differ between 
areas and species and depends on a number of factors including 
the properties of the trawl and species-dependent traits such as 
the size, behaviour and distribution of the individuals (Arreguín-
Sánchez, 1996; Walker, Maxwell, Le Quesne & Jennings, 2017). 
To account for differences in horizontal and vertical distribution 
we sorted the species into: (a) species whose main distribution is 
outside the main depth range of the surveys (species mainly occur-
ring in the infra-littoral zone and bathydemersal or bathypelagic 
species found mainly at more than 200 m of depth), and species 
whose main distribution is inside the main depth range of the sur-
veys, but either (b) mostly occur on either untrawlable grounds 
(species that are mainly found associated with reefs or in rocky 
areas), (c) are likely to have a low catchability (species that bury in 
the sediment and pelagic species), or (d) are likely to be regularly 
retained by the survey gear when available (species resting on the 
seabed, species found close to but not on the seabed, and midwa-
ter species with some bottom contact).

We were able to identify 56 cases where catchability could 
be derived for the species, time period, and area covered by the 
survey data (see Supporting Information Appendix S3 and Table 
S3.1). No catchability estimates could be derived for bathypelagic 
and bathydemersal stocks, and few estimates could be obtained 
for infra-littoral species, for species mainly found associated with 
reefs or in rocky areas, and for burying and pelagic species; spe-
cies that are likely to be under-sampled by the trawl surveys. The 
average catchability of these species was only 0.05, while the av-
erage catchabilities of the species in group four were 0.34, 1.04 
and 0.52 for species that were resting on the seabed, found close 
to the seabed, or found in midwater, respectively. Note that for 
some of the species found close to the seabed the estimated 
catchability exceeded 1.0, probably due to their response to the 
herding effect of the bridles, sweeps, and doors of the trawl. Due 
to the few and low catchability estimates available for groups two 
and three, we decided to use only species from group (d) in our 
analysis. To extrapolate the 41 catchability estimates available for 
the 412 species in this group we fitted a log-linear mixed model 
to the estimates, using the vertical position of the species (rest-
ing on seabed, found close to but above seabed, or midwater with 
some bottom contact) as a fixed variable and species identity and 
survey area as random factors. Drawing samples at random from 
the resulting stochastic model we generated 1,000 estimates of 
catchability for each combination of species and survey stratum 
(see Supporting Information Appendix S3). The catchabilities 
were used to calculate average absolute density and abundance in 
each survey stratum for each of the species found in the surveys. 
Average absolute density and abundance were finally cumulated 

http://www.science.oregonstate.edu/ocean.productivity
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across species within each log maximum length group and survey 
stratum producing 550 data points as input to the models.

To confirm that the richness of the species in group (d) had been 
reasonably well sampled by the surveys, we furthermore used the 
vegan package (Oksanen et al., 2015) to estimate the number of un-
observed species in each survey stratum, and found that on average 
a minimum of 7–8% of the species in a particular stratum may not 
have been recorded. However, considering all of the species found 
across the surveys few species appear to have been missed (see 
Supporting Information Appendix S4: Table S4.1).

2.4 | Selection of independent variables

The number of species recorded in a survey stratum depends on the 
species richness in the stratum and the bias introduced by the sam-
pling method. Using a bottom trawl to sample species richness is 
likely to generate a biased estimate of species richness because the 
number of species recorded depends on the number of individuals 
caught and identified (the species accumulation curve); the total area 
swept by the trawl (a measure of sampling effort); the vertical open-
ing of the trawl (potentially influencing the catch of individuals and 
species trying to escape over the trawl); and its mesh-size (influenc-
ing the proportion of small individuals and species recorded in the 
catch). To account for the bias we included all four variables in the 
GAM model. We used the total area swept in each survey stratum 
rather than the total number of hauls to represent sampling effort 
because the average duration of the trawl hauls ranged from 15 min 
to 1 hr across surveys.

According to the metabolic and neutral models, richness should 
depend on temperature, species size, and either density or absolute 
abundance, but the size of the stratum (the species–area relation-
ship), net primary production, annual temperature range, latitude, 
longitude and depth may also be important covariates. Temperature 
may influence richness by affecting fish metabolism, generation time 
and mutation rate, but varies seasonally depending on latitude, lon-
gitude and depth. Identifying the biologically relevant ambient tem-
perature for a fish species is therefore difficult. Average sea surface 
temperature may be relevant for the pelagic eggs and larvae, average 
bottom temperature describes the average ambient temperature en-
countered by the juveniles and adults at the depth where they are 
caught by the survey trawls, and average temperature in the upper 
200 m of the water column may represent the average temperature 
encountered during the entire life cycle.

We furthermore found more than a third of the pairwise cor-
relations of the potential independent variables to be significant 
(see Supporting Information Appendix S2: Figure S2.2). Sea surface 
temperature, bottom temperature and water column temperatures 
were highly significantly correlated with each other and with both 
latitude and longitude, while the seasonal temperature range in the 
upper 200 m of the water column was significantly correlated to the 
seasonal temperature ranges near the bottom and at the surface. 
Net primary production decreased with latitude and increased with 

temperature, with both correlations highly significant. The vertical 
opening of the gear was highly significantly correlated to both lati-
tude and to all three temperatures, but not to longitude, reflecting 
that surveys in high latitudes generally use larger trawls with larger 
vertical openings than surveys in low latitudes. Total area swept and 
total stratum area were also highly significantly positively correlated, 
reflecting that more hauls typically had been taken in large survey 
strata than in small. Finally, catch in numbers, average abundance, 
and total swept area were significantly correlated.

2.5 | Identifying functional relationships

To find the ‘best’ descriptive model we used a GAM (Wood, 2006) 
to identify the functional form and error structure of the relation-
ship between the number of species caught per log maximum length 
group and the independent variables using the R package mgcv v. 
1.8.22 (Wood & Säfken, 2016). In the GAM the log of the expected 
mean number of species caught, �i,j, in survey stratum i , maximum 
length group j, was described using:

where � is a proportionality constant; suffixes i  and j signify sur-
vey stratum and maximum length group, respectively, temp_rangei is 
the intra-annual temperature range in the stratum (Kelvin); tempi is 
temperature (Kelvin); abundancei,j is the average absolute abundance 
of fish of maximum length group j in stratum i ; depthi is depth (m); 
nppi is annual net primary production (gC/m2/year); asurvi is the total 
stratum area (km2); lmlj is the midpoint of the log maximum length 
group; catchi,j is the total number of fish caught in stratum i , max-
imum length group j over the time period of the survey; aswepti is 
area swept by the survey trawl (km2); meshi is mesh-size (mm); and 
vertopi is the vertical opening of the trawl (m). The s1,… ,s10 are gen-
eral spline smoothers, while s11,j denotes that for each log maximum 
length group, j, a separate spline smoother was applied to describe 
the effect of mesh-size on the number of species caught. The tempi 
and temp_rangei variables were either sea surface, average upper 
200  m water column or bottom temperature or were replaced by 
latitude, lati, and longitude, loni, when the effect of geographical lo-
cation was examined, and abundancei,j was changed to densityi,j to 
examine which of the two would provide the best fit.

We used thin plate regression splines with a basis dimension of 
four as smoothers and a log link. To account for the correlation be-
tween many of the independent variables, we analysed the effect of 
including these in separate model versions using residual plots and 
estimates of concurvity (a nonlinear analogue of multicollinearity) to 
select the best fitting parameter combinations, and the Akaike in-
formation criterion (AIC) to identify the most parsimonious model. 
Model terms were selected by backwards removal of insignificant 
variables, after which covariates generating an estimated concurvity 
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larger than .80 were sequentially removed to reduce variance infla-
tion and avoid bias. Distributions of residuals were visually inspected 
for normality and plotted against each covariate to reveal heterosce-
dasticity. We compared models with Poisson and negative binomial 
error distributions, and found the two to provide an almost equally 
good fit to the data based on AIC values and comparisons of the ob-
served and theoretically expected variance, where the importance 
of over-dispersion was assessed by dividing the sum of squared 
residuals by the sample size minus the number of parameters esti-
mated (Hilbe, 2011). For the negative binomial model this produced 
a variance ratio of 0.94, confirming the appropriateness of a negative 
binomial assumption.

We simplified the GAM model and further reduced its AIC value 
by inserting the functional relationships indicated by the significant 
GAM smoothers (see Figure 3). To model the effect of temperature, 
we assumed that the relationship between species richness and tem-
perature would follow the Arrhenius equation (Gillooly et al., 2001) 
and consequently used the inverse of temperature in the model. 
The functional relationships included logarithmic transformations 
of several of the other independent variables and the addition of a 
second-order polynomial to capture the change in log species rich-
ness with log maximum length. All log transformations used natural 
logarithms. Using log transformations meant either that zero obser-
vations had to be excluded, or that a small positive number had to be 
added to avoid having to calculate the log of zero. When zero indi-
viduals had been caught in a given stratum and log maximum length 
group, we therefore used the inverse of the total area swept in the 
stratum to provide a tentative estimate of the maximum density in 
the stratum and group. As evidenced by the residuals, this introduced 
a small bias in the fit (see Supporting Information Appendix S5: Figure 
S5.3). Because the neutral model cannot easily be linearized, we used 
nonlinear techniques to estimate the parameters of the four mod-
els presented below. This also allowed us to retain the zeros and re-
moved the source of the bias in the linearized GAM model.

2.6 | Best descriptive model

The significant independent variables in the linearized GAM model 
were used to construct a ‘best’ nonlinear descriptive model of the 
number of species caught. The ‘best’ nonlinear model followed the 
simplified GAM equation and contained an Arrhenius expression 
where �2, the ‘activation energy of metabolism’ (Gillooly et al., 2001) 
was divided by average water column temperature (Kelvin) multi-
plied by Boltzmann’s constant, k (8.62×10−5 eV /K). It also contained 
total abundance, depth, annual net primary production and a quad-

ratic log maximum length term, exp
(

lmlj+�7lml2
j

)

, to capture the 

unimodal relationship between species richness and log maximum 
length, as well as the catch in numbers, the area swept by the trawl, 
and a mesh-size/log maximum length interaction to account for sam-
pling bias:

where �, the proportionality constant, subsumes the combined ef-
fects of the standardization of the Arrhenius expression to a ref-
erence temperature, and other pre-factors related to abundance, 
depth, net primary production, the maximum length term, catch in 
numbers, area swept, and mesh-size.

2.7 | Environmental model

The environmental model assumes that the number of species 
observed in survey stratum i  log maximum length group j can be 
calculated from species richness, described by a simple function of 
latitude, longitude, depth and log maximum length, corrected for dif-
ferences in catch in numbers, area swept and mesh-size:

2.8 | Metabolic model

In the metabolic theory of ecology, temperature and body size influ-
ence the rate of per capita speciation in the same way as they influ-
ence metabolism (Gillooly & Allen, 2007; see Supporting Information 
Appendix S1). Combining absolute density with a per capita rate of 
speciation determined by maximum length and temperature provides 
the speciation rate. In the equilibrium situation, speciation is counter-
balanced by extinction, assumed to decline linearly with the average 
density per species. We added the effect of differences in number of 
individuals caught, area swept and trawl mesh-size to the model of 
Segura et al. (2015) to describe the number of species caught:

where �2 is the ‘activation energy of metabolism’ (Gillooly & Allen, 
2007), k is Boltzmann's constant, mlj is the median maximum length 
of the species in log maximum length group j, and �, the proportion-
ality constant, accounts for the combined effects of the standardiza-
tion of the Arrhenius expression to a reference temperature, as well 
as other pre-factors related to the density term, and to the maximum 
length, catch in numbers, area swept and mesh-size terms.

2.9 | Neutral model

According to the neutral theory of biodiversity and biogeography, 
the number of functionally equivalent species in a local commu-
nity is determined by random extinctions caused by ecological drift, 
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counterbalanced by immigration of species from a larger surround-
ing meta-community where random speciation takes place (Hubbell, 
2001; Rosindell, Hubbell & Etienne, 2011; see Supporting Information 
Appendix S1).

Following Reuman et al. (2014), we assume that species of simi-
lar log maximum length are functionally equivalent and model each 
log maximum length group separately, using the approximate for-
mula derived by Etienne and Olff (2004) and Reuman et al. (2014) to 
describe the relative number of species in each survey stratum and 
log maximum length group. We also assume that the probability of 
immigration, �, is independent of stratum area, but allow it to vary 
with log maximum length. To account for the effect of differences 
in the number of individuals examined, effort and sampling gear on 
the number of species caught, we add number of individuals caught, 
total area swept and mesh-size terms to the species richness model 
of Reuman et al. (2014) providing the following equation:

where JMj
 is absolute abundance in log maximum length group j in the 

meta-community, abundancei,j is the absolute abundance of group 
j in the local community and �i is the per capita speciation rate in 
area i . Note also that JMj

 and �i are confounded in the JMj

(

�i∕
(

1−�i
))

 
term. However, as the speciation rate is likely to be very small, the 
term can be approximated by the fundamental biodiversity number, 
�i,j= JMj

�i (Rosindell et al., 2011). Because fish evolution is affected by 
temperature (Wright, Ross, Keeling, McBride & Gillman, 2011), we 
follow Tittensor and Worm (2016) and make �i temperature depen-
dent by adding the Arrhenius equation. Finally, we approximate the 
change in JMj

 with log maximum length by a quadratic term as found 
in the ‘best’ descriptive model and thus end up with:

where � again is an overall proportionality constant. Hence

where j=1…11, is log maximum length group, i  is stratum and 
abundancei,j is the total number of individuals in stratum i  group j 
estimated by multiplying the size of stratum i  with the absolute den-
sity of fish in i  belonging to log maximum length group j.

2.10 | Estimating model parameters

We used the nonlinear model fitting R package TMB (Kristensen, 
Nielsen, Berg, Skaug & Bell, 2015) to estimate the parameters of the 
four nonlinear models. Fitting each model to the number of species 

observed we removed any insignificant variables, except if they were 
important for the theoretical underpinning of a model. We visually 
inspected the Pearson residuals of each model for normality and 
plotted them against each covariate to reveal potential heterosce-
dasticity. To compare the models we calculated AIC values (Burnham 
& Anderson, 2002), R2 from observed and predicted number of spe-
cies, and proportion of deviance explained. The latter was estimated 
by fixing the estimated scale parameter, �, of the negative binomial 
distribution used in each of the models, comparing the difference in 
deviance between a saturated model (with one parameter for each 
of the 550 observations) and the actual model, to the difference in 
deviance between a saturated model and a model with only one pa-
rameter (Cameron & Windmeijer, 1996). To also illustrate how much 
of the overall deviance each model term explained, we consecutively 
replaced each of the independent variables by its overall average 
and calculated the relative increase in the proportion of deviance 
explained when the observations were used instead of the average. 
Having identified the four most parsimonious models, we examined 
their sensitivity to the uncertainty in the abundance and density data 
by fitting them to the 1,000 separate estimates of density and abun-
dance obtained from the mixed effects catchability model, and calcu-
lated the mean and variance of the resulting parameter estimates. We 

(5)
�i,j ≈ JMj

∗
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1−�i

)

∗ log

[

1−
�j log

(
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)
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(
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F I G U R E  2   Average number of species, log swept (sw.) area 
density (no./km2) and log absolute (abs.) density (no./km2) (±95% 
confidence limits) versus maximum length (cm) in four different sea 
surface temperature intervals (°C).
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plotted the proportion of the deviance explained by each of the model 
variables in the 1,000 runs, and used these to illustrate the sensitiv-
ity of our results to the uncertainty in the catchability estimates. All 
analyses were undertaken in R version 3.4.4 (R Core Team, 2019).

3  | RESULTS

3.1 | Observed number of species and density

The number of observed species, log average swept area density and 
log average absolute density follow almost symmetrical distributions 

when plotted against log maximum length (Figure 2). As expected, 
the average number of species observed increases with tempera-
ture, while log average swept area density and log average absolute 
density change little except in areas with a mean annual sea tem-
perature below 7.5 °C where the densities are significantly lower in 
the intermediate length range.

3.2 | GAM model

Fitting the GAM to the survey data reveals a strong and highly sig-
nificant unimodal effect of log maximum length on log number of 

F I G U R E  3   Estimated smoothing curves from the generalized additive model (GAM) using average sea temperature and other covariates 
to model the number of species observed by log maximum length group. Estimated degrees of freedom in parentheses on the y axis labels. 
Shaded area: 2*SE. Mesh-size smooths in bottom row only shown for three numerically abundant maximum length groups.
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species observed, a significant effect of absolute fish abundance, 
significant nonlinear positive effects of average temperature in the 
upper 200 m of the water column and area swept, and a significant 
positive linear effect of net primary production. Log number of spe-
cies caught declined significantly with depth and, for the smaller 
length groups, with increasing mesh-size (Figure 3). Vertical open-
ing, temperature range, and catch in numbers were all insignificant, 
while stratum area was significant (p = .02), but generated a too high 
concurvity to be retained due to its high correlation with area swept. 
The model explained 85% of the deviance and had a lower AIC than 
model versions in which abundance was replaced by density. Using 
average temperature produced a lower AIC than bottom tempera-
ture and latitude and longitude, and a slightly higher AIC than sea 
surface temperature, but the best variance ratio. Although there are 
survey strata that produce significant negative residuals, such as the 
50–200 m stratum in Guinea, which features the lowest number of 
hauls of all strata, there are no clear patterns in the residuals across 
survey strata. This suggests that the model provides an equally 
good description of fish species richness in the Atlantic, Arctic and 
Mediterranean Seas (Figure 4). Further model diagnostics are shown 
in Supporting Information Appendix S5: Figures S5.1 and S5.2).

Some of the smooth relationships suggested that the AIC value 
could be further reduced by using the logarithm or the inverse of 
the independent variable, and for log maximum length, in particu-
lar, that the smoother could be replaced by a second-order term, 
corresponding to a log-normal like distribution of richness versus 

maximum length. Replacing the independent variables in the GAM 
by inverse temperature, log abundance, log depth, net primary pro-
duction, log area swept, an interaction between mesh-size and log 
maximum length, and the exponential of a second-order polynomial 
in log maximum length, reduced the AIC value from 2090 to 1860 
and increased the percentage of deviance explained to 91%.

3.3 | Nonlinear models

We use nonlinear estimation techniques to compare the ‘best’ de-
scriptive model identified by the GAM to the three other models. 
Fitting the four models to the average absolute densities and abun-
dances we initially used variance ratio tests to determine whether 
the bias correcting terms (catch�8

i,j
, aswept�9

j
 and mesh

�11,j
i ) contributed 

significantly to the fit. We found that catch�8
i,j

 did not improve the fit 
of the ‘best’ and neutral models significantly, improved the meta-
bolic model marginally, but contributed highly significantly to the 
fit of the environmental model. The total area swept, aswept�9

j
, con-

tributed significantly to all models, except the environmental, while 
the term reflecting the interaction between mesh size and maximum 
length, mesh

�11,j
i , was significant in all four models. In the neutral 

model the per capita immigration rates, �j, were not significantly 
different from zero; and were therefore replaced by a single over-
all � for all log maximum length groups (see Supporting Information 
Appendix S5: Table S5.1).

F I G U R E  4   Box and whisker plot 
of log survey strata residuals from the 
generalized additive model (GAM; box 
limits show 25 and 75% quartiles; the 
vertical bar in the middle of the box is 
the median of the residuals; whiskers 
show maximum and minimum values; and 
black dots are outliers; colours indicate 
geographical regions).



10  |     GISLASON et al.

Fitting the ‘best’ model to the average of the absolute abun-
dances explains 90% of the deviance (Table 1). The neutral model 
provides the second-best fit (ΔAIC = 38) followed by the metabolic 
model (ΔAIC = 40) and the environmental model (ΔAIC = 46). Note 
that the difference between the metabolic and neutral models can 
be explained by the additional parameter included in the former. 
Many of the parameter estimates are similar across models. The in-
teraction between log maximum length and mesh-size, �11,j, is thus 
negative for the smaller species in all models, implying a general de-
cline in the number of small species caught as mesh-size increases. 
In all models log maximum length and either temperature or latitude 
account for most of the deviance explained (Figure 5). The param-
eter estimates of the ‘best’, metabolic and neutral models are ro-
bust to the uncertainty in the modelled catchabilities as shown by 

the limited distribution of deviance around the mean value of the 
1,000 estimates. The standard deviations of the parameter esti-
mates are also small (see Supporting Information Appendix S5: Table 
S5.1). Additional model diagnostics are presented in Supporting 
Information Appendix S5: Figures S5.4 and S5.5.

4  | DISCUSSION

Our study reveals strong consistent patterns in the number of de-
mersal and benthopelagic fish species across the northern Atlantic. 
As in previous investigations, we find body size, depth and either 
temperature or latitude to be important, but our analysis is the first 
in which differences in the number of individuals caught, area swept 

TA B L E  1   Parameter estimates from TMB-model fits using average absolute density and abundance.

Parameter Best descriptive model Neutral Metabolic Environmental

Constant (log�) 16.90 (1.63)*** 22.95 (1.35)*** 24.89 (1.65)*** 3.093 (0.687)***

Latitude 
(

�0
)

      –0.518 (0.055)***

Longitude 
(

�1
)

      0.426 (0.073)***

Temperature 
(

�2
)

0.322 (0.035)*** 0.521 (0.029)*** 0.466 (0.029)***  

Abundance 
(

�3
)

0.034 (0.009)***      

Density 
(

�3
)

    0.056 (0.011)***  

Depth 
(

�4
)

–0.115 (0.029)***     –0.167 (0.034)***

Net primary production 
(

�5
)

0.217 (0.045)***      

Max. length 
(

�6
)

    –1.000 (0.246)***  

Log. max. length2 
(

�7
)

–0.131 (0.028)*** –0.131 (0.031)***   –0.235 (0.029)***

Immigration (�)   NS    

Catch 
(

�8
)

NSR NSR NSR 0.067 (0.010)***

Area swept 
(

�9
)

0.079 (0.023)*** 0.129 (0.022)*** 0.176 (0.022)*** NSR

Mesh:mlgr1.5 
(

�11,1
)

–1.537 (0.181)*** –1.351 (0.184)*** –1.675 (0.242)*** –1.070 (0.187)***

Mesh:mlgr2.0 
(

�11,2
)

–1.378 (0.162)*** –1.205 (0.164)*** –1.421 (0.202)*** –1.021 (0.168)***

Mesh:mlgr2.5 
(

�11,3
)

–0.977 (0.120)*** –0.875 (0.124)*** –0.972 (0.143)*** –0.755 (0.125)***

Mesh:mlgr3.0 
(

�11,4
)

–0.598 (0.099)*** –0.509 (0.103)*** –0.552 (0.108)*** –0.458 (0.103)***

Mesh:mlgr3.5 
(

�11,5
)

–0.401 (0.078)*** –0.335 (0.081)*** –0.347 (0.082)*** –0.340 (0.082)***

Mesh:mlgr4.0 
(

�11,6
)

–0.222 (0.066)*** –0.165 (0.070)** –0.167 (0.070)* –0.192 (0.070)***

Mesh:mlgr4.5 
(

�11,7
)

NS NS NS NS

Mesh:mlgr5.0 
(

�11,8
)

NS NS NS NS

Mesh:mlgr5.5 
(

�11,9
)

NS NS NS NS

Mesh:mlgr6.0 
(

�11,10
)

NS NS NS NS

Mesh:mlgr6.5 
(

�11,11
)

NS NS NS NS

Scale parameter (log�) 3.752 (0.402)*** 3.058 (0.239)*** 3.085 (0.247)*** 3.049 (0.239)***

Proportion of deviance explained .900 .892 .891 .890

Pearson’s R2 (observed versus 
predicted)

.838 .787 .792 .789

AIC 1,891 1,929 1,931 1,937

ΔAIC   38 40 46

Note: AIC = Akaike information criterion; NS = non-significant term retained in the model fit; NSR = non-significant term removed from the model. 
Standard error in parentheses and significance levels indicated by stars (*** .001, ** .01, * .05; one-sided t test, n = 550).
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and mesh-size are considered, and where net primary production 
and absolute fish abundance or density are used as covariates. We 
find fish species richness to increase with temperature, fish abun-
dance and net primary production, but to decline with depth and 
latitude. Adjusting for differences in area swept and mesh-size, the 
‘best’ descriptive model explains 90% of the deviance in the number 
of species caught by log maximum length, temperature, fish abun-
dance, depth and primary production (Table 1). The neutral model in 
which inverse temperature, a parabolic relationship with log maxi-
mum length, area swept and mesh-size are significant, explains 89% 
of the deviance, and so does the metabolic model. Our analyses fur-
thermore show that both the neutral and metabolic models provide 
significantly better fits than the environmental model in which local 
richness is described as a function of log maximum length, catch, 
latitude, longitude and depth.

In all four nonlinear models more than half of the deviance 
is explained by a combination of log maximum length and either 
temperature or latitude (Figure 5). In the data the distribution of 
the number of species observed across maximum length groups is 
approximately lognormal (Figure 2). Similar distributions have been 
obtained for marine bivalves (Roy, Jablonsky & Martien, 2000), 
terrestrial snakes (Boback & Guyer, 2003), and insects (Siemann, 
Tilman & Haarstad, 1996), while more right-skewed distributions 
have been found for birds and mammals (Purvis, Orme & Dolphin, 
2003; Smith & Lyons, 2013). A lognormal distribution also provided 
a highly significant fit in the best, neutral and environmental models 

(Table 1). Contrary to this, metabolic theory predicts that species 
richness should scale with body mass raised to a power of 0.75, 
hence maximum length to a power of 2.25. This prediction was not 
confirmed by our analysis in which the power was estimated to be 
–1.00 (±0.48 confidence limits) and thus highly significantly differ-
ent from the expected.

The average water column temperature from 0 to 200 m is only 
a marginally better predictor of the observed number of fish species 
than surface temperature, but much better than bottom tempera-
ture, and latitude and longitude. Latitude and average temperature 
are negatively correlated, but the correlation breaks down at inter-
mediate latitudes, where average temperature generally is higher 
in the eastern part of the northern Atlantic due to the influence of 
the Gulf Stream. The increase in the number of fish species caught 
with temperature seems to be well described by the Arrhenius equa-
tion. Metabolic theory emphasizes the influence of temperature and 
body size on mutation rate and generation time, and it is interesting 
that the Arrhenius constant, �2, is 0.47 (±0.06 conf. lim.) and 0.52 eV 
(±0.06 conf. lim.), respectively, in the metabolic and neutral models. 
This range is not far from the average activation energy of metab-
olism of 0.65 eV predicted by metabolic theory (Bailly, Cassemiro, 
Agostinho, Marques, & Agostinho, 2014; Gillooly & Allen, 2007), 
and close to empirical estimates of the activation energy of fish me-
tabolism. Clarke and Johnston (1999) and Gillooly et al. (2001) both 
used the Arrhenius equation to describe the relationship between 
the resting metabolism of fish and temperature, and independently 
estimated the activation energy as 0.43 eV. Barneche et al. (2014) 
used a model with a temperature optimum to account for metabolic 
inactivation at high temperatures and found an activation energy of 
0.59 eV. How temperature influences the rates of speciation and ex-
tinction is not completely known and other covarying factors may be 
involved (see e.g. Rabosky et al., 2018).

The ‘best’ and neutral models contain positive relationships be-
tween abundance and the number of species observed. The ‘best’ 
model also includes a significant positive relationship with net pri-
mary production. Areas of high productivity have been hypothe-
sized to have higher species richness because they harbour more 
individuals and thus may be able to maintain a higher number of vi-
able populations (Brown, 2014), although a recent review by Storch, 
Bodhalkvá, and Okie (2018) found the empirical evidence in favour 
of this hypothesis to be mixed. However, in areas where abundance 
has been significantly reduced by fishing, primary production may 
better reflect fish abundance and density in the unexploited state 
and hence be a better predictor of richness. Without primary pro-
duction included in the 'best' model, the three largest positive dif-
ferences between the observed and predicted number of species 
were generated by the data from the shelf off Mauretania, which 
features the highest primary production, but has been subject to 
marked overexploitation (Meissa & Gascuel, 2014). Note however, 
that abundance or density never accounted for more than 10% of 
the total deviance in the ‘best’, neutral and metabolic models, ex-
plaining the robustness of these models to the uncertainty in the 
catchabilities (Figure 5).

F I G U R E  5   Violin plots of the relative contribution of the 
variables in each of the four models to the total deviance explained 
by each model. Results from 1,000 nonlinear model runs with 
stochastic catchabilities. unexp. = unexplained deviance, temp = 
average water column temperature, npp = net primary production, 
mesh = mesh size, lon = longitude, lml = log maximum species 
length, lat = latitude, aswept= area swept, abund = abundance . 
Models: (a) ‘best’ descriptive, (b) neutral, (c) metabolic, (d) 
environmental.
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Tittensor and Worm (2016) and Worm and Tittensor (2018) used 
a neutral model to simulate species richness in the oceans and al-
lowed speciation rate and generation time to depend on tempera-
ture. Thermal effects on speciation rate generated a stable but weak 
latitudinal richness gradient in their model, while thermal effects on 
generation time produced a transient latitudinal richness gradient 
that eventually disappeared. Combining the effect of an increase in 
abundance caused by the increase in ocean area towards the Equator 
and a temperature-dependent speciation rate produced the most re-
alistic gradient in richness. Fitting a neutral model to the survey data 
we found a strong effect of temperature on species richness and 
a weaker influence of fish abundance. Furthermore, the shelf areas 
in the eastern Atlantic down to 200 m, the depth range where our 
fish species have their maximum abundance, increases with latitude 
from the Equator to the Arctic (Pilson & Seitzinger, 1996). A con-
sistent decline in habitat area with latitude is therefore unlikely to 
explain our results.

The parameter describing the probability of immigration in the 
neutral model could not be estimated with sufficient precision. The 
known functional dependency between per capita immigration 
probability and the speciation rate in the surrounding meta-commu-
nity makes it difficult to estimate both parameters simultaneously 
(Jabot & Chave, 2011). The immigration probability may depend 
on temperature and size, as assumed by Reuman et al. (2014), but 
the evidence for temperature related differences in larval dispersal 
is lacking (Leis et al., 2013) and when immigration probability was 
assumed to be size dependent, none of the estimates of �j was sig-
nificant. Additional analysis of species distributions and information 
on the genetic divergence of subpopulations is necessary to fully 
understand the relationship. The neutral model has been criticized 
for predicting unrealistically long species ages for common species 
and too short species ages for new species with few individuals 
(Chisholm & O’Dwyer, 2014). Recent work has shown that more re-
alistic species ages are generated when protracted speciation and 
weak selection caused by small differences in hereditary fitness are 
incorporated in the model (Rosindell et al., 2015), but no approxi-
mate solution for the number of species in each community is yet 
available for this model.

Despite the large sample sizes and good geographical coverage 
of the survey data, several problems may be associated with using 
bottom trawl survey data to study fish species richness and density 
patterns. The main aim of a scientific bottom trawl survey is often to 
provide reliable estimates of the relative abundance and year-class 
strength of commercially important fish species, and less attention 
may therefore be given to identifying species that are rare or of lit-
tle or no commercial value. Trawl-survey catches may furthermore 
provide biased estimates of the species composition and density due 
to species and size-specific differences in the probability of the indi-
viduals being retained by the trawl (Arreguín-Sánchez, 1996). Some 
species and sizes are herded into the path of the trawl by the action 
of the otter doors and trawl sweeps, others escape under the fishing 
line or over the headline, while yet others are able to outswim the 
trawl. Among those entering the trawl the smaller individuals and 

species may escape through the meshes. Factors that have been re-
ported to influence the catch efficiency of survey trawls include time 
of day, light intensity, turbidity, current strength and direction, depth, 
sweep length, net spread, vertical opening, trawl speed, haul dura-
tion, and the size and type of the ground gear (Arreguín-Sánchez, 
1996; Fraser, Greenstreet & Piet, 2007). Although we corrected our 
analysis for differences in species catchability, we were unable to 
fully account for all of the factors that may lead to species and size 
specific differences in catchability. This was due to the sparsity of 
spatially and temporally overlapping stock assessments, the absence 
of individual length measurements for many of the non-commercial 
species, and our use of average catch rates rather than individual 
hauls. However, as seen in Figure 5, density or abundance only ex-
plains less than 10% of the deviance. The sensitivity of our overall 
conclusions to the uncertainty in the catchabilities is therefore mod-
est, and the parameter estimates and the relative importance of the 
variables change little in the different models. Finally, our use of a 
single estimate of maximum length for each species hides the fact 
that maximum body length in fish is likely to vary from area to area 
(Rypel, 2013). However, the maximum length of a species in a given 
area is difficult to estimate as it depends on local fishing mortality 
and sampling effort.

We base our analysis on the number of fish species and individ-
uals observed over a recent period of time in different regions of 
the northern Atlantic, Arctic and Mediterranean Seas. It is now well 
documented that changes in fish distributions have occurred over 
the last decade or two in many regions of the North Atlantic and 
that these are significantly associated with changes in temperature, 
(Perry, Low, Ellis & Reynolds, 2005; Hiddink & Ter Hofstede, 2008; 
Fossheim et al., 2015; Batt, Morley, Selden, Tingley & Pinsky, 2017). 
We have fitted our models to data from a period when temperatures 
have been increasing, but where regulatory processes generally 
seem to maintain existing patterns in species richness (Gotelli et al., 
2017). Future analyses should investigate whether these patterns 
will persist over longer time periods and how our model parameters 
will be modified by temperature change, for example by conduct-
ing the analyses on different time periods characterized by different 
mean temperatures. Such analyses could provide insight into the 
relative importance of temperature having a direct effect on meta-
bolic processes versus its effects on other ecosystem features that 
affect species richness. For example, Marbá, Jordà, Augustí, Girard, 
and Duarte (2015) showed that the activation energy for many bi-
ological responses in the Mediterranean Sea is far higher than the 
reported activation energy for metabolism, suggesting that tem-
perature increases are having additional ecosystem effects on biotic 
responses beyond their effect on metabolic processes and specia-
tion rates. The effects of global warming on fish communities have 
been predicted from stacked species distribution models (SSDMs; 
e.g. Jones & Cheung, 2015), but these models have so far largely 
ignored the regularity in the distribution of fish species richness and 
abundance with log maximum length. This regularity accounts for a 
third or more of the deviance explained by our models (Figure 5) and 
may thus be used to improve the predictive capability of the SSDMs 
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significantly. But while the right-hand side of the richness versus log 
maximum length distribution, consisting of species with a maximum 
length larger than c. 50 cm, has been explained by size spectrum the-
ory (Reuman et al., 2014), little is known about the processes shaping 
the left-hand side.

Numerous hypotheses have been put forward to explain the 
latitudinal pattern in species richness (Brown, 2014; Fine, 2015). 
Finding log maximum length, temperature, absolute fish abundance, 
depth and net primary production to explain 90% of the deviance in 
the distribution of demersal fish species richness across the north-
ern Atlantic, and both neutral and metabolic equilibrium models to 
explain close to 89%, conveys an important message. When 89% of 
the deviance in the extant species richness can be explained by two 
competing mechanistic hypotheses, and by a model based on lati-
tude, longitude and depth, and when many of the independent vari-
ables are significantly correlated, it seems relevant to question how 
much the present patterns in species richness and abundance can tell 
us about the underlying environmental, ecological and evolutionary 
processes (Gotelli et al., 2009). We probably need dynamic mecha-
nistic models with more realistic descriptions of speciation, dispersal 
and extinction plus additional data to reveal how past changes in 
environmental (e.g. temperature, currents, ice cover, shelf area) and 
biotic (e.g. primary production) variables may have contributed to 
shaping the present distribution of species richness and the strong 
lognormal relationship between richness and maximum length (Fine, 
2015; Descombes et al., 2018). Such data should include information 
from palaeo-geographical and climatological reconstructions of past 
environmental conditions as well as information about body size 
evolution, diversification rates and species lifetimes from molecu-
lar phylogenetics and the fossil record (Romano et al., 2016; Alfaro 
et al., 2018). In addition to providing a baseline from which we can 
evaluate future change, our data and results point to new possibil-
ities for understanding demersal fish species biogeography in the 
northern Atlantic.
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