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Detecting Fast Frequency Events in Power System:
Development and Comparison of Two Methods

Hussain A. Alghamdi, Midrar A. Adham, Umar Farooq, Robert B. Bass
Portland State University

Portland, OR, USA
hussain8@pdx.edu

Abstract—In power systems, frequency deviation from nominal
value can occur due to reasons such as loss of generation, loss of
load, or major faults in the grid. Such frequency fluctuations can
lead to serious subsequent outages and damages to both end-user
and utility equipment. Therefore, a proper frequency deviation
detection methodology must be in place to effectively identify
frequency events in a timely manner. This manuscript provides a
comparative analysis between two frequency deviation detection
algorithms. One is based on signal processing and statistical
analysis. The other is a regression-based algorithm. Both of these
algorithms have multiple adjustable parameters, making them
highly tunable for different Balancing Authorities.

Index Terms—Frequency event, Frequency response, Frequency
event detection algorithm, Least-squares linear regression, Dis-
crete wavelet transform.

I. INTRODUCTION

Power system operating frequency reflects the status of the
balance between power supply and demand. Power imbalances
occur commonly due to normal deviations between load or
generation. On rare occasions, power systems can experience
significant frequency deviations in the operating frequency due
to sudden and large changes in load or generation. [1].

Frequency response has an essential role in power system re-
liability. Frequency response, also known as primary frequency
control, can be defined as a quick reaction from a Balancing
Authority (BA) against a frequency deviation from a nominal
value, immediately after detection of the frequency event. [1]–
[3].

Increased renewable energy penetration within modern
power systems presents a concern of reducing power systems
inertia. The amount of inertia in a system determines the sys-
tem sensitivity to frequency events, the appropriate frequency
response of the BA, and the Rate of Change of Frequency
(ROCOF). Systems with high inertia are better able to buffer
sudden deviations in frequency. In other words, the more inertia
in a system, the less sensitive it is to frequency events [2].

There is no universal agreement on the definition of a
frequency event due to differences in the system inertia within
every BA and interconnection. Therefore, each BA must deter-
mine the characteristics of frequency events that are of concern
to their balancing areas so that these events can be effectively
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and rapidly identified. Thus, individual BAs should adjust
event detection algorithms according to their unique system
characteristics [4].

Phasor Measurement Units (PMUs) play an essential role
as data sources for grid status and as necessary tools for
frequency event detection. PMU data from modern power sys-
tem provide operators with valuable information that enhances
power system monitoring, visibility, and reliability. Due to the
valuable insights that PMUs provide, they are now widely
deployed across both transmission and distribution systems.
Often, PMU data exchange follows the IEEE C37.118.2 com-
munication protocol. Consequently, PMUs are compatible with
a wide range of power systems communications, control, and
protection devices, including Phasor Data Concentrators, Real-
time Automation Controllers, protective relays and Wide Area
Measurement Systems [5]–[7].

Different methods and concepts have been used to design
frequency event detection algorithms. These methods may be
categorized into four main groups: signal processing-based
method, statistical based method, machine learning/deep learn-
ing based methods, and hybrid methods [8].

In this paper, two different frequency event detection al-
gorithms are presented, a newly developing algorithm, and a
previously-validated algorithm. These algorithms are compared
in terms of concepts, structure, and performance based on
results obtained from a case study in an offline mode, using
Python as an open-source programming environment. The first
algorithm Least-Squares Linear Regression-Based algorithm
(LSLR) is based on statistical linear regression. The second,
Wavelet Transform-Based Algorithm (WTBA), is based on
signal processing and statistical methods.

The paper is organized as follows: Background is stated in
section II. The Frequency event detection algorithms concepts
are presented in section III. Detection algorithm performance
evaluation is described in section IV. In section V, the case
study is presented. Discussion and comparisons are provided
in section VI. Future work is stated in section VII. Section VIII
concludes the paper.

II. BACKGROUND

The main goal behind developing the LSLR algorithm was
to provide this research team with a detection algorithm that



can reliably identify and detect frequency anomalies. LSLR
serves as a baseline algorithm against which new frequency
event detection algorithms may be compared. The objective of
developing these algorithms is to rapidly and reliably actuate
adequate online compensatory resources, such as battery-based
inverter systems or aggregations of residential loads, that can
provide frequency support to a balancing area.

The team’s initial research and development stage success-
fully configured a PMU and a Real-time Automation Controller
(RTAC) to automatically acquire, process, and archive PMU
data directly from the local distribution system. A structured
text program was developed and deployed within the RTAC.
This program reads frequency data from the PMU, calculates
the slew rate over a window of frequency measurements, and
conducts comparisons with predetermined thresholds. If the
frequency reading or slew rate is lower or higher than the
thresholds, a flag is set to be true, which represents a possible
under or over-frequency event. Such simple threshold-based
algorithms are insufficient for reliably detecting frequency
events.

A subsequent improvement was made by developing the
LSLR regression-based algorithm, which can rapidly and re-
liably detect frequency events. LSLR has three tunable param-
eters: window size, point separation threshold, and series-over
threshold. Later, a fourth parameter, series over count, was
added to the algorithm.

The team built an Algorithm Evaluation Environment (AEE)
to evaluate algorithm performance using binary classification
and evaluation metrics. The AEE provides means to search for
optimal algorithm parameters, in reference to industry experts’
assessments. The team uses an online survey to obtain experts’
assessments of historical frequency events. An optimization
algorithm, Grey Wolf Optimization (GWO), is used to optimize
algorithm parameters by running through the steps outlined in
Figure 1 over many cycles.

This manuscript describes the development and evaluation
of a new signal processing-based algorithm, the Wavelet
Transform-Based Algorithm (WTBA). This manuscript com-
pares LSLR and WTBA regarding concepts, structures, and
performances.

III. FREQUENCY EVENT DETECTION ALGORITHMS

This section explains in details the LSLR and WTBA al-
gorithms, the methodology for each algorithm, the algorithm
parameters, and the detection process steps.

A. Least-Squares Linear Regression-Based algorithm

1) Methodology: LSLR is based on the least-squares linear
regression method, commonly used to interpret the relationship
between an independent and dependent variable such as time,
and frequency [9]. Linear regression is a statistical method
used in this algorithm to detect power system frequency events.
Other methods can also be adopted to detect frequency events,

Fig. 1. Algorithm Evaluation Environment [4]

Fig. 2. Pre-denoise ROCOF VS. Post-denoise ROCOF, as produced by the
Wavelet Transform-Based Algorithm

such as signal processing, machine learning, as well as hybrid
methods [2].

Slew rate is used to remove noise from the PMU data,
thereby producing a smoothed waveform. Figure 3 shows
frequency and slew rate, processed by linear regression, as
computed using Equation 1. Slew rate is used instead of
frequency readings to avoid exposure to noise associated with
the high-rate sampling of PMU data, 30 readings per second
in this work. Figure 3 shows an original frequency waveform
with noise above the processed smooth slew rate waveform [4].
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where N is number of data points. x and y refer to the time
stamp and the frequency sample, respectively.

Fig. 3. Frequency and Slew rate Processed by First Algorithm

Under normal circumstances, frequency fluctuates around the
nominal value of 50 or 60 Hz. However, in the case of an event
caused by a large and sudden change in load or generation, a
significant and rapid change in frequency will occur.

The latest version of the LSLR algorithm now uses five
parameters: Window Size (WS), Point Separation (PS), Stan-
dard Deviation Threshold (SDT), Series Over (SO), and Event
Threshold (ET); the five parameters together are used to declare
an event. The slew rate is computed at each time step using a
sliding window. Then, consecutive slew rate values smoothly
mimic any frequency deviations [10]. The following are the
details for the five parameters in the order they appear in the
algorithm:

2) Parameters: The LSLR algorithm has five tunable pa-
rameters as follows:

• WS: The algorithm uses a sliding window technique to
calculate the slew rate for the frequency measurements,
which presents a trade-off. A large WS value decreases the
speed of detection while also reducing the noise associated
with frequency measurements, and vise-versa.

• PS: Within each sliding window, a slew rate value is cal-
culated. As more data is recorded by the PMU, the sliding
window progresses, calculating a new slew rate value.
Each two slew rate values are compared to one another.
From experiments, it was noted that a gap between the two
compared slew rate values improves the detection speed.
Therefore, the gap between each slew rate is referred to
as the PS.

• Slew Difference Threshold (SDTH): This parameter com-
pares the difference between adjacent slew rates with the
slew difference threshold to start the event declaration
process.

• SO: This parameter is a counter for detecting how many
times the slew rate threshold has been consecutively
exceeded.

• ET: This parameter measures the steepness of the slew rate
curve to avoid false detection for quasi-events that exhibit
some frequency deviations. The event declaration occurs
when both the event threshold and series over threshold
have been exceeded [10].

B. Wavelet Transform-Based Algorithm

1) Methodology: WTBA has two stages in the event detec-
tion process, namely: denoising PMU data, and then computing
the ROCOF and Standard Deviation (SD).

The high sampling rate of PMU data can cause marked noise
in the frequency curve. Therefore, the denoising stage is crucial
so the frequency signal can be used accurately. The denoise
stage is conducted using a Discrete Wavelet Transform (DWT),
which is used for discrete time. Generally, Wavelet Transform
(WT) has an important feature in processing input signals in
frequency spectral and time localization [11].

DWT is considered a desirable method in wavelet analysis
because it analyzes input signals in the frequency and time
domains. In addition, DWT has fewer calculations than other
types of transforms, such as the Fourier Transform [12].

DWT has two stages of denoising, which starts with the
decomposition of the input signal to different components
in different frequency bands and time locations, followed
by reconstructing the post-analyzed components again to the
original signal [13]. For signal denoising purposes, Daubechies
wavelet 4th order has been used widely with valid results [14]–
[16]. Thus, this algorithm selects Daubechies wavelet 4th order
for denoising purposes due to the validation results in other
similar works. Furthermore, DWT has various wavelet families,
such as Symlet Wavelet, Coiflet Wavelets, Meyer Wavelet,
and Biorthogonal Wavelet. Each wavelet family has different
wavelet scales and orders that produce different results when
processing an input signal [11], [13]. Figure 4 shows pre-
denoise frequency vs. post-denoise frequency and Figure 2
shows ROCOF with pre-denoise frequency vs post-denoise
frequency.

The second stage is the ROCOF and SD computation. There
are different methods for obtaining the ROCOF; either by
estimation using filters such as a Kalman filter as in [14],
or computed as in [17]. This work uses the latter method,
Equation 2, to calculate ROCOF using the denoised frequency
measurements.

The algorithm then computes the standard deviation using a
sliding window over the ROCOF dataset using Equations 3, 4,
and 5. The final step in the detection process is the event dec-
laration when the SD exceeds the standard deviation threshold
several consecutive times. Figure 5 shows SD of the ROCOF.

ROCOF =
f2− f1

t2− t1
(2)



Fig. 4. Pre-denoise Frequency VS. Post-denoise Frequency, as produced by
the Wavelet Transform-Based Algorithm algorithm.

where f1 and f2 are frequency measurements and t1 and t2
are the times associated with the frequency measurements f1
and f2.

Fig. 5. Standard deviation of ROCOF, from the WTBA algorithm
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where n is number of samples, and x̄ is the samples mean,
and xi is the sample value, VAR is the Variance and SD is the
standard deviation.

2) Parameters: The WTBA algorithm has four tunable
parameters as follows:

• WS: This parameter affects the SD only. SD is com-
puted within each window through the ROCOF dataset.

By increasing the window size, the SD value increases
accordingly.

• Frequency Measurements Difference (FMD): This param-
eter affects the ROCOF and SD. By increasing the FMD,
the absolute value of ROCOF increases and becomes
smoother.

• SDT: This parameter is considered critical because once
this threshold is exceeded, a true flag is raised, and if
enough consecutive flags are raised, an event can be
declared. In conjunction with other parameters, an SDT
value above the optimal value would increase the chance
of having False Negative (FN) events. Similarly, an SDT
value below the optimal value would increase the likeli-
hood of having False Positive (FP) events.

• Consecutive Flags Threshold (CFT): This parameter gen-
erally affects the algorithm performance because it is
related to having FP or FN depending on how far the
CFT is from the optimal value.

IV. DETECTION ALGORITHMS PERFORMANCE EVALUATION

This section provides an explanation of six important tools
that have been used to evaluate and improve algorithm perfor-
mance: frequency response test station, synchrophasor archived
data, experts’ evaluation, binary classification, evaluation met-
rics, and optimization technique.

A. Frequency Response Test Station (FRTS)

Event detection algorithms can use PMU data with a differ-
ent sampling rate; the sampling rate in this work is 30 samples
per second but 60, or 120 samples per second can also be used.
PMU data contain several power systems quantities, including
voltage, current, phasor, frequency, and timestamps. Frequency
and timestamps are the only values used in this work [4].

The real-time event detection system needs several devices,
equipment, and tools, such as PMU, a RTAC, a Grid Simulator
(GS), a Global Positioning System (GPS) clock with an an-
tenna, PCs, and a data archive. The assembled systems is the
Frequency Response Test Station (FRTS).

The development process of the detection algorithm goes
through two stages: the offline stage and then the online stage.
This paper focuses on the offline stage, which requires using
the PMU and data archive of the FRTS [4], [10].

B. Synchrophasor Data Archive

One of the functions of the FRTS is to continually record and
archive synchrophasor measurements in the form of Comma
Separated Value (CSV) files. Each file has 18,000 samples, or
10 minutes of data. The archive data has historical data for the
last three years. From this archive, the team extracts examples
of events, quasi-events, and non-events. Information from the
local utility company about historical events in the grid is used
as a reference to identify recent frequency events within the
archive. [4], [10].



TABLE I
EXPERTS’ EVALUATION OF 30 FILES SET

No. File Name Experts’ Evaluation No. File Name Experts’ Evaluation No. File Name Experts’ Evaluation
1 2019-09-01-02-35 5421 FALSE 11 2021-01-07-12-12 10287 TRUE 21 2021-01-24-16-07 1762 TRUE
2 2019-09-03-12-19 6720 FALSE 12 2021-01-08-18-27 10466 TRUE 22 2021-01-25-01-45 1819 FALSE
3 2019-09-05-08-51 7722 FALSE 13 2021-01-11-10-29 10845 TRUE 23 2021-01-25-05-08 1839 FALSE
4 2019-09-10-09-20 10433 FALSE 14 2021-01-12-13-02 39 TRUE 24 2021-01-27-00-33 2096 TRUE
5 2019-09-19-08-58 866 FALSE 15 2021-01-13-14-33 190 TRUE 25 2021-01-29-11-20 91 TRUE
6 2019-10-07-05-32 6223 FALSE 16 2021-01-17-16-01 767 TRUE 26 2021-01-30-08-17 215 FALSE
7 2019-10-09-11-12 6894 FALSE 17 2021-01-18-15-20 905 FALSE 27 2021-02-04-10-34 53 TRUE
8 2019-11-13-11-57 2331 FALSE 18 2021-01-23-10-33 1587 FALSE 28 2021-02-05-15-50 147 TRUE
9 2019-11-20-02-12 4309 FALSE 19 2021-01-24-14-16 1751 FALSE 29 2021-02-06-05-21 227 TRUE

10 2019-11-26-19-43 6328 FALSE 20 2021-01-24-15-06 1756 TRUE 30 2021-02-08-16-43 20 FALSE

C. Experts’ Evaluation

According to [8], [9], there is no universal definition for the
frequency event because it is specific to the inertia level and
flexibility in each BA. Therefore, experts in from industry and
academic evaluated a diverse set of event, quasi-event, and non-
event files. Table I shows the experts’ evaluation of 30 files that
were used to tune the algorithms, Section V. The evaluation is
formulated via an online survey, which presents frequency and
slew rate plots for each case. Experts rate the cases as under-
frequency events, over-frequency events, or non-events. The
data collected from the experts’ evaluation are then compiled
within a summary validation file, which is then used to evaluate
algorithm performance [10].

D. Binary Classification

Binary classification is a method used in different fields
to measure performance of binary outcomes. In this work,
the results of processing the same files by the experts and
the algorithm have been classified using binary classification,
which contains the following metrics [4] [10]:

• True Positive True Positive (TP): experts’ assessment and
algorithm results agree that an event occurred.

• True Negative True Negative (TN): experts’ assessment
and algorithm results agree that an event did not occur.

• False Positive FP: algorithm wrongly declares an event
while the experts’ assessment did not.

• False Negative FN: algorithm did not identify an event,
while the experts’ assessment declares an event.

E. Evaluation Metrics

Researchers use evaluation metrics to measure performance,
making it easier to conduct analysis and comparative studies
in different cases [18]. Evaluation metrics are used in this
work to evaluate the performance of the detection algorithms
according to experts’ assessments, as derived from the binary
classification results. The evaluation metrics are:

• Accuracy quantifies the algorithm performance in cor-
rectly classifying events and non-events in relation to the
set size.

Accuracy =
TP + TN

SetSize
× 100% (6)

• Sensitivity quantifies the algorithm capability to classify
TP events correctly.

Sensitivity =
TP

TP + FN
× 100% (7)

• Precision quantifies the ability of the algorithm to identify
TP events in relation to all positive identifications.

Precision =
TP

TP + FP
× 100% (8)

• Specificity quantifies the ability of the algorithm to identify
TN events correctly.

Specificity =
TN

TN + FP
× 100% (9)

• False Discovery Rate (FDR) quantifies the likelihood of
incorrectly identifying an event. FDR is the converse of
Precision

FDR =
FP

FP + TP
× 100% (10)

The ideal value for accuracy, sensitivity, precision, and
specificity is 100. For FDR, the ideal value is 0 [4], [10].

F. Optimization
In this work, the GWO technique is used for algorithm

parameter optimization. The Optimization process starts with
modeling the problem mathematically in the form of an objec-
tive function. The objective function either needs to be maxi-
mized or minimized depending on the nature of the problem.
In our case, the goal is to maximize the evaluation metrics:
accuracy, sensitivity, precision, and specificity. Table II shows
GWO settings that were used in the optimization process [10]
and Figure 6 shows GWO convergence curve. The objective
function then can be stated and formulated as: Max (accuracy
+ sensitivity + precision + specificity) and can be expressed as:

Fitness score = 100 + 100 + 100 + 100 = 400 (11)

where the ideal value of each metric is 100. 400 is the ideal
fitness score.

TABLE II
OPTIMIZATION RESULTS OBTAINED FOR 30 SAMPLES SET

Iteration Fitness Search
agents

Sample set
size

No. of
events

No. of
non-events

Processing
time (min)

GWO 50 400 10 30 13 17 50



Fig. 6. GWO convergence curve for LSLR algorithm

V. CASE STUDY

A collection of 30 frequency files was extracted from the
PMU archive data. These samples were used to test and
evaluate the performance of the detection algorithms. This set
of files contains frequency events, non-events, and quasi-events,
as determined by experts [8], [10].

The detection algorithm output and experts’ evaluations were
assessed against each other. Binary classification and evaluation
metrics were then calculated to compare the detection algorithm
results and experts’ opinions.

Using GWO, each parameter in the LSLR algorithm was
optimized to ensure the highest detection performance possible.
The WTBA parameters were estimated. The purpose of only
optimizing the LSLR algorithm parameters was to clarify the
importance of using an optimization method on the algorithm’s
performance by comparing both algorithms’ detection perfor-
mance. In addition to the performance, concepts and structures
are compared as well.

VI. DISCUSSION AND COMPARISON

This section discusses and compares concepts, structures,
and performances of both algorithms:

A. Concept:

Starting with LSLR, linear regression represents the rela-
tionship between a dependent and an independent variables.
Assuming that Y is the independent variable and X is the
dependent variable, then the definition of the linear relationship
between these two variables can be formulated as the line
equation:

Y = a+Xb (12)

Where: b is the Slope of the line as the first coefficient. a is
the intercept of the line as the second coefficient. Using these
coefficients, a Y value can be predicted for any given value of
X .

By relating the above explanations to this paper, the line
equation reflects the regression line, b is the slope or slew
rate, and a is the y-axis intercept. Therefore, the concept of
least squares linear regression aims to either contain or exclude
the data around the regression line, which are frequency
measurements in this case, by minimizing the error between
the data and the regression line. Linear regression provides
three main benefits: denoising the frequency signal, elevating
the sensitivity to outliers, and presenting an uncomplicated
computational method. In addition, linear regression considers
an accurate statistical method for frequency event calculation
and adequate frequency response.

Regarding the second algorithm, WTBA, wavelet transform
is generally used for different purposes, such as signal anal-
ysis and processing, either in continuous or discrete time.
Continuous Wavelet Transform (CWT) and Wavelet Series
Transform (WST) are used with continuous time, whereas for
discrete-time, DWT is used. In this work, we used DWT as
signal processing to denoise the frequency waveform so that
frequency can be used for further calculations.

SD is a well known statistical tool to indicate the amount of
data that tends to be far from the mean. In this work, SD is used
to indicate the amount of data, frequency measurements, that
tend to be far from the rated frequency of 60 Hz as the mean
of the dataset; it is used as a threshold in the event declaration
process, specifically in the SDT parameter.

B. Structure:

Another aspect is the structure of the algorithms in terms
of their process flows. As shown in Figure 7, both algorithms’
process stages are presented alongside each other to provide
comparison clarity.

LSLR has the main stage before declaring the event, which is
the calculation stage to compute the slew rate and then to find
the slew rate difference. Thus, it will be possible to monitor
and compare the calculated values with the specified thresholds
and identify the excesses considered a frequency event.

In contrast, WTBA depends on a signal processing technique
to denoise the frequency signal using a wavelet transform.
Thus, the denoised frequency signal can be used to calculate the
ROCOF accurately. The following step is mainly to calculate
the SD using a moving window over the ROCOF data. As in the
first algorithm, the SD values are monitored and compared with
the SDT. An event is announced if the threshold is exceeded
for several consecutive times.

Considering the above discussion, LSLR has a lower number
of processing stages for calculating the slew rate and slew rate
difference. In contrast, WTBA has an additional step of signal
processing to denoise the frequency signal to be ready for the
ROCOF and SD calculations.

C. Performance:

For the offline testing, optimization, and evaluation, Python
was used to process 30 mixed files containing events, non-



Fig. 7. Algorithms processes comparison

events, and near events, where a near event is considered a
non-event samples. Therefore, the sum of the events samples
is 13, and the remaining 17 are non-events, as shown in Table I.
Those files were selected from the archive data system and
identified by experts.

As mentioned in sections I and IV, each BA must de-
fine frequency events depending on their system tolerance
to disturbances. Considering the system inertia and response
capability, Table V shows the sample set and the experts’
evaluations. Therefore, comparing the detection results from
the two algorithms against the experts’ evaluation initializes
the binary classification evaluation, as shown in Table V. Thus,
binary classification informs the evaluation metrics to assess the
algorithm’s performance, as in Table V.

In addition, another benefit of the evaluation metrics is to
indicate the appropriateness of the algorithm parameters and
the need to optimize, using GWO in this work, to improve the
event detection performance. Both algorithms have the same
window size as a standard parameter in terms of effect and
functional features. However, in WTBA, the window size has
an additional proportional effect on ROCOF. Another common
feature of both algorithms is that they have tunable parameters
that allow them to be valid as detection algorithms in different
balancing authorities with varying frequency events definitions.

Both algorithms processed the set of 30 files to evaluate
detection performance individually. The detection results for
both algorithm are shown in Table V in the binary classification
form, which indicates superiority of LSLR over WTBA in
binary classification. LSLR outperformed WTBA in terms
of FPs, with just one faulty classification sample that was
evaluated as a non-event by the experts in contrast with three

cases of FP for the WTBA algorithm. That leads to a significant
disparity between the results in the evaluation metrics shown
in Table V, especially the noticeable score of LSLR sensitivity
as 100%, 93% for the rest of the metrics, and 7% in False
Discovery Rate (FDR). In comparison, the highest metric score
for the WTBA algorithm was sensitivity at 92% and 87%, 80%,
and 82% for accuracy, precision, and specificity, respectively.

GWO was used to optimize LSLR parameters to improve
the algorithm performance, while the WTBA parameters were
estimated. Table III and Table IV present the optimized LSLR
parameters values and the WTBA best-estimated parameters
that enabled the best match to the experts’ definition of events.
Using LSLR with optimized parameters gave superior results
compared to the un-optimized WTBA algorithm. Due to the
need to shed more light on the impact on the detection
performance of using different estimated sets as values of
algorithm tunable parameters, two scenarios of using two sets
of estimated parameter values on the WTBA algorithm have
been conducted and analyzed. Table VI shows the relevant
results.

TABLE III
LSLR OPTIMIZED PARAMETERS

Parameter Value
1 WS 158
2 PS 3
3 SDTH 0.00000385
4 SO 6
5 ET 0.0002161

TABLE IV
WTBA ESTIMATED PARAMETERS

parameter Value
11 WS 200
2 FMD 225
3 SDT 0.0018
4 CFT 10

TABLE V
LSLR AND WTBA OFFLINE EVALUATIONS RESULTS COMPARISON

Least Square Linear
Regression (LSLR)

Wavelet Transform-Based
Algorithm (WTBA)

TP 13 12
FP 1 3
FN 0 1
TN 16 14

Total examples 30 30
Accuracy 93 87
Sensitivity 100 92
Precision 93 80

Specificity 93 82
FDR 7 20

The first and second scenarios use two sets of estimated
parameters. In the first scenario, the algorithm used the first



set of parameters. The results show that 13 samples were
detected correctly as an event, and seven samples were incor-
rectly detected as an event. This detection scenario resulted
in a Sensitivity of 100%. The rest of the evaluation metrics
experienced degraded values.

TABLE VI
WTBA ALGORITHM OFFLINE EVALUATIONS WITH DIFFERENT

PARAMETERS SETS

Estimated Parameters
Set 1

Estimated Parameters
Set 2

TP 13 12
FP 7 3
FN 0 1
TN 10 14

Total examples 30 30
Accuracy 77 87
Sensitivity 100 92
Precision 65 80

Specificity 59 82
FDR 35 20

In the second scenario: by tuning just one parameter, FMD,
the algorithm performance improved noticeably, with results
jumped to 87%, 80%, and 82% in accuracy, precision, and
specificity, respectively. A slight decline in sensitivity with
notable and desirable descent from 35% to 18% in FDR
were reported. Precision and specificity account for FP, so by
increasing these two metrics, the chance of FP occurrence will
decrease.

VII. FUTURE WORK

Implementing WTBA in real-time is the leading future target.
Future work will also focus on developing WTBA using the
optimization technique, GWO, to obtain optimal parameters
values instead of estimating the values. Moreover, comparing
the WTBA online detection speed with the offline results will
be a future goal. Finally, comparing the WTBA results in both
offline and online stages with the corresponding LSLR results
will be conducted for further validation.

VIII. CONCLUSION

This paper presented the WTBA as a new frequency event
detection algorithm compared it with the valid LSLR algorithm
in terms of concept, structure, and performance.

The binary classification compared detection results from
both algorithm against the experts’ assessments for a set of
30 selective files. Evaluation metrics then used the binary
classification results to quantify each metric value as algorithm
performance evaluation.

The LSLR is based on a least-squares linear regression with
five parameters, whereas the WTBA is based wavelet transform
with four parameters.

Both algorithms have tunable parameters which control the
algorithms’ performance. Thus, GWO was utilized to optimize

the LSLR algorithm parameters which improved the perfor-
mance accordingly in contrast WTBA with estimated parame-
ters values. Algorithms’ concepts, structures, and performances
were discussed and compared. The paper is concluded by
setting up a plan to further develop and optimize the WTBA
in future work and evaluate it against the LSLR in an online
and offline environment.

REFERENCES

[1] Sean Keene, Landon Hanks, and Robert B. Bass. A means for tuning
primary frequency event detection algorithms. In IEEE Conference on
Technologies for Sustainability, pages 108–113, 2022.

[2] Frequency response initiative report. Technical report, North American
Electric Reliability Corporation, October 2012.

[3] Manasseh Obi, Tylor Slay, and Robert Bass. Distributed energy resource
aggregation using customer-owned equipment: A review of literature and
standards. Energy Reports, 6:2358–2369, 2020.

[4] Sean Keene, Landon Hanks, and Robert B. Bass. A means for tuning
primary frequency event detection algorithms. In IEEE Conference on
Technologies for Sustainability, pages 108–113, 2022.

[5] KE Martin, Gustavo Brunello, MG Adamiak, Galina Antonova, M Be-
govic, G Benmouyal, PD Bui, H Falk, V Gharpure, A Goldstein, et al. An
overview of the ieee standard c37. 118.2—synchrophasor data transfer
for power systems. IEEE Transactions on Smart Grid, 5(4):1980–1984,
2014.

[6] Ben McCamish, Rich Meier, Jordan Landford, Robert B Bass, David
Chiu, and Eduardo Cotilla-Sanchez. A backend framework for the
efficient management of power system measurements. Electric Power
Systems Research, 140:797–805, 2016.

[7] Sean Kantra, Hany Abdelsalam, and Elham Makram. Application of pmu
to detect high impedance fault using statistical analysis. pages 1–5, 07
2016.

[8] Umar Farooq and Robert B. Bass. Frequency event detection and
mitigation in power systems: A systematic literature review. IEEE Access,
10:61494–61519, 2022.

[9] Frequency response standard background document. Technical report,
North American Electric Reliability Corporation, October 2012.

[10] U. Farooq. Development of a configurable real-time event detection
framework for power systems using grey wolf and particle swarm
optimization algorithms. Master’s thesis, Portland State University, July
2022.

[11] Wai Keng Ngui, M Salman Leong, Lim Meng Hee, and Ahmed M
Abdelrhman. Wavelet analysis: mother wavelet selection methods.
Applied mechanics and materials, 393:953–958, 2013.

[12] Xiaoli Li, Shen Dong, and Zhejun Yuan. Discrete wavelet transform for
tool breakage monitoring. International Journal of Machine Tools and
Manufacture, 39(12):1935–1944, 1999.

[13] S Abdullah, SN Sahadan, MZ Nuawi, A Zaharim, and ZM Nopiah. On
the need of the 4th order of daubechies wavelet transforms to denoise
a nonstationary fatigue loading. In Proceedings of the 7 WSEAS on
International Conference on Signal Processing, Robotics and Automation,
2008.

[14] Priyabrata Shaw and Manas Kumar Jena. A novel event detection and
classification scheme using wide-area frequency measurements. IEEE
Transactions on Smart Grid, 12(3):2320–2330, 2020.

[15] Wenzhong Gao and Jiaxin Ning. Wavelet-based disturbance analysis for
power system wide-area monitoring. IEEE Transactions on Smart Grid,
2(1):121–130, 2011.

[16] Ajeet Kumar Singh and Manoj Fozdar. A wavelet-based event detection
and location framework for enhanced situational awareness in power
system. In 2016 IEEE Annual India Conference (INDICON), pages 1–6.
IEEE, 2016.

[17] Shengyuan Liu, Shutang You, Zhenzhi Lin, Chujie Zeng, Hongyu Li,
Weikang Wang, Xuetao Hu, and Yilu Liu. Data-driven event identification
in the us power systems based on 2d-olpp and rusboosted trees. IEEE
Transactions on Power Systems, 37(1):94–105, 2021.

[18] Mohammad Hossin and Md Nasir Sulaiman. A review on evaluation
metrics for data classification evaluations. International journal of data
mining & knowledge management process, 5(2):1, 2015.


	Detecting Fast Frequency Events in Power System: Development and Comparison of Two Methods
	Let us know how access to this document benefits you.
	Citation Details

	tmp.1685029902.pdf.olMZe

