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Abstract

This document presents a new compiler for the Functional Logic programming

language Curry based on a novel pull-tabbing evaluation strategy called the Fair

Scheme. A simple version of the Fair Scheme is proven sound, complete, and optimal.

An elaborated version is also developed, which supports narrowing computations and

other features of Curry, such as constraint programming, equational constraints, and

set functions.

The Fair Scheme is used to develop a new Curry system called Sprite, a high-

quality, performant implementation whose aims are to promote practical uses of Curry

and to serve as a laboratory for further research. An important aspect of Sprite is its

integration with the popular imperative language Python. This combination allows

one to write hybrid programs in which the programmer may move between declarative

and non-declarative styles with relative ease. Benchmarking data show Sprite to be

more complete than other Curry systems and competitive in terms of execution time,

particularly for non-deterministic programs.
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Chapter 1

Introduction

1.1 Overview

If the story of computer programming has a theme, it is that greater abstraction

can lead to greater productivity1. Behind nearly every practical improvement to

programming in the modern era lies a novel way to hide previously exposed com-

plexity. In progressing from punchcards to assembly languages to high-level and

scripting languages, for example, increasingly abstract language features have freed

many programmers from troubling themselves much over the particulars of hardware

architecture — or at least to not do so very often nowadays. Subroutines, functions,

modules, packages, and package managers have similarly allowed programmers to

structure code in increasingly abstract ways that promote reuse. To a large degree,

advances such as these have led to the ability to do more, better and more reliably,

1This is by no means restricted to computer programming. To give one of endless examples, the
greater efficiency of containerized shipping over earlier breakbulk methods is owed to the shipping
container, a modular abstraction between packers and shippers. Its advent led to a sharp fall in
worldwide transportation costs and brought about sweeping global economic changes [1].
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Introduction

with less code and less effort. In these and countless other cases, an advancement

stems from a new hierarchical arrangement of components that conceals previously

exposed details. This often takes the form of an interface that keeps separate concerns

separated. The past eight decades have accordingly seen dramatic improvements in

language design and programmer productivity to go along with dramatic increases in

hardware capability.

The details hidden in this way are in many cases procedural. Languages following

the popular imperative paradigm require programmers to provide a sequence of steps,

called instructions, that when carried out cause a desired change in the program state.

If a series of instructions appears multiple times, then a procedural abstraction called

a function can be used to encapsulate it, thereby avoiding the need to spell it out

repeatedly.

In contrast to this, languages belonging to the declarative paradigm hide some or

all sequential aspects of programs2. Whereas the imperative approach is concerned

with how to compute something, the declarative one is focused on what to compute.

Using declarative principles, the description of a solution to some problem suffices

to generate a program that solves it. By eliminating the need to supply step-by-

step instructions, a declarative approach allows programmers to say less, which can

make complex ideas easier to express compactly. Taken to its limit, this approach

2See [2] for a survey of declarative languages.
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represents an abstraction with the remarkable ability to eliminate algorithms from

computer programs! These still play a role behind the scenes, of course, but the point

is they are hidden away so that a programmer can ignore them if he so chooses.

The most feature-rich, flexible subset of declarative languages is the functional

logic [3] category, which comprises languages combining aspects of the two most im-

portant declarative programming paradigms: functional programming and logic pro-

gramming. This combination can reduce development time, facilitate proofs of useful

program properties [4, 5], provide relatively simple solutions to complex programs,

and bring implementations closer to specifications [6].

One might favor a functional-logic programming language when the properties of

a program are easy to describe, an algorithm is unknown or difficult to obtain, and

correctness is of the utmost importance; or when one simply wishes to prioritize devel-

opment effort over operational efficiency. Consider an October 2021 incident in which

the U.S. company Facebook suffered a roughly five-hour global outage. According to

a note released by the Facebook engineering team [7], this outage was caused when

all of Facebook’s data centers were inadvertently disconnected from the internet by

an erroneous maintenance command. The note explains that “[Facebook] systems

are designed to audit commands like these to prevent mistakes like this, but a bug in

that audit tool prevented it from properly stopping the command.” It is not difficult

to imagine this being a case where:

3
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1. the desired behavior is easily described in terms of properties;

2. operational efficiency is not a major concern; and

3. correctness is essential.

The suitability of a functional-logic solution to this problem can be explained in cor-

respondence with each of these points. First, the appeal of programming in terms of

properties — e.g., that no command should disconnect all data centers — is that it

is maximally direct, and so involves less work and fewer superfluous details. Rather

than contrive a sequence of steps whose overall effect on the program state has the

required properties, a programmer expresses the properties directly and relies on a

compiler algorithm to derive suitable instructions. Second, when weighed against

the possibility of a global business disruption, whether the audit tool requires an in-

stant, a second, or a minute to complete is likely of little consequence. The compiler,

therefore, is not required to emit the most efficient possible sequence of instructions,

which, generally speaking, would be next to impossible. Were efficiency paramount

and the development budget unlimited, a different approach would likely deliver a

better result, but such extremes are rare in practice. Third, by eliminating inessen-

tial program elements, each of which represents a potential error, a functional-logic

implementation is more likely to be correct. Especially if the compiler algorithm can

be proven correct, then a functional-logic approach can not only save development

time, but eliminate a significant risk.

4
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But the benefits of functional logic programming come at a cost, and these lan-

guages raise two significant practical issues. First, they greatly complicate compiler

implementation. Since the source code of a functional logic program does not specify

a sequence of instructions, one must be derived in order for the program to be run

on sequential hardware. This becomes a responsibility of the compiler, and the way

it is done is crucial. The target program, for instance, ought to always produce an

answer if one exists and should only produce correct answers. Also, since the language

implementation is entrusted with all operational aspects of a program, it must strive

to be as efficient as possible. This is true even if operational efficiency is generally

less important for functional logic applications, since a more efficient approach will

always apply to more situations. How to accomplish all this is no small question.

Second, the functional-logic approach is niche, and, being so, struggles to attract

a critical mass of users. While these languages deliver considerable benefits in cer-

tain cases, they are special tools befitting special circumstances, and as such are not

especially well suited to everyday programming. Besides, being relatively new and

experimental, functional-logic languages do not currently enjoy as much popular sup-

port as many other languages. In practical terms, this means that fewer libraries and

introductory materials are available, the user community is smaller and less active,

and programming techniques specific to this domain are less known. Given all this,

we must evaluate critically what might motivate a prospective user to choose one of

these languages.

5
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This dissertation takes aim at both issues in the context of the functional-logic

programming language Curry [8, 9]. It advances the state of the art in two ways. First,

it develops a new compilation strategy called the Fair Scheme, for compiling Curry

programs. The Fair Scheme can be used to implement a compiler that generates

sound, complete, and optimal programs (according to concrete definitions of those

terms). Second, it seeks to promote practical uses of Curry by providing a highly-

performant, well-tested implementation based on sound engineering principles that

is integrated into a more popular programming environment. This implementation,

called Sprite, aims to overcome the most significant hurdles one would otherwise face

when making practical use of Curry.

Oftentimes the best approach to a programming problem is to choose a library

containing a pre-coded, pre-tested solution. From this point of view, the most impor-

tant characteristic of a language might well be its popularity. This no doubt helps

explain the persistence of certain languages that remain popular, despite years of

competition from newer alternatives, that in some cases seem to offer compelling ad-

vantages. As a result, many programmers may rightly eschew undertaking a project

in a language like Curry, since it could amount to a great deal of reinvention. But

this presents a chicken-and-egg problem. A language may be unpopular in part due

to its lack of comprehensive libraries, yet to justify the development of new libraries

a language should be popular. In our estimation, the best way to confront this prob-

lem is to sidestep it. Rather than create new libraries in Curry, researchers should

6
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focus their efforts on facilitating the use of existing libraries together with Curry.

This can be achieved by integrating Curry into another, more popular programming

environment.

To that end, an important contribution of this dissertation is the integration of

Curry with Python [10]. Python is an extremely popular imperative programming

language backed by an active community supporting an enormous number of projects.

At the time of this writing, the official third-party Python library repository, PyPI

[11], contains over 400,000 projects. These include stable libraries for machine learn-

ing [12–14], numerical and scientific computing [15–17], data analysis [18, 19], com-

puter vision [20], graph analysis [21], HTTP servicing [22–24], micro-service creation

[25], web scraping [26], and parser generation [27] — and these merely scratch the

surface of what is available. The combination of Curry and Python allows one to

write hybrid programs that encapsulate Curry functions and modules, and compart-

mentalize functional-logic computations apart from imperative ones. The result is

an environment in which programmers are free to move between the imperative and

functional-logic styles with relative ease. This not only makes Curry available to a

very large group of programmers, it allows each one to take on as little or as much

as he chooses and so migrate at his own pace. The philosophy behind this comple-

mentary approach places programmers first, based on the understanding that they

know their problems best and should ultimately decide which programming style is

best suited to any specific task.

7



Introduction

To illustrate how this could promote practical uses of Curry, consider a program

that converts images of handwritten or printed documents into a textual electronic

format. This program must solve an optical character recognition (OCR) problem

to extract text from images. This is far from trivial, so one might hope to rely on

an existing software package. Fortunately, many OCR packages are freely available,

though none is perfect. For example, when converting a certain image, the open-

source OCR tool Tesseract [28] produces the following output:

Col la bo rates and Ensures Accounta bility

To make use of this one should remove the spurious whitespace. A first attempt at a

general rule to do so might be the following:

Rule: if removing spaces between a sequence of words containing an

invalid word would produce a valid word, remove those spaces.

According to this, the character sequence “Accounta bility” would be transformed

into the word accountability. Provided a predicate to distinguish valid words from

invalid ones, a programmer using the logic paradigm could encode this rule compactly

with little effort. An equivalent imperative implementation could be longer, more

difficult to understand, and more likely to contain errors. In addition, the logic

approach scales better as the number of rules increases, so that a logic program that

ensures many rules are satisfied simultaneously is more likely be manageable.

8
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Tesseract interfaces with a variety of programming languages, including Python

[29], but does not interoperate directly with Curry or, as far as we are aware, any logic

programming language. Given that, an appealing implementation strategy could be

to write a hybrid program in which one section uses Tesseract through an imperative

interface to provide the OCR capability and a second section transforms the raw

text created in this way via rules written in a logic (or functional-logic) style. With

Sprite, one can do exactly that. A Python script can be written that first extracts

text from images using the Tesseract Python interface and then transforms that text

using Curry to ensure it meets certain criteria. The Curry code can be embedded

directly in the Python script or loaded from a separate file via Python’s native module

system. We believe a hybrid capability such as this greatly reduces entry barriers for

prospective Curry users and encourages a potentially large number of programmers

to consider a functional-logic approach when they otherwise might not.

To set the stage for this work, the remainder of this chapter and the next chapter

in its entirety present a brief synopsis of the history and principles of functional logic

programming followed by an introduction to Curry.

1.2 Functional Logic Programming

During the 1980s and early 1990s, growing interest in combining the most appealing

aspects of functional programming and logic programming led to the emergence of

functional logic programming (see [2] for a survey). This effort was driven by a desire

9
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within the logic programming community to improve the efficiency of logic languages,

which typically rank behind functional languages in this regard due in part to their

greater reliance on non-deterministic operational principles. Given the deterministic

nature of most real-world programs, an implementation based on such principles often

exhibits inferior performance by such measures as memory consumption and execution

time. Researchers at the time perceived that a new language combining functional and

logic principles could combine the benefits of logic programming with the efficiency of

functional programming by relying on deterministic operational principles to evaluate

the deterministic parts of a program.

Early work focused on introducing (deterministic) functions into the logic do-

main, and this resulted in an impressive proliferation of proposed functional logic

languages, operational principles, and implementations (see [2], in particular Tables

1 and 2). Curry was introduced in a 1995 paper by Michael Hanus, Herbert Kuchen,

and Juan José Moreno-Navarro [8], whose goal was to define a standard functional

logic language that would help consolidate these efforts.

Seeing that functional logic programming is a combination of two deep-rooted

paradigms, it is helpful to begin by discussing functional programming and logic

programming separately. Historically speaking, functional programming is an evolu-

tion of combinatory logic, first investigated by Moses Schönfinkel in the 1920s, and

lambda calculus, developed by Alonzo Church in the 1930s. Both theories represent

early attempts to place computer programming on a rigorous foundation by expressing

10
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computations in terms of mathematical logic. Despite their independent development

and seemingly unrelated foundations, these theories are surprisingly similar in their

explanatory power; so much so that they are, in fact, equivalent under a simple rule

called extensionality [30]. Combinatory logic emerged from David Hilbert’s ultimately

unsuccessful effort to reformulate all of mathematics as a consistent logical system

based on a finite set of axioms and inference rules. The American mathematician and

logician Haskell Curry3 continued its development through much of his career, and

by 1947 had described one of the first high-level programming languages, a functional

language based on combinatory logic. Lambda calculus is a formal system that de-

scribes computations in terms of function abstraction, function application, variable

binding, and variable substitution.

Functional programming is based on the idea that computations can be carried

out in terms of expressions and rules of evaluation rather than as sequences of instruc-

tions. Running a functional program amounts to evaluating an expression. Figure

1.1 provides a sketch of this idea, demonstrating how functional principles might be

applied to sort a sequence of orderable objects

In functional languages, the construction and application of functions plays a

central role. These languages feature first-class and higher-order functions, and loop

by means of recursion (a definitional construct) rather than explicit control flow (a

3The languages Haskell and Curry featured prominently in this work are his namesakes.
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sort(d · b · c · a) → a · sort(d · b · c)
→ a · b · sort(d · c)
→ a · b · c · sort(d)
→ a · b · c · d

Figure 1.1: Sorting a sequence using functional principles. Function sort identifies
a minimum element, m, of its argument and evaluates to the concatenation of m

with a recursive application of itself to the sequence excluding m.

procedural construct). A pure functional style is one that permits only pure functions;

that is, functions whose results are determined entirely by their arguments. Languages

of this type may feature shared, immutable data, which can greatly simplify program

analysis. In addition, being free of side effects and global state, they operate by

a principle of lazy evaluation in which expressions are only evaluated when and if

necessary. Such languages may be implemented in terms of symbolic manipulation,

often through a formal mapping to a well-defined abstract machine, and very efficient

implementations are known; for example, the spineless tagless G-machine (STG) [31].

The first mainstream functional programming language, LISP, was developed by

John McCarthy in 1958 and first implemented shortly thereafter by Steve Russell

[32]. LISP exemplifies the use of symbolic manipulation as a means of effecting

computation. It is a homoiconic language, meaning the representation of a LISP

program is itself data that can be manipulated by a LISP program. More generally,

the ability of a language to process itself, sometimes referred to as metacircularity, is

relatively common among functional languages. LISP has inspired a family of modern
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languages including Scheme, ML and its derivatives Caml and OCaml, Erlang, Clean,

and Haskell. Haskell, in particular, is relevant to this work because it provides a basic

syntax that Curry extends only slightly.

Haskell originated at the 1987 conference on Functional Programming Languages

and Computer Architecture held in Portland, Oregon, where a committee was formed

to define a programming language that would integrate aspects of functional program-

ming that enjoyed a “wide consensus” in order to “reduce unnecessary diversity” and

facilitate the rapid sharing of ideas [33]. The work of this committee culminated

in the publication of the Haskell Report in 1990, which defined the first version of

the language. Since then, Haskell has grown in popularity both in academia and

industry. Haskell is a statically- and strongly-typed polymorphic language with a

modular structure that features a Hindley-Milner type inference system [34, 35]. Its

most popular implementation is the Glasgow Haskell Compiler (GHC, [36]), whose

development, led by Simon Peyton Jones, Simon Marlow, et al., has been supported

for many years by Microsoft Research in Cambridge, England.

Logic programming is based on the idea that a single formalism suffices for both

logic and computation [37]. Prominent logic families include Prolog, Datalog, and

AnsProlog. A logic program is a collection of logical sentences expressing a set of

facts and relationships pertinent to a problem domain. These are written as definite

clauses of a simple kind, often Horn clauses (named for the 20th century logician

Alfred Horn) or some extension of those. The clausal approach to logic programming
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makes use of automatic rules to achieve goals. For example, Stanford researcher

Cordell Green in 1981 demonstrated how an inference rule called resolution could be

exploited to solve the Tower of Hanoi puzzle [38]. That puzzle consists of a collection

of pegs onto which several flat discs of different radii are stacked. The goal is to

transfer a stack from one peg to another by a series of moves that each relocate a

single topmost disc to the top of the stack residing on a different peg, subject to the

rule that a larger disc is never stacked atop a smaller one.

A logic program sufficient to solve this puzzle need only describe the initial config-

uration, the logical relationships between valid configurations (i.e., the legal moves),

and the desired ending configuration. Taken together, these define a domain-specific

knowledge representation called the solution space in which possible solutions reside.

The advantages of this approach stem largely from avoiding details not directly

related to the problem at hand. For example, an imperative implementation involv-

ing explicit loops would declare loop index variables, initialize them, modify their

values, and test for loop termination. Nothing analogous need appear anywhere in a

logic program. By keeping with a single formalism, logic programs can more closely

approximate their specification.

Executing a logic program is equivalent to searching the solution space it defines.

Programs can be divided into two parts called the logic component and the control

component. The logic component, which is specified in source code, defines the so-

lution space for the problem at hand while the control component defines the search
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strategy. By varying the logic, different problems can be solved and by varying the

control, programs may be executed in a variety of ways. Some logic languages fully

separate these components, in which case source code is simply an order-independent

set of clauses whose interpretation is strictly declarative. The control in such cases

may be supplied entirely by the language implementation. In other languages – par-

ticularly Prolog – clauses also have a procedural interpretation. This mixes some

aspects of control into the source code, allowing programmers to more directly influ-

ence the search strategy.

Search is a disjunctive process. Each choice corresponds to a branch in the search

space4; any, some, or all of whose alternatives might lead to solutions. In this work,

we shall only consider sequential search strategies. Consider a sequential procedure

to satisfy the following Boolean proposition:

(a ∨ b) ∧ ¬(a ∧ b) (1.1)

There exist two solutions, {a 7→ False, b 7→ True} and {a 7→ True, b 7→ False}.

Being sequential, the search procedure must choose a variable to consider first. Let

us arbitrarily assume it selects a. Either or both of its possible values might lead

to solutions, so the search space bifurcates at this point. One way to proceed is by

4In this work, every search takes place through the solution space defined by a logic program.
Therefore, the terms solution space and search space are interchangeable. We use solution space
when writing about a certain program or problem, and prefer search space when discussing the
search mechanism.
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an approach called backtracking, which begins by assigning a speculative value to a.

Next, the subspace induced by this assumption is fully explored and, afterwards, the

search backtracks to a, selects a different value, and then continues in like fashion.

Each assignment of a leads to another branch, corresponding to variable b, that again

bifurcates the space and results in another speculative assignment. This process

repeats until every alternative of every variable is exhausted. By repeatedly applying

this procedure the entire space is eventually explored, and one ultimately finds that, of

the four possible assignments, two are solutions and two are not. This is summarized

in Figure 1.2.

a 7→ True

b 7→ Trueb 7→ False

a 7→ False

b 7→ Trueb 7→ False

Figure 1.2: The search space induced by a Boolean proposition in two variables.
Each branch represents the assignment of a value to one variable. A root-to-leaf
traversal assigns variables in the order a, b. Distinct paths represent distinct as-
signments. Solutions to (a ∨ b) ∧ ¬(a ∧ b) are underlined. A backtracking search
that considers variables in this order and assigns values in the order False, True

corresponds to a left-to-right traversal of the bottom rank.

A search space grows exponentially as the number of variables increases. For

this reason it is convenient to use a more compact formulation. To this end we can
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represent the space depicted in Figure 1.2 simply as {a, b}, where a and b are un-

derstood to be non-deterministic Boolean variables. In light of this, we may view

the control component of a logic program as little more than an organized traversal

of a non-deterministically-defined space. We shall see in coming chapters that a sig-

nificant effort in implementing a Curry compiler involves devising a suitable search

procedure. In contrast to the example above, such a procedure must consider dy-

namic search spaces that evolve as computations progress and that are, in general,

infinitely-branching. A limitation of backtracking is the possibility that a speculative

assignment to some variable, x, might lead to an infinite search, causing other values

of x to never be considered. Devising an adequate procedure in the face of this and

proving it complete is a significant contribution of this work.

In the previous example, three arbitrary procedural choices arose: first, whether

to consider a before b or vice versa and, additionally, whether to first consider False

or True in the case of a and again in the case of b. A tree-based diagram of the

search space like that shown in Figure 1.2, along with the search procedure it implies,

might be regarded as non-deterministic in the sense that it belongs to a family of

closely-related ones that vary along these lines. There would seem to be no a priori

reason to prefer one of these over another. To dispel any potential confusion, this

sort of non-determinism — which relates to the search procedure itself rather than

to the logic component of a logic program — is irrelevant to this work. We are

concerned only with the non-determinism inherent to solution spaces of logic-like
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programs. Figure 1.2 might give the impression that the details mentioned above

have significance because, for example, the decision to consider a before b is built

into the graphical depiction of the search space. This is merely an artifact of the

representation. Another advantage of the non-deterministic formulation is that it

avoids making these arbitrary choices, and so also avoids suggesting that there is any

significance to them.

Programs may contain explicit and implicit representations of non-determinism.

An important explicit representation is provided by logic variables5. These are vari-

ables, in the mathematical rather than imperative computer programming sense, that

act as placeholders for unknown information. Truly, in a pure language such as Curry

one cannot meaningfully have imperative variables, since they would represent refer-

ences to mutable locations.

Logic variables represent one of the most appealing aspects of logic programming,

since they provide the ability to compute with partial information. One may use them

whenever something is unknown, difficult to determine, or not worth the effort to

specify. This allows judicious programmers to trade execution time for development

time. Prop. 1.1 makes for a very simple demonstration. It can be solved by the

following Curry program:

main = (a || b) & (a && b) where a,b free

5More simply called variables when the context is clear.
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Here, the infix operators || and && are the ordinary Boolean connectives OR and

AND, respectively, & is a constraint-satisfaction operator that restricts the program

to solutions that satisfy both its left- and right-hand sides, and the where . . . free

clause indicates that a and b should be treated as logic variables. This program finds

variable bindings that satisfy the given proposition without the programmer needing

to specify a search procedure. The benefits are rather limited in this example, since

this proposition is so easy to solve by hand, but in general they can be significant. For

instance, consider the task of creating a small application that accepts an arbitrary

Boolean expression as input and reports variable bindings that satisfy it.

The act of assigning concrete values to variables is called instantiation. How

this is done in the course of program execution is a responsibility of the control

component. Logic programming languages that rely on the resolution principle as

originally proposed [39] suffer from the need to fully instantiate all variables. This can

lead to unnecessary work being performed. An important refinement is the principle

of unification, which allows clauses to be instantiated only insofar as they are needed.

An advantage of this can be seen in satisfying the basic logical disjunctive proposition

in two variables. As shown in Figure 1.3, a partial instantiation of variables can allow

for more compact representations.

This will play an important role in the development of the Fair Scheme, devel-

oped in Chapter 3, which fully instantiates variables, and its extension, developed in
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Without Unification With Unification

{a 7→ True, b 7→ False} {a 7→ True}
{a 7→ True, b 7→ True} {b 7→ True}
{a 7→ False, b 7→ True}

Figure 1.3: Solutions to a ∨ b with and without unification. With unification,
variables are instantiated only as far as is necessary to satisfy the proposition.

Chapter 4, which does so partially.

1.3 Organization of this Work

This dissertation presents the Fair Scheme (FS), a compilation strategy for functional-

logic programming languages, and uses it as the basis of a new Curry system called

Sprite.

Chapter 2 provides a suitable introduction to the Curry programming language,

including its syntax (Sect. 2.1), semantics (2.2), and certain more advanced topics

(Sect. 2.3).

Chapter 3 presents the initial version of the FS. The strong theoretical under-

pinnings allow us to provide formal definitions and rigorously prove three important

properties of the FS: its soundness, completeness, and optimality.

Chapter 4 describes three extensions of the FS. Curry supports free variables,

which are not bound to any specific value. Our initial approach eliminates these

through a compile-time replacement rule and performs computations via rewriting

20



Introduction

and pull-tabbing. As a result, the FS never produces any values that contain free

variables. In Sect. 4.1, we introduce the first extension (FS-x), which provides an

explicit representation for free variables and computes by the principle of narrowing

rather than rewriting. This allows it to complete certain computations in fewer steps

and more compactly represent certain sets of values. In Sect. 4.2 we add a mechanism

for applying equational constraints to free variables with the second extension (FS-

β). Finally, in Sect. 4.3, we introduce the third extension (FS-S), which allows for

evaluating set functions, an important feature of Curry.

Chapter 5 describes the full-featured Curry system, Sprite, enabled by these ex-

tensions. We discuss the compilation process used to transform Curry source code

into an executable form through standard intermediate representations. Additionally,

we present the data structures and algorithms used to create an efficient implementa-

tion of Curry. Our implementation deviates from the FS in certain ways to optimize

performance, and we explain these deviations in detail.

Chapter 6 explores the use of Sprite. Sect. 6.1 presents the Sprite Python interface,

while Sect. 6.2 presents an example application demonstrating how Sprite can help

integrate Curry into an imperative programming environment.

Chapter 7 presents benchmarking results comparing the performance of Sprite

with other popular Curry systems. Finally, Chapter 8 contains concluding remarks,

including suggestions for future research to build on our work.
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Chapter 2

The Curry Programming Language

The combination of functional and logic programming possesses advantages over ei-

ther paradigm alone. From the point of view of a functional language, the introduction

of logic features increases expressive power. The introduction of non-determinism can

simplify programs, enable computations with partial data, and increase abstraction

by hiding sequential aspects of programs. From the point of view of a logic language,

deterministic functions improve operational efficiency, since deterministic parts of a

computation can use more efficient principles.

The approach to integrating these paradigms has likewise been considered from

both vantage points [2, Sect. 1], leading to two broad possibilities:

1. Logic aspects can be integrated into a functional language by a) admitting non-

deterministic semantics into the language and b) replacing pattern matching

with a more powerful principle, such as unification [40]; and

2. Functional aspects can be integrated into a logic language by augmenting the
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resolution principle (or another logic principle) with a mechanism for function

evaluation.

Curry embodies the first approach. It extends the pure functional language Haskell

with non-deterministic constructs including logic variables, overlapping rules [41],

functional patterns [42], and an explicit non-deterministic choice operator [43]. In

this chapter, we introduce Curry in some detail. Because these languages are so

similar, a working familiarity with Haskell is recommended.

Curry is a statically typed, lazy language with type inference. Expressions have

a well-defined type known at compile time and such information can be used to

find programming errors and perform optimizations. The inference system relieves

programmers from having to explicitly specify types in many cases, though it is

customary to provide type annotations for top-level functions and we shall follow this

convention where it clarifies matters.

Curry is packed with high-level features, many of which are inherited from Haskell.

It employs a modular structure that allows code to be separately compiled and linked.

It sports a sophisticated type system complete with ad-hoc polymorphism, function

overloading, type classes, and monadic input-output (I/O). It includes syntactic sugar

for defining numeric ranges, constructing lists through comprehensions, and defining

sequences of I/O actions. Fortunately, many of these features can be implemented

in the compiler front-end. Type-incorrect programs, for example, are rejected before
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the main part of the compiler is involved. Likewise, complex artifacts of the type

system such as type classes are transformed into simpler ones before arriving at a

representation the Fair Scheme need consider. Because of this we will focus on the

fundamental features of Curry, safe in the knowledge that this does not lead to a prac-

tical limitation. Interested readers should consult the official Curry documentation

for complete information about its features [9].

2.1 Syntax

We adhere to certain conventions in the discussion that follows. An identifier is a

sequence of characters taken from the set of alphanumeric characters plus the under-

score character (_) and not beginning with a digit. The identifier consisting of only

a single underscore represents an unused, distinct, anonymous variable. Types and

constructors begin with capital letters whereas functions and variables begin with

lowercase ones. Constructors and functions are called symbols. An exception to the

usual rules is that names are allowed to end with trailing single ticks. For instance,

f, f', and f'' are valid, distinct function names. By convention, we shall use this

to distinguish successive versions of a named entity, when needed. A second excep-

tion relates to the naming of operators: any function whose name consists entirely

of non-alphanumeric characters, such as ++, is an operator. The differences between

operators and other functions are entirely syntactic.
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2.1.1 Data Type Definitions

Data types are introduced with the data keyword. The simplest type can be defined

as follows:

data Unit = Unit

This introduces a new type called Unit (the left-hand side) of which there is precisely

one value called Unit (the right-hand side). The right-hand side symbol is called a

constructor of this type. It is common to overload type and constructor names in

this way, since they inhabit separate namespaces.

More complex types are composed through algebraic construction rules. A sum

type represents a choice between alternatives. A sum type representing a Boolean

value can be defined as follows:

data Bool = False | True

The vertical bar (|) signifies a disjunction, meaning that a value of type Bool is

always exactly one of these constructors; i.e., either False or True. A product type

represents a simultaneous combination. A pair of Booleans could be declared as the

following product type:

data BoolPair = BoolPair Bool Bool

BoolPair comprises two independent Boolean values, so there are in total four values

inhabiting this type. The above definition is inextensible: whenever a distinct pair
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of types is needed, a separate data declaration similar to the one shown above would

need to be written. Not only would that be repetitive, it would pollute namespaces

and wreck interfaces, since it raises the question of who should be responsible for

defining common types. To avoid these problems, Curry provides parametric type

definitions. All possible pair types can be declared with the following definition:

data Pair a b = Pair a b

The type variables a and b represent the two types constituting any pair. This is an

abstract definition that requires us to supply arguments for these variables in order to

build a concrete type. That is done by simple juxtaposition: e.g., a pair of Booleans

can be written Pair Bool Bool. To avoid the need to repeatedly type such things

out, Curry gives programmers a way to define type aliases. The type keyword can

be used as follows to create an alternate definition of BoolPair:

type BoolPair' = Pair Bool Bool

Sum and product types can be composed to form more elaborate types. We see

this in the following definition of a singly-linked list:

data List a = Nil | Cons a (List a)

This says that a list is either empty (Nil) or the construction (Cons) of an element

called the head and a list, called the tail, containing zero or more remaining elements,
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where the element type is represented by the type variable, a. The recurrence of the

list type, List a, indicates that the tail is a list whose elements have the same type

as the head.

2.1.2 Built-in Data Types

Curry provides a few fundamental data types that cannot easily be defined using data

type declarations. Within an algebraic type system, natural numbers can be defined

following the Peano discipline. The nonnegative integers, for instance, can be defined

in this way:

data Peano = Zero | Succ Peano

In this system, the first three numbers counting from zero can be written Zero,

Succ Zero, and Succ (Succ Zero), respectively. Although this formulation has

practical uses, it can be inefficient because the costs in time and memory of rep-

resenting a number are linear with respect to its magnitude. In addition, many

arithmetic functions are more complex than necessary with this representation.

Unfortunately, no practical constant-space definition of numbers can be created

using an algebraic declaration. The reason becomes clear if we attempt to write one

out:

data Integer = 0 | 1 | 2 | ...
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It is obvious that one cannot simply list all numbers in this way as separate construc-

tors. Due to this, and also to make use of the efficient numeric representations native

to hardware, Curry defines three fundamental data types: Int for integers, Char for

characters, and Float for floating-point numbers. Each of these is equivalent to a

large type sum, like the one depicted above, but is more efficiently implemented by

the compiler and runtime system.

A string of digits such as 0, 1, or 42 is interpreted as an Int. Two sequences of

digits separated by a decimal point, such as 3.1415, specifies a Float. A Char is

written as a character surrounded by single quotes, as in 'a'. Characters can also be

specified using an escape sequence consisting of a backslash (\) followed by a numeric

or symbolic code. Using this, the null character (with numeric value zero) can be

written '\0', a newline can be written '\n', and a backslash itself can be written

'\\'.

Lists, tuples, and strings are afforded special syntax. A list type is written by

enclosing its element type in square brackets. The type of a list of Booleans is thus

written [Bool]. A list of values can be written as a comma-separated sequence of

values enclosed in square brackets, such as [], [True,False], or [1,2,3]. A list

may also be constructed as a:b for head a and tail b. Using this method, two of the

above lists can be written True:False:[] and 1:2:3:[].

The zero-tuple, called unit, is written (). This is both its type name and its data
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constructor. The type of a tuple with arity two or greater is written as a comma-

separated sequence of types. For example, (Bool,Int,Char) is a triple containing a

Boolean, integer, and character in that order. A tuple value is written as a comma-

separated sequence of values enclosed within parentheses, as in (True,False). Curry

does not provide a one-tuple.

The string type is an alias for a list of characters; i.e.: type String = [Char].

Double-quoted strings are a quick notation for lists of characters. Thus, the string

"Curry" and the list ['C', 'u', 'r', 'r', 'y'] are identical.

2.1.3 Function Definitions

Functions are defined by rules, each of which consists of a left-hand side (LHS) pattern

and a right-hand side (RHS) replacement separated by the equal sign (=). A very

simple function, which inverts a Boolean value, can be written as follows:

1 not :: Bool
2 not False = True
3 not True = False

This introduces not as a function symbol and defines it by two rules. The first line

declares the function and specifies its type. Since this information can usually be

deduced by a compiler, we shall omit function declarations in most cases. The first

rule matches when the argument is False and defines the replacement to be True.

The second rule is complementary. The meaning of a function can in general be
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determined by comparing its patterns against an expression to be evaluated and, if

a match occurs, constructing the specified replacement and putting it in place of

the original expression. We call the expression being evaluated the candidate. By

this process, the expression not False is replaced with True according to the first

rule. This is called a rewrite step, which we represent by writing not False→ True.

When a rule is used to perform a rewrite step, we say the rule is fired. We write →∗

to denote a sequence of any number of rewrite steps.

A slightly more complex example further illustrates. The following function can

be used to append two lists together:

1 append [] ys = ys
2 append (x:xs) ys = x : append xs ys

This takes two formal parameters, which we shall refer to as the first and second lists.

According to the first rule, if the first list is empty, then the replacement is the second

list. Otherwise, by the second rule, the head of the first list becomes the head of the

replacement and the second argument is appended to the remaining elements to form

its tail. In this case, pattern matching involves finding a correspondence between

variables in the pattern and subexpressions in the candidate. We can define a match

completely by the rule selected and a mapping from variables to subexpressions, called

a substitution. To illustrate this, the steps taken to append [3] to [1, 2] are shown

below:
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Rule Substitution

append (1:2:[]) (3:[]) 2nd x 7→ 1, xs 7→ 2:[], ys 7→ 3:[]

→ 1 : append (2:[]) (3:[]) 2nd x 7→ 2, xs 7→ [], ys 7→ 3:[]

→ 1 : 2 : append [] (3:[]) 1st ys 7→ 3:[]

→ 1 : 2 : 3 : []

A function whose name consists entirely of non-alphanumeric symbols is called

an operator. Curry supplies an operator whose behavior is identical to append. This

operator, denoted ++, can be defined as follows:

1 (++) [] ys = ys
2 (++) (x:xs) ys = x : xs ++ ys

Operators come in various fixities; e.g., the minus operator (-) may appear in

certain languages in prefix or infix form, as in -1 and 1 - 1, respectively. There

is also precedence between operators. Curry affords programmers control over these

details but we shall not discuss them further, instead relying on the reader’s intuition

to discern the intended meaning.

A constructor expression contains only constructors and variables and a linear

expression is one without repeated variables. Except for their leading function sym-

bol, patterns in Haskell are linear constructor expressions, but Curry relaxes these

constraints.

First, patterns in Curry can involve function applications. Such functional patterns

[42] allow for direct representations of complex structures, which make possible high-

level descriptions of queries and transformations that can lead to extremely concise
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and obviously correct code. An example of this can be seen in the following definition

of a function to determine the last element of a list:

last (_++[x]) = x

This function accepts one parameter, which is written as an expression that describes

the construction of a list. This pattern matches any list with a last element e and,

when firing the rule, binds e to the variable x. Compare this to the following definition

without a functional pattern:

1 last' [x] = x
2 last' (_:xs) = last' xs

The version involving a functional pattern is more concise and is arguably easier to

understand.

Second, Curry allows repeated variables, which express logical equality between

parameters. Pattern matching requires a substitution that maps each variable to ex-

actly one expression, so repeated variables place constraints on the possible matches.

We can see this at play in the following function:

find k (_++(k,v)++_) = v

This function has two parameters: a key, k, and a list of pairs. The repetition

of k makes it so that this rule only matches a pair whose first element is k. The

replacement is the second element of that pair. Accordingly, the following expression

evaluates to "banana":
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find 'b' [('a',"apple"), ('b',"banana"), ('c','carrot')]

We will return to the question of what happens if the list contains multiple matching

elements in Sect. 2.3.4.

Functions can be defined in parts with conditional rules. A guard is an optional

predicate following the pattern and separated by the pipe character (|). A rule defined

in this way is conditional on the predicate being satisfied. For instance, a function to

determine the maximum of two integers can be defined as follows:

1 max a b | a < b = b
2 | otherwise = a

The first part is used only when the predicate is satisfied; otherwise, the second part is

used. The predicates are evaluated in order until a match (if any) is found. The final

part may use the keyword otherwise to indicate it as the default. The comparison

operators <, <=, >, >=, ==, /= as well as the Boolean connectives && (logical AND) and

|| (logical OR) are useful in defining predicates and carry their expected meanings.

It is sometimes useful to share bindings between parts of a function. Consider the

following function that evaluates to the positive numbers of a list:

1 positives [] = []
2 positives (a:as) | 0 < a = a : positives as
3 | otherwise = positives as

The repetition seen in the list tail can be eliminated by use of a where clause, which

is a syntactic construct that introduces a shared binding into all parts of a rule. For

example:
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1 positives [] = []
2 positives (a:as) | 0 < a = a : tail
3 | otherwise = tail
4 where tail = positives as

A where clause can also introduce auxiliary functions. Consider the following

implementation of a function to evaluate polynomials by Horner’s rule:

1 horner [] _ tot = tot
2 horner (a:as) x tot = horner as x (x * tot + a)

The first two parameters are a list of coefficients and the independent variable. The

third parameter, tot, holds a running total. To evaluate a polynomial correctly,

an initial total of zero must be supplied. For example, to evaluate the polynomial

3x2 + 2x + 1 at x = 5, one writes horner [3,2,1] 5 0. The need to supply the

initial total is inconvenient. An improved definition that eliminates it through the

use of a where clause is shown here:

1 horner' coeffs x = aux coeffs 0
2 where aux [] tot = tot
3 aux (a:as) tot = aux as (x * tot + a)

In this version, the main computation involving the running total has been moved

into an auxiliary function so as to eliminate the unnecessary parameter.

A third use of where is to declare free variables. This is done through a clause

of the form “where varname free.” The following function, for instance, represents

an unknown value by evaluating to a free variable:
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unknown = x where x free

A type annotation is sometimes required as a hint to the compiler. To specify the

variable type, one writes, e.g., (x::Bool) where x free. In general, two colons (::)

can be used in this way to supply a type annotation for any expression. Free variables

are discussed in more detail in Sect. 2.3.1.

2.1.4 Higher Order Functions

A higher order function is one that accepts or produces a function. This treatment of

functions as first-class objects is a hallmark of functional programming. A commonly

used higher-order function known as map can be defined as follows:

1 map _ [] = []
2 map f (x:xs) = f x : map f xs

This applies a function, f, to each element of a list, producing a transformed list. We

could use this to invert the elements of a Boolean list by mapping the not function

over it, as in map not [True, False] →∗ [False, True]. To write a higher-order

function that produces a function we can specify a local function as the replacement,

as the following example shows:

incBy n = f where f x = x + n

This returns a function to increment a number by the specified amount. For example,

incBy 1 is a function that increments by one, so we have (incBy 1) 3→∗ 4.
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Another way to produce functions is through partial application, which binds

certain arguments to fixed values, producing a function that takes fewer parameters.

A technique called currying, which converts a function with several arguments into a

chain of functions each taking one argument, is applied uniformly to simplify partial

application. Consequently, one could write a function to evaluate the polynomial on

Page 34 as horner' [3,2,1]. To apply this over a list of x-values, we write, e.g.:

map (horner' [3,2,1]) [0,1,2,4,8] →∗ [1,6,17,57,209]

Infix operators can be partially applied using a syntax natural to them. For example,

(+1) produces an incrementing function by binding the right-hand argument of the

binary plus (+) operator, as demonstrated in the following example:

map (+1) [1,2,3] →∗ [2,3,4]

This idea can also be extended to zero arguments to apply infix operators using prefix

notation. We may, for example, write the following:

(:) True [] →∗ [True]

2.1.5 Expressions

We now turn our attention to the syntax for forming expressions. A variable expres-

sion is simply a variable. For instance, each RHS in the definition of max is a variable

expression.
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An apply expression consists of a leading constructor or function symbol followed

by zero or more subexpressions. The leading symbol, s, is called the root and we say

the expression is rooted by s or is s-rooted. We may also refer to the symbol kind

in saying that an expression is, e.g., constructor-rooted. To illustrate, the expression

append xs ys that appears in a rule of append is a function-rooted expression that

applies the symbol append to two subexpressions, the variable expressions xs and ys.

Literals such as False and 1 are degenerate cases in which the root symbol is

nullary: that is, False is an application of the constructor symbol False to zero

arguments. More complex literal expressions are (possibly nested) applications over

constructor symbols with higher arity. These include the strings, lists, and tuples we

have already seen.

The application of an infix operator is an apply expression. This can be seen

clearly by parenthesizing the root symbol to write the expression in curried form.

For instance, the RHS of the second rule of append could be written as follows to

emphasize that its root is the list constructor:

(:) x (append xs ys)

Similarly, the key part of Horner’s rule can be written in the following way to em-

phasize its structure:

(+) ((*) x tot) a
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Bindings can be introduced by a let expression. These serve in the context of

expressions a purpose similar to that of where clauses in function definitions. A

function to normalize three numbers so that their sum is unity, for instance, can be

written as follows:

1 normalize x y z = let norm = x + y + z
2 in [x/norm, y/norm, z/norm]

The let construct here allows the normalizing constant to be defined once. This may

also improve efficiency by allowing it to be computed once. Bindings introduced in this

way are recursive, meaning they can refer to one another. This makes it possible to

define infinite data structures. For instance, the infinite list [True,False,True,. . . ]

can be defined as shown here:

1 infList = let a = True : b
2 b = False : a
3 in a

This example also demonstrates how multiple bindings can be introduced. The

whitespace here is necessary to let Curry know that a continuation of the expres-

sion is intended.

Like a where clause, a let expression can be used to introduce free variables. An

alternative version of unknown could thus be defined as follows:

unknown' = let x free in x
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An if-then-else expression is syntactic sugar for conditional evaluation. With this

we can redefine max more succinctly as shown here:

max' a b = if a < b then b else a

This has the same values as the following:

1 max'' a b = ifThenElse (a < b) b a
2 where ifThenElse cond x y | cond = x
3 | otherwise = y

The if-then-else syntactic construct is equivalent to the local function ifThenElse

shown above, which conditionally evaluates to the consequent, x, when the condition

is satisfied and to y otherwise.

Pattern matching can appear in an expression context through the use of a case

expression. The grammatical construction “case discr of cases ” matches a dis-

criminator against a series of cases, where each case consists of a pattern and a

replacement separated by a right arrow diglyph (->). Like the parts of a conditional

function, the patterns are tried in textual order until the first match occurs. To

demonstrate this, we can redefine not as follows:

1 not' x = case x of True -> False
2 False -> True

A lambda expression can be used to create an anonymous function. This takes

the form “\pat -> repl ,” where pat is a linear constructor pattern and repl is a
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replacement. This can simplify certain higher-order functions by eliminating the need

to create a named local function just to return it. For instance, we could define incBy

more succinctly using a lambda expression as follows:

incBy' n = \x -> x + n

Lambda expressions are useful when constructing arguments to higher-order func-

tions. For example, a function to turn a boring list of strings into an exciting one

could be defined as follows:

excite = map (\word -> word ++ "!")

This curries the map function with an anonymous function. The result is a function

that accepts a list of strings and adds something exciting to each one.

2.2 Semantics

Now that we are familiar with their syntactic structure, we turn our attention to

the meaning of Curry programs. We are particularly interested in what distinguishes

Curry from Haskell, namely, the presence of non-determinism. Several approaches

to formally capture the semantics of functional logic languages have been published

[44–47]. To simplify matters we shall keep this discussion informal. The aim is to

develop a model that allows readers to grasp Curry semantics well enough without

venturing into arcane matters.
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Our model is an unconventional one based on an analogy with the mathemati-

cal formulation of quantum mechanics (QM). What underlies this perhaps surprising

choice is a remarkable similarity between the mathematics of non-deterministic phys-

ical systems and non-deterministic computations in Curry1. QM provides a mature

framework for describing non-determinism and, as we shall see, its tools are well

suited to the task at hand. Not only does this provide us a firm conceptual founda-

tion, it lends confidence to our approach and may also point toward areas for further

development wherever we note differences between existing semantic models and this

analogy or where a similarity between these domains inspires us to borrow something.

As is often the case, a shift in perspective can encourage new ways of thinking that

lead to deeper understanding.

That said, it is important not to carry the analogy too far. What we present is not

a rigorous formulation of Curry semantics, but rather an informal tool for explaining

the behavior of Curry programs. A important difference here is that physical systems

are constrained by conservation laws that do not exist in the computational domain.

This means that Curry programs can exhibit behaviors with no physical analog. A

concrete example is given in Sect. 2.3.2. Despite this, we believe the semantic model

developed in the section, being both straightforward and distinctive, provides a useful

way to understand Curry.

1It would be impossible to summarize the mathematics of QM here, so we shall introduce only
the bits needed to construct the analogy. Interested readers are referred to, e.g., [48–50].
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2.2.1 The Superposition Principle

One of the simplest non-deterministic functions imaginable is shown below:

1 binDigit = 0
2 binDigit = 1

Both rules match when evaluating the expression binDigit so this function evaluates

to an arbitrary binary digit, either 0 or 1. Since the result is an integer, the type

of this function is Int. This might seem counterintuitive. Because there are two

values, one might expect the result to be a collection of some sort. We can say

with certainty that binDigit is multi-valued in the sense that it has two values and

yet we see no evidence of that when it is evaluated. Our first task is to develop a

precise understanding of this apparent contradiction. The principle of superposition

will be instrumental in doing so. Superposition plays a central role in descriptions

of non-deterministic physical systems by QM and can also greatly help us model

non-deterministic computations.

Superposition is the ability of a system to be in multiple states at once. This

is easily demonstrated through an example. Electrons have a measure of angular

momentum called spin. When spin is measured, an electron is always found to be

either spin-up or spin-down. Observable properties such as this are called pure states

and we can denote these two as |↑〉 and |↓〉, respectively. The principle of superposition

says there can exist states that are simultaneously spin-up and spin-down. These are

calledmixed states and we may write the simplest one as |↑〉+|↓〉. Mixed states cannot
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be observed directly but their existence can be inferred experimentally. According to

one popular interpretation of QM, the act of measurement causes a mixed state to

collapse non-deterministically into a pure one.

Each aspect of the above account has an analog in the behavior of binDigit. Just

as measuring an electron produces one of its pure states, evaluating binDigit yields

one of its values. The values are thus analogous to pure states and we may write

them as |0〉 and |1〉. Prior to its evaluation binDigit carries with it the potential

to produce either value, so it corresponds to the state |0〉 + |1〉. With this we may

begin to see how the key to resolving the paradox above is to separate the values

of an expression from the state it induces: although binDigit always evaluates to a

singular binary digit, it induces a multi-valued state that has the potential to become

either binary digit.

In QM, a state is a vector in a Hilbert space, a complex vector space with an

inner product. Much of the mathematical complexity concerns the calculation of

amplitude, which relates to the probability of a physical observation. When it comes

to Curry semantics, we are only interested in determining the values produced by

computations, not in their relative likelihood (if that can even be defined). For

this reason, we can dispense with much of the mathematical complexity of QM. In

particular, we shall ignore scalar factors, called weights, and shall not discuss inner

products in detail. It is not difficult to imagine refinements that would make use of

these, perhaps in estimating the probability of finding a value quickly or to otherwise
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rank the prospective value of computational paths. This topic is beyond the scope of

this work. We nevertheless find it useful to employ Dirac notation, where a state is

written as |s〉, called a ket, in which the enclosed symbol is an identifier.

2.2.2 Program and Value Semantics

It is helpful to draw a distinction at this point between two representations that have

arisen. One of these comprises the symbolic terms subject to pattern matching and

rewriting. We call this the program state and say that it inhabits program space. Some

form of this may reside in the memory of a computer running a Curry program. In

simple cases the program state can be represented simply as an expression. A rewrite

step represents a concrete change to this state and so we overload the → symbol to

relate one program state to its successor. The second of these is the mathematical

representation borrowed from QM. We call this a value state, since the pure states it

is built up from correspond to Curry values. We say that value states inhabit value

space.

For a type T , the set of all pure states corresponding to constructor expressions

of T constitute an orthogonal basis spanning the space of all possible value states

of that type. For example, type Int forms an infinite-dimensional space with basis

{|0〉 , |1〉 , |-1〉 , |2〉 , . . .}. Some of the infinitely-many value states that can be formed

from this include all integers, even integers, and prime numbers. To say the basis

is orthogonal means its elements are pairwise non-overlapping. The overlap between
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two states |i〉 and |j〉, written 〈i|j〉, can be understood as pattern matching with

pattern |i〉 and candidate |j〉. The result is non-zero (taken nominally as unity) if

and only if the pattern match succeeds. This can be tested with the following gadget:

case j of i -> ()

So, for example, 〈0|0〉 = 1 because case 0 of 0 -> () succeeds. Similarly, 〈0|1〉 =

0 because case 1 of 0 -> () does not. Let δij represent the Kronecker delta, which

equals zero where i 6= j and unity where i = j. With this, the orthogonality condition

can be written succinctly as follows:

〈i|j〉 = δij

This notation represents measurement in QM. For example, 〈↑ |ψ〉 gives the proba-

bility of measuring the spin-up property in state |ψ〉. In the computational analogy,

it indicates whether a given Curry expression has a certain value. For instance,

〈0 |binDigit〉 = 1 and 〈2|binDigit〉 = 0.

The result of a function is a subspace whose basis is a subset of the basis of its

result type. For instance, the type of function binDigit is Int, and this function

induces the two-dimensional subspace with basis B = {|0〉 , |1〉}. We may therefore

say the basis of the expression binDigit is B and that the values of binDigit are 0

and 1. Computing the values of a Curry expression is equivalent to determining the

basis of the subspace it induces.
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These two representations provide complementary frameworks with which to un-

derstand the behavior and meaning of Curry programs. Program space offers a way

to model structure and analyze the mechanics of computational steps. The meaning

from this viewpoint is called program semantics. Value space allows us to reason

about the values of a Curry program apart from its mechanisms. With this, one can

reason about the validity of possible implementations and also about the effect that

changing a program will have on the values it produces. The meaning of a program

in this sense is called its value semantics.

The set of values (whether we can determine them ahead of time or not) is fixed at

the outset of a program. If a computation is represented by a series of transformations

in value space, then every transformation must be value preserving. For this reason,

value states are most often equated. We shall find it useful to formulate value states

in multiple ways and to think of them as evolving with respect to a variable that

advances with the steps of a computation. This is no different from the way an

equation would change form as we rearrange it through the application of algebraic

rules, were we to parameterize our rearrangements with a time-like variable. The

preserved quantity does not change, but our representation of it does. Central to this

activity are operators, which allow us to model any computation as a value-preserving

evolution in value space.
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2.2.3 Operators

Operators are mathematical objects used to model state changes, such as the evolution

in time of a physical system. For any operator, O, the state that results from carrying

out the process represented by O on an object in state |s〉 is written O |s〉. For instance,

the magnetic moment of an electron due to its spin causes it to be deflected when

passed through a magnetic field. Suppose that spin-up electrons in a certain setup

are deflected to the left and spin-down electrons are deflected to the right, and that

we denote these as |←〉 and |→〉, respectively. Then we may write X |↑〉 = |←〉 to

represent the position state of an up-spinning electron following this process, where

X is an operator that models the state evolution. It may involve such things as the

magnetic field strength and details of the measurement apparatus determining the

final position. The elimination of an operator through a substitution such as the one

above is called reduction. The probability of measuring the electron to the left in this

system is given by 〈←|X|↑〉 = 1.

Functions evolve program states in much the same way operators evolve value

states. To demonstrate this, let us express the electron-deflection setup in Curry as

follows:

1 data Spin = Up | Down
2 emit = Up
3 emit = Down
4

5 data Position = Left | Right
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6 position Up = Left
7 position Down = Right

Function emit represents the electron emission process, while position represents

the rest of the system up through position measurement. For every Curry function,

f, we can define a corresponding operator, f ; and for every constructor expression, c,

we can define a corresponding pure state, |c〉. This gives rise to a position operator

and pure states |Up〉, |Down〉, |Left〉, and |Right〉. For any expression e, rewriting

by a rule of position in e advances the computation of e in exactly the same way

that reduction of the position operator evolves the value state corresponding to e.

The table below illustrates this:

Computational Step Value State

position Up → Left position |Up〉 = |Left〉
position Down → Right position |Down〉 = |Right〉

From this we can conclude, for instance, that the value state of position Up is

|Left〉. In general, the value state indicates the values we should expect to obtain

from evaluation.

One may wonder what the point of this is, since the function and operator seem to

perform identical actions in this example. To be clear, the Curry value Left is some-

thing we hope to produce via a computation whereas the state |Left〉 is an intrinsic

property of the original expression. One goal of a Curry compiler is to implement

computations in a way that finds all values, which means producing every value that
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corresponds to a pure state in the basis of a program’s value state. These values,

taken together, form the program’s value set. A benefit of developing the mathe-

matics of value space apart from program space is that it allows us to define value

sets separate from any program mechanism. This is especially useful where it allows

us to reason subjunctively about the effects of undecidable properties. For instance,

we can consider the effects on the values of an expression of an endlessly-looping

subexpression. The subexpression never produces a value, and so corresponds to an

empty value state. But that fact cannot in general be determined from operational

principles. The concept of value space gives us a framework within which to engage

in what-if reasoning about such possibilities.

We can use this model to reason about how changing a program affects the values

it produces. To give a trivial example, the expression Up corresponds to state |Up〉

and its value set is {Up}. To find the effect of applying the position function, as in

position Up, we apply the position operator to |Up〉 and reduce to |Left〉, which

leads us to conclude the value set of that expression is {Left}. With this, we can

say that a computation of position Up ought to yield Left and check our program

mechanism to ensure that it does.

2.2.4 Additivity

Operators may act on mixed states. QM holds that, absent any measurement, an

electron whose state is the superposition of up- and down- spins is simultaneously
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deflected in both directions, putting its position into a superposed state. This is

captured in the following equation:

X (|↑〉+ |↓〉) = |←〉+ |→〉

Behavior such as this forms the physical basis of the famous “double-slit” phenomenon

and others like it. A similar phenomenon is observed when evaluating the expression

position emit. Rewriting is capable of deriving two values, Left and Right, as

shown here:

position emit

position Down

Right

position Up

Left

The value state is therefore |Left〉 + |Right〉. This can be derived in value space if

we assume that position distributes over addition, i.e.:

position (|Up〉+ |Down〉) = position |Up〉+ position |Down〉
= |Left〉+ |Right〉

We can show that every operator in our formulation has this property, owing to the

fact that every function is pure. First, the action of a pure function is inobservable in

disjoint computations because by definition it cannot have side effects. This means

that the act of distributing an operator cannot lead to its application in one context
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contaminating another. Second, the effect of a pure function in a shared subexpression

is identical in all contexts, since its action cannot depend on anything except its

formal arguments. Thus, if we distribute an operator over two states that share a

subexpression, e, then the effect of that operator on e is identical in both contexts.

This means that operator distribution never leads to spurious results due to the

presence of shared subexpressions.

The validity of distributing operators over addition reflects a defining property

of superposable systems: every operator, O, in such a system is linear, which means

that for arbitrary states |s1〉, |s2〉, and scalar α, the following hold:

O(α |s1〉) = α O |s1〉 (homogeneity)

O(|s1〉+ |s2〉) = O |s1〉+ O |s2〉 (additivity)

Since our model is unweighted the rule of homogeneity is degenerate.

The distribution of a process over non-deterministic value states by the rule of

additivity corresponds to a transformation in program space called pull-tabbing [51]

that will figure prominently in the Fair Scheme. Pull-tabbing is a mechanism for dis-

tributing deterministic computational steps over non-deterministic program states.

Antoy et al. demonstrated its correctness in the context of functional logic programs

[52]. Pull-tabbing is crucial to this work as it provides us the means to carry out

potentially non-terminating and infinitely non-deterministically branching computa-

tions on sequential hardware in a way that is both sound and complete. These matters
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will be dealt with in detail in Chapter 3, but for now it suffices to recognize that our

semantic model is so far incomplete because it relies only on rewriting. Rewriting is

not value-preserving in the presence of non-determinism. To see this, consider the

rewrite step position emit → position Up, which occurs by a non-deterministic

rule of emit. This causes the value Right to be lost. To address this shortcom-

ing we will later introduce into the program domain a structural representation of

non-determinism called choice that is subject to pull-tabbing.

2.2.5 Separability

Not all value states can be separated. To illustrate this, consider a system of two

electrons. A possible result of measuring both spin states can be written |↑〉0 |↓〉1.

This corresponds to the case when the first electron is spin-up and the second is

spin-down. A product term such as this is called a joint state. As a shorthand,

we can dispense with the subscripts and write this simply as |↑↓〉. If the electron

spins are independent, the state of the entire system is a superposition over four pure

states. This state is said to be separable because it can be factored into a product of

independent terms that separately describe each electron, i.e.:

|↑↑〉+ |↑↓〉+ |↓↑〉+ |↓↓〉 = (|↑〉0 + |↓〉0)× (|↑〉1 + |↓〉1)

Now consider a configuration in which the spins are coupled. For instance, it

is possible to generate a two-electron system where the total angular momentum is
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zero, in which case each electron has a spin opposite the other. The corresponding

state, |↑↓〉 + |↓↑〉, can no longer be separated into a product. The electron spins are

correlated in that a measurement of one completely determines the other. States with

this property are called inseparable and these electrons are said to be entangled.

Linear Form Program State Value State

let a = emit in
(a, opp a)

emit

opp

(,)

|(Up, Down)〉+ |(Down, Up)〉

let b = emit
c = emit in

(b, opp c) emit

emit

opp

(,)

|(Up, Up)〉 + |(Up, Down)〉
+ |(Down, Up)〉+ |(Down, Down)〉

Figure 2.1: A comparison of inseparable and separable two-electron systems in
Curry. The inseparable case (top) involves a single shared electron, represented by
variable a. Its program state comprises a single node labeled emit and its value
state is a superposition between two pure states. The separable case (bottom)
involves two independent electrons represented by two variables, b and c. These
appear as separate nodes labeled emit in the program state. The corresponding

value state is a superposition between four pure states.

Inseparability in value space corresponds to sharing in program space. This is

illustrated in Figure 2.1, which uses the following function to compute opposite spins:

1 opp Up = Down
2 opp Down = Up
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Shared subexpressions always arise from repeated variable references, such as those

seen in (a, opp a). This contains a shared subexpression precisely because a is

referenced twice. The repetition can be more subtle. For instance, an application

of f x y = (x, opp y) could result in a shared state though it does not directly

involve a repeated variable. But in that case, the repetition would occur in another

context such as f a a.

Each variable repeated in a textual representation appears in the corresponding

program state as a node with multiple predecessors. Such nodes are for this rea-

son called shared. An expression corresponding to a program state is called its linear

form and the conversion of a program state into that is called linearization. Note that

linearization can involve variable introduction. For instance, to properly retain the

meaning in going from the topmost program state in Figure 2.1 to the corresponding

linear form requires the introduction of a variable to represent the shared subex-

pression. In general, each incoming edge represents an occurrence, so every node of

higher in-degree requires a corresponding variable to express its multiple occurrences

linearly. On the other hand, in the separable case no variables are necessary. Two

expository variables are shown in Figure 2.1 but they are unnecessary: the linear form

could just as well be written as (emit, opp emit). This demonstrates that multiple

linearizations are possible. We may omit variables from a linear form when they are

functionally irrelevant; in particular, this arises when the shared part is simply a

constructor expression (see next example).
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The presence of repeated variables or, equivalently, shared nodes causes the cor-

responding value state to be inseparable. This is because shared subexpressions are

entangled, which manifests in value space as inseparability. To illustrate, consider

the following rewrite step according to the rule emit = Up:

let a = emit in (a, opp a) → (Up, opp Up)


emit

opp

(,)



Up

opp

(,)


The two subexpressions of the pair, which represent two entangled electrons, are cor-

related in that a single rewrite step affects them both. Replacing a single shared node

in the program state has this effect. In value space, the consequence of correlation

is that certain joint states — the ones corresponding to uncorrelated variance — are

excluded. This precludes factorization because the missing terms mean the math-

ematical “square” is incomplete. To summarize, up to certain degenerate cases we

shall not consider, the following three objects are identical:

• In a linear form, a multiply-referenced variable;

• In program space, a node with multiple predecessors;

• In value space, an inseparable state.
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2.2.6 Analysis of Curry Programs

The semantic framework we have now developed helps us understand different aspects

of Curry. The structure of expressions can be understood through their program

states, and computations can be expressed as transformations in that domain. This

view not only helps us grasp the meaning of programs, but also informs our imple-

mentation of a Curry compiler and runtime system because it tells us precisely which

data structures and what transformations over those data structures are required.

The values of an expression can be understood by examining its value state. Operator

mathematics gives us a computational system in value domain, where transformations

are subject to the constraint that they be value-preserving. Non-determinism can be

modeled as the ability to choose from among multiple overlapping rules and its effect

in value space can be predicted by the principle of superposition.

This yields a constructive method for analyzing Curry programs. At the bottom,

each innermost expression corresponds to a value state2. Moving outwards, function

application constructs a larger program state whose meaning is found by applying

the corresponding operator to the previous value state. Computational steps are

carried out by rewriting in program space and operator reduction in value space.

For example, to analyze position emit, one begins with emit. This gives rise to a

superposition between either spin state: ψ0 = |Up〉 + |Down〉. Moving outwards, the

2A nullary function is considered a reference to its RHS to avoid applying an operator to nothing.
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application of position leads to ψ1 = position ψ0 = |Left〉 + |Right〉. We may

simulate a computational step by choosing a rule of position and carrying out a

rewrite step, though we must be careful to remember that eventually all rules need

to be applied to all states in order to find all values.

2.3 Additional Topics

We complete our introduction to Curry with a discussion of a few matters beyond

the basic syntax and semantics. We begin with the various forms of non-determinism

that arise in Curry programs.

2.3.1 Representations of Non-determinism

Among the several ways of expressing non-determinism in Curry are overlapping pat-

terns, a choice operator, and free variables. These arose from attempts by many

researchers to couch principles of logic programming in a Haskell-like syntax. Al-

though it may not be apparent at first, all of these are semantically equivalent [41];

this fact will be used as we develop the Fair Scheme to greatly simplify our implemen-

tation. The addition of logic features, interestingly, involves little syntactic change.

Rather, these new capabilities emerge mostly as a natural consequence of extending

the value space to include superposition.

We have already seen how overlapping patterns embody non-determinism. The

two rules defining binDigit, for instance, both match the same (trivial) pattern, so
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we could choose either one in a rewriting computation involving that symbol. As

discussed in the previous section, overlapping patterns are interpreted in value space

as a superposition over all possible matches. Compare this with Haskell, which has no

concept of superposition and so handles overlapping patterns by simply trying them

in order until the first match occurs.

This difference means we sometimes need to adapt function definitions. In Haskell

one must be careful to arrange rules in a sequence that ensures the proper behavior

when considering overlaps. In Curry, on the other hand, one should avoid accidental

overlaps that give rise to unintentional non-determinism. Figure 2.2 illustrates this

by comparing the definitions of zip in Haskell and Curry. Note that zip is a binary

function that converts two lists into a list of pairs, where each output element contains

corresponding input elements. We could use this as follows: zip [1,2] [3,4] →∗

[(1,3),(2,4)].

Haskell

1 zip [] _ = []
2 zip _ [] = []
3 zip (a:as) (b:bs) =
4 (a, b) : zip as bs

Curry

1 zip [] _ = []
2 zip (_:_) [] = []
3 zip (a:as) (b:bs) =
4 (a, b) : zip as bs

Figure 2.2: Comparison between definitions of zip in Haskell and Curry. The
Haskell definition involves overlapping rules that would result in this function being
non-deterministic in Curry (i.e., consider a match against zip [] []). The Curry

definition uses a more specific pattern.
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Another way to express non-determinism is through the built-in choice operator,

written ? and defined by the following rules:

1 x ? _ = x
2 _ ? y = y

Application of this operator creates an explicit superposition between its arguments.

Choices are the primitive expression of non-determinism in Curry, since any function

with overlapping rules can be rewritten as a non-overlapping function that applies

choices. For example, we could redefine binDigit as follows:

binDigit' = 0 ? 1

Although the choice operator can be defined by the ordinary rules shown above, it

plays a special role in the Fair Scheme as the structural representation of superposition

in program space. For that reason, as will be discussed in the next chapter, its rules

are never applied in a computation by the Fair Scheme.

The introduction of an “ambiguity” operator such as choice into programming

can be traced to McCarthy [53] and the introduction of choice itself into Curry is

owed to Antoy [43]. Choices are a natural way to express non-determinism. Early

versions of Curry, lacking choices, resolved non-deterministic computational branches

through a principle called narrowing [40] in which free variables are instantiated with

a particular function rule in mind. These “just so” instantiations are done carefully

to ensure the successful match of a certain pattern. Although simple evaluation
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strategies based on narrowing are known to be complete and optimal [54], these

have the same limitation as purely rewriting strategies, stemming from the fact that

narrowing steps are by themselves incomplete. Therefore, an additional mechanism

that ensures all narrowing steps are eventually taken is needed to ensure completeness.

The absence of choice perhaps contributed to a fragmented early semantics of

Curry that found it divided into separate functions and predicates and allowed nar-

rowing only in predicates (e.g., see [55]). Choices help make possible a tighter inte-

gration between the functional and logic portions of Curry programs.

A third way to express non-determinism is through the use of free variables. Vari-

able bindings can occur in rule patterns, where-clauses, and the introductory parts of

let-expressions. Any variable referenced without first being bound in a surrounding

context is free. Such a variable would be treated as an error in Haskell, but in Curry

these are interpreted as unknown values to be deduced. The value of a free variable

is a superposition over all values belonging to its type. For example, a Boolean free

variable corresponds to the value state |False〉+ |True〉. The value of a free variable

with type [Bool] is an infinite sum over all Boolean lists.

However, it turns out that programmers sometimes make mistakes. Thus it is

unwise to impute meaning to what could be an accident. Curry, therefore, requires

free variables to be introduced by the free keyword in most cases. This is recalled

in the following function definition, which uses a free variable to define the pairs

(False, True) and (True, False):
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boolPair = (x, not x) where x free

To drive home the equivalence between the ways of expressing non-determinism

just discussed we shall write this function in two additional ways to demonstrate each

method. Using a choice, we may write this as follows:

boolPair' = (x, not x) where x = False ? True

The order of arguments to ? is not relevant because we are only ever interested in the

values of expressions but not their order. With overlapping rules we can write the

following:

1 boolGen = False
2 boolGen = True
3 boolPair'' = (x, not x) where x = boolGen

This latter example defines a function boolGen to generate all Boolean values. A

function whose value state is identical to a free variable — which is to say a sum over

all pure states of the proper type — is called a generator function. It is possible to

write such a function for any type, including those with infinitely many pure states,

simply by providing a rule for each constructor in which every argument is a generator

function of the appropriate type. For example, a generator for a list of Booleans can

be written as follows:

1 boolListGen = []
2 boolListGen = boolGen : boolListGen
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This suggests an approach to implementing computations in the presence of free

variables, which is to replace them with generator functions. We will examine this

idea in more detail as we develop the Fair Scheme.

2.3.2 Failure

Curry semantics permit a state with no basis — i.e., a superposition of zero states.

An expression with this state has no values. Though this might at first seem a useless

concept, this special state, called failure, comes up frequently and can be quite useful.

We represent failure as ⊥, though we must be careful not to confuse this with the

bottom type, written in the same way, which is a type inhabited by nothing. Failures

play a role analogous the number zero in addition, since they can be added to any

value state without changing anything.

A computation fails when it does not produce a value. We have so far informally

used the term value without a precise definition. We will attend to that in the next

chapter where we discuss the properties of rewriting systems in more detail, but for

now it suffices to say that an expression containing irreducible function symbols is not

a value. One kind of failure, then, is the inability to complete a pattern match. We

see this possibility in the head function, shown below, which evaluates to the head of

a given list:

head (a:_) = a
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Since the head of an empty list is not defined, no rule matching an empty list is

provided. A function such as this that is not defined for all possible arguments is

called partial. Accordingly, the evaluation of head [] fails. In Haskell this situation

is an error that causes the program to terminate. In Curry, though, a more natural

response is simply to ignore the failure, since it adds nothing to the relevant value

state. The sense in this is illustrated by the next example.

One expects the expression head boolListGen to correspond to the value state

|False〉+|True〉. We might interpret this as asking the question, what head elements

might we observe in an arbitrary Boolean list? The existence of empty lists does

not invalidate this question. But if pattern-matching failures were interpreted as

errors then it would have no values, since the first rule of boolListGen leads to the

irreducible expression head [].

Failures highlight a limitation of our semantic analogy. The physical analog of

an empty value state is nothingness, i.e., a state whose basis is empty. No linear

operator can transform such a state into one with a nonempty basis. There exists

no constructor expression c such that 〈c|⊥〉 is nonzero. In a Curry computation,

by contrast, certain valueless expressions can be transformed into values by function

application. To demonstrate this, we can define the following function to obtain the

first element of a pair:

fst (a, _) = a
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Now consider the expression fst (0, head []). The pair is a failure because there

exists no constructor expression c such that 〈c |(0, head [])〉 is nonzero. But the

application of fst gives us 〈0|fst |(0, head [])〉 = 1, and so 0 is a value of that

expression. By this we can see that Curry functions are not perfectly analogous to

linear operators.

2.3.3 Constraint Programming

The practice of ignoring failure makes possible a programming style called constraint

programming in which programs are written by describing the constraints solutions

should adhere to. Viable answers are produced through a search process. This

paradigm, first proposed by Jaffar and Lassez in 1987 [56], is rooted in logic pro-

gramming, where the search capabilities inherent to many such languages make it a

natural fit.

In Curry, a constraint may be expressed as a guard expression involving one or

more free variables. In the RHS, those free variables take on all and only the values

satisfying the constraint. As a trivial example, consider the following function, which

finds a Boolean substitution that satisfies the logical AND relation:

satAnd | x && x = x where x free

Since this rule has no default part, it fails when the constraint is not satisfied. When

the constraint is met — that is, when x is bound to True — this function produces
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the value of x.

The essential mechanic of this pattern is captured by the constrained expression

operator [57, Sect. 3.1], an infix binary operator whose first argument is a constraint

and whose second argument is an arbitrary expression. It is defined by the following

rule:

True &> x = x

This function evaluates to its right argument provided its left argument is satisfied

and fails otherwise. With this, satAnd could be defined as shown here:

satAnd' = x && x &> x where x free

Curry, in addition, provides an equational constraint operator (=:=) that evaluates

to True when its arguments are equal and fails otherwise. This can be defined as

follows:

x =:= y | x == y = True

This gives us a third way to define the last function introduced in Sect. 2.1.3. In the

next definition, the function pattern that selects the final list element is moved into

the RHS:

last'' l = let x free in l =:= (_++[x]) &> x
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A slightly more complex example further illustrates the usefulness of this approach.

A binary tree is defined as either a branch, which contains two subtrees, or a leaf.

This can be defined in Curry with the following data definition:

data bTree = Branch bTree bTree | Leaf

A few examples are depicted below:

Leaf Branch Leaf Leaf Branch (Branch Leaf Leaf) Leaf

( L )


B

LL





B

LB

LL



A function to generate all binary trees up to a specified height, h, can be written as

follows:

1 bTree _ = Leaf
2 bTree h | h > 0 = Branch (bTree (h-1)) (bTree (h-1))

We can use constraint programming to refine this in order to generate trees that

meet whatever criteria we choose. For instance, a binary tree is symmetric if its left

and right branches are equal. We could implement a constraint to enforce this as

follows:

1 symmetric Leaf = True
2 symmetric (Branch l r) = l =:= r
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Using this, a function to select symmetric binary trees can be written simply as shown

below:

sbTree tree | symmetric tree = tree

To generate all symmetric binary trees up to height h, one could write this:

sbTree (bTree h)

A tree is balanced if and only if every branch it contains is balanced, and a branch

is balanced if and only if 1) its subtrees are balanced, and 2) the difference in height

between its subtrees is no more than one. A function to determine the height of a

tree can be written as follows:
1 height Leaf = 0
2 height (Branch l r) = 1 + max (height l) (height r)

We can implement a constraint for balanced trees as shown here:
1 balanced Leaf = True
2 balanced (Branch l r)
3 | balanced l && balanced r &&
4 abs (height r - height l) <= 1 = True

Similar to the previous example, a function to select balanced binary trees can be

written as follows:

bbTree tree | balanced tree = tree

While techniques exist to reduce the computational complexity of object genera-

tion in constraint programming, these aspects have not been addressed in the previous

examples, as their discussion falls outside the scope of this work.
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2.3.4 Non-Linear and Function Patterns

As discussed in Sect. 2.1.3, Curry patterns may involve function applications, re-

peated variables, or both. We shall now take a deeper look into the meaning of and

mechanisms behind these features. To begin, we recall the definition of last:

last (_++[x]) = x

This can be understood as a recipe for the compiler, instructing it how to build

patterns dynamically. This allows the rule to be adapted at runtime to fit any given

list. For example, the table below shows the computed patterns and corresponding

substitutions that arise in a few simple cases:

Expression Computed Pattern Subst.

last [0] last [x] x 7→ 0
last [0,1] last [_,x] x 7→ 1
last [0,1,2] last [_,_,x] x 7→ 2

Repeated variables can be implemented via constraints. Consider the following

constraint function that is satisfied when two lists have equal head elements:

sameHead (a:_) (a:_) = True

For this rule to match, a consistent substitution must be found. A simple way to do

this is through the introduction of a constraint. The idea is to allow the occurrences

of the repeated variable to vary independently but make the rule conditional on them

being equal. The following possible implementation is suggestive of this approach:
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sameHead' (a0:_) (a1:_) = a0 =:= a1

Repeated pattern variables can always be eliminated in this way, and the constraints

created can appear in rule conditions or by prepending an application of &> to the

RHS.

A functional pattern can expand to multiple matching rules. In that case the usual

semantics apply, meaning that the dynamically generated rules overlap and lead to a

superposition. To illustrate this, recall the definition of find:

find k (_++(k,v)++_) = v

Now consider the following expression to find digits that begin with the letter t:

find 't' [('z',0), ('o',1), ('t',2), ('t',3), ('f',4)]

The rules generated for this expression are like those shown here:

find k [(k',v), _, _, _, _] | k =:= k' = v
find k [_, (k',v), _, _, _] | k =:= k' = v
find k [_, _, (k',v), _, _] | k =:= k' = v
find k [_, _, _, (k',v), _] | k =:= k' = v
find k [_, _, _, _, (k',v)] | k =:= k' = v

This behaves like any other rule set: here, the third and fourth rules match so the

expression above corresponds to |2〉+ |3〉.
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2.3.5 Set Functions

The application of a function induces a value set (see 2.2.3). The set corresponding

to a function in Haskell is expected to contain exactly one element, but in Curry

it can take any size. For failures, this set is empty. For deterministic functions

(provided they succeed), it contains exactly one value. The value set corresponding

to a function with non-determinism may contain zero, one, or more values. Set

functions [58] provide a way to collect these values and work with them as a singular

entity. By encapsulating the non-determinism of a function, one can test for the

success of computations, find minimum or maximum values within a solution space,

or compute the intersection or union among values of disjoint computations, among

other things. Set functions therefore find practical use in applications that need to

test whether any solution exists or that seek to compare solutions. Set functions have

also been used to define extensions to Curry such as default rules [59]. The Sprite

Curry system developed later provides an implementation of set functions, so we shell

discuss them in some detail here.

Let fS denote the set function of function f. A Curry implementation might

supply higher-order functions3 for obtaining fS from f. If f produces a result of type

r, then fS is a function that accepts the same number and type of arguments as f

3Note that these may act as compiler directives rather than as ordinary functions.
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and produces a set over elements of type r. An application of fS evaluates to a set

containing the values that the corresponding application of f would produce.

To illustrate, recall binDigit (see Sect. 2.2.1) and consider the corresponding set

function binDigitS. This evaluates to a set containing 0 and 1. For simplicity, we

use surrounding curly braces to represent sets in Curry, and so we write the result of

binDigitS as {0,1} despite the fact that is not a valid syntactic construct in Curry4.

In practice, the most popular Curry implementations supply an abstract interface to

value sets that allows them to be computed lazily, meaning there is no proper set

type exposed to programmers but rather several functions that operate on objects of

this abstract type. This approach can be used to, e.g., efficiently test whether a value

set is empty or to encapsulate non-terminating computations.

As discussed in [60] and summarized in [61], an important subtlety lies in the han-

dling of any non-determinism present in the arguments to a set function. A semantic

rule called strong encapsulation, similar to Prolog’s findall, calls for encapsulating

all non-determinism encountered during the evaluation of a set function. That ap-

proach suffers from a serious shortcoming, which is that the computed sets depend

on incidental aspects of the evaluation strategy. We shall therefore rely on another

principle called weak encapsulation that says a set function fS encapsulates only the

non-determinism arising from f itself, and not from the arguments it is applied to.

4Curly braces have a reserved meaning related to object layout that we will not discuss.
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To see this distinction, consider the application of incrS to binDigit, where

incr is defined as incr i = i + 1. Since incr is deterministic there is nothing

for incrS to capture, so the sets it produces always contain exactly one value. The

non-determinism in this example comes from the argument, binDigit, which is not

captured by incrS. Accordingly, there are two values: {1} and {2}. Now, in-

stead consider the application of adjS to binDigit, where adj i = (i-1) ? (i+1).

This involves non-determinism both in the function and its argument. The non-

determinism of adj is encapsulated, giving rise to sets containing two elements. The

non-determinism of binDigit is not encapsulated, so this expression produces two

values: {-1,1} when binDigit evaluates to 0 and {0,2} when it evaluates to 1.

When several non-deterministic arguments are involved, resolving them results

in a combinatorial explosion. For example, consider a binary “butterfly” function

defined by the following rule: bfly x y = (x+y) ? (x-y) In the evaluation of the

expression bflyS binDigit binDigit, the non-determinism of the arguments leads

to four values:

bflyS 0 0 →∗ {0} bflyS 0 1 →∗ {1,-1}

bflyS 1 0 →∗ {1} bflyS 1 1 →∗ {2,0}

Note that, despite what the above might suggest, set function arguments are evaluated

lazily.
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These results can be derived in value space. Recall that carrying out a compu-

tation in program space is equivalent to finding the basis of the corresponding value

state (see Sect. 2.2.2). Define basis (|ψ〉) to be the union of the basis of state |ψ〉 with

{|⊥〉}, where |⊥〉 is the failure state. The reason for including failure will be made

clear shortly. With this, the values that arise from applying a unary set function fS

to an argument with value state |ψ〉 can be defined as follows:

fS |ψ〉 =
∑

|ψ̂ 〉∈basis(|ψ〉)

basis
(
f |ψ̂ 〉

)
(2.1)

Here, each application of basis produces a value set encapsulating the non-determinism

of one application of f to a deterministic argument. The overall result is a superpo-

sition over value sets in which each term arises from |ψ̂ 〉 taking a pure state from the

basis of the argument or failure. We define an empty value set to have the value |⊥〉.

Using this, the values of adjS binDigit can be derived as shown below:

adjS (|0〉+ |1〉) = basis (adj |0〉) + basis (adj |1〉) + basis (adj |⊥〉)

= basis (|-1〉+ |1〉) + basis (|0〉+ |2〉) + |⊥〉

= |{-1,1}〉 + |{0,2}〉

To see why failure is included in the definition of basis, consider the following

constant function: const1 _ = 1. Since the argument is ignored, it need not have

any value for an evaluation of const1 to succeed. For example, const1 (head [])
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evaluates to 1. To avoid missing values that arise in cases such as this, it is necessary

to include a term corresponding to failure in the summation.

This inclusion does not lead to spurious values. We so far have not provided

the formal definitions required to prove this rigorously, particularly the concept of

need (see Def. 3.4.1). We can present an informal argument by using “need” in an

informal, intuitive way. We say the parameter of const1 is not needed in the sense

that a value is obtained even if the supplied argument is a failure. A parameter is not

needed when it does not participate in pattern matching and is not used meaningfully

in the RHS (including as part of the replacement), in which case a lazy evaluation

strategy would have no reason to inspect it. With reference to Eq. 2.1, one way a

spurious value could arise would be if the basis of |ψ〉 were empty and f |⊥〉 produced

a value not implied by |ψ〉. But f |⊥〉 cannot produce a value unless the parameter

to f is unneeded because inspecting |⊥〉 would result in failure. This is precisely

the sort of value we wish to include, e.g., as in const1S (head []). The second

way a spurious value could arise would be if the basis, B, of the argument |ψ〉 were

non-empty and f |⊥〉 produced a value different from f |ψ̂〉 for some |ψ̂〉 ∈ B. As just

argued, f |⊥〉 cannot produce any value if the parameter is needed. Alternatively,

if the parameter is not needed, then f returns the same value for every argument

because to produce a different value would require inspecting the argument to make

a distinction. Therefore the inclusion of failure does not produce a distinct element

in the value set.
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Extending Eq. 2.1 to functions that accept more arguments is straightforward, as

each additional argument simply adds another level to the summation:

fS |ψ1〉 . . . |ψn〉 =
∑

|ψ̂1〉∈basis(|ψ1〉)

. . .
∑

|ψ̂n〉∈basis(|ψn〉)

basis
(
f |ψ̂1〉 . . . |ψ̂n〉

)
(2.2)

The values of bflyS binDigit binDigit can be derived as follows according to this

equation:

bflyS (|0〉+ |1〉) (|0〉+ |1〉)

= basis (bfly |0〉 |0〉) + basis (bfly |0〉 |1〉) + basis (bfly |0〉 |⊥〉)

basis (bfly |1〉 |0〉) + basis (bfly |1〉 |1〉) + basis (bfly |1〉 |⊥〉)

basis (bfly |⊥〉 |0〉) + basis (bfly |⊥〉 |1〉) + basis (bfly |⊥〉 |⊥〉)

= basis (|0〉) + basis (|1〉+ |-1〉) + basis (|1〉) + basis (|2〉+ |0〉)

= |{0}〉 + |{1,-1}〉 + |{1}〉 + |{2,0}〉

It is possible to define infinite value sets. Consider the following function:

greater n = n ? greater (n+1)

Although the value of, say, greaterS 0 is well defined, it is infinite; hence it cannot

be computed in finite time. This is similar to the way that infinite data structures

(e.g., see infList on Page 38) can be defined but never fully realized. Like some

other Curry systems, Sprite provides an abstract set type that allows programs to

interact lazily with value sets. Like other computations set functionss represent a

possibly infinite lazy computation.
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Now that we have a firm understanding of Curry, we can move on to discussing our

evaluation strategy. In the next chapter, we will introduce the initial version of the

Fair Scheme, which compiles Curry into a well-defined class of rewrite systems that

is suitable for building an efficient implementation. We will formally define this class

and our compilation scheme, allowing us to rigorously define and prove important

properties of our strategy.
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The Fair Scheme

Note: The Fair Scheme was first described by this author with Antoy [62]. This

chapter parallels that work, though here the notation has been simplified, the proofs

revised, and the discussion extended.

In this chapter we begin the work of implementing a Curry system by develop-

ing the Fair Scheme (FS), an evaluation strategy for functional logic programs. The

FS defines a suitable representation of programs and outlines a series of transfor-

mations that can be used to compute their values. The initial version developed in

this chapter eagerly replaces free variables with choice-based expressions and sub-

sequently performs rewrite and pull-tab steps. Computations of this form produce

only ground values in which all logic variables are reduced to constructor expressions

(e.g., as shown in Figure 1.3, left). Although lacking a unification mechanism, this

version serves as an important first step in developing a computational mechanism

that can be proven correct and optimal. In the next chapter, we will develop three

extensions to the FS that, among other things, allow for lazy variable replacement,
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which admits free variables into values. Our focus at this stage is on developing a

computational mechanism that is simpler and more suitable for proving the properties

we are interested in, rather than on optimizing the exact form that values take.

An evaluation strategy dictates the flow of control in compiled programs. This

determines crucial properties including their performance, resource usage, and cor-

rectness. The branching nature of functional-logic computations raises subtle issues

that make correctness challenging to guarantee. In particular, when a computation

on a sequential computer forks, one branch that leads to a value may “wait in line”

behind another that never terminates. If the productive branch is never afforded an

opportunity to proceed, then its value will never be produced. The FS prescribes

step-by-step transformations in program space that avoid this and other correctness

problems. Additionally, the FS is optimal in the sense that every step it takes is

unavoidable (in a precise technical sense that we shall define).

Several well-known evaluation strategies for functional and logic languages exist.

The spineless, tagless G-machine (STG) [31], for instance, serves as the basis of

the Glasgow Haskell Compiler (GHC), [36], a popular implementation of Haskell.

Variations on the principle of resolution likewise undergird implementations of Prolog

[63, 64]. These strategies can and have been used as the basis for functional logic

languages, including Curry. Two popular Curry systems, KiCS2 [65] and PAKCS [66],

transform Curry programs into functional and logic programs, respectively. Compiled

programs are evaluated by Haskell or Prolog using the strategies those targets provide.
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This approach is convenient for implementers since it avoids having to develop an

entirely new evaluation strategy, compiler, or runtime system. A major drawback,

though, is that it requires features of either the functional or logic domain to be

simulated at a high level in the other. For instance, when PAKCS maps a Curry

program to Prolog, the deterministic portions of the program must be evaluated using

the rules of resolution. Conversely, when KiCS2 maps a Curry program to Haskell, the

non-deterministic aspects of the program must be simulated in a functional context.

Experience shows that the results are suboptimal. For instance, PAKCS typically

evaluates deterministic Curry programs (which are simply Haskell programs) much

slower than does GHC. And, conversely, KiCS2 can perform relatively poorly on many

non-deterministic programs as compared to PAKCS [47, 67, 68]. These results are

confirmed by our measurements (see Chapter 7).

In addition to affecting efficiency, giving up control over the evaluation strategy

impacts correctness. A well-behaved functional or logic strategy may only be ap-

proximately correct in the joint functional-logic domain, as the following program

illustrates:

1 loop = loop
2 goal = loop ? True

Function loop is an infinite loop; hence, it has no values. The expression goal has one

value, True, but neither KiCS2 nor PAKCS reports it. Both implementations exhibit

a left bias in that they start by evaluating the left alternative of the choice, loop.
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Neither has a mechanism to give the right-hand side of the choice “fair” attention, so

neither can proceed when the evaluation of loop goes on forever. Since termination

is undecidable, one cannot expect a runtime system to reliably detect loops in order

to take corrective action. But an implementation tailored to the needs of functional

logic programs can avoid problems such as this through the careful design of a suitable

evaluation strategy.

These issues suggest that a custom evaluation strategy for functional logic pro-

grams may yield better results. By incorporating directly into the evaluation strat-

egy everything needed to implement Curry — including choices, free variables, con-

straints, set functions, and failures — one decouples it from whatever target domain

might otherwise be used for its implementation, thereby avoiding the peculiarities of

that domain. The hope is that, by committing to the substantial work of defining this

strategy and implementing a new compiler and runtime system, we will be rewarded

with an improved Curry system.

After introducing the notation and other preliminaries in Sect. 3.1, we discuss in

Sect. 3.2 the approach used by the FS to implement non-determinism. In Sect. 3.3, we

give a precise definition of the FS, and in Sect. 3.4 we state and prove its correctness

and optimality.
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3.1 Background

The FS is built on the theory of constructor-based graph rewrite systems [69–72].

This work follows the standard notations with additions specific to functional logic

programming following Braßel [47] and Antoy et al. [52, 62, 73]. The notation is

simplified where extra details not needed for this work can be discarded. In this

framework, expressions are represented as graphs, and computations are performed

by rule-based graph transformations.

The use of term graphs instead of terms is motivated by efficiency considera-

tions. The key difference between these two representations is that subexpressions in

term graphs can be shared, as discussed in Sect. 2.2.5, whereas those in term rewrit-

ing systems cannot (since expressions in term rewriting systems are trees). Sharing

subexpressions in term graphs allows computational steps to be shared directly, which

avoids repeating arbitrary amounts of computation and also saves space.

The benefits to operational efficiency can be substantial. To illustrate this point,

consider the following invocation of the horner' function (defined on Page 34):

horner' coeffs (a+b)

If the rules of horner were applied before reducing the term a+b in a term rewriting

system, this would result in n − 1 copies of addition, where n is the number of

coefficients given. Each of these additions would be evaluated separately, even though

they all produce identical results. The use of term graphs ensures that the result
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of this addition is shared, allowing it to be evaluated at most once and avoiding

unnecessary computation. The use of term graphs, therefore, is crucial to the ability

of the FS to prevent redundant steps, which is an important aspect of the optimality

property that we will prove in Sect. 3.4.3.

3.1.1 Constructor-Based Rewriting Systems

We follow the definition of constructor-based rewriting systems established by Echa-

hed and Janodet [71]. We recall certain essential aspects needed for this work. A

constructor-based signature, Σ = C ∪ F, is a union of constructor and function sym-

bols. Symbols are used to label graph nodes, and a node has as many successors as

the arity of the label. Symbols with arity zero, one, and two are referred to as nullary,

unary, and binary, respectively. Constructors are grouped into families called types

in which the constructors of each type are sorted in an arbitrary but fixed order. Let

X be an infinite set of nullary variable symbols such that Σ∩X = ∅ for all signatures.

An expression is a finite, acyclic, single-rooted graph that satisfies the following

conditions1.

1. Every node is labeled by a symbol taken from Σ ∪ X;

2. The outgoing edges emanating from each node are ordered; and

3. The out-degree of each node equals the arity of its label.

1This definition is greatly simplified. See [71] or [52, Def. 1] for a complete definition.
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An expression that contains no function symbols is called a constructor expression

and one that contains no variables is said to be ground. Since nodes and expres-

sions exist in a bijection mapping each expression to its root, we use those terms

interchangeably. We prefer to speak of expressions in most cases, reserving nodes for

when the discussion centers on graphs. Only well-typed expressions are considered.

In a compiler system built on the FS, a front-end component performs type-checking

and rejects ill-typed programs.

We write e|s to indicate the subexpression of e at node s. Note that this implies

e|s = s for all suitable e and s. Every expression is trivially a subexpression of itself.

We may also say that e is a context in which s appears. The ith successor of e is

written ei. We shall assume this is well-formed wherever it appears: i.e., that i is less

than the arity of the label of e. An expression is said to be linear when the subgraph

it roots is a tree. Given expressions e|s and t, the replacement of s by t is written

e[s← t]. The next example demonstrates.

Example 3.1.1 (Replacement). Let expression e be defined as shown below:

x

f g

(,)

e
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Let f and x be the subexpressions of e labeled f and x, respectively, let h = h, and

let u = f h. Two replacements in e are shown below:

h

f g

(,)

h x

f g

(,)

e[x← h] e[f ← u]

– end example.

A rewrite rule, l→ r, consists of a pattern and an expression in which every vari-

able (reference) that appears in the right-hand side also appears (i.e., is introduced)

in the left-hand side. A pattern is a linear expression whose root is labeled by a

function symbol and that otherwise contains only constructor and variable symbols.

Example 3.1.2. Function head (see Sect. 2.3.2) can be represented by the rewrite

rule head (a:_) → a. The pattern is rooted by a node labeled with the function

symbol head and otherwise contains only nodes labeled by a constructor symbol (:)

or variable (a and _). Variable a, referenced in the replacement, is introduced in the

pattern. – end example.

A substitution, σ, is a well-typed mapping from variables to expressions. We write

eσ to denote the application of σ to an expression e, which replaces in e each variable

in the domain of σ with the corresponding expression from σ. For example, taking

e to be the expression from Exam. 3.1.1 and using the substitution σ = {x 7→ h},
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the application eσ is equivalent to the replacement e[x ← h], shown in the example.

A substitution is complete for an expression if it replaces every variable in that ex-

pression. An instantiation of a rewrite rule, l → r, is a pair (lσ, rσ), where σ is a

complete substitution for the left-hand side. Two instances of the rule defining head

are (head [1], 1) and (head [True, False], True). The rule is applied in e by

choosing a (function-rooted) subexpression, e|f ; finding an instantiation of the rule

such that f = lσ; and then performing the replacement e[f ← rσ].

A rewrite system, R = 〈Σ,→ρ〉, consists of a signature and a rewrite relation,

→ρ, defined over a set of rewrite rules, ρ, conforming to that signature. The rewrite

relation is formed as follows. A rewrite rule induces a binary rewrite relation over all

its instantiations. The collection of all pairs over all instances constitutes the rewrite

relation for that rule, which may be finite or infinite. We write →ρ to represent the

union of all such relations over every rule in ρ, or simply → when the rule set is

implied.

In the context of a rewrite system, the application of a rewrite rule is called a

rewrite step. Given an expression e, a reducible expression or redex of e with respect

to R is a subexpression of e at which a rewrite step of R can be performed. A finite

or infinite sequence of rewrite steps, e0 → e1 → ..., is called a rewriting computation

or derivation. Each ei is said to be a state of the computation. A normal form is

an expression containing no redexes. A value is a normal form that is also a ground

constructor expression. The transitive closure of the rewrite relation (→∗) can be
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used to write the derivation of a value, as in e→∗ v.

Example 3.1.3 (Rewrite System). Consider the following Curry definitions:

1 data Bool = False | True
2 id x = x
3 not True = False
4 not False = True

This defines constructor symbols C = {False, True}, function symbols F = {id, not},

and signature Σ = C ∪ F. The set of rewrite rules can be written as follows:

ρ = {(id x→ x), (not True→ False), (not False→ True)}

This induces the rewrite relation partially shown below2:

(→ρ) ⊃ {(id True, True), (id False, False),

(not True, False), (not False, True)}

The rewrite system defined by this program is R = 〈Σ,→ρ〉.

Given the expression e = not (id True), the rewrite rule id x → x can be

applied at e|s = id True with substitution σ = {x 7→ True}. The substituted RHS

is xσ = True and the result is given by e[s← True] = not True. Continuing in this

way, we derive a value by the computation e→∗ False. – end example.

2Note that there are infinitely-many more instances of id. One of these, for instance, is
(id (not True), not True).
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3.1.2 LOIS Systems

The class of rewrite systems accepted by the FS is crucial to its suitability for use in

a Curry compiler, its relative simplicity, and its provable correctness and efficiency.

Curry provides a variety of high-level features that ease programming. Many of these

do not appear in the above definition of rewrite systems. For instance, functional

patterns (see Sect. 2.3.4) do not meet the above definition of patterns. Similarly,

other features such as list comprehensions, partial applications, lambda functions,

and modules are conveniences for Curry programmers but obstacles for a compiler

writer. Extending our notion of a rewrite system to accommodate every such feature

would represent a significant and unnecessary complication. Instead, the FS is based

on a relatively simple class of rewrite systems that Curry programs can be mapped

into called Limited Overlapping Inductively Sequential (LOIS). This class, though

simple, is powerful enough to accommodate all of the programs we are interested in.

Studies finding LOIS systems suitable for functional logic programming [45, 74]

motivate our decision to use them as a core language for Curry. We recall the following

results, which were previously summarized in the publication of the FS [62] and are

reproduced verbatim here:

1. Any LOIS system admits a complete, sound and optimal evaluation strategy

[43];
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2. Any constructor-based conditional rewrite system is semantically equivalent to

a LOIS system [75];

3. Any narrowing computation in a LOIS system is semantically equivalent to a

rewriting computation in another similar LOIS system [41]; and

4. In a LOIS system, the order of execution of disjoint steps of an expression does

not affect the values of the expression [43, 58].

LOIS systems are in other words general enough to perform any computation needed

for Curry [75] and powerful enough to do so via simple rewriting [41, 76] without per-

forming unnecessary steps [43] nor depending on the order of evaluation [43, Lemma

20].

The mapping to LOIS takes place via a series of transformations that includes

lambda lifting [77], elimination of partial applications and high-order functions [78],

removal of overlapping rules and rule conditions [75], and replacement of free variables

with generator functions [41, 76]. This approach greatly simplifies the implementa-

tion of a Curry compiler by reducing the number of features the compiler must imple-

ment and cleanly separating source programs into deterministic and non-deterministic

parts. The crucial aspect of LOIS, in the latter regard, is the way in which it isolates

non-determinism.

All non-determinism in a LOIS system is represented as applications of the choice

operator (see Sect. 2.3.1), whose definition we recall here:
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1 x ? _ = x
2 _ ? y = y

Overlap is “limited” in the sense that the only overlapping rules allowed are these

two. Part of the transformation from Curry into LOIS involves reformulating the

non-determinism of a source program as choices. This greatly simplifies one of the

most challenging aspects of a Curry compiler — namely, implementing the various

forms of non-determinism — by reducing it to a single representation in the core

language that can be dealt with uniformly.

Every other operation in a LOIS system is characterized by a definitional tree

[79], which provides a hierarchical organization of its rewrite rules. Definitional trees

guide pattern-matching and rewrite steps and, in doing so, completely characterize

the deterministic parts of a Curry program. The following definition recalls this

concept:

Definition 3.1.4 (Definitional Tree). T is a partial definitional tree (pdt) if and

only if one of the following holds:
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T = branch(π, o,T), where π is a pattern; o is a subexpression of π

labeled by a variable of type T having n constructors; and T is a

sequence of n pdts such that the ith pdt has pattern π[o ← ci(x)]

for fresh variables x, where ci is the ith constructor of T ;

T = rule(π, l→ r), where π is a pattern and l→ r is a rewrite rule such

that l = π modulo a renaming of variables and nodes; or

T = exempt(π), where π is a pattern.

T is a definitional tree if and only if it is a pdt with f x as the pattern argument such

that no T of any branch in T consists entirely of exempt nodes. – end definition.

Example 3.1.5. A definitional tree for zip (see Sect. 2.3.1) is shown below:

zip x y

zip (a:as) y

zip (a:as) (b:bs)
→ (a,b) : zip as bs

zip (a:as) []
→ []

zip [] y
→ []

We see in Def. 3.1.4 that every pdt node contains a pattern, so we label every node

above with the pattern of the pdt it represents. For branches, the inductive position

is indicated by a box and the elements of T are its children. When a node occurs at

an inductive position, it is referred to as an inductive node. For leafs, the right-hand
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side is shown below the pattern. Left-hand sides are not shown because the patterns

were chosen so that π = l. The root is a branch with pattern π = zip x y and

inductive position x. Of its children, the first (left) child is a rule node with pattern

zip [] y and rewrite rule zip [] y→ []. – end example.

A function is called inductively sequential if there exists a definitional tree en-

compassing all and only its defining rules [79]. Aside from the choice operator, every

function in a LOIS system is inductively sequential. To concisely distinguish them

from choices, we shall refer to the inductively sequential functions of a source pro-

gram as its operations, reserving the more general term “function” for operations and

choices taken together. Just as all non-determinism in a LOIS system is embod-

ied by the choice operator, all its deterministic meaning is expressed as inductively

sequential operations. This leads us to the following definition of LOIS systems:

Definition 3.1.6 (LOIS System). A LOIS system is a constructor-based graph

rewriting system in which every function in the signature is either inductively se-

quential or is the choice operator. – end definition.

3.2 Non-Determinism Strategy

A computation by the FS involves two types of steps. The first is the rewrite step,

which was already discussed. This step applies the deterministic rules of inductively

sequential operations via alternating phases of pattern matching and replacement
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that follow their definitional trees. The second type of step, called a pull-tab, is used

to process choices, whose overlapping rules are never applied. In Sect. 3.2.1, we define

the pull-tab step and extend our concept of computation to accommodate it. Then,

in Sect. 3.2.2 we discuss the issue of making consistent choices, which arises as a

consequence of pull-tabbing. Finally, in Sect. 3.2.3 we discuss the handling of free

variables.

3.2.1 Pull-Tabbing

Choices are the universal, structural representation of non-determinism in the FS.

Pull-tab steps are a manifestation of the additive (see Sect. 2.2.4) property applied

to that representation. Pull-tabbing allows computations to proceed in the presence

of choices without ever applying overlapping rules3. A choice can prevent rewriting

when it occurs at an inductive position relative to a node labeled by an inductively

sequential function. Pull-tabbing is a value-preserving transformation that moves

such choices out of the way so that rewriting may proceed. The effect is to transform

a function applied to a superposition into a superposition of function applications.

The intuition behind this name is that the step behaves like pulling on the tab of a

zipper, as applying a pull-tab step “unzips” an expression.

A simple example will help demonstrate. A pull-tab transformation (Ξ) for the

expression not (False ? True) is shown below:

3Recall from Sect. 2.2.4 that applying an overlapping rule alters the corresponding value state.
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False True

?

not

Ξ

False True

not not

?

Prior to this (left), no rule of not can match because its argument contains a function

symbol (the choice operator). The replacement (right) contains two redexes. On the

left side, the node labeled not is called the target and the node labeled ? is called

the source. Pull-tabbing exchanges the positions of these and, in doing so, creates a

node (compare the number of nodes before and after). To assist with our definition

of pull-tabbing we define the shallow copy-replace relation shown in Def. 3.2.1.

Definition 3.2.1 (Shallow Copy-Replace). Let e be an expression labeled by a

symbol f with arity n. Let path p be a list of integers with construction (i : j) and

empty list [ ]. The shallow copy of e with replacement r at p is given by copyr(e, p, r),

where copyr is defined as:

copyr(e, [ ], r) = r

copyr(e, (i : j), r) = f e1 . . . ei−1 copyr(ei, j, r) ei+1 . . . en

– end definition.

The pull-tab transformation generates a binary relation over the expressions of the

signature of a source program. In this way it is similar to a rewrite step, though it

serves a different purpose. The previous example shows one instance, and the set of all

93



The Fair Scheme

instances forms the relation. In the context of a rewrite system, this relation defines

pull-tab steps. This is similar to the way that the rules of a rewrite system induce a

rewrite relation (see Page 85). For an expression e with a suitable subexpression, u,

such that u Ξ v is an instance of the pull-tab transformation, then a pull-tab step at

e|u is defined as e[u← v]. The next definition makes this precise.

Definition 3.2.2 (Pull-Tab Step). Let e be an expression of a LOIS system with

subexpression target t, such that a successor of t is a choice-rooted source t|s = l ? r.

A pull-tab step at e|t is described by e Ξ e[t← L ? R ] where the left- and right-side

replacements are given by L = copyr(t, s, l) and R = copyr(t, s, r), respectively. –

end definition.

Extending our definition of computation, we write Ξ−→ to represent the application

of either a pull-tab or rewrite step. A pull-tabbing computation (or derivation),

written e0 Ξ−→∗ en, is a sequence of any number of rewrite and pull-tab steps.

Example 3.2.3. Consider the expression id (not (False ? True)) in which a pull-

tab step can be found with context rooted by id, target by not, and source by ?. The

left-side replacement, L = not False, is found by copying the target and replacing its

argument with the left alternative of the choice, False. The right-side replacement is

computed similarly. Applying the pull-tab step yields id((not False) ? (not True)).

– end example.
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We note in passing that the definition of a path given in Def. 3.2.1 is borrowed

from term rewriting. The customary definition for term graphs, due to Echahed and

Janodet [71], is not suitable for defining the pull-tab transformation. A path by their

definition is a sequence of nodes, s1, . . . sn, such that for all i = 1, . . . , n− 1, si+1 is a

successor of si. That definition is suitable for rewriting. For instance, in a rewriting

computation of (x, x) where x = 0 ? 1, we might be interested in a rewrite step

that produces (0, 0). The position of node x is not needed to describe that step.

A pull-tabbing transformation, on the other hand, involves intermediate expressions

such as (0, x) and (1, x) that are most easily described using indices.

In the preceding example function id was included in order to demonstrate the

role the context plays as a place were replacement occurs. When the context is not

important, we may omit it with the understanding that some context always exists

for a step to occur. One may use this context-free notation to more simply write, for

instance, [a ? b, a] Ξ−→ [a, a] ? [b, a]. Note that this twice copies a cons

node but does not copy anything else. In particular, none of a, b, or the list tail [a]

is duplicated by this step.

In Def. 3.2.2, the path from the root of the context to the target is not specified.

This is intentional because the path is irrelevant — any one will do. When a context

contains multiple occurrences of the target of a pull-tab step, that step is shared.

Consider the following expression in which the target of a pull-tab appears twice:

let x=not (False ? True) in (x, x). A pull-tab step in this expression is shown
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below:

False True

?

not

(,)

Ξ

False True

not not

?

(,)

Ensuring this is done correctly contributes to the efficiency of an implementation of

the FS. In contrast, when a choice has multiple predecessors, pull-tabbing duplicates

the choice. This leads to a consistency issue that is the topic of the next section.

3.2.2 Consistency

To understand the hazard that comes from pull-tab steps duplicating choices, consider

the following expression:

let d = (0 ? 1) in [d, d]

Since d is shared, this expression contains only one choice. This can be seen more

clearly in its graphical representation:

0

?

1

:

:

[]
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Accordingly, the only values are [0, 0] and [1, 1]. Now, study the following pull-

tabbing derivation (in which the source of each pull-tab is underlined):

[0 ? 1, 0 ? 1] Ξ−→ [0, 0 ? 1] ? [1, 0 ? 1]
Ξ−→ [0, 0] ? [0, 1] ? [1, 0 ? 1]
Ξ−→ [0, 0] ? [0, 1] ? [1, 0] ? [1, 1]

The result of this contains three choice symbols and has a value set different from the

original expression.

The above derivation leads to the spurious values [0, 1] and [1, 0] and is

therefore unsound. This aspect of pull-tabbing has been noted previously [47, 52].

If, instead of pull-tabbing as above, we were to apply the rewrite rules of a choice

— that is, arbitrarily replace the choice with one or the other of its subexpressions

— the structure of this expression would ensure that that selection was reflected

everywhere. When a pull-tab step duplicates a choice, however, the original and the

copy can assume different values. This leads to the spurious values seen above. We

say these are the result of an inconsistent handling of the choices, since they arise

only when one mixes the left and right alternatives of the same choice. Fortunately,

a simple countermeasure exists.

We shall annotate each choice with information called a choice identifier (cid) that

uniquely identifies it. Identifiers are used to correlate all copies of the same choice,

ensuring they all choose the same alternative. When a fresh choice is placed into

service, it is labeled with a fresh identifier, and subsequent pull-tab steps preserve
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the identifier when duplicating choices. With this in place, to ensure consistency one

needs only to discard values that are reached via an inconsistent traversal of choices:

i.e., ones that combine the left and right alternatives of the same choice. This is

formalized in the next definition (cf. [52, Def. 4]).

Definition 3.2.4 (Consistent Computation). Let C be a rewriting computation

in a LOIS system. We say a step in C is a choice step if the redex it replaces is rooted

by the choice symbol. Let ρl and ρr designate the rules of choice that select the left

and right alternatives, respectively. C is a consistent computation iff for every choice

?i reduced by a step in C there exists an α ∈ {l,r} such that every choice step in C

that reduces a choice with cid i applies rule ρα. – end definition.

To illustrate, consider the following representation of the final expression derived

above, now with cids included, and reformatted to more clearly show its structure.

?i

?i

[1, 1][1, 0]

?i

[0, 1][0, 0]

All three choice nodes share one identifier since they originated from the same choice.

Every traversal from root to leaf crosses two choices with the same annotation. Hence,

the consistent values are those reachable by always following the left branches or
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always following the right branches. These are [0, 0] and [1, 1], the intended

values. The spurious values can only be reached via inconsistent traversals. For

instance, [0, 1] can only be reached by first taking the left branch of choice i at the

root and then the right branch of choice i one rank down.

3.2.3 Elimination of Free Variables

The only computational steps we have defined are the rewrite and pull-tab, and our

notion of value does not admit variables. How, then, should the FS approach the

following expression?

(x::Bool) where x free

This is a normal form but not a value, and it contains no choices that might let

us execute a pull-tab step. There is seemingly no way for the FS to make further

progress, yet this expression has the values False and True. Similar problems arise

whenever free variables appear. The FS deals with free variables by replacing them

with generator functions, which were introduced in Sect. 2.3.1. The next definition

makes this concrete.

Definition 3.2.5 (Generator Function). A generator function for type T is a non-

deterministic operation of arity zero that produces the superposition between all and

only the values of T . – end definition.
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A generator for the Bool type, called boolGen, was shown on Page 61. To compute

the above expression, a Curry compiler based on the FS replaces x with boolGen at

compile time. A pull-tabbing computation then obtains the correct values.

This replacement of free variables is justified by the results of Dios Castro and

López-Fraguas [76], who show it does not change the values derived via rewriting,

and Antoy and Hanus [41], who show that overlapping rules and free variables can

each be expressed solely in terms of the other. These results are crucial to our

approach, since they guarantee the transformation from Curry to LOIS is possible

for any source program. Taken together, they show that any non-determinism arising

from overlapping rules in the source program can be expressed as free variables and

that all free variables can be eliminated by replacing them with generator functions

utilizing choices. In this way, the non-determinism of any Curry program can be

reduced solely to applications of the choice operator.

A drawback is that variable replacement can make certain finite computations

infinite. For example, the expression (x:[Bool]) where x free produces a super-

position over all Boolean lists. In a computational model that admits variables in

values, all values can be written simply as x. With the FS, however, this becomes

an infinite computation. While this does not impact correctness — for every pure

state |v〉 in the original expression, a computation by the FS will eventually produce a

value corresponding to |v〉— it raises an obvious practical concern. Free variables will

be readmitted in the next chapter to a variation of the FS that performs narrowing
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computations.

3.3 Definition of the Fair Scheme

We are now ready to define the FS. The starting point is a LOIS system S called the

source program. Except for the choice operator, each function is represented by its

definitional tree. The program signature is extended to Σ∗ = Σ ∪ {⊥}, where ⊥ is a

reserved symbol representing failure, and this set of symbols is used to label nodes.

The failure symbol does not appear in expressions of the source program but rather

is introduced during evaluation to denote failed computations. A source program is

compiled according to the FS into a target program consisting of the following three

abstract procedures:

D (Dispatch): Processes the disjoint branches of a computation.

N (Normalize): Normalizes an expression.

S (Step): Applies a rewrite step.

The D and N procedures are fixed for all source programs. The rules of S are

defined inductively on the definitional trees in S. Generating this latter set of rules

is one of the main activities that a Curry compiler based on the FS must perform.

The procedures are mutually recursive and ordered: each procedure may invoke itself

on one or more subexpressions or invoke a lower (in the order they are listed above)

procedure.
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A Curry program is run by applying D to an expression called the goal and

ends when D completes. This arrangement makes creating an implementation based

on the FS relatively simple. To build a Curry program, one needs only to place

implementations of the D and N procedures into a static library (along with other

elements of the runtime system), compile the program-specific rules of S, and then

link these together.

The FS computes by repeatedly applying steps until a normal form is derived. If

that normal form is a value, it is yielded to an outside observer such as a read-eval-

print loop. Since functional-logic computations are multi-valued, producing one value

does not terminate the computation. Further evaluation may yield additional values,

terminate, or diverge into a fruitless non-terminating computation. It is therefore

not practical to collect values; rather they should be acted on as they are produced.

As such, a computation by the FS is best seen as a coroutine that, given compute

resources, might eventually produce an additional value and might terminate, though

neither is guaranteed.

The FS compiler is defined in Figure 3.1. Each target procedure is defined using

pattern matching to select amongst its defining rules. The rules are ordered and

matching occurs in order. For this reason, more general rules are listed after more

specific ones. Rule N.3, for instance, which matches any expression rooted by con-

structor c, appears after rule N.2, which matches any expression rooted by c that

also has a choice-rooted successor.
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The running program is stored in a queue, represented by Ḡ, that manages a set

of live computations. We write (Ḡ; g) and (g; Ḡ) to construct and destruct queues.

The empty queue is written null. For our purpose in this chapter, which is only to

describe and prove properties of the FS, the queue elements are simply expressions.

Later, we will see that an implementation might attach additional data structures to

queue elements.

The queue contains roughly the expressions with the potential to produce values;

more precisely, it contains those expressions not known for certain to be failures.

These are called the live computations (or expressions) of the program. To evaluate

a goal, one constructs an initial state in which Ḡ contains only the goal and then

applies the D procedure. Target procedures apply rewrite and pull-tab steps to the

expression at the head of the queue. Over time, pull-tabbing causes deep-occurring

choices (if they are consequential) to migrate towards the root. Additional elements

are created by splitting live expressions when they become choice-rooted. Due to this

mechanism, distinct elements hold expressions that are not necessarily connected, but

may share subexpressions; thus, the queue in general holds the roots of a many-rooted,

disconnected graph.

Queue elements are destroyed once they become a value (after that value is yielded

to the consumer) or their computation fails. Fairness is ensured by appending ele-

ments to the end of the queue after each step. This ensures that computational

resources are distributed over the live expressions so that none is neglected forever.
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We will discuss in Chapter 5 how an implementation may modify this policy to bal-

ance operational efficiency with completeness.

D manages the queue. It removes the first element, inspects it, and then takes the

appropriate action. If it is the result of an inconsistent traversal of choices or a failure,

it is discarded (rulesD.1 andD.3, respectively). If it is a choice, then the computation

forks and the two alternatives are appended to the queue as independent tasks (rule

D.2). If it is a value, it is yielded to an outside consumer (rule D.4). Otherwise,

the N procedure is applied to carry out a finite number of steps in the hope that

one of the previous cases will match the next time this expression comes to the head

of the queue (rule D.5). After each step, the expression at the head of the queue is

rotated to the end so that another has the opportunity to proceed. If the queue is

ever exhausted, the computation ends (rule D.6).

N attempts to normalize an expression. It recursively traverses constructor ex-

pressions, either applying steps that do not depend on the rules of the source program

or invoking S to apply ones that do. N returns a Boolean value indicating whether

its argument cannot be derived to a value and may therefore be discarded. Rule N.1

returns false for constructor expressions found to contain the failure symbol. Choices

found in constructor expressions are subjected to a pull-tab step (rule N.2). Rule

N.3 recurses through constructor expressions. Function-rooted subexpressions are in

rule N.4 passed to S for program-specific processing.

S applies the rules of inductively sequential operations in S. These are generated
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from definitional trees with the help of the abstract procedure compile. A function

f of S with definitional tree Tf is compiled into one or more S rules specific to f,

which we call Sf rules, each of whose patterns begins with the symbol f. More

specific rules are generated first and prevent the application of more general ones,

when possible. If π is the pattern of a pdt in Tf, then its children include only

patterns that are instances of π. This ensures that the post-order traversal of Tf

performed by compile generates these rules in the desired order. Rule S.1 reduces

the f-rooted redexes found in the leafs of Tf. Rule S.2 reduces pattern-matching

failures to computational failures by rewriting to the failure symbol, ⊥. Rule S.3

likewise reduces to failure expressions in which a failed computation appears at an

inductive position. Rule S.4 performs a pull-tab step when a choice appears in such

positions and rule S.5 recursively invokes S when a function-rooted expression does.

Finally, rule S.6 applies when an f-rooted expression has already been reduced to

constructor-rooted form. This can occur in the presence of shared subexpressions.

For instance, if rule N.3 applies (indirectly) S to different occurrences of the same

subexpression.

3.4 Properties of the Fair Scheme

We now turn to proving the correctness and optimality of the FS. We begin with a

series of preliminary definitions and results needed to build up to that.
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3.4.1 Preliminaries

The seminal concept of needed redexes [70] frames efficiency analyses of rewriting

computations in orthogonal rewriting systems. In the context of term rewriting sys-

tems, a redex is a subexpression that can be reduced by a rewrite rule. A needed

redex is a redex that must be reduced in order to reach a normal form, or a simplified

version of an expression. Rewriting computations that only reduce needed redexes

are considered optimal because they take the minimum number of steps to reach the

normal form.

However, the concept of a needed redex is not applicable to LOIS systems, which

are not orthogonal due to the presence of the choice operator. To analyze the com-

putations dictated by the FS, the novel definition of need shown in Def. 3.4.1 was

proposed by this author and Antoy [62].

Definition 3.4.1 (Need). Let e be an expression of a LOIS system with subexpres-

sion n. The need relation is defined as follows:

1. Node n is needed for e if and only if in any derivation of e to a constructor-rooted

form, e|n is derived to a constructor-rooted form; and

2. Node n is needed for e if and only if it is needed for some maximal function-

rooted subexpression of e.
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A computation e0 → e1 → . . . is needed if and only if it reduces only needed redexes;

that is, if and only if each redex is related to the root by the need relation. – end

definition.

In contrast to the classic definition, Def. 3.4.1 is a relation between two expres-

sions. The first case defines one needed expression in terms of another. If e is needed,

then whichever of its subexpressions are perforce reduced when reducing e are needed

for it. The second case provides the basis, establishing which nodes of a goal expres-

sion are needed in the first place. Any function-rooted expression is itself needed.

In a constructor-rooted expression such as (f, g h), the maximal function-rooted

expressions — in this case, f and g — are needed. Note that h is not needed, and

that for certain definitions of these symbols, such as g _ = True, evaluating it could

represent wasted effort.

The need relation is reflexive, meaning that a function-rooted expression is needed

for itself. This applies to both redexes and non-redexes. For example, in head [],

the expression itself is considered to be needed, despite the fact it is not a redex. In

general, any expression that is not a value contains at least one needed subexpression.

The FS involves finding and reducing these needed subexpressions. It is important

to establish the need relation for more than just redexes, as shown in the example

above, because we may want to perform an action on a non-redex, such as replacing

it with the failure symbol. The next definition formalizes the concept of failure.
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Definition 3.4.2 (Failure). Let e be an expression of a LOIS system. We say e is

a failure if and only if there exists no derivation of e to a constructor-rooted form. –

end definition.

Def. 3.4.2 is more permissive than the definition of failure presented in Sect. 2.3.2.

For example, according to Def. 3.4.2, [head []] cannot be derived to a value, but is

not considered a failure. In general, detecting failure in computations is undecidable.

However, failure can occur in rewriting computations due to unsuccessful pattern

matches, which are represented by exempt nodes in definitional trees. When it does,

the FS marks the failing computation with the failure symbol, ⊥.

The definition of need given in Def. 3.4.1 is transitive [62, Lemma 1]. This allows

us to form chains from needed subexpressions to deeper needed subexpressions. Also,

rewriting steps guided by definitional trees are applied only at needed nodes. This

result is recalled in the next lemma.

Lemma 3.4.3 (Needed Inductive Positions). Let S be a source program, e a

function-rooted expression of S, and T a definitional tree of that function. If there

exists a branch node of T with pattern π and inductive node o, and a match-making

substitution σ such that πσ = e and oσ = p for some function-rooted subexpression

e|p, then p is needed for e.

Proof. See [62, Lemma 4].
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To prove the properties of the FS we shall rely on call trees. A call tree is a tree

whose branches represent calls to a target procedure and whose leafs represent steps

of the source program. For a goal expression, e, evaluated by the FS, a left-to-right

traversal of the call tree of D(e) is equivalent to the pull-tabbing computation of e

by the FS. We refer to this as the simulated computation of e. The next definitions

formalizes these concepts (cf. [62, Def. 10]).

Definition 3.4.4 (Call Tree). Let X be an invocation of D, N, or S. A call tree

rooted by X, denoted ∆X, is defined as follows:

∆X = X if X is a null action, rewrite step, or pull-tab step;
∆X = X ∆Y otherwise, if X executes a sequence of actions Y .

The notation X ∆Y indicates a branch labeled X with children ∆Y1, . . ., ∆Yn. – end

definition.

Definition 3.4.5 (Simulated Computation). Let S be a source program, D the

dispatch procedure of the corresponding target program, and e an expression of S.

The simulated computation of e in S, denoted ω(D(e)), is a left-to-right traversal of

the leafs of ∆D(e). – end definition.

Example 3.4.6 (Call Tree). Figure 3.2 shows the topmost portion of the call tree

for the expression introduced in Sect. 3.2.2. Each node is labeled with the expression

in Ḡ at the corresponding point in the computation. The graphical representation
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emphasizes the relationship between shared subexpressions following the pull-tab step

directed by N.2. Where relevant, edges are labeled with the corresponding step from

Figure 3.1. – end example.

3.4.2 Correctness

Our evaluation strategy is designed to be efficient by computing only some of the

steps possible for an expression. The way this is done is important, as it can affect

the correctness of the values produced. A correct evaluation strategy is one that

is both sound and complete. A sound strategy applied to an expression will only

produce the values that are intended for that expression, while a complete strategy

will produce all of the intended values for the expression.

These concepts are formalized in Theorem 3.4.7 which states that if a value can be

obtained from an expression by pure rewriting, then that value can also be obtained

by applying pull-tab steps to the expression and then rewriting. Additionally, if a

value can be obtained by applying pull-tab steps to an expression and then rewriting,

then that value can also be obtained by pure rewriting on the original expression. In

other words, the interposition of pull-tab steps does not drop any values or create

spurious ones.

Theorem 3.4.7 (Correctness of Pull-Tabbing). Let g be an expression of a LOIS

system. If g Ξ−→∗ g′ is a pull-tabbing computation with no choice steps, then:
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(1) for any value v such that g →∗ v is a consistent computation (see Def. 3.2.4),

there exists a value v′ such that g′ →∗ v′ is a consistent computation and v = v′

(modulo a renaming of nodes); and

(2) for any value v′ such that g′ →∗ v′ is a consistent computation, there exists a

value v such that g →∗ v is a consistent computation and v = v′ (modulo a

renaming of nodes).

Proof. See [52, Theorem 1].

Theorem 3.4.7 is useful because it shows that a correct computation need only

apply rewrite steps according to the definitional trees of inductively sequential func-

tions and apply pull-tab steps to choices without regard to the order and location of

these steps.

With this result in hand, proving the correctness of the FS is a relatively straight-

forward matter as one needs only to show that the FS performs pull-tabbing compu-

tations. This was first done in [62, Lemma 6 and Corollary 2]. We shall next prove

two preliminary results and then show the correctness of the FS.

Lemma 3.4.8 (Finiteness of ∆S). Let S be a source program, S the step procedure

of the corresponding target program, and e an expression of S. The call tree ∆S(e)

is finite.
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Proof. The proof is by inspection over the rules of S in Figure 3.1. The call tree has a

single child that is either a step of S (rules S.1-4) or the recursive application S(e|o),

where o 6= e (rule S.5). Each recursive invocation is applied to a strictly smaller

argument and the original expression is finite and acyclic (see Sect. 3.1.1).

The finiteness of ∆N can be easily proved by a similar argument (see also [62,

Corollary 1]).

Lemma 3.4.9 (Simulation). Let S be a source program, D the dispatch proce-

dure of the corresponding target program, and e an expression of S. The simulated

computation ω(D(e)) is a pull-tabbing computation of e.

Proof. By inspecting Figure 3.1 and noting that ∆N and ∆S are always finite (Lemma

3.4.8 and [62, Corollary 1]), one can readily see that the rightmost path in ∆(D(e))

contains all and only the applications of D because every invocation of D is the

final action of a rule of D (see also [62, Lemma 5]). By [62, Lemma 6], if D(L0),

D(L1), . . . is the rightmost path of ∆(D(e)), then each element of every list (Li) is

a subexpression of a state of the computation of e. By inspecting Figure 3.1, one

sees that every step in ω(D(e)) is a rewrite or pull-tab step of S, which, by the above

argument, is applied to an expression in the state of the computation of e. This

sequence of steps is therefore a pull-tabbing computation of e.
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Theorem 3.4.10 (Correctness of the Fair Scheme). Let S be a source program,

D the dispatch procedure of the corresponding target program, e an expression of S,

and ω(D(e)) = t0 Ξ−→ t1 Ξ−→ . . . the simulated computation of e. Modulo a

renaming of nodes:

(1) if e→∗ v in S for some value v, and tk is an element of ω(D(e)) for some k ≥ 0,

then tk →∗ v for some consistent computation in S; and

(2) if tk is an element of ω(D(e)) for some k ≥ 0 and tk →∗ v is a consistent

computation in S for some value v of S, then e→∗ v in S.

Proof. By Lemma 3.4.9, e Ξ−→∗ tk defines a pull-tabbing computation of e in S that

executes no choice steps. Both claims then follow directly from Theorem 3.4.7.

3.4.3 Optimality

Our evaluation strategy aims to be efficient by computing the minimum number of

steps necessary to produce the values of an expression. Needed steps are considered

necessary because they are required to reduce an expression to constructor-rooted

form, which means that skipping them could result in the inability to correctly re-

duce the expression. Therefore, a strategy that only performs needed steps can be

considered optimal. In this section, we will demonstrate the optimality of the FS in

this sense. The precise meaning of this will be explained in Theorem 3.4.12. The
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following preliminary result shows that the S target procedure recurses only on op-

eration symbols.

Lemma 3.4.11 (S-Recursion on Operation Symbols). Let S be a source pro-

gram, S the step procedure of the corresponding target program, and e an operation-

rooted expression of S. Let s be an arbitrary invocation of S.5 in ∆S(e), if any

exists. Then in the recursive invocation, S(e|o), that occurs in the action of s, the

subexpression e|o is labeled by an operation symbol.

Proof. For the purposes of this proof, we will assume that s is the closest invocation of

S.5 to the root of ∆S(e). We can then use induction to show that the claim holds for

any suitable invocation. We know that every call tree rooted by S is linear, because

each case of S either leads to a leaf in the corresponding call tree (S.1-4,6) or is a

recursive call (S.5). Thus, the recursive calls are ordered. Suppose the first recursive

call occurs at subexpression e|p, and we can show that e|p is operation-rooted. Then,

we can apply the same argument to ∆S(e|p) to prove that the second recursive call

is also operation-rooted, and we can continue this process for every invocation of S.5

in ∆S(e).

In order to prove that the subexpression at e|o is labeled by an operation, we will

eliminate the other possibilities: constructor, failure, or choice symbol. Let Tf be the

definitional tree of the operation at the root of e. By examining Figure 3.1, we see

that S.5 is output by compiling a branch of Tf, which we denote T = branch(π, o′,T).
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The inductive position (o′) is labeled with a variable (according to Def. 3.1.4) of some

type, T . For the invocation (s) to exist, there must be a match-making substitution

(σ) such that πσ = e, and this means σ contains a mapping from the variable at o′

such that o′σ = o. Therefore, we can conclude that e|o also has type T . For every

constructor (c) in T , there is a child in T whose pattern is π[o′ ← c x] (again, according

to Def. 3.1.4). If e|o were labeled by a constructor, then one of these more specific

patterns would match, because the cases of S are generated through a post-order

traversal of Tf and the constructor cases (S.1) are generated before the recursive one

(S.5), as shown in Figure 3.1. Thus, e|o is not labeled by a constructor symbol. It is

also not labeled by the failure (⊥) symbol, because in that case a preceding instance

of S.3 with the pattern π[o′ ← ⊥] would match. A similar argument excludes e|o

being labeled by the choice (?) symbol, because a preceding instance of S.4 would

match. Therefore, through process of elimination, we can conclude that e|o is labeled

by an operation.

Theorem 3.4.12 (Optimality of the Fair Scheme). Let S be a source program

and S the step procedure of the corresponding target program. If e is an operation-

rooted expression of S then:

1. S(e) executes a replacement at some subexpression e|n;

2. node n is needed (Def. 3.4.1) for e; and
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3. if the step at n is a reduction to ⊥ then e is a failure (Def. 3.4.2).

Proof. Each claim is proved by structural induction on the call tree ∆S(e), which

is finite by Lemma 3.4.8. The base case occurs when a rewrite step (rule S.1), re-

placement with failure (rules S.2-3), or pull-tab step (rule S.4) is performed. The

inductive case occurs when S is applied recursively (rule S.5). Rule S.6 is excluded

by assumption, since e is operation-rooted.

1. The call tree ∆S(e) terminates with a single leaf labeled by a rewrite (S.1-3)

or pull tab (S.4) step. The subexpression at which this step occurs is taken to

be e|n;

2. If n = e the claim is trivially true, since the need relation is reflexive and e is

operation-rooted. Otherwise, the child of S(e) in its call tree is S(e|o) for some

node o, and e|o is operation-rooted by Lemma 3.4.11. By Lemma 3.4.3, o is

needed for e, and by the induction hypothesis, there exists a node n such that

S(e|o) executes a step at n. As the need relation is transitive ([62, Lemma 1]),

n is needed for e.

3. Suppose that S(e) results in the step e|n → ⊥. Then e|n is rooted by an opera-

tion and is matched by the pattern of some exempt node in the corresponding

definitional tree. Hence, there are no rules that can reduce e|n and, since it is
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not already constructor-rooted, e|n is a failure (Def. 3.4.2). By point 2 of this

theorem, n is needed for e, hence e is a failure.

Since each claim holds separately, the theorem is proved.

Theorem 3.4.12 shows that the FS is optimal in the sense that every step it takes is

needed. However, taking only needed steps does not guarantee the shortest derivation.

It is possible to imagine rewrite strategies that omit certain needed steps while still

being sound and complete. For example, consider the following function:

f = 0 ? f

The derivation f→ f→ 0 performs only needed steps, but f→ 0 arrives at the same

value in fewer steps. This means that the step f → f is unnecessary in some sense.

By analyzing the function, we can determine that the only possible value of f is 0.

A clever optimizer, therefore, could correctly replace the original definition with this

one:

f = 0

This apparent weakness in the definition of optimality can be seen as an exception

that proves the rule. The example relies on determining the values of f at compile

time, which is generally undecidable. Therefore, the example does not provide a

principle that a compiler can consistently apply. In other words, while this type

of simplification may be useful in special cases for practical purposes, it should not
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be used as the standard against which we compare our general compilation proce-

dure. Instead, we should compare the FS to other strategies that only use decidable

properties of a program. We can do this by limiting ourselves to strategies that only

consider the left-hand sides of rules. This prevents us from drawing conclusions about

the values of a function at compile time, which avoids unhelpful arguments like the

one above. With this restriction, we can say that needed steps are unavoidable in

the sense that no other admissible strategy could omit them to produce a shorter

derivation.

With this, we have defined the FS and established its soundness, completeness,

and optimality. In the next chapter, we will describe extensions that change its

operational principles to enhance the handling of free variables.
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D(g; Ḡ) =
if g is inconsistent D(Ḡ) else D.1
case g of

when a ? b: D(Ḡ; a; b); D.2
when ⊥: D(Ḡ); D.3
when g is a value: D(Ḡ); -- yield g D.4
default: if N(g) then D(Ḡ; g); else D(Ḡ); D.5

D(null) = null; -- program ends D.6

N(c(. . . ,⊥, . . .)) = false N.1
N(c(. . . , p(?), . . .)) = pull(p); true N.2
N(c(x) = N(x1) ∧ . . . ∧N(xk) N.3
N(n) = S(n); true N.4

compile T

case T of
when rule(π, l→ r):

output S(l) = rewr(r); S.1
when exempt(π):

output S(π) = rewr(⊥); S.2
when branch(π, o, T̄):
∀ T′ ∈ T̄ compile T′

output S(π[o← ⊥]) = rewr(⊥); S.3
output S(π[o← p(?)]) = pull(p); S.4
output S(π) = S(π|o); S.5

S(c(. . .)) = null S.6

Figure 3.1: Compilation of a source program, S, by the FS. The rules of D and
N are fixed for every S. The rules of S are obtained from the definitional trees of
the operations of S with the help of procedure compile. The notation p(?) indicates
a node, p, labeled by the choice symbol. A sequence of variables is written x. N
evaluates to a Boolean indicating whether its argument might still be derived to
a value. D and S return nothing. The symbol c stands for a generic constructor.

Line comments (following “--”) indicate meta-actions.
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Figure 3.2: The topmost portion of the call tree for the expression
let d = (0 ? 1) in [d, d]. Edge labels indicate which case of a target pro-

cedure is applied to obtain the next node of the call tree.
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Chapter 4

Extensions to the Fair Scheme

The Fair Scheme (FS) is a correct and optimal evaluation strategy: provided suffi-

cient time and other resources, it eventually computes every value of a source program

without performing unnecessary steps. Even so, when using the FS to implement a

Curry compiler one encounters two practical problems. First, the operational princi-

ples used do not necessarily yield the shortest derivations or the most compact value

sets, and this can negatively impact performance. In particular, the eager elimina-

tion of free variables prevents their appearance in values, where they could concisely

represent many results simultaneously. To take an extreme example, consider the

expression x::[Bool] where x free, which under the FS gives an infinite computa-

tion that evaluates to all Boolean lists: [], [False], [True], [False, False], and

so on. A more compact representation is simply x. Second, Curry defines functions

with non-standard semantics that that do not map directly to LOIS or the FS. These

include equational constraint operators and set functions.

Because of this, we will extend the FS before discussing its implementation in the
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next chapter. While it would be possible to extend the proofs of Chapter 3 with a new

formalization besides LOIS (see Sect. 3.1.2), this would be a significant undertaking

that is beyond the scope of this work. Instead, we will support each extension with

an informal argument. In Sect. 4.1 , we will present an extension called FS-x that

allows us to perform computations in the presence of free variables. In Sect. 4.2 ,

we will present a further extension called FS-β that implements strict and non-strict

equational constraints. In Sect. 4.3, we will present another extension, FS-S, for set

functions.

4.1 Extensions for Narrowing (FS-x)

In a LOIS system, a rewrite rule consists of a left-hand side (LHS) and a right-hand

side (RHS). As discussed in Sect. 3.1.1, every variable reference in the RHS of a

rewrite rule must be introduced in the LHS of that same rule. This ensures that

a successful pattern match always produces a binding for every variable. Because

of this, an implementation of the FS does not require an explicit representation of

variables in expressions.

We are now changing the rules of the game. We depart from LOIS systems with

the introduction of free variables in expressions. A free variable is a variable that

only appears on the RHS of a rule and is therefore not bound to anything. This is

interpreted as a placeholder for an unknown value. To convert a Curry program into

the LOIS representation, variables introduced with the free keyword on the RHS of
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a rule can be replaced with generator functions to eliminate them. In this section, we

extend the FS to retain free variables and compute with them through the principle of

narrowing. During a narrowing computation, a free variable may or may not become

bound to a specific value. As discussed in Sect. 2.3.1, free variables are a different

but equivalent way to represent non-determinism, in addition to using choices. In our

extension to the FS, when a free variable requires a binding, its non-determinism is

converted into choices so that pull-tabbing can take over from that point.

Introduced in the context of automated theorem proving, narrowing has a long

and successful track record in the functional logic domain [80]; indeed, narrowing

has historically been the most popular basis for proposed functional-logic evaluation

strategies (e.g., see [40, 81–86]). The role of narrowing in early implementations of

Curry was discussed briefly in Sect. 2.3.1. Sound, complete, and optimal narrowing

strategies, such as [54], are known for functional logic programs. There also exist func-

tional logic languages, such as Life [87] and Escher [88], that do not provide narrowing

but use residuation [89] for a similar purpose. Narrowing and residuation are not in

conflict, and may coexist in an elegant model [90]. See [2] for a survey of functional

logic languages that includes a discussion of both narrowing and residuation.

Narrowing is a computational step that is similar in purpose to rewriting and is

used to evaluate expressions containing free variables. Rewriting is sufficient when

there are no free variables present, and in these cases, narrowing degenerates to

rewriting. Narrowing is a binary relation over terms that simultaneously instantiates a

123



Extensions to the Fair Scheme

free variable and applies a rewrite step. The effect is to replace certain subexpressions

with simpler ones that have fewer free variables. The definition and example below

serve to introduce this concept. Note that the following definition has been striped

of certain technical details, as it is only intended to support informal arguments.

Definition 4.1.1 (Narrowing Step). Let R = (Σ,→) be a rewrite system, R a rule

of R, and −→
R

a rewrite step that applies R. Then for expressions u, v and substitution

σ, where uσ −→
R

v, we say u ;
σ,R

v is a narrowing step with substitution σ and rule

R. We say this step instantiates a variable x if x appears in the domain of σ. – end

definition.

Example 4.1.2. Consider the expression not x where x is a free variable and not is

defined by the following rules:

1 not False = True (rule R1)
2 not True = False (rule R2)

Two narrowing steps are possible:

not x ;
σ,R1

True with σ = {x 7→ False}

not x ;
δ,R2

False with δ = {x 7→ True}

The first performs in concerted fashion the substitution (not x)σ = not False and

a rewrite step according to rule R1. The second case is similar. Both steps instantiate

x. – end example.
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Our interest in narrowing stems from a desire to perform computations in the

presence of variables. Our ultimate aim is to avoid unnecessarily binding values

to variables, so we shall delay doing so until it becomes unavoidable. As a result,

variables are present in expressions as a computation progresses, which means that

rewriting cannot be used as the main operational principle. A finite or infinite se-

quence of narrowing steps, e0 ; e1 ;∗ ..., is called a narrowing computation, a

narrowing derivation or, more simply, just a computation or derivation.

One challenge of using narrowing strategies, such as [54], in practice is the need

to keep track of all the narrowing steps taken (e.g., through backtracking) to en-

sure that they are all eventually considered. Narrowing steps are typically selected

non-deterministically and may be incomplete, as they can change the values of an

expression in a way similar to what is shown in Example 4.1.2. The FS avoids the

need for bookkeeping by using pull-tabbing to distribute computational resources.

Therefore, it may not be suitable to directly apply narrowing steps in an extension

of the FS. Instead, we will simulate their effects by combining variable instantiation

with pull-tab and rewrite steps. We will replace free variables with generator func-

tions based on the need relation, and then use pull-tabbing computations to evaluate

the resulting non-deterministic expressions.

Our approach involves the following changes:

125



Extensions to the Fair Scheme

1. Allow variables in goals and permit their introduction through rewrite steps,

rather than replacing them at compile time.

2. Define an instantiation step that replaces a variable with a suitable generator

function in a specific context in the following way (see boolGen on Page 61):

not x  not boolGen

3. Only bind values to free variables as needed, using the instantiation step.

4. Extend the concept of consistency to accommodate instantiation.

As an example, consider the following derivation of not x using our approach:

not x  not boolGen
Ξ−→ not (False ? True)
Ξ−→ not False ? not True
Ξ−→ True ? not True
Ξ−→ True ? False

Variable instantiation refers to the two-step process of creating a variable and bind-

ing a value to it. In the computation process of our FS extension, these two aspects

are separated. Variable creation occurs when a goal expression is created or through

the application of rewrite steps. Variable binding is achieved through a combina-

tion of variable replacement (with a generator) and pull-tabbing. We refer to  as

instantiation rather than replacement to clearly distinguish it from the replacement
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mechanism defined in Def. 3.1.1. While perhaps not ideal, we consider this a reason-

able compromise because the instantiation step commits an occurrence of a variable

to having a value bound to it, thereby completing its instantiation.

4.1.1 Extensions to the Need Relation

In the FS, free variables are eliminated by replacing them wherever they appear in

the goal or the RHS of a rule. These transformations usually take place at compile

time, but they could also be interspersed among computational steps. As an example,

recall the function unknown (see Page 34) and consider the following derivation, which

follows the FS:

not unknown → not boolGen → . . .

The replacement of the free variable in the rule of unknown was done at compile time

but it can also be included in a computation by using the following steps:

not unknown → not x  not boolGen → . . .

The rewrite step now produces free variable x and the subsequent instantiation step

replaces it. If instantiation unconditionally followed rewriting in this manner, it would

be difficult to distinguish an implementation of the FS that replaced free variables

at compile time from one that did so during a computation. In particular, such an

implementation would have all the properties shown in Sect. 3.4.
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To produce non-ground values, however, we cannot blindly replace free variables

as they appear. In our extension of the FS, variable replacement is guided by an

extension of the need relation to narrowing computations. The revised definition

below considers free variables as constructor-rooted forms, recognizing that they are

simply placeholders for unknown constructor expressions.

Definition 4.1.3 (Need, for Narrowing). Let e be an expression of a LOIS sys-

tem with subexpression n. The narrowing need relation is defined as follows (with

differences between this and Def. 3.4.1 emphasized):

1. Node n is needed for e if and only if in any narrowing derivation of e to a

variable or constructor-rooted form, e|n is instantiated or is derived to a

constructor-rooted form

2. Node n is needed for e if and only if it is needed for some maximal function-

rooted subexpression of e.

A narrowing computation e0 ; e1 ; . . . is needed if and only if it reduces only

needed subexpressions; that is, if and only if each replaced subexpression is related

to the root by the need relation. – end definition.

In point 1 of Def. 4.1.3, the ability to derive the expression e|n to a constructor-

rooted form or instantiate it depends on whether e|n is a free variable or not. If e|n

is a free variable, it may be possible to instantiate it through a narrowing step, but
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it cannot be rewritten into a constructor-rooted form. On the other hand, if e|n is

not a free variable, then it may be possible to rewrite it to a constructor-rooted form,

but it cannot be instantiated

The definition of need given in Def. 4.1.3 is not reflexive but it is transitive. As

the examples below illustrate, it allows variables to appear unneeded in values. In

each example, we ask whether the free variable x is needed.

• x is not needed in e = x, since a derivation of zero steps reduces e to a variable

without instantiating x. Note that no narrowing steps can be applied to x, so

there is no derivation of x to a constructor-rooted form. By contrast, True is

needed in e = True because every possible derivation (there is only one) derives

True to the constructor-rooted expression True, in zero steps.

• x is not needed in e = [x], for reasons similar to the previous case, except that

e is in this case derived in zero steps to a constructor-rooted form. In general,

if every node of every path from e to x is constructor-labeled, then x is not

needed for e.

• x is needed in e = not x because e cannot be derived to a non-function-rooted

form without instantiating x. More specifically, by a narrowing step rooted at

e that instantiates x.

• x is needed in e = (not x, x) because not x is a maximal function-rooted

subexpression of e and x is needed for it.
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4.1.2 Free Variable Replacement Rules

Free variables, like choices, are a structural representation of non-determinism that

blocks pattern matching. Instantiation steps are used to make progress in cases where

a free variable, like x in the expression not x, prevents a rule from matching, and

these are only performed for needed variables.

This suggests a very simple way to extend the FS. In Figure 3.1, we see that

procedure S.4 removes choices from the inductive positions of needed operations. We

can handle free variables similarly by adding a target procedure to instantiate needed

free variables. When compiling S-rules, the following additional case is added after

the case that generates rule S.4:

output S(π[o← p(x)]) = inst(p); S.x

Here, p(x) represents a node labeled by a variable and inst is an action that performs

an instantiation step for the variable at p. This additional target procedure does not

override subsequent ones, except when a variable appears at an inductive position of

the operation being compiled.

In addition to this, we must also extend the N target procedure for free variables.

The rule shown below is added after N.3. This ignores free variables, since they

are always considered constructor expressions. The helper function bound, which

indicates whether its argument has a binding in the current context, will be discussed

in Sect. 4.1.4 (see Page 138).
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N(p(x)) = if bound(p) then inst(p); true N.x

Our extended version of the FS that includes N.x and S.x is called FS-x. In a

computation performed according to FS-x, the steps taken are similar to those taken

in a computation performed according to the FS (using unconditional, interspersed

instantiation steps, as discussed in Sect. 4.1.1). The order of steps may differ, and

unnecessary actions might be omitted. An action is considered unnecessary if it

relates to the handling of a choice that arises from a free variable that has not yet

been instantiated in any previous step of the computation. While these differences

may affect the order and efficiency of computations, we believe they do not affect

their correctness. We note that the correctness of evaluation strategies often does not

depend on the order of steps, as seen in the correctness of pull-tabbing computations

(Theorem 3.4.7) and needed narrowing [54].

After a rewrite step introduces a free variable (which in the FS would be instan-

tiated right away), the computation in FS-x proceeds as in the FS unless and until

S.x is invoked, except that:

1. invocations of D.2 might instead become invocations of D.4; and

2. invocations of N.2 might be omitted.

However, neither of these omits a necessary action, as the actions omitted both re-

late to the processing of choices that would arise from a free variable for which an
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instantiation step has not yet occurred. If that step is performed later, the corre-

sponding actions will occur. If S.x is invoked, it performs an instantiation step for

some variable-labeled node, p(x), that would have occurred earlier in the FS (immedi-

ately following the introduction of p). After this, the computation by FS-x proceeds

in a similar way to that of the FS. Procedure S.x is only invoked when S.5 would have

been invoked in the FS, as in that case the node p would be labeled by a generator

function. In other words, the introduction of S.x effectively moves an instantiation

step from just after a variable is introduced to just before the generator function that

takes its place would have been reduced, if that occurs at all. An efficient implemen-

tation of S.x could combine these instantiation and rewrite steps, and perhaps even

the ensuing pull-tab step (by S.4).

4.1.3 Replacement Mechanism

Instantiation is more complex than simply replacing a variable globally. A variable

replacement in one context should not be observed in a separate context because the

variable being replaced may not be needed in that other context. For example, in

the computation of the expression e = not x ? x where x free, there is a needed

instantiation step at not x that leads to the values False and True. However, in-

stantiation of the occurrence of x on the right side of the expression is not needed

so the right side should simply produce x. This suggests that instantiation should

be applied to occurrences of free variables rather than to the variables themselves,
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meaning that the most straightforward approach to performing instantiation, such as

e[x← boolGen], may not be the best option.

Instead of replacing the free variable directly, we take a more conservative ap-

proach by replacing the function-rooted node (f) whose definitional tree directly made

instantiation necessary. We consider this approach to be more conservative because

the effects of the replacement can be observed in smaller and fewer contexts. While

this may involve repeating some instantiation steps, it ensures that no instantiation is

observed in a context where it is not needed. This differs from rewriting, which relies

on replacing shared subexpressions to avoid repeating steps, but it is similar to pull-

tabbing in that it involves duplicating a shared representation of non-determinism by

replacing the nearest function-labeled node.

Definition 4.1.4 (Variable Replacement). Let x be a free variable in a function-

rooted expression (f), γ a suitable generator function that can be substituted for x

according to the FS, and e a context where f appears. Recalling the definitions of

copyr and path from Def. 3.2.1, let p be a path obtained according to the definitional

tree of f that leads from the root of f to a needed subexpression where x appears.

The instantiation of x in f at p is given by e[f ← copyr(f, p, γ)]. – end definition.

Example 4.1.5. An instantiation step is shown below for the following expression:

e = let f = and x x in (f,f) ? x where x free:
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?

x

and

(,)
 

?

boolGen x

and

(,)

This corresponds to e[f ← u] with f = and x x and u = copyr(f, [0], boolGen)]. –

end example.

It is important to note a few details about Exam. 4.1.5. The step shown involves

replacing an element in a pair with a new value, while maintaining the shared connec-

tion between the elements of the pair. This is achieved by performing the replacement

at node f , which preserves the connection. In contrast, if a copy-replacement were

performed at a different node, such as the pair itself (with path [0, 0]), the connection

between the elements of the pair would be broken. The linear form of the expression

e contains three occurrences of the variable (x), but only one of these is affected by

the replacement. An instantiation according to Def. 4.1.4 always replaces exactly one

occurrence of a variable. Also, the generator function (boolGen) introduced is domi-

nated by the node that replaces f . This is a crucial property because it ensures that

the generator function is only observed where it is certainly needed, since we know

that f is needed. As a result, the right choice alternative following the replacement

still refers to the variable (x). While it would be ideal to replace both occurrences of

x under f , this may not be practical because it depends on how the call is constructed
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rather than the definition of and. A potential optimization might be to perform a con-

current replacement of all occurrences of the variable being instantiated that appear

directly under the node being replaced (f), but we do not explore this option.

We can argue that our instantiation mechanism is generally correct by considering

every context in which the replaced function (f) might appear. If f is needed in

a particular context, then the instantiation step is also needed by an extension of

Lemma 1 in [62] and our amended definition of need. There must be at least one

such context where f is needed in order for the instantiation step directed by f to be

performed. In any context where f is not needed, replacing it has no effect because

the function will be discarded in any value produced, so changes to its structure will

not be observed. Additionally, the replacement of a subexpression of f cannot have

any effect on pattern matching (for f) and cannot lead to a choice rising beyond

f through pull-tabbing unless f were needed (Lemma 3.4.11), which it is not, by

assumption.

4.1.4 Consistency

To ensure correctness, it is important that choices arising from variable replacements

are annotated consistently. Recall that a choice identifier (cid; see Sect. 3.2.2) is

used to annotate choice symbols. Since the mechanism in Def. 4.1.4 only replaces a

single occurrence of a variable, it is possible that one variable is subjected to multiple

instantiation steps. For example, consider the following derivation:
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(not x, not x)  ∗ (not boolGen, not boolGen)
→∗ (not (False ?i True), not (False ?j True))

For the reasons discussed in Sect. 3.2.2, the above derivation is only correct if i = j.

However, the current generator function, boolGen, introduces fresh cids each time it is

rewritten, which means it is not adequate. Additionally, when a rewrite step is applied

to the corresponding generator function for a type with a non-nullary constructor, it

introduces free variables that must be used consistently. In order to properly handle

these cases, the generator function needs to be refined.

To achieve this goal, we will add a runtime action that dynamically creates gen-

erator functions. The generator functions we have used previously (such as boolGen)

will now be referred to as generator function templates because their cids and free

variables are not specified. An instance of such a template, called a generator function

instance, has the same structure but uses specific cids and free variables. When an

instantiation step is first applied to a free variable (x), the generator function tem-

plate corresponding to the type of x is instantiated, producing a generator function

instance containing fresh cids and free variables unique to x. For example, if x and y

are Boolean variables, then applying an instantiation step to each might produce the

following two generator function instances:

1 boolGenx = False ?i True
2 boolGeny = False ?j True

We can now specify the behavior of the inst(p) target action that appears in S.x:
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1. Get the generator function instance (γ) corresponding to the variable p, creating

it if necessary;

2. Perform the transformation described in Def. 4.1.4 using replacement γ.

To make the presentation simpler, we will omit γ by combining the subsequent

rewrite step that replaces γ into our depiction of instantiation steps. An implementa-

tion can also perform this optimization to save a rewrite step for each instantiation.

We call the RHS of a generator function instance a generator expression and write,

for example, Γx = False ?i True to indicate the generator expression for free variable

x. Note that a generator expression and fingerprint together can tell us whether a

free variable is bound in a particular context and also gives us the binding if one does

exist. For example, the fingerprint φ = {i 7→ l} corresponds to the binding of x to

False. If Γx has not been created or if a particular expression does not contain a

choice outcome for i in its fingerprint, then x is free in that expression.

The use of the above mechanism avoids inconsistency problems arising from du-

plicate free variable replacements because all instantiations of a given variable use

the same cids and free variables. However, the presence of variables also introduces

the possibility of a new consistency issue. To see this, consider the following step:

(not x, x)  (not (False ?i True), x)
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Without some care, a computation proceeding from this point may derive the incorrect

values (True, x) and (False, x). These are the results of inconsistent computations

because they are derived using a binding of x that was not applied to every occurrence

of x. For instance, (True, x) arises when binding x to the value False to obtain the

first part of the pair, but fails to replace the occurrence of x in the second part of the

pair. Compare the values above with the correct values produced by narrowing:

(not x, x) ;
σ,R1

(True, False) with σ = {x 7→ False}

(not x, x) ;
δ,R2

(False, True) with δ = {x 7→ True}

To obtain these values, we must ensure that all occurrences of instantiated variables

are eventually replaced. This is the reason inst appears in rule N.x. The helper

function bound shown on Page 130 identifies free variables that, like x in the above

example, have a binding. When that is the case, the occurrence encountered by N.x

must also be instantiated.

As an optimization, an implementation could define inst to replace a variable

directly with a more specific value found by traversing the choices of that variable’s

generator expression, using the current fingerprint as a guide. If this is done, it would

not be safe to to replace the variable directly. For example, in the computation of

(not x, [x]) where x free, we obtain two pairs (True, [x]) and (False, [x])

whose second elements are shared. Replacing the shared subexpression with a specific

value such as [False] would lead to inconsistent results. To avoid this, N.x would
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need to be defined using copyr as in Def. 4.1.4, so that neither replacement affects

the other.

4.2 Extensions for Constraints (FS-β)

Despite the fact that FS-x only instantiates free variables that are needed according

to Def. 4.1.3, it may still perform certain variable instantiations that seem excessive.

For example, consider the following goal over Boolean variables:

y=:=x &> (x,y) where x,y free

Since both variables are needed in the equational constraint, FS-x would instantiate

them both. This leads to the following outcomes:

• Value (False,False), with bindings {x 7→ False, y 7→ False}.

• Value (True,True), with bindings {x 7→ True, y 7→ True}.

• Failure, with inconsistent bindings {x 7→ False, y 7→ True}.

• Failure, with inconsistent bindings {x 7→ True, y 7→ False}.

This is not ideal because more compact representations, such as (x,x), exist and can

perhaps be derived in fewer steps. In this section, we will present a further enhance-

ment to FS-x called FS-β that prevents unnecessary instantiations such as this that

arise from applications of the equational constraint operator. We will also describe
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how the mechanism for this can be used to define a non-strict equational constraint

operator (=:<=), which plays a central role in evaluating functional patterns.

4.2.1 Strict Equational Constraints

Our enhanced evaluation strategy is based on the observation that an expression

involving a needed application of the equational constraint to two free variables, x

and y, can be evaluated by assuming the constraint succeeds and then discarding

computations in which x and y ultimately become bound to different values. Such

detection can occur as the computation proceeds to discard inconsistent computations

as soon as they are discovered. When neither variable is bound to a specific value, we

end up in a relatively straightforward situation like the one discussed above, where

at most a substitution of equivalent variables is needed to express values concisely.

However, when a more specific binding for x or y arises through narrowing, the

situation becomes more complicated.

The following example illustrates. Let V(e) denote the value set of expression e

and consider the expression u = (not x, y). The values of u are shown below:

V(u) = {(True,False), (True,True), (False,False), (False,True)}

We can define a subset of V(u) that excludes results arising when x and y are bound to

different values. We write V|x=y(e) to denote the values of e subject to the constraint

that x and y have identical bindings. Therefore, we have the following:
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V|x=y(u) = {(True,False), (False,True)}

A value such as (True,True) does not appear in this because it arises from a compu-

tation in which x and y are bound to different values. Adding an equational constraint

between free variables, as we do in going from V to V|x=y, can never introduce ad-

ditional values. It can only remove values that are inconsistent under the additional

constraint. Because of this, we can devise an evaluation strategy that lazily in-

stantiates variables in equational constraints, keeps track of which computations are

subject to which equational constraints, and discards computations that are found to

be inconsistent.

FS-β uses a reserved unary symbol β to determine which expressions are subject

to which constraints. This symbol is annotated with two free variables and indicates

that they are to be constrained equal. The effect is similar to binding one free variable

to the other, though it is important to note that the variables retain their separate

identities and can become bound to more specific values through instantiation and

pull-tab steps as a computation proceeds. We write βx↔y to indicate a β node con-

straining x and y equal. β-labeled nodes are processed by FS-β similar to the way

that nodes labeled by the choice symbol are processed by the FS. Overall, the strategy

of FS-β is to replace certain needed applications of =:= with β-rooted expressions,

apply pull-tab steps to those, and then remove β-labeled nodes when they appear at
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the root of an expression in the queue (Ḡ) of expressions being evaluated by FS-β.

The removal of a β-labeled node provides information that might lead a computation

to be found inconsistent. This is similar to the way that target procedures D.1 and

D.2 work together to discard computations with inconsistent choice outcomes.

To construct FS-β, the following changes are made to FS-x:

1. The definition of the equational constraint is changed so that an equational

constraint between two free variables, x and y, is replaced with the expression

βx↔y True.

2. The pull target action is extended to support pull-tabbing of β-labeled nodes,

where the pull-tab relation is extended to β nodes as indicated below:

f u (βx↔y a) v Ξ βx↔y (f u a v)

3. Three additional target procedure rules are defined to handle the pull-tabbing

and removal of β-labeled nodes. First, when the D procedure is applied to a

β-rooted expression, the β node is removed by the following rule added as an

additional case just after rule D.2:

when β a: D(Ḡ; a); D.β

Second, the N procedure is extended by adding the following just after rule

N.2:
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N(c(. . . , p(β), . . .)) = pull(p); true N.β

Third, when compiling S-rules, the following additional case is added after the

case that generates rule S.4:

output S(π[o← p(β)]) = pull(p); S.β

It can be shown, by an argument similar to the one on Page 135 arguing for the

correctness of instantiation steps, that:

1. If an expression e contains a needed subexpression s whose root is labeled by

βx↔y, then in a computation of e by FS-β, e will eventually be replaced with

an expression whose root is βx↔y.

2. If an expression e′ contains an unneeded subexpression s′, then replacing s′ with

a β-rooted expression does not change the values of e′.

Rules D.β, N.β, and S.β define the mechanical changes that constitute FS-β.

β-labeled nodes are created, subjected to pull-tab steps, and ultimately removed.

These changes alone do not have the intended effect. We must also extend our notion

of a consistent computation to exclude values that arise from inconsistent bindings.

When β-labeled nodes are taken into account, we are only interested in values whose

bindings satisfy the constraints indicated by any β-labeled nodes that were removed

in their computation. Recall that every value produced by the FS and, by extension,
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FS-β is associated with a fingerprint. We extend our definition of consistency as

stated in Def. 4.2.1

Definition 4.2.1. Consistent Computations (FS-β). A value v yielded in rule

D.4 of FS-β with fingerprint φ is considered inconsistent if the computation of v

included an application of D.β with head symbol βx↔y and the bindings for x and y

in φ are different. – end definition.

The next example shows how fingerprints, generator expressions, and β-labeled

nodes work together to identify computations with inconsistent bindings.

Example 4.2.2. Consider e(u) = (u, x=:=y) where x,y free, and expression

u = not x && y. The computation of the expression with substitution σ = {x 7→

False, y 7→ True} by FS-β is as follows1:

(not x && y, x=:=y) Ξ−→ (not (False ?i True) && y, x=:=y)
Ξ−→∗ (not False && y, x=:=y) ?i . . .
Ξ−→ (True && y, x=:=y)
Ξ−→ (True && (False ?j True), x=:=y)
Ξ−→∗ . . . ?j (True && True, x=:=y)
Ξ−→ (True, x=:=y)
Ξ−→ (True, βx↔y True)
Ξ−→ βx↔y (True, True)

This applies rule D.β to an expression rooted by βx↔y, so x and y are constrained

equal. The generator expressions for these variables are Γx = False ?i True and

1To simplify the presentation, && here performs Boolean AND without short-circuiting.
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Γy = False ?j True, respectively. The constraint implies that corresponding choice

identifiers — i and j in this case — must either both be present or both absent in

the fingerprint, and if they are present, must both be bound to identical values. But

since the fingerprint φ = {i 7→ l, j 7→ r} contains different values for i and j, this

computation is inconsistent. – end example.

A β-labeled node may occur after the free variables involved have been considered

by a rule of FS-β. Therefore, one might be concerned that it appears “too late” to

be handled properly. For example, consider the computation of an expression of the

form e(u) = (u, x=:=y) where x,y free. The first pair element, u, is inspected by

FS-β before βx↔y is created. More specifically, in a left-to-right, depth-first traversal

of the call tree ∆D(e), the subtree ∆N(u) occurs before ∆N(x=:=y) does.

This does not lead to any problems. On the one hand, ifN(u) does not instantiate

x or y, then a constraint between these variables has no effect. On the other hand, if

N(u) instantiates x, then subsequent steps have the effect of narrowing, as described

in Sect. 4.1. The eventual result is some number of invocations of the form ∆D(e(u′)),

where u′ is the result of a narrowing step e(u) ; e(u′) that instantiates x. In each of

these, the fingerprint of e(u′) contains information about the binding of x. The same

argument applies equally to instantiations of y. Therefore, the information needed to

detect inconsistent bindings will be available.

Example 4.2.3. Consider e(u) = (u, x=:=y) where x,y free, and expression u =
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not x. The computation of the expression with substitution σ = {x 7→ False} by

FS-β is as follows:

(not x, x=:=y) Ξ−→ (not (False ? True), x=:=y)
Ξ−→∗ (not False, x=:=y) ? . . .

Ξ−→ (True, x=:=y)

The subsequent computation is ∆D(e(u′)) where u′ = True is the result of the nar-

rowing step u ;
σ,R

u′ that instantiates x with R being the rule not False → True.

– end example.

4.2.2 Non-Strict Equational Constraints

The non-strict equational constraint operator (=:<=) is used to implement functional

patterns, which were discussed in Sect. 2.3.4. This operator is involved in the dynamic

generation of patterns and pattern matches that arise when evaluating functional

patterns. To implement a full-featured Curry system, we will need to implement this

operator. A complete definition of this operator is given in [42], but we do not need

to discuss every detail here. What is important for us is to know that this operator

includes an action binding a free variable to an arbitrary expression. Following that,

references to the variable in any context where the binding step was performed should

be treated as references to the expression it is bound to.

Fortunately, the mechanisms and methods we have already used for narrowing and

to evaluate strict equational constraints are well-suited to the non-strict equational
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constraint. We now allow β nodes of the form βx7→e, where x is a free variable and

e is an arbitrary expression. The rules of FS-β are not changed for these β nodes.

They are still subjected to pull-tab and removal steps. We provide a definition of

=:<= such that applications in which a binding is called for are replaced as in the

following step: x =:<= e → βx7→e True.

To make good on the requirement that references to x are replaced with the bound

expression, we update the helper function bound and the target action inst so that

N.x (see Page 130) also replaces free variables bound through an application of =:<=.

This mechanism is like that of the instantiation step, which is to say using copyr,

except that a variable occurrence is replaced with the expression it is bound to (in

the relevant context) rather than its corresponding generator expression. When rule

D.β removes a node labeled βx7→e, the binding between x and e is stored, similar to

the way a strict equational constraint between free variables is stored.

4.3 Extensions for Set Functions (FS-S)

In this section, we will present a modification to the FS that enables it to evaluate set

functions. As mentioned in Section 2.3.5, set functions allow for the encapsulation of

search in logic programming languages. Curry offers a representation of value sets and

provides functions for manipulating them. The evaluation of set functions presents

specific challenges that we will address by further extending the types of objects that

appear in our computational model of programs.
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The main challenge is how to distinguish the non-determinism of a function from

that of its arguments. To explore this idea, we shall reconsider the integer adjacency

function, adj (Page 71) and binary digit function, binDigit (Sect. 2.2.1). Our first

goal will be to evaluate adjS binDigit. To do this, we will examine different methods

and introduce the concept of a set capsule, which is used to enclose computations

whose values are collected into sets. We initially use curly braces to indicate the

presence of a set capsule. Currently, we are using this notation in a general way to

show that something needs to be modified and to explain the issues that need to be

addressed. As our evaluation strategy becomes clearer, we will more precisely define

set capsules and related structures and introduce a different notation.

4.3.1 Set Capsules

A set capsule is used to capture non-determinism. If the computation within a capsule

generates multiple values, those values form a set. In our evaluation strategy, non-

determinism is eventually represented as choice-labeled nodes that undergo pull-tab

steps. This suggests a straightforward method for evaluating set functions: simply

replacing a set function-labeled node with the application of the corresponding non-

set function inside a set capsule and prohibiting pull-tab steps that would move a

choice outside of a set capsule. This idea is demonstrated in the derivation shown

below:
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adjS binDigit Ξ−→ adjS (0 ? 1)
Ξ−→ adjS 0 ? adjS 1
Ξ−→∗ {adj 0} ? {adj 1}
Ξ−→∗ {(0-1) ? (0+1)} ? {(1-1) ? (1+1)}
Ξ−→∗ {(-1) ? 1} ? {0 ? 2}

Here, each application of adjS is replaced with an application of adj to the same

argument inside a set capsule. When a choice reaches the root of a set capsule, it is

not allowed to undergo a pull-tab step because that would remove it from the capsule.

Although this approach appears promising because each set capsule holds the correct

values, it is not always successful. In fact, simply changing the evaluation order in

this scheme can lead to a different result, as shown in the following derivation:

adjS binDigit Ξ−→ {adj binDigit}
Ξ−→ {adj (0 ? 1)}
Ξ−→∗ {adj 0 ? adj 1}
Ξ−→∗ {(0-1) ? (0+1) ? (1-1) ? (1+1)}
Ξ−→∗ {(-1) ? 1 ? 0 ? 2}

With this derivation, the set capsule is created before applying a rewrite step to

binDigit, which results in the set capsule incorrectly containing a choice that origi-

nated from an argument the set function was applied to.

The problem of order-dependence in the steps used to evaluate a set function has

been previously identified [58, 61, 91]. A simple, though approximate, way to address

this is to eagerly evaluate set function arguments, which removes any non-determinism

present before the value collection process starts. This approach, although used in
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at least one popular implementation of Curry (PAKCS), is not ideal because it is

not lazy. If implemented in an extension of the FS, it would likely compromise the

correctness and optimality properties discussed in Sect. 3.4.

We will present an alternative approach that is better suited to our pull-tabbing

evaluation strategy. This method is lazy, meaning it generates the correct values

while only performing needed steps. The idea is to create a “leaky” set capsule that

selectively captures choices related to the applied function while allowing other choices

(i.e., those arising from non-determinism in function arguments) to escape. From now

on, each set capsule will have a set of choice identifiers (cids) called the escape set.

The elements of the escape set are denoted by subscripts after the closing curly brace

of the set capsule. For example, {. . .}{i} indicates a set capsule that allows choices

with cid i to escape. When the expression within a set capsule becomes choice-

rooted, a further pull-tab step is allowed only if the cid of the root choice appears in

the escape set of the enclosing set capsule. If a pull-tab step is allowed, it will split

the set capsule into two and divide the alternatives of the root choice between the

two resulting capsules.

To demonstrate, let us assume there is a function called setmin that produces the

minimum element of a value set. Then the following pull-tab step is allowed:

setmin {a ?i b}{i} → setmin {a}{i} ?i setmin {b}{i}
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This step is allowed because the root choice is annotated with a cid (i) that appears in

the escape set. On the other hand, no pull-tab step is available in setmin {a ?i b}∅

because i does not appear in the escape set of the enclosing set capsule. If the non-

determinism arising from set function arguments can be accurately determined and

used to populate escape sets, then this scheme seems to provide an evaluation strategy

for set functions that is compatible with the FS. To simplify the presentation, we may

omit a function, such as setmin, that is applied to a set capsule when writing pull-tab

steps.

4.3.2 Monitoring Subexpressions

Our scheme involves monitoring the arguments a set function is applied to. We will

show this by drawing boxes around monitored subexpressions. The rule for relating

boxes to set capsules is straightforward: the cid of every choice that appears inside

a box, and only those cids, should be included in the escape set of the enclosing set

capsule.

Boxes do not interfere with rewrite or pull-tab steps and are propagated in a way

that ensures all and only the subexpressions whose non-determinism should escape

the set capsule are boxed. The presence of a box does not affect pattern-matching,

but it is taken into account during variable binding. After a successful pattern match

in which a variable is bound to a boxed subexpression, any reference to that variable

in the RHS of a rule is placed inside a box in the replacement. The reason for this is
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simple: if we are monitoring an expression for non-determinism, then we must track

its subexpressions through rewrite steps. For example, recall the function fst from

Page 63. The following rewrite step is possible: fst (a,b) → a . The replacement

is boxed because the rule of fst references a variable bound to a boxed subexpression.

The above scenario only occurs when a box appears between a function-rooted

symbol and a variable-labeled subexpression. In addition to this, other steps oc-

cur normally inside boxes. For example, compare the previous step with this one:

fst (a,b) → a . The result is boxed as before, but for a different reason. Here,

the step simply takes place inside a box and there is no reason to doubly box the

reference to a.

These rules effectively keep the non-determinism arising from functions and func-

tion arguments separated. Notice what happens when non-determinism arises in the

rules of a function symbol during rewriting: adj a → a − 1 ? a + 1. Since the

overall expression rooted by adj is unboxed, any non-determinism arising from the

rules of adj should also be unboxed, while the box around its argument should be

maintained through the step. This is exactly what happens in the step shown above.

On the other hand, if the step occurs inside a box, as in adj a → a - 1 ? a + 1 ,

then the choice created by the rule of adj is boxed and can be attributed to an argu-

ment of a set function application.
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When higher-order arguments are involved, we must be careful to regard par-

tial application expressions as data: e.g., the normal form of adj is adj. The non-

determinism in the rule of adj is not involved in the computation of this value. When

the final argument is applied to a boxed partial application expression, the resulting

application expression is not boxed because it is not a reference to a boxed expression.

Therefore, given the function apply f a = f a, the evaluation of applyS adj a pro-

ceeds as {apply adj a } → {adj a }.

The FS does not apply the rules of the choice operator, relying instead on pull-

tabbing. However, to determine how a pull-tab step should behave in the presence

of boxes, it is helpful to apply the rules of choice within a boxed expression. An

example is shown below, where the two rules of choice are applied to a boxed function

argument:

f u a ? b v → f u a v

f u a ? b v → f u b v

Since we will not be applying these rules, we must be careful in how we define a pull-

tab step applied to a choice-rooted, boxed expression in order to propagate boxes as

shown above. As the example above shows, references to the left and right alternatives

of the pull-tab source should be boxed. Therefore, a corresponding pull-tab step

should be constructed according to the following relation:
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f u a ? b v Ξ (f u a v) ? (f u b v)

A pull-tab step such as this one, in which a boxed choice gives rise to an unboxed

one presents a convenient opportunity to update the escape set of the enclosing set

capsule because it is at this point that the choice and box are in closest proximity

to one another. This allows for a local rule that can be implemented efficiently.

Therefore, we will add a rule that pull-tab steps are monitored for boxes between the

source and target. When one occurs, the escape set of the enclosing set capsule will

be updated. We do not need to worry that boxed choices are not added to an escape

set immediately after they are created. If some boxed choice is not needed for the

expression at the root of a set capsule, then omitting it from the escape set does no

harm, because only needed choices reach the root of an expression through pull-tab

steps. And, if a boxed choice ever does arrive unboxed at the root of an expression

through a sequence of pull-tab steps, then one of those steps will have updated the

escape set by the rule above prior to the unboxed choice-rooted expression being

inspected.

Whenever a choice attributed to a set function argument occurs at the root of

the expression inside a set capsule, either a previous pull-tab step removed it from

its box or the expression is itself still boxed. To handle the latter case, steps like the

following one must be permitted:
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{ a ?i b } Ξ { a }{i} ?i { b }{i}

The overall effect of the rules for propagating boxes is to always and only main-

tain boxes around subexpressions related to the evaluation of set function arguments.

These rules are local, which makes an efficient implementation more likely. Specif-

ically, the rule for placing boxes around variable references in the RHS of a rule

depends only on whether a box was encountered while forming a pattern match for

the LHS of that rule and not on any other contextual information. Similarly, the

rules for updating escape sets only depend on whether a box was crossed during a

pull-tab step, or whether the expression in a set capsule is a boxed choice.

We are now ready to return the original example. A derivation of adjS binDigit

using the scheme we have described is shown in Figure 4.1. The first step (1) replaces

the set function application with an application of adj inside a set capsule. The

argument to adj inside the capsule is boxed to monitor its non-determinism. As the

argument is evaluated, a choice arising from within it appears at the root of the box

(2). A pull-tab step is applied with that choice as source, and when that occurs the

cid (i) is added to the escape set of the enclosing set capsule (3). The choice escapes

the set through another pull-tab step (4). Two other choices, ?j and ?k, that arise

from evaluating the adj function do not escape their respective set capsules.
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adjS binDigit Ξ−→ {adj binDigit } (1)

Ξ−→ {adj 0 ?i 1 } (2)

Ξ−→ {(adj 0 ) ?i (adj 1 )}{i} (3)

Ξ−→ {adj 0 }{i} ?i {adj 1 }{i} (4)

Ξ−→∗ {( 0 -1) ?j ( 0 +1)}{i} ?i {( 1 -1) ?k ( 1 +1)}{i} (5)
Ξ−→∗ {(-1) ?j 1}{i} ?i {0 ?k 2}{i} (6)

Figure 4.1: Set function evaluation with boxed subexpressions. Boxes are intro-
duced around arguments during set capsule creation (1) and enclose subexpressions
to monitor for non-determinism. Boxes do not interfere with pattern matching and
replacement occurs inside them (2). When pull-tabbing moves a choice out of a
box, its cid is added to the escape set of the enclosing set capsule (3). If the ex-
pression in a set capsule is choice-rooted, then a pull-tab step (which creates a new
set capsule) is performed only if the cid of that choice appears in the escape set
of the capsule (4, but not after 6). If a variable in the RHS of a rule is bound to
a boxed value, then references to that variable are boxed in the replacement (5).

Ordinarily, the expressions in the right-hand sides of rules are unboxed (6).

4.3.3 Encapsulated Computations

In the FS, choice-rooted expressions are separated into individual elements in a queue.

It is not difficult to see how an encapsulated computation is similar to a regular

computation in the FS, except that certain choice-rooted expressions should not be

processed by D.2, but rather by a different process that allows the choice to escape

the set capsule. This suggests that the evaluation of a set function can be achieved

through a recursive application of the D procedure with some modifications.

To accomplish this, we will now describe our scheme for nesting invocations of an

extended version of the FS, which we call FS-S. The extensions described here can
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be used in combination with those described in Sect. 4.1 and Sect. 4.2. Our imple-

mentation ensures that computational resources are distributed between invocations

in a way that prevents unproductive nonterminating computations within a capsule

from blocking the production of values outside that capsule. The extended scheme

FS-S is created as follows:

1. We introduce a representation of set capsules, which is an opaque data object

with specific attributes that will be described later.

2. We introduce a new type of symbol called a set monitor, which represents

boxed subexpressions. A set monitor has one successor, which is the expression

it monitors.

3. We extend the rewr and pull actions, as well as the definitions of pattern

matching and variable binding, to account for set monitors and set capsules as

described in Sect. 4.3.2.

4. We introduce a reserved function symbol (evalS) to perform encapsulated com-

putations, and extend the rules of the S target procedure to evaluate evalS.

Items 2 and 3 above have already been discussed, so in the remainder of this section

we will focus on set capsules and the evaluation of the expressions they encapsulate.

In Sect. 3.3 we saw that an invocation of the FS behaves like a coroutine that

pauses to allow the values it produces to be consumed. In FS-S, we achieve a similar
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effect by defining the rules applied to evalS to make it behave like a suspendible

invocation of the D target procedure. Every time a step is applied to evalS, at most

one step is performed within the capsule, and then control is returned to the outer

computation. The expression
[
G
]
E

denotes a set capsule with escape set E whose

live computations are those found in the sequence G. The escape set will be omitted

except where needed for the discussion.

To evaluate a set function, we apply evalS to a set capsule to reduce it to a value

set. To begin this evaluation, we perform a rewrite step like the one shown below:

fS a0 . . . an → evalS
[
f a0 . . . an

]
∅

This applies evalS to a new set capsule whose goal is an application of the ordinary

function (f) corresponding to the applied set function (fS). The function arguments

inside the capsule are the same arguments supplied to the set function, but each one

is placed under a set monitor (indicated by a box). The escape set associated with a

new capsule is initially empty.

Now, we will define additional rules of S to handle evalS. In Figure 3.1, each

rule of D ends with a recursive call (D.1-5) or terminates the computation (D.6).

To help us describe the behavior of evalS, we will now define a target procedure D∗

that applies only a single step. This target procedure is identical to D except that

wherever D would invoke itself recursively, D∗ returns the argument to D in that

158



Extensions to the Fair Scheme

recursive call. Rule D∗.6 returns an empty sequence. It is straightforward to show

that applying D∗ iteratively until the result is an empty sequence performs the same

computation as applying D.

The rules of S used to evaluate evalS are shown in Figure 4.2. These rules inspect

the first live expression within the set capsule, and may then perform a pull-tab step

(rule SF.1) or produce a value (rule SF.3). Between steps, control is returned to the

outer context. Whenever the first of the live expressions within the capsule becomes

choice-rooted, rule SF.1 has an opportunity to intervene so that the intended choices

escape the capsule through a pull-tab step. Otherwise, rule SF.2 invokes D∗ with

that expression in its current position, resulting in the firing of D∗.2 and the creation

S(evalS
[
g; Ḡ

]
E

) =

case g of

when a ?i b: if i ∈ E then pull(g) SF.1

else rewr
(
evalS

[
D∗(g; Ḡ)

]
E+

)
; SF.2

when g is a value: rewr
(
g:evalS

[
Ḡ
]
E

)
; SF.3

default: rewr
(
evalS

[
D∗(g; Ḡ)

]
E+

)
; SF.4

S(evalS [null]) = rewr([]) SF.5

Figure 4.2: Evaluation of set capsules in FS-S. The reserved function evalS is
evaluated by the rules of S shown in this figure. Rule SF.1 executes a pull-tab
step when a choice is in the escape set, E. Rules SF.2 and SF.4 apply one step
of the encapsulated computation and then reapply evalS to the result. If either
step identifies an escaping cid, that cid is added to E+. When the encapsulated
computation produces a value, rule SF.3 makes it available outside of the capsule.

Rule SF.5 terminates the encapsulated computation.
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of a fork in the computation within the capsule.

Similarly, rule SF.3 intervenes when a value appears in the capsule and produces

that value in the context where the set capsule is situated. Therefore, rule D∗.4 is not

used and can be omitted in an implementation. The production of set elements in

Figure 4.2 uses lists, but this is not essential. An alternative representation may be

preferred because lists define an ordering between elements that should not exist in a

value set. An implementation that provides an abstract interface to sets can choose

a different representation. In general, the list constructor in SF.3 can be replaced

with any symbol that constructs a value set from the element on its left-hand side

and the value set on its right-hand side. The empty list in SF.5 can be replaced with

a corresponding representation of an empty value set. An implementation may also

make the value set data type opaque, requiring a function like setmin to be applied

to access any useful information about an object of that type.

If none of the above cases apply, then one step is performed within the capsule

(SF.4) or the encapsulated computation terminates (SF.5).

4.3.4 Escape Set Handling

As mentioned in Sect. 4.3.2, the D∗ rule may identify a cid that needs to be added

to the enclosing escape set. Therefore, we can consider D∗ as having two outputs,

even though only one is shown in Figure 4.2 for brevity. During recursive invocations

of evalS in SF.2 and SF.4, the set capsules created should contain the appropriate
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escape set, formed by adding any cid identified in a call to D∗ to the escape set, E,

that was passed as an argument. This “augmented” version of E is written E+ in the

figure.

It is worth noting that an implementation could potentially improve efficiency by

utilizing mutable set capsules. There is a bijection between nodes labeled evalS and

the set capsules such nodes are applied to, as these are always created and destroyed

together and no operation ever separates them or provides direct access to the set

capsule. As a result, an implementation could use the same object for both the

incoming and outgoing set capsules in rules SF.2-4 for efficiency.

Rule SF.1 performs a pull-tab step that splits one set capsule into two. This step

is worth examining in more detail. An example of such a step is shown below:

evalS
[
a ? b; G

]
E

Ξ−→ evalS
[
G; a

]
E

? evalS
[
G; b

]
E

The two set capsules produced in this step have different sequences of expressions,

but may contain many shared expressions. This is beneficial in terms of efficiency, as

steps applied to shared expressions will also be shared between the capsules.

Both capsules also contain the same elements in their respective escape sets, but it

is unclear whether each should each have its own copy or whether they should share a

single escape set. On the one hand, it is possible that a pull-tab step needed for both

capsules might cause one copy of an escape set to be updated without updating the
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other. But since the step is needed for both capsules, the choice it applies to should

escape both set capsules. On the other hand, it may seem possible that a choice could

arise that should escape one set but not the other. Fortunately, it can be shown that

the latter scenario cannot occur, so these capsules should share a single escape set.

We argue that all choices arising during the evaluation of a set function can be

divided into two groups: those stemming from the set function itself, and those

resulting from the input it is applied to. These groups determine whether a choice

can appear in the escape set of an enclosing capsule. A pull-tab step, like the one

shown above, that splits a set capsule does not affect this property. Therefore, a

choice can either escape all capsules it appears in, or none of them.

Let C =
[
f a0 . . . an

]
be the set capsule produced by a rewrite step applied

to fS a0 . . . an. We consider every way that a choice might be introduced. Choices

that arise from a rewrite rule of f are unboxed, and this property is transitive. If

f is rewritten to produce another function symbol g, then g is also unboxed. Thus,

if g introduces a choice through rewriting, that choice is also unboxed. Choices

that appear in an argument ai are boxed, and choices introduced by a rewrite step

within a box are also boxed. If an expression is rewritten and references a boxed

subexpression, the reference is also boxed. Therefore, if a rewrite step produces a

choice by rewriting a subexpression of a boxed expression, the resulting choice is also

boxed.

A pull-tab step performed by SF.1 produces two set capsules, Cl and Cr. This
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step does not add or remove any boxes, except that if the source of that step is boxed,

the references to its left and right alternatives in the result are also boxed. Therefore,

it does not affect the property that all choices can be divided into the two groups

discussed. This means it is not possible for any choice to belong to both groups, so

no choice can arise that should be added to the escape set of Cl but not the escape

set of Cr. It can occur that a choice is needed in one capsule but not the other, but

in this case, adding its cid to the shared escape set does not cause any problems.

A complication arises when dealing with nested set function evaluations. This

occurs when a boxed argument is used in a further set function expression. For

example, consider the case where we have f = gS, which allows us to derive the

following:

fS a → evalS
[
f a

]
→ evalS

[
gS a

]
→ evalS

[
evalS

[
g a

]]

In this example, the argument a is nested within two capsules and is also double-

boxed. Any choice arising from this argument must escape both capsules. In order

to properly handle this situation, we need to keep track of which capsule a box is

associated with. Fortunately, this is easy to do by annotating each set monitor with

an identifier or reference to the escape set that must be modified when a choice escapes

it. When propagating set monitors, this information is preserved. When a pull-tab

step moves a choice past a set monitor, the associated escape set is then modified.
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The Sprite Curry System

This chapter discusses our implementation of the Fair Scheme (FS) in the Sprite Curry

system. A Curry program compiled by Sprite consists of a fixed portion and a variable

portion. The fixed portion, which includes the implementations of the D and N

target procedures, is integrated into a runtime library that is installed along with the

compiler. The variable component is dependent on the program being compiled and

encompasses program-specific S-rules and details of function and constructor symbols.

During program construction, the variable component is compiled and linked with the

runtime library.

In Sect. 5.1, we will examine the compilation process in detail, including the

intermediate representations used by Sprite and the series of transformations that

convert a Curry source program into its final executable form.

In Sect. 5.2, we shift focus to the runtime library. We will discuss the fundamen-

tal data structures and procedures that underlie the evaluation process, including

the structure of expressions and the mechanisms for selecting rules and performing

164



The Sprite Curry System

replacements.

In Sect. 5.3, we take a closer look at expression evaluation and will consider how

to efficiently apply the target procedures of the FS. Instead of performing recursive

function calls as Figure 3.1 might suggest we scan expressions while looping appli-

cations of the target procedures. This performs essentially the same steps as the FS

but with greater efficiency, resulting in faster program execution.

5.1 Compilation

The Sprite compilation pipeline is illustrated in Figure 5.1. It is the process by which

Sprite converts Curry source programs into an executable form through a series of

transformations. The pipeline is divided into two parts: the front-end and the back-

end.

Curry FlatCurry ICurry ICurry(Py)

C++

Python

bin

Front-End (external programs) Back-End (Sprite compiler)

Figure 5.1: The Sprite compilation pipeline. The front-end converts Curry source
code to ICurry via FlatCurry. The back-end reads ICurry into a Python-based rep-
resentation and then converts that to either C++ or Python code. C++ is converted

into machine-specific binary code, indicated as bin in the diagram.
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The front-end uses two external programs provided by Hanus et al. to convert

Curry into FlatCurry and then into ICurry. We will take a closer look at these

representations in short order. Standard versions of both programs are available

through the Curry Package Manager [92]. These preparatory steps are uniform across

all forms of the final executable. The Sprite compiler proper is found in the back-end,

which loads ICurry and then converts it into an executable form through either C++

or Python code. Here, the steps performed depend on the executable form being

targeted.

Our strategy for compiling does not currently include any optimizations specific to

Curry, but there is potential for adding them in the future. Our pipeline can handle

any optimizer that improves programs represented as FlatCurry or ICurry. ICurry

has been shown to be a good choice for optimizations [68]. Additionally, the C++

target benefits from optimizations offered by modern C++ compilers. Furthermore,

it is possible to create Curry-specific optimizations by converting C++ to LLVM [93]

and applying custom optimizations, and work in this area has been published [67].

Although the focus of the Python target is not on efficiency, its performance could

potentially be improved through methods such as just-in-time compilation [94] or by

cross-compiling to a more efficient target [95].
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D ::= f(x) = e (function definition)
e ::= x (variable)

| c(e) (constructor call)
| f(e) (function call)
| case e of { p→ e; } (case expression)
| e1 or e2 (disjunction)
| let { x = e; } in e (let binding)
| let x free in e (free variables)

p ::= c(x) (pattern)

Figure 5.2: The abstract syntax of a FlatCurry function [98, Figure 3].

5.1.1 FlatCurry

FlatCurry is an intermediate representation used by the PAKCS and KiCS2 Curry

systems to translate Curry programs into either Prolog or Haskell [65, 66]. FlatCurry

has also been used to develop an operational semantics of Curry [44], construct anal-

ysis tools [96], and to verify properties of Curry programs [4, 97]. FlatCurry has

constructs for defining modules, types, and functions, however, for our purpose of

compiling the S-rules of the FS, we only need to focus on function definitions. The

abstract syntax for a FlatCurry function is shown in Figure 5.2.

FlatCurry simplifies and removes unnecessary features from Curry functions. It

transforms each function into a single rule with a linear left-hand side that implements

pattern matching as nested cases on the right-hand side, using variables from the

left-hand side, let bindings, or free variable declarations to build replacements from

variables, constructor calls, function calls, and disjunctions. This results in simpler
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function definitions that are easier to compile than Curry. The FlatCurry form of the

zip function is shown in the next example.

Example 5.1.1. A FlatCurry representation of the zip function is shown below:

1 zip x y = case x of
2 [] -> []
3 (a:as) -> case y of
4 [] -> []
5 (b:bs) -> (a, b) : zip as bs

We borrow Curry’s syntax here to minimize the need for creating a new syntax.

The multiple defining rules of the zip function (shown in Figure 2.2) have been

combined into a single rule whose arguments are distinct variables. Pattern matching

is implemented in the function body through nested case distinctions, with the cases

structured in a manner that aligns with the definitional tree shown in Example 3.1.5.

– end example.

Although FlatCurry simplifies Curry programs considerably, it is not an ideal

representation for implementing the FS. Two constructs in particular pose difficulties.

The first is a cyclical graph, such as the following:

1 inflist = let a = 0 : b
2 b = 1 : a in a

To translate this to an imperative language requires serializing its construction, but

FlatCurry merely provides a definition of this expression, not instructions on how to

build it.
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The second is nested case expressions, an example of which is seen in the following

definition of a function to compute the reciprocal of a number:

1 recip x = 1 /
2 case x == 0 of True -> failed; False -> x

Evaluating this expression in an imperative language requires pausing evaluation

of the division operation while handling the case, then returning to the division.

Similarly, evaluating the case involves first evaluating the subexpression x == 0 and

then returning to the case. Such nested subexpressions can occur to any depth and be

arbitrarily complex, which makes an implementation more complex than necessary.

Our implementation simplifies the generation of target code by converting FlatCurry

to ICurry.

5.1.2 ICurry

ICurry is a procedural representation of Curry programs that is intended to simplify

translations to imperative languages. It has been used for such targets as C, C++,

Python, JavaScript, and Go [67, 98]. This step eliminates problems in FlatCurry by

giving clear instructions for building cyclic expressions and evaluating nested expres-

sions, making the compiler back-end simpler.

We will again focus on function definitions since the main activity of our compiler

is to generate code for S-rules. The structure of an ICurry function is depicted in

Figure 5.3. It consists of a block divided into three parts: variable declarations,
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variable assignments, and a statement defining the replacement. This separation

of variable declaration and assignment, which is exclusive to the imperative style,

serializes the process of creating cyclic expressions and makes it easier to translate

ICurry to the target language. For instance, to build the right-hand side of inflist,

ICurry says to first allocate memory for variables a and b, then assign values to a

and b, and finally return a. Each of these steps is readily expressed in an imperative

target. The simplicity of the process hinges on using the address of b in creating the

value for a before its contents are assigned (or vice versa).

D ::= f = blck (function definition)
blck ::= decl1 . . . declk asgn1 . . . asgnn stm (block)
decl ::= DECLARE x (local variable declaration)

| FREE x (free variable declaration)
asgn ::= v = exp (variable assignment)
stm ::= RETURN exp (return statement)

| EXEMPT (failure statement)
| case x of {c1 → blck1; . . . ; cn → blckn} (case statement)

exp ::= v (variable)
| NODE(l, exp1, . . . , expn) (node construction)
| exp1 OR exp2 (disjunction)

v ::= x (local variable)
| v[i] (node access)
| ROOT (root of function call)

l ::= c (constructor symbol)
| f (function symbol)
| LABEL(v) (node label symbol)

Figure 5.3: The abstract syntax of an ICurry function [98, Figure 3]. A func-
tion consists of a symbol (f) and a block (blck) comprising variable declarations
(decl), assignments (asgn), and a statement (stm). A statment defines a replace-
ment for an application of this function and may involve pattern-matching through
case statements and additional blocks. Elements expected to be provided by an

implementation are represented in capital letters (e.g., NODE).
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As with FlatCurry, pattern matching is carried out in the right-hand sides of

functions. A statement can either return an expression (the replacement) or be a

case statement that performs a distinction and continues to another block that ulti-

mately returns a replacement. Exemptions are treated as a type of return statement

(returning an expression labeled by ⊥), in alignment with how the FS implements

failure.

ICurry eliminates the issues associated with nested applications by utilizing aux-

iliary functions. For instance, it transforms the function recip into one that uncon-

ditionally rewrites to an expression using an auxiliary function as shown below:

1 recip x = 1 / aux x (x == 0)
2 aux x c = case c of True -> failed; False -> x

This approach simplifies the back-end as the evaluation of the case expression and

subsequent division are handled by the rules of the FS.

This example highlights a key difference between the case expressions in FlatCurry

and the case statements in ICurry. In ICurry, the discriminator in a case statement

must be a variable rather than an arbitrary expression. This restriction eliminates the

possibility of nested expressions, forcing the use of auxiliary functions that simplify

the implementation.

Following the transformation of a source program into ICurry, the Sprite back-end

is invoked to produce the parts of the program that depend on its function definitions.
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5.1.3 Generating Target Code

The Sprite back-end converts ICurry into either Python or C++. The conversion pro-

cess is relatively straightforward, as it only involves defining a translation for each

ICurry construct shown in Figure 5.3. The real challenge is creating the runtime

library, which must provide definitions for key objects (such as nodes and symbols),

routines for node allocation and assignment, a mechanism for case distinction, ac-

cess to the designated ROOT expression, access to successors, and implementations for

replacement (rewr), pull-tab (pull), and instantiation steps (inst) among other

things. These details will be discussed in the next section.

The target languages we have selected are complementary. Python produces code

that is easier to inspect, modify, and debug, but is less efficient. Its runtime system

is simpler and memory is managed by Python itself. This means that one can start

a Python debugger or interactive prompt without recompiling, and also inspect the

results of compilation programmatically. It is also not difficult to modify the generated

code by hand. These features can make the development process much smoother. A

drawback of the Python back-end is that is uses recursion when invoking the FS

target procedures, and so can reach Python’s recursion limit for large computations.

Therefore, it is not suitable for practical use with many real programs. On the other

hand, the C++ target is designed for maximum performance and evaluates Curry

programs as quickly as possible. This results in a more complex runtime system and
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generated code, making it harder to debug, inspect, and develop, but greatly improves

practicality.

When generating standalone Python, Sprite creates a file for each compiled Curry

module. Loading one of these files in Python imports necessary Curry modules,

creates a Python object for the Curry module, defines and loads its constructor and

function symbols, and registers the module with the Sprite runtime. Running the file

as a Python script also evaluates a goal, which can be built into the file (often as

main) or specified on the command line. When generating Curry code dynamically,

the Python code is executed immediately in the Python interpreter.

The process is similar when generating C++ code. In standalone mode, each Curry

module is output as a C++ file that defines and registers the module. To build a Curry

program, the necessary modules are compiled with a C++ compiler and linked with

the Sprite runtime library. In dynamic mode, the C++ code is compiled into an

Executable and Linkable Format (ELF) shared object and loaded with dlopen (on

Linux). The runtime system coordinates these activities so that users can simply

interact with Sprite through its Python interface. Usage details will be discussed in

the next chapter.

5.2 The Runtime Library

Our focus now shifts to the specifics of the code generated by Sprite, with a particular

emphasis on the C++ target. We will not delve into the Python target, as the general
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approach is largely similar despite differences in programming techniques and other

details.

In this section, we will examine the fundamental elements present in the Sprite

runtime library. This includes the representation of expressions and the core methods

utilized for selecting rules of the FS and performing replacements. These building

blocks serve as the foundation of the implementation and are used to realize both

the fixed components found in the D and N target procedures and the variable parts

generated by the compiler back-end.

5.2.1 Expressions

Expressions in Sprite are represented as graphs, which are the central objects in our

implementation. Unlike other representations where vertices and edges are stored

in aggregate structures, graphs in Sprite consist of individual nodes. Each node

represents a single vertex and directly stores the specific data associated with that

vertex, including references to its successors. This approach is well-suited to the

incremental changes that occur during stepwise computations.

Our implementation utilizes garbage collection, rather than reference counting, for

memory management. Nodes are allocated from a contiguous pool of memory, and

during the replacement process, some nodes may become unreachable and be consid-

ered as “garbage.” The garbage collector runs periodically to reclaim this memory.

Our implementation follows well-established practices in garbage collection and does
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infoptr

Node object

data1 . . . dataN

tag (integer)
Info table

arity (integer)

format (string)

flags (integer)

name (string)

allocation size (integer)

step (func ptr)

type (struct ptr)

Figure 5.4: The node object memory layout. Each node consists of a pointer to
a static info table followed by one or more data words. An info table describes
the symbol labeling a node. This includes information about the name, arity, and
kind of symbol, the format of the data section, and the function used to reduce

expressions if this kind (when the symbol is a function).

not bring any new innovations to the field, so we will not elaborate further on this

aspect of Sprite.

A diagram of the node memory layout is shown in Figure 5.4. Each node consists

of two parts: an info pointer and a sequence of instance-specific data words. The info

pointer refers to a read-only, compiler-generated table called the info table, which

contains information about the symbol such as its name, arity, memory size, and

other details. The data words contain the actual data, such as the integer value in

an Int node or pointers to the successors of the node. The size of each node varies

depending on its contents. For example, choice nodes contain both an integer (choice
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identifier) and two pointers (to the left and right alternatives), while an Int node

contains only a single word of data. The format field of an info table is a string of

characters indicating the type of each data word, allowing graphs to be easily traversed

without additional information. The info table also includes information specific to

the symbol category, such as the constructor ordinal (for constructor symbols) and

a target function (for function symbols) that performs a single step according to the

compiled S-rules of that function.

Our runtime library defines objects and procedures to support the ICurry elements

expected to be provided by an implementation, as indicated in Figure 5.3. For exam-

ple, a construction procedure implements the NODE action, which allocates a node and

sets its info pointer and data words. An ICurry variable (i.e., introduced by DECLARE)

is similar to a pointer to a node, but also includes additional information to track

set monitors encountered on the path to the expression it is bound to. This is used

to box variable references in replacement expressions (as described in Sect. 4.3). An

assignment procedure associates a variable with a node. Procedures corresponding to

FREE and OR allocate a fresh free variable or choice identifier, respectively, during con-

struction of a specific type of node. Another procedure returns the function-labeled

node, ROOT, currently being evaluated.

This is sufficient to implement everything depicted in Figure 5.3, except for the

case distinctions that select from among the S-rules of a function. This will be our

next topic.
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5.2.2 Rule Selection

The selection of S-rules in the FS is done by performing a case distinction on tags

found in the info tables, as described in [67]. Case statements in ICurry identify the

nodes to be examined, which are the inductive positions in definitional trees. These

statements also specify the actions to be taken when a constructor is encountered,

which align with rules S.1 and S.5 of the FS (see Figure 3.1). The actions for non-

constructor nodes, defined in other S-rules, are combined with these actions to create

the full set of actions to be executed when any node is found. The selection of rules

in the other target procedures, D and N, is performed in a similar manner, except

the positions to be inspected are predetermined rather than being dependent on the

program being evaluated.

The possible tag values are chosen carefully to always differentiate between nodes

that are handled by different rules in the FS. This process can involve several cases.

For example, the rules S.3-5 of the FS inspect a node (o) and perform a rewrite step,

pull-tab step, or recursive invocation of S when o is labeled by a failure, choice, or

function symbol, respectively. Sprite defines separate tags for failures, choices, and

functions so that these can be easily distinguished. Additional rules such as S.x (Page

130) and S.β (Page 143) define additional cases but do not alter this general pattern.

The D and N target procedures similarly select from among several rules at once.

Figure 5.5 shows a selection of the tags used in Sprite. Each constructor of a
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type is assigned a unique tag, counting up from zero. Since programs are well-typed,

there is no need to compare constructors from different types, so constructor tags are

not unique globally. Other nodes are assigned negative values. A complete match

of an f -rooted expression, where f is a function symbol, involves applying rule S.5

once for each branch encountered in a traversal of f ’s definitional tree. Each step

of the matching process performs a distinction between the constructor symbols of a

certain type (and additional non-constructor symbols besides that). When the match

succeeds, this culminates in the completion of a rewrite step (by the rewr action)

when the rule S.1 finally matches, and in other cases results in a different action when

a needed node labeled by another symbol, such as a failure, choice, free variable, or

β, is encountered.

Our implementation compiles all of the S rules for f into a single target procedure

called its step function, whose address is stored in f ’s info table. Unless a needed

Name Value Description

T_SETMON −7 A set monitor.
T_FAIL −6 A failure.
T_CONSTR −5 A constraint (β).
T_FREE −4 A free variable.
T_FWD −3 A forwarding node.
T_CHOICE −2 A choice.
T_FUNC −1 A function.
T_CTOR ≥ 0 A constructor.

Figure 5.5: A selection of tag values used in Sprite. The constructors of each
type are numbered 0, 1, . . . in their declared order and other tags take negative

values. Taken together, all tag values occupy a contiguous range of integers.
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function-labeled node is encountered during the matching process, an invocation of a

step function results in a single rewrite, pull-tab, or instantiation step being performed

without invoking other step functions. This may involve several case distinctions,

depending on the depth of f ’s definitional tree. When a needed function-rooted

subexpression is encountered, a data structure tracking the current position is updated

and the step function returns, which causes processing of the nested subexpression to

begin. The details of this procedure will be discussed later, but it is important to note

that Sprite explicitly manages a heap-based stack rather than using the system stack.

This avoids a great deal of function-call overhead and ensures that deep recursion

does not lead to stack overflow.

To efficiently handle multi-way branches, we implement case distinction using C++

switch statements. The cases must cover all potential actions required to process any

node at a particular point in the FS and rely on the specific arrangement of tag

values shown in Figure 5.5 to ensure a contiguous range of integer indices. This

is necessary for an optimizing compiler to be able to transform these switches into

jump tables. However, instead of placing all the cases into a single switch, we use

a two-step process because many actions are common to all of these switches. For

example, the rule for a failure (i.e., tag value T_FAIL) always results in rewriting

a node with the failure symbol. Duplicating the code for these cases everywhere

would bloat compiled programs, increase their size, cause more unique instruction-

containing memory addresses to be loaded, and potentially increase their execution
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time. Therefore, our runtime provides a function to head-normalize needed nodes.

This function handles non-constructor nodes with standard actions and otherwise

defers so that a second switch, unique to the specific function being compiled, can

provide function-specific cases. Although this approach roughly doubles the number

of case distinctions, it can significantly reduce the amount of duplication in programs.

5.2.3 Replacement Actions

Implementing the rewr, pull and inst target actions involves constructing expres-

sions and performing replacements. We have already discussed construction, so we

will now discuss replacements in our implementation.

To replace a node means to change its label, embedded data, and successors. It

is important to change the node itself rather than simply redirect a particular ref-

erence to it, since the point of using term graphs is to share steps performed at

common subexpressions. In the graph implementation we have described, this can

be accomplished by overwriting the info pointer and data words. But a compli-

cation arises from the fact that nodes have varying sizes based on their contents.

For example, the unary function positives, defined on Page 33, has a size of two

words (one info pointer and one successor), while the non-null list constructor has a

size of three words (one info pointer and two successors). Because of this, the step

positives [1] → 1 : positives [] involves replacing a smaller node with a

larger one, so a straightforward approach is not possible.
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Instead, we implement replacement using special objects called forwarding nodes,

denoted ↪→. A forwarding node holds a reference to another node called the target,

and when one of these is encountered, the implementation simply excises it and con-

tinues as though it was never there. With this, the rewrite step above produces the

expression 1 ↪→: positives [], where the node previously labeled positives has

been relabeled ↪→ and its successor set to point to the replacement, a list constructor.

This approach partially resolves the original issue, but nullary functions pose a prob-

lem because their nodes are smaller than a forwarding node. To avoid this, we set

a minimum size of two words for function-labeled nodes to ensure that every redex

provides enough space for its replacement.

With this, we have everything needed to create expressions and perform the run-

time actions associated with the FS. Next, we will describe how Sprite puts these

pieces together into a complete evaluation system for Curry expressions.

5.3 Expression Evaluation

With the fundamental components of the runtime library now in place, we turn

our attention to evaluating expressions. Our implementation adheres to the actions

specified by the FS but modifies certain details to enhance efficiency. In Chapters 3-4

we described the FS as three mutually recursive procedures. Although this method

was suitable for defining its behavior, directly translating it would lead to excessive

function calls, inefficient use of the runtime’s call stack, and suboptimal performance.
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To see this, consider the list reversal function:

1 reverse [] = []
2 reverse (a:as) = reverse as ++ [a]

A computation reversing the list [1,2,3] using the FS would involve a step, given by

(([] ++ [3]) ++ [2]) ++ [1] → ([3] ++ [2]) ++ [1], whose redex is found

by three invocations of the S target procedure. In general, reversing a list of length

n would require searching for redexes at a depth of up to n nested invocations of

S, which, if implemented naïvely, would involve n function calls and require stack

space proportional to n. This runs the risk of overflowing the stack for long lists and

involves many more function calls than necessary.

Moreover, a naïve implementation would also be inefficient in the way it searches

for redexes. An application of D scans an expression by repeated invocations of N,

then performs one action and moves the expression at the front of the computation

queue to the end. As the computation continues, that expression moves through the

queue and eventually arrives again at the head and is reconsidered. At that point,

D is applied once again and the scan is repeated from the beginning. Restarting in

this way is not only inefficient but also makes the evaluation complexity dependent

on seemingly irrelevant details, such as the location of a redex in a list. For example,

reducing an element at the front of a list would be more efficient than reducing one

at the back.
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We aim to do much better. The scanning procedure in Sprite continues from a

nearby location after each step, enabling it to complete in a single pass what would

require multiple passes with the naïve approach. This changes the order in which

steps are taken. In Sect. 5.3.1 we present the details involved and discuss the potential

issues that arise. We discuss how target procedures can be looped to improve efficiency

while preserving important properties of the FS. In Sect. 5.3.2 we present the core

data structures used to orchestrate computations in Sprite.

5.3.1 Looping Invocations

To increase the ratio of useful steps to useless graph traversal we will loop invocations

of theN and S target procedures (see Figure 3.1). This means that whenN.4 receives

control back from its invocation of S or when S.1 completes a rewrite step, neither

will automatically return control to their respective callers but may instead iterate

on the updated expression.

To illustrate, consider a list L =[a1,. . .,an] in which a certain element (ai) is

a function-rooted expression that can be derived to a value by deterministic rewrite

steps as ai → . . . → v and every other element is an integer (or other irreducible

expression). A naïve implementation of the FS would traverse the list up to ai, apply

a single step and then start over, traversing the list again before applying the next

step. Our objective is to complete this computation in a single pass by traversing the
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list up to ai, applying as many steps as necessary to obtain v, and then proceeding

through the remaining list elements.

This involves changes to our evaluation strategy such as the following:

1. Loop invocations of S until the argument is not function-rooted.

2. Loop invocations of N.4 unconditionally, applying N.

3. Extend N to accept any expression.

The first change causes S to iterate on the node ai until it is no longer function-

rooted. The second change causes N to be reapplied once S returns, which allows

the evaluation to continue at the ith list element without traversing the list again.

Although ai is constructor-rooted at this point, the application of ruleN.3 may lead to

additional steps being applied in a subexpression of ai. The third change is necessary

to extend the rules of N to handle additional possibilities, since control does not

return to D. Ordinarily, the return to D and the existence of rule D.3 means that

N does not need to consider failures. But since we are looping invocations of N

this case must now be handled. Determining the actions of these additional rules is

straightforward and amounts only to considering which target procedures would be

invoked in the absence of looping and duplicating their effects.

The list of changes provided is not comprehensive, but serves as an illustration of

the required changes. In general, whenever a target procedure would return control,
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we must consider how the next invocation of D would proceed and loop it in a way

that eliminates unnecessary target procedure calls. For example, apart from the

aforementioned modifications, we must also modify the N target procedure to ensure

that it follows pull-tab steps with a loop of N at the target of the pull-tab in order to

execute a series pull-tab steps efficiently. This adjustment allows the following steps

to be performed without rescanning the list:

[a, b, c ? d] Ξ−→ a : ([b, c] ? [b, d])
Ξ−→ [a, b, c] ? [a, b, d]

Looping target procedures improves the complexity of computing list L by a factor

of i but raises two concerns. First, an invocation must be looped only when doing so

does not cause unneeded steps to be performed. Second, the evaluation process must

never become stuck on a non-terminating computation such that it fails to ever switch

contexts, since in order to preserve completeness we must ensure that computational

resources are shared among all expressions that could potentially reduce to a value.

To allay the first concern, we can note that if applying S to a function-rooted

expression (e) results in a function-rooted expression (e′), then the call may safely

be looped as S(e′): since e was needed, we can be certain that e′ is also needed.

Similarly, we can loop any invocation of N.4, such as s = N.4(e), without introducing

unnecessary steps. By examining Figure 3.1, we can see that the call sequence for s

involves invoking D.5 followed by zero or more invocations of N.3, and finally s itself.
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If control is returned to D, the expression currently at the front of the computation

queue will eventually return there. When it does, if rule D.5 matches, the same

sequence of D.5 and N.3 invocations leading to s will occur again because only a

subexpression of e was replaced by s. If a rule prior to D.5 matches, a replica of that

rule was added to N so the same action occurs when looping. Thus, looping the call

to N in rule N.4 simply shortcuts the process by which the element at the front of

the queue is rotated to the back, works its way to the front, and is reconsidered. This

does not introduce unneeded steps.

The second consideration requires us to add something. The danger in looping

invocations is that it skips the context switch that allows other live expressions to

receive resources so that they might produce values before the current one completes

(which might never occur). A context switch need not occur after every step, but

must occur every so often to retain the completeness property. We do this by means

of a step counter. Our implementation keeps track of the number of steps performed

in each invocation of D and if after a prescribed number of steps the invocation has

not completed (for example, by processing a choice in D.2, by failing in D.3, or by

producing a value in D.4), then a context switch is forced.

These changes allow us to construct a procedure that efficiently scans expres-

sions and applies computational steps without restarting the scan unnecessarily and

without becoming stuck on non-terminating computations. The implementation of

this will be discussed in the next section along with other elements of the runtime
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orchestration.

5.3.2 Runtime Orchestration

Each time Sprite begins evaluation of a Curry expression, it creates data structures

for managing the computation state and invokes the D target procedure. As values

are produced, control is returned to an external caller and when additional values

are requested the computation continues. When the D procedure terminates, the

computation state is destroyed. In this section we will examine these data structures

and the evaluation process in detail.

Each activation of the evaluation system is managed by a data structure called

a runtime state (RTS), which coordinates the evaluation of one goal. The principal

component of this is a computation queue, made up of configurations that combine

an expression, fingerprint, constraint store, binding store, scan state, and other data.

The RTS keeps only configurations with live expressions, meaning expressions that

are not known to have no values. Evaluation starts by creating a new RTS object with

a single configuration, whose expression is the goal being evaluated. The evaluation

process involves inspecting the configuration at the head of the queue (called the

“current” configuration) and applying steps, which may reduce the expression to a

value, divide it into new configurations, cause the constraint store or binding store

to be updated, or lead to the conclusion that it is inconsistent. Any number of RTS

objects may exist simultaneously and, thanks to the structure of expressions, steps
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are shared between them. Certain data structures, such as the pool of available choice

identifiers, are shared so that these interoperate properly. The RTS also tracks the

number of steps taken in order to periodically rotate its queue.

A fingerprint is a record of the choices made during the evaluation process and

is initially empty. The evaluation process splits configurations when choice-rooted

expressions are encountered, leading to the creation of new configurations referred to

as children. For example, if the parent configuration contained the expression a ?i b

with fingerprint φ, the first child would contain the expression a with fingerprint

φ ∪ {i 7→ l}, and the second child would contain the expression b with fingerprint

φ∪{i 7→ r}. This process is only performed if it results in a consistent computation.

If φ already includes the decision outcome i 7→ l, for example, the second child would

be inconsistent and would not be created.

Constraints arise when the strict equational constraint is applied between two free

variables, as discussed in Sect. 4.2. This leads to the creation of nodes labeled by

the β symbol, which are subjected to pull-tab steps. When a configuration rooted

by βx↔y is examined, that node is removed and the constraint store is updated to

note that x and y must have identical choice outcomes. At this point, the fingerprint

is inspected to determine whether the current configuration has become inconsistent

and if this configuration is forked in the future, the constraints will be considered to

avoid the creation of inconsistent configurations.
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Bindings arise from applications of the non-strict equational constraint and al-

ways bind a free variable to an expression. Like information about strict equational

constraints, information about bindings is carried to the roots of expressions by β

nodes. When a node labeled βx7→e is examined, it is removed and the bindings are

updated. The inst target action consults this data structure when determining how

to replace a free variable occurrence.

Each configuration includes a scan state that manages a depth-first exploration of

the expression in a configuration by moving a cursor through it. The scan can progress

by either descending into the expression under the cursor or moving the cursor to the

next sibling under a constructor-rooted expression. These actions correspond to two

steps in N.3: applying N to a term xi and moving to the next term xi+1. In addition

to the cursor location, the scan state also keeps track of the path to the cursor and any

remaining subexpressions to be explored at each node along that path. In this way,

its structure is analogous to a stack of loops over node successors, nested to arbitrary

depth. This serves a similar purpose as the system stack would in a straightforward

implementation involving recursive function calls, but has the advantage that each

configuration maintains its own scan, rather than using a single shared, global stack.

Evaluation proceeds by repeatedly examining the node under the cursor and per-

forming a control transfer as described in Sect. 5.2.2. When the next action is simply

to invoke a target procedure, the cursor position can be updated accordingly. How-

ever, if the action involves a target action (rewr, pull, or inst), a replacement is
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also made at the cursor. Recursive invocations of S by rule S.5 occur in step func-

tions and are achieved by updating the scan state to reposition the cursor at the new

potential redex and returning control. This ensures that step functions always return,

rather than recurse and consume system stack space.

Many of the RTS components can be implemented using well-known data struc-

tures. For example, the computation queue in Sprite is simply a std::deque from

the C++ standard library. The constraint store is an instance of a disjoint set union,

so we use a straightforward implementation of the union-find data structure and al-

gorithm [99]. Other components require careful balancing of time efficiency and space

efficiency. For example, our fingerprint implementation uses a segmented, hierarchi-

cal design with copy-on-write principles, which is efficient for both small and large

fingerprints. A fingerprint is represented as a tree with branches and leafs, where leafs

store choice outcomes in a compact, bitwise fashion, and branches contain multiple

subtrees and are reference-counted for sharing between fingerprints. When a config-

uration forks, only the root pointer is copied and its reference count is incremented.

Inserting a choice outcome involves modifying unique nodes directly or copying shared

nodes first. This approach prevents computations from progressively slowing down

as fingerprints increase in size, which occurs if a standard implementation such as

std::map is used, since that would copy all choice outcomes.

To evaluate set functions, we require a representation of set capsules, which were

introduced in Sect. 4.3. A set capsule is implemented as a node with two data words
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that hold a reference to the escape set and a computation queue. To enable control

transfers into set functions, the RTS object maintains a stack of computation queues

instead of a single queue. During the evaluation of evalS, its queue is pushed onto

the stack and D is invoked recursively. After the nested invocation returns a value

or when a context switch is required, the stack is popped.

This concludes our description of the Sprite implementation. We have explained

how the FS is put into action, including adjustments such as looping target pro-

cedures. These changes significantly enhance the efficiency of our implementation.

However, they are necessary because our definition of the FS was intended to make

its properties easily provable rather than to create an implementation that maximizes

efficiency via direct translation. In the next chapter, we will shift our focus to the

practical use of Sprite. We will provide an in-depth examination of the Python inter-

face to demonstrate how Curry code can be compiled and loaded into Python, how

Curry expressions can be built and evaluated, and how these distinct programming

domains can be integrated. To cap it off, we will develop a simple application to

demonstrate how Curry can be embedded into Python.
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Using Sprite

In the previous chapters, we presented our evaluation strategy for Curry programs and

described our implementation, Sprite. This chapter focuses on the practical aspects

of using Sprite, particularly its high-level Python interface. We will discuss why and

how one might use Sprite, and what sets it apart from other implementations. In the

next chapter, we will present benchmarking data and efficiency analysis.

Sprite’s close integration with imperative programming through its Python inter-

face allows for a simplified programming process. Dynamic definition, compilation,

and loading of Curry code are possible, as well as interoperability between program-

ming paradigms. This allows for easy embedding of Curry in Python and extending

Curry to use Python. By lowering the barrier between paradigms, programmers have

more freedom in choosing an implementation approach for each task.

In Sect. 6.1, we discuss the high-level features of the Python interface, while

Sect. 6.2 presents an example of embedding Curry in an imperative program.
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6.1 The Python Interface

The Sprite Python interface offers several options for transforming and executing

Curry code. It includes a static compiler that converts Curry files into executable

formats. Additionally, the interface provides functions to load or define Curry code

dynamically, compile it on-demand, and execute it interactively.

Qualitatively speaking, the capabilities for compiling Curry into native programs

do not add much over other Curry systems, and there is not much to say about their

use. Therefore, in the following discussion, we will focus on the unique ways that

the Python interface of Sprite can be used to interact with Curry through a Python

interpreter. Using Python in conjunction with Sprite can simplify the integration of

Curry into a project, especially for developers who are unfamiliar with functional logic

programming. Integrating Sprite into a Python project does not incur performance

or other penalties to parts of the project that do not use it. In other words, it adds

extra capabilities without subtracting from existing ones.

Sprite seeks to enable Curry to be used as transparently as possible. The interface

installs import hooks, which means that Curry code can be loaded using the standard

Python import mechanism, and Curry modules appear in Python as regular modules.

Sprite also provides ways to convert between Python and Curry for simple data

types. These conversions preserve semantics when crossing the language boundary

and, in particular, Curry evaluations are represented in Python using a mechanism
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that preserves their delayed semantics and allows them to be discarded when not all

values of a computation are required.

Python’s popularity, active community, and support for a wide range of appli-

cations make it an attractive language for integrating with Curry. Aside from this,

Python serves as a gateway to other programming domains, since it is possible to

extend Python with modules built in other languages, such as C and C++. Python is

used for machine learning [12–14], numerical and scientific computing [15–17], data

analysis [18, 19], computer vision [20], graph analysis [21], HTTP servicing [22–24],

web application development [25], web scraping [26], parser generation [27], and much

more.

Python’s functional programming features, such as lambda functions and list com-

prehensions, simplify integration with Curry. Generators, a lazy representation of

computations, are particularly helpful in representing Curry computations. Genera-

tors are coroutines constructed by using the yield keyword inside a function. They

can be used to represent computations lazily. When a value is taken from a generator

by applying the next function, control returns to the caller and the generator is re-

tained. If next is applied again the computation continues where it left off. This can

be used to represent arbitrary computations. For example, the following generator

produces an infinite sequence of Fibonacci numbers:

1 def fibs():
2 a,b = 0,1
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3 while True:
4 yield a
5 a,b = b,a+b

To print the first few elements, one can write:

1 fib = fibs()
2 for _ in range(8):
3 print(next(fib))

This prints the sequence 0, 1, 1, 2, 3, 5, 8, 13.

Sequences can be manipulated as well by functional techniques. Two functions

take and drop, to take or drop a specified number of sequence elements, can be

defined as follows:

1 def take(n, gen):
2 for _ in range(n):
3 yield next(gen)
4

5 def drop(n, gen):
6 for _ in range(n):
7 next(gen)
8 return gen

Using these, the expression take(3, drop(4, fibs())) produces the fifth, sixth,

and seventh Fibonacci numbers, i.e., 3, 5, and 8. Using the higher-order function map,

one can transform these elements into their squares as shown here:

map(lambda x: x*x, take(3, drop(4, fibs()))) # [9,25,64]

Equivalently, a list containing the squares can be defined using a comprehension:
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[x*x for x in take(3, drop(4, fibs()))]

Capabilities such as these make Python an ideal choice for integrating with Curry.

Since Curry expressions are multi-valued, a Curry evaluation must be represented in

the host language as an object with delayed evaluation. Python generators provide

an excellent language feature for this purpose and other functional capabilities in

Python fit naturally with Curry.

Next, we demonstrate some basic features of the Sprite Python interface. We do

not provide an exhaustive coverage of Sprite features here but aim to give the reader

a general sense of how Curry and Python interact. The Sprite software comes with a

user guide and other reference materials that document it in detail. In the examples,

Python commands are prefixed with the default Python prompt (>>>) and any output

is shown below that.

6.1.1 Importing Curry Code

To use Sprite in Python, one first imports it with the following statement:

>>> import curry

This uses the standard Python syntax for importing code modules. Curry modules

are imported in similar fashion, but to avoid ambiguities between Curry and Python

modules, they are loaded relative to the virtual module curry.lib, which identifies
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them as coming from the Curry library. A Curry module named Peano could be

loaded into Python using the following command:

>>> from curry.lib import Peano

The non-relative import statement import Peano would be ambiguous if we allowed

it to import Curry code, since Python would not know whether to look for the Python

module Peano.py or the Curry module Peano.curry.

Sprite searches for Curry modules using the paths listed in curry.path. This is

initialized with a system path that allows built-in modules to be found. Users can

add additional paths by setting the environment variable CURRYPATH or by modifying

curry.path once Python is running. For instance, to search for Curry code in the

current directory, the following command to insert '.' at the path head could be

issued:

>>> curry.path.insert(0, '.')

With this, if the current directory contains a file named Peano.curry, then it can

be loaded with the previous statement.

From Python’s perspective, Peano is an ordinary Python module. It contains

Python objects representing the constructor and function symbols defined in the

Curry module, Peano.curry, which are compiled by Sprite during the import process.

Suppose Peano.curry contains the following code:
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1 data Peano = S Peano | Z
2

3 toNum :: Peano -> Int
4 toNum Z = 0
5 toNum (S n) = 1 + toNum n

Then the Peano module would contain the symbols S, Z, and toNum:

1 >>> Peano.S
2 <curry constructor 'S'>
3 >>> Peano.Z
4 <curry constructor 'Z'>
5 >>> Peano.toNum
6 <curry function 'toNum'>

Python provides excellent tools for introspection, which allow us to inspect these

symbols further. For example, here are some of the properties of Peano.S (the full

list of attributes can be found with Python’s dir command):

1 >>> Peano.S.fullname
2 'Peano.S'
3 >>> Peano.S.name
4 'S'
5 >>> Peano.S.typename
6 'Peano.Peano'
7 >>> Peano.S.info.arity
8 1

Function symbols contain similar information, corresponding to what is stored in

the info tables (see 5.2.1) produced by Sprite, and also provide access to the generated

code. For example, to display the code produced for toNum, the following command

can be issued:
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>>> print(Peano.toNum.getimpl())

Having the generated code available programmatically means it can be accessed

by Python’s debugger, so one can step through it to learn about its structure or to aid

in debugging. We will not go through the generated code in detail, though interested

readers may find it instructive to review that in detail.

Curry code can also be compiled dynamically with curry.compile. The following

creates a function to add Peano numbers:

1 Add = curry.compile(
2 '''
3 import Peano
4 add :: Peano -> Peano -> Peano
5 add Z m = m
6 add (S n) m = S (add n m)
7 '''
8 )

Note that in Python triple-quotes deliminate multi-line string literals. In this exam-

ple, curry.compile returns a new module that contains the function add.

6.1.2 Constructing Curry Expressions

Curry expressions can be built in two ways. One option is to construct them in Python

using the curry.expr function, which converts a description of a Curry expression

into that expression. A sequence starting with a symbol specifies a node, whose label

is given by the first element, and whose successors are defined by converting the
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remaining elements recursively. Subexpressions can be specified using Python lists.

For instance, the following statement constructs the Peano number S (S Z):

>>> two = curry.expr(Peano.S, [Peano.S, Peano.Z])

curry.expr automatically converts built-in types including lists, tuples, numbers,

strings, and Booleans. For instance, the following constructs a list of pairs of different

types:

curry.expr([(True, 1), ("Curry", 3.14)])

At first, list conversion might seem ambiguous, but no ambiguity exists. A list

argument specifies a node construction if and only if its first element is a Curry

symbol. There is no representation of Curry symbols in Curry, so every list passed to

curry.expr unambiguously specifies either a node or a Curry list. Accordingly, the

expression Z = curry.expr([Peano.Z]) constructs a node representing zero rather

than a list because the first element is a symbol. On the other hand, curry.expr([Z])

constructs a Curry list because Z is a node rather than a symbol.

Python provides a rich syntax, and curry.expr can be used to build arbitrary

complex expressions. Curry expressions are passed through untouched, so calls to

curry.expr can be nested. Cyclic expressions can be built using named arguments

and the helper function curry.ref, which specifies a reference to a named subexpres-

sion that should be passed as a keyword argument to curry.expr. For instance, con-

sider the following example that constructs the Curry expression let a = S a in a:
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1 inf = curry.expr(
2 curry.ref('a') # ... in a
3 , a=[Peano.S, curry.ref('a')] # let a = S a ...
4 )

This call (to curry.expr) involves two arguments, one of which is positional and

the other a keyword with name a. Each keyword argument supplies a description

that is converted as if curry.expr were applied to it. Keyword names can be chosen

freely by the caller so long as there are no unresolved references. The expression

being constructed is formed only from the positional argument, with the keyword(s)

providing context.

We can use the built-in function id, which gives a node’s memory address, and

subexpression access through square brackets to confirm that inf is indeed cyclical:

1 >>> id(inf) == id(inf[0]) == id(inf[0][0])
2 True

The second way to construct expressions is by calling curry.compile with the ar-

gument mode='expr'. This method is safer but slower. Unlike expressions built with

curry.expr, which bypass the Curry front-end, expressions built with curry.compile

undergo type-checking. This eliminates the possibility of introducing type errors,

which can lead to undefined behavior. Using the second method, we can build an

expression specifying the addition 1 + 2 in the Peano system as follows:

1 onePlusTwo = curry.compile(
2 'add (S Z) (S (S Z))'

201



Using Sprite

3 , mode='expr', imports=[Add, Peano]
4 )

To resolve the symbols, we must provide a list of imported modules. In this we include

the dynamically-compiled module Add, defined earlier, to provide the definition of add.

6.1.3 Evaluating Curry Expressions

Sprite provides the curry.eval function to evaluate Curry expressions. This function

produces a generator that yields all the values of the expression. To begin evaluation

of the Peano addition represented by onePlusTwo, we can write the following:

>>> comp = curry.eval(onePlusTwo)

comp represents a lazy computation in Curry. Since this is a generator, we can apply

next to obtain the value:

1 >>> print(next(comp))
2 S (S (S Z))

The result of this evaluation is a Curry expression of type Peano. If we want to

convert it to an integer, we can apply toNum as shown below:

1 >>> goal = curry.expr([Peano.toNum, onePlusTwo])
2 >>> comp = curry.eval(goal, converter='topython')
3 >>> print(next(comp))
4 3
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In this example, a converter named 'topython', provided by Sprite, is used to convert

a Curry integer into a Python integer. Without it, the result would be a Curry

expression rather than a Python object of type int.

For multi-valued expressions, the generator produces each element of the expres-

sion as a separate value. In addition to using next, all values of a generator can be

taken by iterating over it with a for loop. As an example, consider the following

program that finds solutions that satisfy a small Boolean expression:

1 >>> Sat = curry.compile(
2 '''
3 sat :: Bool -> Bool -> Bool -> (Bool, Bool, Bool)
4 sat a b c | ((a&&b) || (b&&c)) && not (a&&c) = (a, b, c)
5 goal :: (Bool, Bool, Bool)
6 goal = let x,y,z free in sat x y z
7 '''
8 )
9 >>> for value in curry.eval(Sat.goal):

10 ... print(value)
11 (False, True, True)
12 (True, True, False)

In this example, the expression over three Boolean variables (a, b, and c) is satisfied

when a ∧ b or b ∧ c is true, as long as a ∧ c is not. The Curry evaluation produces

two values as separate elements, each representing one solution computed by Sprite.

Though it is not apparent from the representations shown, the values printed are

Curry expressions because the 'topython' conversion was not specified as in the

previous example. Depending on how the result of a Curry computation is used, it

might be more appropriate to use either representation.
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In addition to representing delayed Curry computations in Python, Sprite also

allows data to flow lazily in the opposite direction. Therefore, it is possible to pass

a Python generator to Curry without eagerly evaluating it. Whenever curry.expr

encounters a generator, it treats it as a computation that produces a list. To see how

this works, we return to the fibs function, a Python implementation of the infinite

sequence of Fibonacci numbers. The following example uses the Curry take function

to take the first ten Fibonacci numbers from a sequence generated by Python:

1 >>> from curry.lib import Prelude
2 >>> fib10 = curry.expr([Prelude.take, 10, fibs()])
3 >>> comp = curry.eval(fib10, converter='topython')
4 >>> print(next(comp))
5 [0, 1, 1, 2, 3, 5, 8, 13, 21, 34]

This bidirectional interoperability is a powerful mechanism for constructing hybrid

programs. With this, users are free to cross the boundary between Python and Curry

whenever doing so is convenient, and so hybrid programs using Sprite can more easily

select whichever programming paradigm is best suited to the problem at hand. In

the next section, we present an application that demonstrates the usefulness of this

approach.

6.2 Embedding Curry: Blocks World

In order to demonstrate a practical use of the Python interface, we shall develop

a small application that makes good use of Curry and Python together. This is a
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web application that solves a classical problem in artificial intelligence called “Blocks

World.” Users can enter an instance of the Blocks World problem into a form in their

internet browser and then have our program display a solution. This approach could

also be used to create a service that solves Blocks World problem instances for remote

clients. To create the web portion of this application, we will use a Python micro

web framework called Flask [25]. This makes creating the application straightforward.

The Blocks World problem itself is well suited to Curry. This is a well-known problem

in the automated planning domain, where the concern is to compute strategies or

action sequences that achieve specific goals within a formally modeled domain [100].

When a problem domain can be determined ahead of time, this approach allows one to

derive and evaluate solutions for an autonomous actor (such as a robot or self-driving

vehicle) to carry out at a later time.

The value of this exercise lies in its demonstration of how Sprite allows one to easily

integrate Curry into an imperative programming domain. The Blocks World problem

is known to be NP-hard [101, 102], so a reasonable strategy is to non-deterministically

try all possible solution paths. Implementing such a solution in Python would be

more complex and involve more fine details not directly related to the problem, since

it would need to manage the search space. Using Curry to implement the web portion

of the application is also not ideal, particularly since Flask makes this part so simple.

Although Curry web libraries exist, the greater prevalence of Python, the size of its

programming community, and the availability of training materials and professional
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support make it a sound choice for web programming. These factors motivate us to

build a hybrid application in which Curry is used only to solve instances of the Blocks

World problem, while all other aspects of the implementation are done in other ways.

Blocks World is a generalization of the Tower of Hanoi problem discussed on Page

13. It involves a “world” made up of several stacks of labeled blocks, and a solution is a

sequence of moves that transforms an initial configuration into a desired configuration.

This can be described through a list of moves or a sequence of configurations called

a trace. In each move, the top block of a stack is removed and placed on top of a

different stack. In our simplified version of the problem, there are only five blocks

labeled A, B, C, D, and E, three stacks, and no restrictions on which blocks can

be stacked on top of others. We will not elaborate on variations or address input

validation for the demonstration. An instance of the Blocks World problem is given

in the following example.

Example 6.2.1. An instance of the Blocks World problem is given below:

Initial configuration: A sits atop B in the first stack.

Final configuration: A sits atop B in the third stack.

A solution to this problem is the following sequence of moves:

1. Move block A from the first stack to the second stack.

2. Move block B from the first stack to the third stack.

206



Using Sprite

3. Move block A from the second stack to the third stack.

– end example.

Our application serves a single web page that presents a form used to specify an

initial and a final configuration. When the form is submitted, a solution is computed

and the display is updated to show it. A picture of the interface is shown in Figure

6.1. The project consists of Python, Curry, and HTML code. The main part of the

application is defined with Flask, using an HTML template to define the graphical

interface. The Blocks World solver is written in Curry. Additional Python code uses

the Sprite interface to connect this to the main application. The files that make up

this project are described below:

• main.py: The web application definition (code listed in Figure 6.2).

• form.html: The graphical user interface definition (code not listed).

• solver.curry: The Blocks World solver (code listed in Figure 6.3).

• logic.py: The application logic (code listed in Figure 6.4).

Our main interest is in logic.py, since that represents the unique contribution of

our work. We will briefly comment on the other files before looking at that in detail.

The Flask Python code is shown in Figure 6.2. This creates an application to

serve HTML code and routes user actions to the appropriate handler functions. The

first few lines import code from the Flask library (line 1) and from the logic portion of
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Figure 6.1: The graphical interface of the Blocks World web application.

our application (line 2) and then creates a Flask object representing the application

(line 4). Statements beginning with the “at” (@) symbol use Python decorators to

connect the function defined below them to the application. This is used to define

two handlers for HTTP GET and POST methods.

Our application serves a single form produced by rendering a template found in the

file form.html. The rendering process implements certain safeguards, such as protect-

ing against HTML injection attacks, that could be important for real applications.

Such security considerations are a reason developers may prefer a widely-deployed

web framework such as Flask over a less widely-used solution in Curry. This form

contains an optional section for displaying a solution, which is rendered only when

the parameter solution is passed to render_template in line 13. In response to an
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1 from flask import Flask, render_template, request
2 from . import logic
3

4 app = Flask(__name__)
5

6 @app.route('/', methods=['GET'])
7 def display():
8 return render_template('form.html')
9

10 @app.route('/', methods=['POST'])
11 def respond():
12 solution = logic.get_solution(request.form)
13 return render_template('form.html', solution=solution)
14

15 if __name__ == '__main__':
16 app.run()

Figure 6.2: Contents of main.py. A Flask application is created (line 4) and run
(line 16). This application routes HTTP GET requests to the function display

(line 7) and HTTP POST requests to the function respond (line 11).

HTTP GET request, the form is displayed with no solution (line 8). In response to

an HTTP POST request, which occurs when the form is submitted, it is displayed

with the computed solution (lines 12-13), as shown in Figure 6.1.

The HTML code found in form.html is straightforward but lengthy and is not

listed. It defines three input fields (i1, i2, i3) for the initial configuration and three

input fields (f1, f2, f3) for the final configuration.

The Blocks World solver is shown in Figure 6.3. A block is represented simply

as A, B, C, D, or E, and a configuration (type World) is a triple of lists of blocks. A

solution is a list of configurations (type Trace). The problem instance described in

Exam. 6.2.1 can be solved by evaluating the following expression:

209



Using Sprite

1 data Block = A | B | C | D | E deriving Eq
2 type World = ([Block], [Block], [Block])
3 type Trace = [World]
4

5 solve :: World -> World -> Trace
6 solve initial final = extend [initial]
7 where
8 move :: World -> World
9 move (x:xs, ys, zs) = (xs, x:ys, zs) ? (xs, ys, x:zs)

10 move (xs, y:ys, zs) = (y:xs, ys, zs) ? (xs, ys, y:zs)
11 move (xs, ys, z:zs) = (z:xs, ys, zs) ? (xs, z:ys, zs)
12

13 extend :: Trace -> Trace
14 extend (t:ts)
15 | t == final = reverse (t:ts)
16 | elem t ts = failed
17 | otherwise = extend (move t : t : ts)

Figure 6.3: Contents of solver.curry, a solver for the Blocks World problem.
A configuration is a triple of lists of blocks (type World) and a solution is a trace
(type Trace). Function solve reduces non-deterministically to all solutions for a
given problem instance. Function move generates all legal moves available from a
given configuration. Function extend extends a trace by one step. The phrase
deriving Eq (line 1) makes the Block type comparable by operator ==. From
the Curry standard prelude, function reverse (line 15) reverses a list, elem (line
16) indicates whether a particular value appears in a list, and failed (line 16)

represents a failed computation.

solve ([A,B],[],[]) ([],[],[A,B])

This produces several solutions, among which we find the following one that corre-

sponds to the solution described in the example (and also shown in Figure 6.1):

[([A,B],[],[]),([B],[A],[]),([],[A],[B]),([],[],[A,B])]

The logic portion of our application connects the other components together. Its

source code is listed in Figure 6.4. This module accesses the Blocks World solver
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by importing its Curry implementation. The import relative to curry.lib (line 2)

instructs Sprite to load the Curry file solver.curry as a Python module.

When it is time to compute a solution and update the graphical display the

following actions are performed: (1) a problem description is extracted from the

1 import curry
2 from curry.lib import solver
3

4 FORM = ('i1','i2','i3'),('f1','f2','f3')
5

6 def get_solution(data):
7 configs = (
8 tuple(build_stack(data[fld]) for fld in fields)
9 for fields in FORM

10 )
11 goal = curry.expr(solver.solve, *configs)
12 trace = next(curry.eval(goal))
13 return show_trace(trace)
14

15 def build_stack(stk):
16 # E.g., "AB" -> [A, B] where A, B are Curry exprs.
17 return [curry.expr(getattr(solver, c)) for c in stk]
18

19 def show_trace(trace):
20 return '\n'.join(show_config(cfg) for cfg in trace)
21

22 def show_config(cfg):
23 return ' '.join(show_stack(stk) for stk in cfg)
24

25 def show_stack(stk):
26 return '[%s]' % ''.join(str(blk) for blk in stk)

Figure 6.4: Contents of logic.py. The built-in function getattr accesses object
attributes, so getattr(solver, c) is equivalent to solver.A when c is bound to
the string "A". The embedded use of the for keyword (lines 8, 9, 17, 20, 23, and
26) produces sequence comprehensions. The use of square brackets ([ and ]) in

line 16 constructs a list (using a list comprehension).
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form data, (2) the problem description is converted into a Curry goal, (3) the goal

is evaluated, (4) the solution is transformed into a string suitable for display in the

updated form.

These actions are carried out by the function get_solution (lines 6-13). This

function accepts a single argument (data) containing the form data and returns a

text description of the solution to the given Blocks World problem. The field names

listed in the global variable FORM are used to extract descriptions of the initial and

final configurations from the form data (lines 7-10). For example, when fld is bound

to 'i1', the expression data[fld] returns the string "AB" for the problem instance

we have been using.

A configuration is a triple of lists of blocks and each list is constructed by a call

to function build_stack, which converts a string into a (Python) list of Curry Block

expressions. For example, the expression build_stack("AB") returns the Python list

[A, B], where A and B are Curry expressions constructed by curry.expr in line 17.

The Curry goal is constructed (line 11) by applying function solve (defined in

Figure 6.3) to the tuples stored in configs, which holds descriptions of the initial

and final configurations. curry.expr converts the Python tuples and lists into Curry

tuples and lists and applies the function, producing a Curry expression. The call to

curry.eval (line 12) invokes Sprite to evaluate the goal. The use of Python’s next

function to retrieve a single result means that only one value is computed. Variations

are possible. A modified version of this application could, for example, report all
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solutions or choose a shortest one. In the latter case, the selection of a shortest

solution could be done in Curry through the use of set functions or in Python by

iterating over all of the results of a complete computation.

To display the results, we convert each configuration in the trace into a string

using show_trace (line 19) and the related functions below it. Each stack is shown

as a sequence of characters enclosed in square brackets (as seen in Figure 6.1). The

expression str(blk) converts a Curry object of type Block into the Python string

matching its label (line 26). For example, if blk is bound to the Curry expression A,

then str(blk) produces the Python string "A".

The Blocks World application showcases the benefits of integrating Curry into an

imperative programming environment using Sprite. Our solver, written in Curry, is

both efficient and concise. A significant factor contributing to its simplicity is that

the Curry code does not require input or output operations, as those are handled in

Python. This feature may significantly increase the appeal of this approach for users

coming from an imperative programming background who might not be familiar with

Curry or Haskell.

Our web application’s code is brief, comprising only a few lines of Python code.

The “glue” code found in logic.py demonstrates the simplicity of crossing the bound-

ary between Curry and Python. A short comprehension expression using the one-line

function build_stack handles the encoding of a Blocks World configuration provided

by the user. Additionally, a few one-line functions convert the solution from Curry
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into text for display.

In the next chapter, we will explore the runtime performance and other attributes

of programs Sprite generates by comparing these with program generated by two

other Curry systems for a variety of benchmark programs.
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Benchmarks

In previous chapters, we outlined our compilation strategy for Curry programs, the

Fair Scheme (FS), and introduced our Curry system, Sprite. In this chapter, our

focus is on benchmarking Sprite to compare its performance against other popular

implementations. This analysis not only allows us to determine Sprite’s relative

standing but also identify potential optimizations for both Sprite and related systems.

We will be comparing Sprite with two other Curry systems: The Portland Aachen

Kiel Curry System (pakcs) Version 3.4.1-b6 using SWI Prolog Version 7.6, and The

Kiel Curry System (kics) Version 3.0.0-b5 using GHC Version 8.6.5. Previous com-

parisons have been made between these systems, and we base our benchmarking suite

on the programs that were originally used [47], with the addition of a few new ones.

We omit programs that rely on non-standard Curry modules not implemented in

Sprite, and resize inputs in certain cases. All measurements were carried out on an

Intel(R) Core(TM) i7-1075H CPU operating at 2.60 GHz, and all reported times are

in seconds. Programs were generated and compiled with optimizations enabled as
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determined by the respective Curry system used, and the C++ emitted by Sprite was

compiled using the GNU C++ compiler Version 9.4.0 with the -O3 optimization flag.

We will begin by demonstrating the completeness property of Sprite in Sect. 7.1,

which sets it apart from other Curry systems. Next, we will divide the remaining

benchmarks into two groups. In Sect. 7.2 we will discuss the performance of deter-

ministic functional programs, and in Sect. 7.3, we will examine the broader category

of non-deterministic functional logic programs. Finally, in Sect. 7.4, we will analyze

the benchmark results and discuss possible areas for improvement.

7.1 Completeness

The completeness property shown in Figure 3.4.10 is a unique feature of Sprite, and

as far as we know, no other Curry system can claim to have it. It is possible to create

a program that can be computed by Sprite but not by PAKCS or KiCS2, such as the

following:

1 loop = loop
2 main = loop ? 1 ? loop

This program contains an endless loop, causing the computation of main to never

terminate. Despite this, Sprite instantly produces the value 1, while PAKCS and

KiCS2 do not produce this value at all. Additionally, Sprite produces all values

where the others do not in the following case:
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1 loop = loop
2 main = 1 ? loop ? 2

Both PAKCS and KiCS2 produce the value 1 but not 2. This reveals the left-bias in

those systems, which process choices from left-to-right.

The symbol loop cannot be reduced to a value in any number of steps. A different

issue arises when a symbol produces an infinite number of choices, as is the case with

the next program:

1 branch = branch ? branch
2 main = branch ? 1

Sprite produces the value 1, which the other system do not find. Here, it is crucial for

Sprite that new choice alternatives are placed at the end of the computation queue,

as done by rule D.2 in Figure 3.1. If that rule instead put the alternatives at the

head of the queue, the endless proliferation of new computation paths ahead of the

fruitful one could prevent the value from being produced.

Despite the theoretical completeness of the FS, our implementation still has prac-

tical limitations, so it is not always possible to guarantee that every value is produced.

For example, consider the following:

1 bgen n = bgen (2 * n + 1) ? bgen (2 * n) ? n
2 main | bgen 1 == 1000000 = True

This program generates natural numbers using an exponential process, and although

it has a value, the memory on our system is exhausted long before Sprite computes it.
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If the target value is small enough, however, such as 10, Sprite produces the intended

value. Alternatively, if we consider time as a resource, we can define a program

whose value is not produced by Sprite due to an impossibly long computation, such

as attempting to compute Ackerman’s function for anything but tiny inputs. Such

practical limits are unavoidable and do not detract from our completeness claim.

7.2 Functional Benchmarks

The Curry systems that we examine each handle deterministic programs differently,

and these differences significantly impact their efficiency. In PAKCS, function appli-

cations are evaluated using the principle of resolution, which is relatively inefficient.

In fact, as we discussed in Sect. 1.2, a primary motivation for bringing functional

features into logic programming was to improve the relatively poor efficiency of logic

programming as compared to functional programming. By translating Curry into the

logic programming language Prolog, we should expect PAKCS to sacrifice efficiency

relative to other approaches.

Both KiCS2 and Sprite translate deterministic programs into graph reduction

systems. Although their approaches are similar, the Haskell programs generated by

KiCS2 are compiled by GHC, which is far more mature than Sprite and handles

most aspects of program evaluation more efficiently. In addition to having a more

efficient runtime system, including a sophisticated garbage collector [103] and other
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pakcs kics sprite
Half 10.48 0.29 0.81
Hamming 10.68 0.07 1.31
Fib 9.15 0.05 0.60
Palindrome 9.00 0.04 1.06
Peano 1.24 0.04 0.29
Primes 89.27 0.18 8.67
Psort 282.90 0.69 43.80
Qsortlet 22.25 0.03 2.23
Queens(10) 83.37 0.14 6.94
Quicksort 108.01 0.11 13.55
Reverse 5.29 0.13 1.62
ReverseBuiltin 10.42 0.15 1.20
ReverseGroups 20.97 0.02 1.53
ReverseHO 10.27 0.11 1.16
ReverseUser 5.34 0.13 1.62
SearchMAC 2.14 7.42 7.96
Tak 124.00 0.26 6.15
TakPeano 42.86 0.13 6.72

Figure 7.1: Execution times (s) of deterministic benchmarks programs.

such details, Haskell programs are subject to sophisticated optimizations that can sig-

nificantly reduce execution time. Since deterministic Curry programs are essentially

Haskell programs, we should not expect Sprite to match the performance of KiCS2

in such cases. We will discuss the implications of this in Sect. 7.4.

The results for our deterministic benchmarking programs are shown in Figure

7.1. Without exception, the execution times are longest for PAKCS and short-

est for KiCS2, with Sprite falling in between. Most of these programs were taken

from the KiCS2 benchmark suite and are discussed in detail in [47]. We include

both first-order programs (such as Tak and TakPeano) and higher-order programs
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(such as Primes and Queens). We also include standard benchmarks for comput-

ing Fibonacci numbers (Fib), reversing lists (Reverse*), and sorting lists (Psort,

Qsortlet, and Quicksort). Certain programs compute with the Peano representa-

tion of natural numbers (Half, Peano, and TakPeano) while others work with native

integers (Hamming, Primes, and Tak).

We will use Queens for comparison with non-deterministic approaches to the same

problem in the next section, so we include its source code here:

1 queens nq = length (gen nq)
2

3 gen n = if n==0
4 then [[]]
5 else [(q:b) | b <- gen (n-1), q <- [1..nq], safe q 1 b]
6

7 safe _ _ [] = True
8 safe x d (q:l) = x/=q && x/=q+d && x/=q-d && safe x (d+1) l
9

10 main = queens 10

We include the following program (Hamming) for computing Hamming numbers:

1 ordMerge (x:xs) (y:ys) | x==y = x:ordMerge xs ys
2 | x<y = x:ordMerge xs (y:ys)
3 | x>y = y:ordMerge (x:xs) ys
4

5 hamming = 1:ordMerge (map (*2) hamming)
6 (ordMerge (map (*3) hamming)
7 (map (*5) hamming))
8

9 main = take 200 hamming

Additionally, we include a program (ReverseGroups) to reverse sections of a list:
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1 kreverse k xs = let (h,t) = (take k xs, drop k xs) in
2 if length h == k then reverse h ++ kreverse k t else h
3

4 main = [kreverse i [1..5000] | i <- [1..50]]

SearchMAC solves the classic “Missionaries and Cannibals” problem.

Our goal is not to stress test Sprite. We therefore do not characterize how it

scales to large problem sizes. However, we should note that we did not observe any

indications of poor performance that could suggest problems with high algorithmic

complexity for longer or larger programs. A basic demonstration of this can be made

by running a program for various input sizes. The Tak program is defined as follows:

1 tak :: Int -> Int -> Int -> Int
2 tak x y z = if x <= y then z
3 else tak (tak (x-1) y z)
4 (tak (y-1) z x)
5 (tak (z-1) x y)

Figure 7.2 reports the execution time for different input sizes. The results show a

relatively constant ratio between the time needed by Sprite and the time required by

either PAKCS or KiCS2. For example, the ratio between Sprite and PAKCS remains

approximately constant at a factor of 20.0 ± 0.5, suggesting these implementations

have similar computational complexity for this range of input sizes.
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pakcs kics sprite
tak 24 16 8 34.48 0.08 1.68
tak 27 16 8 124.00 0.26 6.15
tak 33 17 8 3405.46 6.80 174.87

Figure 7.2: Execution times (s) of Tak for a variety of input sizes.

7.3 Functional Logic Benchmarks

Curry is a non-deterministic programming language, and so benchmark results are

particularly relevant when studying non-deterministic programs. These results are

shown in Figure 7.3. PAKCS again tends to produce the longest execution times, but

for these programs, KiCS2 and Sprite are more evenly matched. In 58% (7/12) of the

cases, Sprite is faster, while KiCS2 is faster in 33% (4/12). In one case, the results are

a tie. The difference in results between KiCS2 and Sprite is generally within a factor

of about 2, except in three cases: for PokerChoice, Sprite is over 47 times faster;

pakcs kics sprite
ColormapChoice 1.12 1.02 0.51
ColormapFree 1.09 0.59 0.46
Horseman 11.21 1.09 0.75
Last 6.54 0.78 0.83
PaliFunPats 18.94 0.17 0.17
PermSort 28.38 8.07 4.99
PermSortPeano 54.67 8.39 10.55

S PokerChoice 1377.95 0.95 0.02
S PokerFree sus 0.37 0.02
S QueensSet 30.26 11.93 0.67

RegExp 35.81 1.72 3.04
SearchQueens 35.48 3.71 7.57

Figure 7.3: Execution times (s) of non-deterministic benchmark programs. The
result sus indicates execution suspended without completing. Programs that utilize

set functions are indicated by the symbol S.
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for PokerFree, Sprite is over 18 times faster; and for QueensSet, Sprite is nearly 18

times faster. The largest advantage shown by KiCS2 is for SearchQueens, where it

is just over 2 times faster than Sprite.

In two cases, PAKCS exhibits aberrant behavior, suspending the computation in

PokerFree before it is complete and running four to five orders of magnitude slower

than KiCS2 or Sprite, respectively, in the case of PokerChoice. We will not discuss

these results in detail.

As in the previous section, many of these tests are taken from the KiCS2 bench-

mark suite, and were discussed in [47]. To these we have added several additional

tests, which we discuss below. The Colormap* tests perform map coloring. Their

implementation is as suggested by the following (where some repetitive code is omit-

ted):

1 data Color = Red | Green | Yellow | Blue
2 aColor = Red ? Green ? Yellow ? Blue
3

4 correct l1 l2 l3 l4 l5 l6 l7 l8 l9 l10 l11 l12
5 | diff l1 l2 & diff l1 l3 & . . .
6 = [l1,l2,l3,l4,l5,l6,l7,l8,l9,l10,l11,l12]
7 where diff x y = (x == y) =:= False
8

9 main = correct aColor aColor aColor aColor . . .

The difference between ColormapChoice and ColormapFree lies in the definition

of aColor. The code listing above shows the definition for ColormapChoice. For

ColormapFree, the definition is changed as follows:
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aColor = x where x free

Horseman solves the classic “Horses and Men” puzzle as follows:

1 data Nat = O | S Nat
2 add O n = n
3 add (S m) n = S (add m n)
4

5 horseman m h heads feet =
6 heads =:= add m h &
7 feet =:= add (add m m) (add (add h h) (add h h))
8

9 goal m h = horseman m h (int2nat 460) (int2nat 1160)
10 main = goal m h &> (m, h) where m,h free

This answers the question “How many horses and men together have 460 heads and

1160 feet.” The function int2nat (not shown) builds the natural number correspond-

ing to a given integer. This implementation uses unification to assign suitable values

to the free variables, m and h, representing the number of men and horses, respectively.

Last computes the last element of a long list by unification. PaliFunPats defines

a palindromic constraint using functional patterns. PermSort is a permutation sort

in which permutations are defined non-deterministically. We should note that this

program is larger (n=14) than the deterministic permutation sort represented by

Psort (n=10) in Figure 7.1. PermSortPeano is identical to PermSort except that it

works with natural numbers rather than native integers. RegExp implements pattern-

matching with regular expressions.
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The Poker* programs are adapted from the Curry tutorial and use functional

patterns and default rules to determine whether a poker hand scores a four-of-a-kind.

The source code of PokerChoice is shown below:

1 data Card = Card Rank Suit
2 data Rank = Ace | King | Queen | Jack | Ten | Nine | Eight
3 | Seven | Six | Five | Four | Three | Two
4 data Suit = Club | Spade | Heart | Diamond
5

6 rank (Card r _) = r
7 anyRank = Ace ? King ? Queen ? Jack ? Ten ? Nine ? Eight
8 ? Seven ? Six ? Five ? Four ? Three ? Two
9

10 isFour (x++[_]++z)
11 | map rank (x++z) == [r,r,r,r] = Just r where r free
12 isFour'default _ = Nothing
13

14 hands = [(Card anyRank Club),(Card anyRank Spade),
15 (Card anyRank Heart),(Card anyRank Diamond),
16 (Card anyRank Diamond)]
17

18 goal = isFour hands
19 main = minValueBy (\_ _->EQ) (set0 goal)

The two versions of these programs differ in how anyRank is defined in a similar way

to how the Colormap* programs differ. In PokerFree, card ranks are generated as

follows:

anyRank = x where x free

The inclusion of a set function applied to the goal and its reduction by minValueBy,

which is defined in the set functions module, serves to avoid printing a large number
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of results. We do this because we are interested in comparing computation times

rather than formatting or printing times. Including this reduces the KiCS2 execution

time appreciably. Similar techniques are used in certain other benchmark programs

to reduce the output size.

QueensSet and SearchQueens provide two additional solutions to the N -Queens

puzzle. Both use a generate-and-test approach where all permutations are generated

on an 8-by-8 chess board. QueensSet is defined as follows:

1 perm [] = []
2 perm (x:xs) = ndinsert (perm xs)
3 where
4 ndinsert ys = x : ys
5 ndinsert (y:ys) = y : ndinsert ys
6

7 queens n | isEmpty ((set1 unsafe) p) = p
8 where
9 p = perm [1..n]

10 unsafe (_++[x]++y++[z]++_) = abs (x-z) =:= length y + 1
11

12 main = queens 8

SearchQueens is similar but does not use set functions or functional patterns to

filter out unsafe placements. Its source code is shown below:

1 permute :: Prelude.Data a => [a] -> [a]
2 permute [] = []
3 permute (x:xs) | u++v =:= permute xs = u++(x:v)
4 where u,v free
5

6 allSafe :: [Int] -> Bool
7 allSafe qs = allSafe' $ zip qs [1..] where
8 allSafe' :: [(Int,Int)] -> Bool
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9 allSafe' [] = True
10 allSafe' (xy:xys) = all (safe xy) xys && allSafe' xys
11

12 safe :: (Int,Int) -> (Int,Int) -> Bool
13 safe (a,b) (c,d) = abs (a-c) /= abs (b-d)
14

15 abs :: Int -> Int
16 abs x | x < 0 = -x
17 | otherwise = x
18

19 queens :: Int -> [Int]
20 queens n | allSafe qs = qs where qs = permute [1..n]
21

22 main = queens 8

The significant differences in the time required to compute the various solutions

to the N -Queens problem are worth noting. In the deterministic version (Queens),

KiCS2 runs almost 50 times faster than Sprite. In one non-deterministic version

(SearchQueens), KiCS2 is approximately 2 times faster. However, in the alternative

non-deterministic version that uses set functions (QueensSet), Sprite is faster by a

factor of almost 18. Generally speaking, we observed that programs involving set

functions show the most significant efficiency advantage for Sprite, and by a wide

margin.

7.4 Discussion

The benchmarking results presented in this study support several interesting conclu-

sions and suggest future work. First, our findings indicate that the performance of

Sprite typically falls between that of PAKCS and KiCS2, with Sprite being closer

227



Benchmarks

in speed to the faster of the two, KiCS2. Since one of the main goals of functional

logic programming is to improve upon the performance of logic programming, it is

noteworthy that Sprite achieves this relative to PAKCS, particularly for determin-

istic programs. The significant differences between KiCS2 and Sprite can be partly

attributed to the greater maturity of GHC. Therefore, improving the implementation

quality of Sprite directly could improve its performance. This could involve optimiz-

ing parts of the Sprite runtime system or adding passes to optimize Curry programs

compiled by Sprite. A factor that affects Sprite’s execution times is its relatively

simple memory system. Sprite’s garbage collector is synchronous, non-parallel, and

non-generational, and has not been characterized or optimized in any significant way.

Future work to improve the garbage collector could reduce Sprite’s execution times,

bringing them closer to those of KiCS2.

It is likely that the differences in execution time for numeric benchmarks like Tak

are largely due to unboxing optimizations performed by GHC. Numeric values are

boxed by placing them inside another data structure, allowing the runtime system

to treat them like any other object. Unboxing enables computations to use native

representations of numbers, reducing the time required for creating and destroying

nodes and reducing the number of memory read and write operations.

Although Sprite does not perform unboxing, an implementation based on the Fair

Scheme (FS) could do so. One way to accomplish this would be to extend ICurry

with a representation of unboxed data and then perform unboxing for deterministic,
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numeric computations. To preserve the completeness property, it would be necessary

to interrupt unboxed computations periodically to allow for context switching. With-

out boxes, there are no steps, so an implementation might utilize additional threads

of execution and use signal interrupts for preemption. GHC performs additional

optimizations, such as deforestation, that have been well-studied and documented.

Libby has investigated several of these optimizations in the context of Curry and has

demonstrated their potential to improve efficiency [68]. These optimizations can be

applied to FlatCurry or ICurry, and could be integrated into Sprite with minimal

disruption.

The benchmarking data clearly demonstrate that KiCS2 has a significant advan-

tage over Sprite for deterministic programs, as shown in Figure 7.1. However, these

programs do not make use of the most salient features of Curry, namely the non-

deterministic ones. When non-determinism is involved, KiCS2 no longer exhibits a

clear advantage over Sprite. One reason for this may be that non-determinism inter-

feres with certain optimizations, including unboxing. To support non-determinism,

KiCS2 extends certain types with additional constructors. For instance, the integer

type is extended with constructors to represent failure and choices, among other pos-

sibilities. While GHC can replace a built-in Int with an unboxed integer, it cannot

do so for an extended integer. KiCS2 performs analysis to avoid extending types

unnecessarily in deterministic contexts, but it is unavoidable for non-deterministic
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computations. Therefore, the presence of non-determinism hinders GHC from apply-

ing certain optimizations, which could account for the less pronounced differences in

execution times shown in Figure 7.3.

While KiCS2 automatically separates the non-deterministic portions of each pro-

gram to improve efficiency, Sprite provides alternative methods to achieve similar

results. In particular, Sprite offers a hybrid programming environment that simplifies

the process of defining deterministic functions outside of Curry. For instance, the

Cython package [95] provides extensions to Python for compiling Python-like code to

low-level C code. Using this, the tak function can be defined as follows:

1 cpdef long long tak(long long x, long long y, long long z):
2 if x <= y:
3 return z
4 else:
5 return tak(tak(x-1,y,z), tak(y-1,z,x), tak(z-1,x,y))

By adopting this approach, we can perform an efficient computation of tak outside of

Curry while still utilizing non-deterministic features in other parts of an application

with Curry. Figure 7.4 shows the execution times for this implementation, suggesting

that this approach can be very efficient.

pakcs kics sprite cython
tak 24 16 8 34.48 0.08 1.68 0.01
tak 27 16 8 124.00 0.26 6.15 0.01
tak 33 17 8 3405.46 6.80 174.87 0.30

Figure 7.4: Execution times (s) of Tak, including Cython.
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The benchmarking data suggest Sprite is particularly efficient when evaluating

set functions. In Figure 7.3, the tests utilizing set functions (indicated by S) are

considerably faster than PAKCS and KiCS2. This suggests our novel approach to set

functions holds promise. Further work is needed to characterize our approach relative

to others, determine why such a large difference exists, and see if this approach is

suitable for use in other Curry systems, such as KiCS2. One possible explanation

for this difference is the way our approach shares subexpressions between disjoint

sets. In the QueensSet implementation of the N -Queens problem, any pair of unsafe

queens eliminates a potential solution, even though the remaining queens may be

placed in any permutation. With our implementation, computing a single unsafe

pairing causes many sets to become non-empty, potentially without performing many

additional steps. Since these computations are shared, many steps can be avoided in

this way. This theory is supported by the data shown in Figure 7.5, where QueensSet

involves fewer steps than other implementations.

Although choices and free variables are equivalent terms of their expressive power,

kics (s) sprite (s) # of steps
Queens 0.00 0.25 2167580
QueensSet 11.93 0.67 1691204
SearchQueens 3.71 7.57 32795975

Figure 7.5: Execution times (s) and number of steps taken by Sprite for solutions
to the 8-Queens problem.
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the results in Figure 7.3 suggest they differ in their efficiency. Comparing the pro-

gram ColormapChoice with ColormapFree and PokerChoice with PokerFree, we

observe that free variables may perform slightly better than choices in certain cases,

and that this is true for both Sprite and KiCS2. For Sprite, we speculate that this

may due to the higher cost of constructing large “choice trees” as compared to con-

structing generator expressions, which use a built-in, hand-optimized routine. This

suggests several potential improvements. For instance, we could optimize programs

by replacing certain choice expressions with free variables at compile time. Even in

cases where most, but not all alternatives are covered, it may still be beneficial to use

use a free variable while filtering out unwanted alternatives after the fact. Another

possible improvement would be to optimize the construction of large choice trees,

such as the ones found in aColor (ColormapChoice) and anyRank (PokerChoice), to

more closely resemble the construction of generator expressions.

Overall, our benchmark results indicate that Sprite is a viable alternative to ex-

isting Curry systems. Although its efficiency does not compete with KiCS2 for deter-

ministic programs, Sprite is competitive for non-deterministic programs and overall

superior to PAKCS. In particular, our novel approach to set functions shows promise.

Sprite’s lower efficiency for deterministic programs is mitigated by the fact that it

provides ways to integrate deterministic code from other programming environments

with Curry.
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Conclusion

In this dissertation, we have described functional logic programming and the Curry

programming language. We introduced an original evaluation strategy for Curry pro-

grams, called the Fair Scheme (FS). We provided definitions of soundness, complete-

ness, and optimality and proved that the FS satisfies these properties. We extended

the FS to support narrowing computations, constraint programming with equational

constraints, and set functions, which enables the implementation of a full-featured

Curry system.

We presented our implementation of the Sprite Curry system, which includes op-

timizations of the FS to improve efficiency. We demonstrated how embedding Curry

in Python simplifies the creation of hybrid programs and provided an example appli-

cation to illustrate this. Additionally, we evaluated the runtime performance of our

implementation. Our results show that Sprite is more complete than its competitors,

as it can compute correct solutions for certain programs that other implementations

cannot. Furthermore, we found that Sprite is competitive with other Curry systems
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in terms of speed, particularly for non-deterministic programs. Based on our results,

our novel approach to set functions appears to be particularly effective.

Although Sprite is less mature than it competitors and its libraries are less fully

developed, it meets our goal of promoting the practical use of Curry and can serve as

a suitable starting point for further research into functional logic programming.

Before concluding, we shall discuss possible directions for future work building

on this research. We are particularly interested in exploring practical applications of

functional logic programming, and one area that appears poised for explosive growth

is that of artificial intelligence. For instance, in November 2022, the American re-

search laboratory OpenAI released a web interface to their Generative Pre-trained

Transformer model GPT-3. This interface, called ChatGPT, reportedly reached one

million users in just five days, making it the fastest web service to reach that num-

ber of users so quickly [104]. We see a bounty of opportunities for functional logic

programming in this area.

A functional logic language like Curry is an ideal tool for working with natural

language models such as GPT-3. These models predict the next word or symbol in

a composition, generating multiple possibilities for each step. For example, given the

starting phrase “I am coming” the model might predict the next word as “home“,

“from”, “to”, “now“, “later”, “after” or other possibilities. Imperative programs might

use loops and data containers to manage these possibilities, but this approach could

become unwieldy, as the number of possibilities grows exponentially. The principle
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of superposition offers a superior way of managing this. Potential completions can

be combined and computed without explicitly representing aggregates such as “sets

of words” in application code.

To effectively use Curry in this way, we need to enhance its search strategy, which

is the set of rules and procedures that organize and execute exploration of the solution

space defined by a logic program. A simple calculation shows that even if only a few

alternatives are considered for each next word, a text composition of any significant

length involves more possibilities than can be practically computed. This means that

an application using a language model like GPT-3 cannot consider all compositions. A

suitable objective is to compose one or a few compositions that meet certain criteria.

This would likely require much more sophisticated control over the search strategy

than Sprite offers.

Fortunately, our representation of computations as a queue of expressions is easily

extendible in this direction. Changes to the search strategy correspond to changes in

the way the computation queue of the Fair Scheme is managed. The Fair Scheme,

as presented in Figure 3.1, implements a breadth-first search since each time a step

is performed, the expression under consideration is moved to the end of the queue.

Similarly, when a choice-rooted expression is split, the alternatives are placed at the

end of the queue. These details simplify proving the completeness property but do

not necessarily lead to the most practical solution.

In our implementation of Sprite, we relaxed the breadth-first rule by looping
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applications of target procedures to improve efficiency. This can be viewed as a rule

to place expressions back at the front of the queue after a step is performed. We used

a step counter to force a rotation of the queue every so often. Without that, Sprite

would implement a depth-first search. With the step counter, Sprite implements

something in between breadth-first and depth-first search.

There are various other ways to manipulate the queue for different applications.

In some cases, we might have information about the quality of potential values. For

example, a language model may assign a weight to each possible next word, indicating

its likelihood or quality. The overall quality of a string of words can then be estimated

in part by taking the product of the weights. This suggests a search strategy that

prioritizes better prospects, as measured by their cumulative weight, by placing them

closer to the front of the queue.

In other applications, different metrics can be used to improve search performance.

Experience shows that search performance can often be improved by introducing a

heuristic, such as the distance heuristic in the A* algorithm. In that case, as long as a

distance-like measure conforms to certain conditions, programmers have considerable

flexibility in defining it. It is also relatively straightforward to incorporate user-defined

heuristics in the FS. For example, a puzzle-solving program could include a heuristic

that estimates how quickly a solution can be reached from a certain configuration.

Sprite could then use this to prioritize queue elements by placing the most promising

configurations near the front of the queue, in the hope of finding a solution sooner.
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The user-defined portion of this could be implemented in Curry, Python, or another

language, such as C++. A metric of this type that has been shown to improve search

for the Blocks World problem from Sect. 6.2 estimates the distance of a configuration

from the goal as the number of inserting (rather than stacking) moves required to

reach the goal state.

If multiple heuristics are available, a potentially interesting strategy would be

to choose the heuristic non-deterministically. In Curry, this might be challenging,

as the search strategy is a hyperparameter of the evaluation. However, it may be

easier to achieve in Sprite, where Curry computations can be nested more readily,

as we did when implementing set functions. If heuristics only affect the order of

queue elements, it should be possible to share computational steps between different

evaluations. Initially, it may seem that this approach would increase computation

time to the first solution by a factor of n, where n is the number of heuristics.

However, if any heuristic dramatically improves evaluation time, this approach could

prove beneficial when it is not known a priori which heuristic is most effective.

Queue manipulations can be used to manage resource consumption in addition

to improving search performance. If queue elements are ordered based on quality,

then a program’s memory usage can be bounded by dropping elements from the end

of the queue as needed. Although this would result in an incomplete search, it may

still be useful to conduct for certain applications. In some cases, the objective might

not be to find a globally optimal solution but to expend a certain amount of effort,
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such as compute time and memory, to improve an existing solution. For example,

when considering a manufacturing or other business process, quickly finding an easy-

to-implement change that affords a competitive advantage may be more important

than ensuring the improvement reaches a global optimum.

Bounding the resources required in search may be more important than maxi-

mizing solution quality when systems need to adapt to new information in real-time.

Consider the hypothetical case of a robot providing domestic help in someone’s home,

tasked with preparing a healthy, delicious meal on time using only the ingredients

available. In such a scenario, an adequate solution found in time is better than an

ideal solution that cannot be found before dinner is over. These factors may come

into play whenever resources are limited and conditions cannot be fully anticipated.

As we consider adaptive software systems that can make incremental improve-

ments while budgeting computational resources, it is hard not to be struck by the

similarities to natural reasoning. To give a relatable example, let us continue the

task of preparing a recipe for dinner. The order in which ingredients are measured

can reduce the number of measuring spoons needed or the number of times a single

spoon must be cleaned. For instance, if a dinner recipe requires a tablespoon each

of sugar, ghee (butter), and milk, after measuring the ghee, the spoon becomes dirty

and cannot be used to scoop sugar but can be used to pour milk (which similarly

dirties the spoon). The problem of optimizing this seems simple enough for a clever

software system to pose to itself and search for an improvement over the default,
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such as choosing the order randomly. This search might be conducted within a time

budget allotted proportionally to how much time could be saved by a potential opti-

mization, limited by how much time can be spent without risking dinner being late.

To this author, this process bears a striking similarity to what we all go through when

learning and planning in everyday life.

These considerations give us cause for optimism regarding the future of functional

logic languages such as Curry. As we progress towards a world in which software

systems are more autonomous and adaptable, we should expect greater acceptance

of logic programming principles. Curry appears to be in a favorable position in

this respect. Additionally, as software systems become more integrated and intercon-

nected, we envision a promising future for hybrid techniques that enable programmers

to draw on features of one programming paradigm from others. We hope that the

Sprite example will inspire further research in this direction.
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Appendix: Supplemental Files

The source code for the Sprite Curry Compiler is provided with this document in a

file named “Sprite.FINAL.4.24.2023.tgz” (2,497 kB). To unpack this archive, you

can use the Linux tar program or similar software.
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