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Abstract— Hospital-acquired infections are a major cause of death 
worldwide, and poor hand hygiene compliance is a primary reason for their 
spread. This paper proposes an artificial intelligence, microcontroller, and 
sensor-based system that monitors and improves staff hand hygiene 
compliance at various critical points in a hospital. The system uses a 
Convolutional Neural Network (CNN) to detect and track if staff have 
followed the WHO hand rub/hand wash guidelines at alcohol dispensers, 
hospital sinks, and patient beds. The system also uses RFID tags, vibration 
motors, LEDs, and a central server to identify staff, alert them of their 
cleaning requirements, monitor their cleaning activity, and report 
compliance data. We obtain an accuracy of 90.6% in classifying all steps of 
the WHO-stipulated hand wash/hand rub guidelines and a testing accuracy 
of 89.8% on Ivanovs et al.’s dataset. The system ensures that hospital staff 
stay compliant to all WHO hand hygiene guidelines, saving countless lives.  

 
Index Terms—Hand Hygiene Compliance Monitoring, Hospital-Acquired 

Infections, IOT, Sensors, Microcontroller System Design, Infection Prevention, 
Smart Hospital, Convolutional Neural Networks, Artificial Intelligence 

 

 

I.  PROBLEM STATEMENT 

OSPITALS are meant to be treatment facilities to help the 

sick recover, but today rates of Hospital-Acquired 

Infections (HAI) have increased significantly making them a 

very threatening place to visit. According to the World Health 

Organization (WHO), every year, HAIs account for an estimated 

99,000 deaths and 1.7 million cases just in the United States, and 

these tolls are continuously rising [1][2]. Furthermore, this 

problem is significantly worse in developing and 

underdeveloped countries. Hospital-acquired infections are 

infections that are acquired in a hospital by a visitor, staff, or 

patient during their visit, treatment, or stay. These infections are 

also known as nosocomial infections or HAIs [3][4]. WHO states 

that the primary reason for these infections is poor staff hand 

hygiene compliance, and it has stipulated very strict hand 

hygiene guidelines to be followed in hospitals to reduce the rates 

of hospital-acquired infections. These guidelines suggest exactly 

how to conduct proper hand washes and rubs [5][6][7][8].  

According to several studies [9][10][11], conducting hand 

hygiene using alcohol dispensers and sinks located around the 

hospital is one of the most effective and efficient ways to reduce 

HAIs. But currently, practices employed in hospitals to track and 
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enforce staff hand hygiene compliance at these critical points are 

substandard. Most hospitals conduct manual and random 

compliance checks. They typically attach poster-based hand 

hygiene guidelines similar to the ones in [8] throughout the 

hospital and trust that the staff will follow them [12][13][14]. A 

few hospitals use technological tools like video camera 

monitoring, robot usage, and electronic monitoring but these 

tools are limited in scope, ineffective, or too expensive [15]. 

Some examples of these existing tools are - Xenex LightStike 

robotic system, which focuses on disinfecting hospital 

surroundings using UV rays rather than focusing on the 

individual staff [16], and electronic monitoring solutions like 

from Debmed [17], Biovigil [18], Purehold [19] whose 

compliance checks are limited to alcohol dispenser usage at entry 

and exit of the room, not covering hand hygiene checks at the 

patient bed or sink area which are also very important for 

prevention of HAIs [20]. All existing methods and tools are only 

focused on some parts of the problem and therefore achieve 

moderate results. They also do not ensure that all steps stipulated 

in the WHO hand cleaning guidelines are followed. In most 

cases, their hand hygiene compliance monitoring is done only at 

the hospital level, not at the individual staff level.  

The medical industry would benefit from a solution that 

addresses the shortcomings in current tools and research and 

solves all aspects of the problem instead of focusing on only a 

part of it. This proposed tool should track staff hand hygiene 

compliance at various critical points throughout a hospital, 

conduct detailed and highly accurate hand cleaning checks, send 

A Novel Deep Learning, Camera, and Sensor-
based System for Enforcing Hand Hygiene 

Compliance in Healthcare Facilities 
Samyak Shrimali, Student Member, IEEE, Christof Teuscher, Senior Member, IEEE 

H 

This article has been accepted for publication in IEEE Sensors Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2023.3271297

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: PORTLAND STATE UNIVERSITY LIBRARY. Downloaded on May 17,2023 at 23:41:34 UTC from IEEE Xplore.  Restrictions apply. 



2  IEEE SENSORS JOURNAL, VOL. XX, NO. XX, MONTH X, XXXX 

 

real-time compliance pass/fail alerts to staff, and record 

compliance data on a central server for management usage. A 

system like this will significantly help reduce rates of hospital-

acquired infections by ensuring that all staff follow the hand 

hygiene measures required by WHO and can save countless lives 

in the future. 

The major contributions of this paper are as follows: 

• We propose and evaluate the performance of an 

automated deep learning, microcontroller, and sensor-

based system that can track and enforce hand hygiene 

compliance throughout all critical points in healthcare 

facilities. 

• We design robust hardware modules for staff, patient 

beds, alcohol dispensers, and sinks using 

microcontrollers and various sensors. 

• We develop thorough software algorithms for each of 

the hardware modules that allow them to conduct 

detailed hand hygiene compliance checks, transmit 

hand hygiene data in real-time, and alert staff when 

hand hygiene is not maintained. 

• We utilize state-of-the-art deep learning image 

classification techniques to develop an algorithm that 

accurately track hand movements of a staff during a 

hand rub/wash and ensure their hands are as clean as 

possible and hand hygiene is maintained as per WHO. 

The remainder of this paper is organized in four different 

sections: Section II compares different industry research in hand 

hygiene compliance monitoring systems and hand wash/rub 

motion compliance tracking algorithms. Section III introduces 

the architecture of the proposed system, its different modules, 

and the hand motion compliance tracking deep learning 

algorithm. Section IV presents a detailed evaluation of the 

system performance considering different algorithms, modules, 

and complete system-level testing, and comparison to different 

related research and implemented industry tools. Section V 

summarizes this work and its contribution to this industry, and 

discusses some shortcoming and future plans.  

II. LITERATURE REVIEW 

A. Hand Hygiene Compliance Monitoring Systems 

Sharma et al. [21] designed and implemented a video system 

for hand hygiene compliance monitoring of hospital staff. The 

video system recorded all movement of staff and their hand 

hygiene activity which could later be reviewed by hospital 

management to provide feedback to staff on compliance 

improvement. It utilized security cameras and was compared to 

real-time direct observation methodologies currently 

implemented in hospitals. Their results showcased that video 

monitoring improved the overall long-term staff hand hygiene 

compliance rates. However, a system like this is not viable in a 

hospital setting as it raises privacy concerns and still requires 

manual assessments from hospital management which can be 

subject to human error. 

Asai et al. [22] proposed a multimedia system that utilizes 

speakers, screens, and augmented reality to motivate users to 

follow hand hygiene compliance through alcohol rub dispenser 

usage. While there was no primary implementation setting for 

this system, they stated that it could be used in hospitals, 

educational institutions, and other public areas. Their testing 

results showcased an increase in hand hygiene compliance. But 

their system does not track hand hygiene, it only provided a 

reminder to users in the area and cannot track individual users’ 

rub completion rates. 

Kinsella et al. [23] built a system using a microcontroller and 

pressure detection resistor to identify staff usage of alcohol 

dispensers in hospitals. This system is attached to walls near 

alcohol rub stations and as staff used the dispensers, this system 

took in account each handwashing account and compared it to 

the total number of patient procedures conducted which provided 

insight into the hand hygiene compliance of hospital staff as a 

whole. The testing results of this system showcased that it had 

the potential to boost compliance rates. But this system has clear 

disadvantages as it has no way to ensure specific staff hand 

hygiene compliance, quality of hand hygiene compliance, and 

cleaning episodes at locations other than dispensers such as 

hospital sinks. 

Kanan et al. [24] developed a system using transmitters of 868 

MHz radio frequency and 40 KHz ultrasound waves that are 

located throughout a hospital setting. The radio frequency waves 

were used to users near dispensers in a hospital setting and the 

ultrasound waves were used to detect their distance. Their had 

limited results as only initial testing was conducted. A system 

like this only focuses on a specific point in a hospital and the 

algorithm proposed for the staff-distance detection using 

ultrasound waves has many limitations, for example, beds or 

other objects can fall between the staff and the sensors. 

Ellen et al. [25] created a system that formed a “smart hospital 

room” using RFID communication protocol and staff movement 

around the hospital.  The “smart hospital room” detected staff, 

displayed patient medical records, gave lighting cues for hand 

hygiene compliance, and allowed staff with easy access to 

pocket cleaning gel. This system had no way to ensuring staff’s 

hands were fully clean, did not record hand hygiene compliance 

data for management usage, and as per experimental results only 

slightly increased staff hand hygiene compliance and efficiency 

in conducting patient procedure. 

Bal et al. [26] designed a system that utilizes RFIDs and the 

ZigBee communication protocol to identify hospital staff at soap 

dispensers and, transmit and store time/location data. While the 

RFID usage in their system was very promising as it allows for 

direct identification of hospital staff and can be integrated with 

existing staff badges, the rest of the system was elementary and 

did not conduct detailed checks for hand hygiene compliance. 

Instead, it only identified user, established their presence at rub 

stations throughout a hospital, and stored this data. 

Karimpour et al. [27] proposed a system based on BLE RSSI 

values to reduce manual surveillance of hand hygiene 

requirements in hospitals.  Using BLE beacons from staff’s 

phones and ESP devices, they were able to form a trilateration 

algorithm that used proximity scanning for identification of staff 

and establish their hand hygiene compliance status. Based on 

their experimentation, they achieved a high accuracy but had 

limitations in their algorithms as it could easily be exploited by 

staff. 

Haque et al. [28] developed a convolutional neural network-

based vision system for hand hygiene monitoring. Their tool 

utilized depth sensor modality for privacy and only focused on 

general hand hygiene compliance (staff detection and dispenser 
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push), not the identification of the specific WHO hand cleaning 

motion steps. They also had no way to identify staff throughout 

the hospital and alert them for corrective action. 

Shrimali [29] previously worked on an elementary 

microcontroller and sensor-based system to track and monitor 

hand hygiene at alcohol dispensers and sinks. But only 

preliminary tests were conducted so evaluation data is 

unavailable, and the system had no way of ensuring hands were 

clean, it only identified staff and established their presence at 

critical points in a hospital. 

Wang et al. [42] conducted a systematic review of electronic 

hand hygiene monitoring systems and summarized the latest 

technologies adopted in these systems. They identified 89 studies 

that evaluated various types of electronic monitoring systems for 

hand hygiene compliance and quality, such as application-

assisted, camera-assisted, sensor-assisted, and real-time locating 

systems. They discussed the capabilities and limitations of these 

systems and highlighted the issues of accuracy, data integration, 

privacy and confidentiality, usability, associated costs, and 

infrastructure improvements. They also suggested that more 

research is needed to establish standardized metrics to measure 

system performance and to implement new sensing technologies 

and algorithms to improve system performance and address other 

hand hygiene-related issues. 

McCalla et al. [43] evaluated the impact of an automated hand 

hygiene compliance system on HAI rates in a community 

hospital in the United States. The system used a badge worn by 

healthcare workers to detect hand hygiene events and provide 

real-time feedback. The system also collected data on hand 

hygiene compliance and provided reports and dashboards for 

quality improvement. The authors compared HAI rates before 

and after implementation of the system and found a significant 

reduction in catheter-associated urinary tract infections (IRR 

0.55; 95% CI 0.35-0.87) and central line-associated bloodstream 

infections (IRR 0.45; 95% CI 0.23-0.89). They concluded that 

monitoring hand hygiene practices with an automated system, in 

addition to other infection control measures, may be an effective 

means of reducing HAIs. 

B. Hand Wash/Rub Hand Motion Compliance Tracking 
Algorithms 

Hoey et al. [30] were one of the first to approach the problem of 

hand wash/rub motion compliance tracking. They developed a 

handwashing assistant for patients with dementia using a particle 

filter-based classification approach. However, their research did 

not work to identify specific WHO hand cleaning motion steps.  

Fernández-Llorca et al. [31] also attempted at developing a 

vision-based hand motion classifier. They utilized Support 

Vector Machine (SVM), a widely known machine learning 

algorithm to segment hands and filter their pixels for prediction. 

Their accuracy was 86.6% based on their dataset with 4 test 

subjects but their model’s applicability for the real world is 

questioned as they conducted all their testing in one environment 

with skin color bias.  

Prakasa and Sugiarto [44] presented a video analysis method 

for evaluating the completeness of hand washing movements 

based on the WHO guidelines. They used a webcam to record 

hand washing videos and applied image processing techniques to 

segment and track the hands. They then used a rule-based 

approach to classify the hand movements into different steps of 

hand washing and calculated a completeness score for each step. 

They tested their method on 20 videos of hand washing and 

reported an average completeness score of 86%. Limitations of 

their method including discrepancies in occlusion, illumination, 

and camera angles. 

Bakshi et al. [45] proposed a method for tracking hand 

hygiene gestures with Leap Motion Controller, a device that can 

capture the motion of hands and fingers in 3D space. They 

segmented and analyzed videos of hand washing experts and 

extracted their corresponding features using machine learning 

techniques. They aimed to develop an automated tool that can 

ensure compliance with the WHO hand washing guidelines. 

Although their proposed methodology achieved a fair accuracy 

in feature extraction and segmentation, their model was not 

viable for healthcare settings as it had poor generalization and 

demonstrated mediocre performance on complex lab-based 

datasets.  

Most recently, Ivanovs et al. [32] used a variation of 

MobileNETV2 and Xception transfer learning CNNs for WHO 

hand cleaning motion detection. Their work aimed to utilize a 

self-collected dataset of 2,000 hand motion videos to construct a 

mobile application for hand cleaning quality alerting. The 

highest accuracy they got was only 64% for the MobileNETV2 

and 67% for the Xception and their dataset was from one sink, 

only conveying low practicality for real-world applications.  

III. SYSTEM ARCHITECTURE 

This paper presents CareHAI, a deep learning and 

microcontroller-based system that can track and enforce hand 

hygiene compliance throughout healthcare facilities. CareHAI is 

based on 4 modules that work together as a connected system to 

track hand hygiene compliance through a hospital. A Wi-Fi-

based central server aids all modules in sending/receiving 

information. Figure 1 showcases a top-level overview of the 

system and each module’s internal components.  

CareHAI has various practical use cases. It can aid in 

monitoring hand hygiene compliance rates of individual 

healthcare workers, teams, departments, or wards, identifying 

high-risk areas or situations where hand hygiene compliance is 

low or insufficient, and educating healthcare workers on proper 

hand hygiene procedures. 

 
Fig. 1. CareHAI overview diagram. The entire system is based on a Wi-Fi-
based central sever and individual modules that contain various input 
sensors. 
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A. Staff Module 

The Staff Module uses a ESP8266 Wi-Fi Microcontroller, 

RFID Tag, vibration motor, and LED. This module is worn by 

staff on their wrist or bicep. The RFID tag on this module 

provides each staff member with a unique ID. It is detected by 

other modules placed at various compliance checkpoints across 

the hospital to identify staff. This module receives real-time 

compliance updates from the server and alerts staff through real-

time vibration and LED indications. To power the module, a 

LIPO  (Lithium Ion Battery) was chosen as a cost-effective 

option that can last for 48 hours with moderate use. The power 

consumption of the module depends on the ESP8266 Wi-Fi 

Microcontroller which has different power modes. In an idle 

state with powered Wi-Fi, the ESP8266 consumes about 70mA, 

which translates to about 231mW at 3.3V supply voltage. In 

deep sleep mode, the ESP8266 consumes only about 10µA, 

which translates to about 33µW at 3.3V supply voltage. The 

power consumption of the other components (RFID Tag, 

vibration motor, and LED) is negligible compared to the 

ESP8266. 

 

 
Fig. 2. The Staff Module can be worn on one’s wrist or bicep. The 
prototype is shown with a custom 3D-printed enclosure. 

B. Sink Module 

The Sink Module uses a ESP8266 Wi-Fi Microcontroller, 

RFID reader, water detection sensor, Camera Microcontroller, 

Camera Wi-Fi Shield, and two InfraRed (IR) sensors. This 

module is attached to the sinks throughout the hospital. It 

conducts a detailed check for proper hand cleaning by staff as 

recommended in the WHO guidelines. The RFID reader on this 

module reads the staff's unique tag and starts the compliance 

check. The IR sensor detects the presence of staff’s hand, the 

water detection sensor detects the water flow for an initial rinse, 

the IR sensor on the soap dispenser checks for soap usage, and 

the IR sensor on the water tap checks for the final hand wash 

completion. When a staff member puts their hand underneath the 

sink/soap dispenser it breaks the infrared beam, which triggers 

the IR sensor to detect staff hand presence.  For the hand wash 

quality check, the camera takes continuous real-time images 

during the hand wash process and sends them through a CNN, 

which checks if all required hand cleaning motions are 

performed. When all the compliance checks are satisfied, a 

successful event is reported to the server, otherwise a fail event. 

The server then sends an immediate pass/fail alert to the staff 

module. 

 

 
Fig. 3. The Sink Module prototype. The module can easily be deployed to 
hospital sinks. 
 

 
Fig. 4. Flow chart of the Sink Module Compliance Check Algorithm. 
Diamond block represents a decision point where the flow of the 
algorithm splits into different paths based on a specified condition. 
Rectangle block represents an operation, or a task, where the algorithm 
performs some action or computation.  

C. Rub Module 

The Rub Module uses a ESP8266 Wi-Fi Microcontroller, 

RFID reader, Force Sensitive Resistor (FSR), Camera 

Microcontroller, Camera Wi-Fi Shield, and InfraRed (IR) sensor. 

This module is attached to alcohol dispensers throughout the 

hospital. When staff comes near the alcohol dispenser, the RFID 

reader on this module reads the staff’s tag, the IR sensor detects 

the presence of their hand underneath the automatic alcohol 

dispenser for its usage, in a case of a non-automatic alcohol 
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dispenser FSR sensor will detect pushing of the dispenser button. 

Similar to the sink module, this module also uses a CNN-based 

algorithm to check if all motions of the WHO stipulated hand 

rub process are properly performed. When the above checks are 

satisfied, a successful event is reported to the server, otherwise a 

fail event is reported, and staff will receive an immediate alert. 
 

 
Fig. 5. The Rub Module prototype. The module can easily be deployed to 
hospital alcohol dispensers. 
 

 
Fig. 6. Flow chart of the Rub Module Compliance Check Algorithm. 
Diamond block represents a decision point where the flow of the 
algorithm splits into different paths based on a specified condition. 
Rectangle block represents an operation, or a task, where the algorithm 
performs some action or computation. 

D. Bed Module 

The Bed Module uses a ESP8266 Wi-Fi Microcontroller, 

RFID reader, ultrasonic sensor, InfraRed (IR) sensor, Force 

Sensitive Resistor (FSR) and servo motor. WHO recommends 

that healthcare staff should conduct an alcohol rub when they 

enter the patient bed area and when they leave the patient bed 

area. This module is attached to each patient’s bed and enforces 

the compliance of this guideline. The ultrasonic sensor on this 

module detects the staff’s entry within the 1-meter range of a 

patient bed, the RFID reader on the module reads the staff’s 

unique tag and provides staff with an alert to conduct an alcohol 

rub. This module then checks for a proper alcohol rub 

completion and once done sends a compliance alert to staff. 

When staff leaves the 1-meter range, this module provides 

another alert to staff to conduct an alcohol rub, before attending 

any other patients. 

 

 
Fig. 7. The Bed Module can be easily deployed to patient beds in a 
hospital (electronic circuit within custom 3D-printed enclosures). 
 

 
Fig. 8. Flow chart of the Bed Module Compliance Check Algorithm. 
Diamond block represents a decision point where the flow of the 
algorithm splits into different paths based on a specified condition. 
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Rectangle block represents an operation, or a task, where the algorithm 
performs some action or computation. 

E. Hand Motion Compliance Checks 

CareHAI’s Sink and Rub Modules utilize deep learning 

camera checks that are based on a Convolutional Neural 

Network (CNN). These checks examine a staff’s hand cleaning 

process and ensure all required hand motions of the WHO 

stipulated hand wash/rub are followed. 

To develop an optimal CNN for the module camera checks, 

first a dataset was self-collected and preprocessed. This dataset 

was carefully designed to include a range of images taken in 

various lightings, backgrounds, and angles to ensure a controlled 

dataset with minimal bias. The OpenMV cam was used to take 

images while the subject was performing the hand motions 

without any time constraints. The dataset is publicly available 

and can be accessed at 

https://drive.google.com/drive/folders/1NRZ5Na5N3b-

B6bk261bnRnYTmO8PCMlr?usp=sharing. It contains 5,500 

images divided into 7 classes: no hand, step 1, step 2, step 3, step 

4, step 5, and step 6. Figure 9 shows samples images from the 

self-collected handwash/rub dataset. 
 

 

Fig. 9. Sample images from the handwash/rub self-collected dataset 
(steps 1-6 of the WHO handwash/rub). Images were taken in various 
lightings, backgrounds, and angles to ensure a controlled dataset. 
 

The image dataset was split into an 85:10:5 ratio for training, 

validation, and testing respectively. 10 CNN transfer learning 

models were selected for an initial comparative training and 

validation analysis on the dataset: VGG16 [33], VGG19 [33], 

ResNet152 [34], Xception [35], InceptionV3 [36], 

InceptionResNetV2 [37], MobileNetV2 [38], EfficientNetB5 

[39], EfficientNetB7 [39], and DenseNet201 [40]. A custom 

Keras Library Model was also developed for comparison. Each 

neural network varied in size and efficiency. 

To aid the CNNs in feature extraction, 3 image filters were 

used on the dataset during the training and validation process. 

These image filters were: Laplacian Filter Sharpening, Canny 

Edge Detection, and Gaussian Blur [41]. Additionally, no image 

filter was also used as a control group to ensure that if the image 

filters had a negative impact on a model’s accuracy, it could be 

easily identified.  

In this analysis 44 different neural networks were trained, 

validated, and tested, each based on a unique model architecture 

and image filter. For each neural network, hyperparameters such 

as learning rate, momentum, and epoch were constantly modified 

using hyperparameter optimizers during the training and 

validation process to ensure the highest possible validation 

accuracy was achieved and validation loss was minimized.  

Based on this analysis, MobileNetV2 and EfficientNetB7 were 

found to be the two neural network transfer learning 

architectures with the most optimal performance and inference 

times, and the Laplacian Sharpening Filter was determined most 

optimal image filter for effective feature extraction on the 

dataset. Therefore, using the architectural characteristics of these 

CNNs and image filter, a modified hybrid transfer learning CNN 

that uses feature fusion was developed, trained, validated, and 

tested on the dataset. This hybrid model had the highest 

validation accuracy of 91.2% and F1 score of 90.3. When run on 

new images from the testing dataset, this model had an accuracy 

of 90.5% showcasing peak performance out of all of the models 

from the comparative analysis and therefore was chosen for the 

Rub and Sink Module hand cleaning checks. 
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The hand cleaning checks use this hybrid CNN’s classification 

confidence values to distinguish between proper versus improper 

hand cleaning. In a 30-second time loop, if the model predicts 

that a hand motion has been classified with a confidence of 

70+%, then the hand motion step is counted as completed, if 

probability of the model’s confidence is lower than the 70% 

threshold, then the hand motion step is not counted as completed. 

At the end of the loop, depending on how many steps the CNN 

has detected as completed, the staff is sent an immediate 

compliance pass/fail alert and results are reported to the central 

server (if staff has completed 4+ steps out of 6, they would 

receive a pass alert as a proper handwash/rub has been 

completed, else a fail alert to redo their low-quality hand 

cleaning). 

F. Cloud Central Server 

Staff hand hygiene compliance data from each of modules is 

sent to a cloud central server using Wi-Fi-protocol where it is 

securely stored through 2FA. Specifically, this data consists of 

the room where the module is located, staff ID, compliance 

messages, and compliance pass/fail status. The data is organized 

into a table where it can be used by the hospital management to 

take corrective action towards a staff or be visualized or 

analyzed. Figure 10 (a-b) shows sample images of the server 

user interface. 

 

TABLE I 
CNN PERFORMANCE EVALUATION METRICS 

 

Model Architecture 
Parameters 

(M) 

Image  

Filter 

Validation 

Accuracy 

(%) 

Precision Recall F1 Score 

VGG16 138.4 

Gaussian Blur 66.4 63.2 67.2 65.1 

Canny Edge Detection 74.1 75.6 73.9 74.7 

Laplacian Sharpening 79.6 81.2 77.4 79.3 

N/A 70.5 67.1 71.6 69.3 

VGG19 143.7 

Gaussian Blur 77.5 73.6 78.3 75.9 

Canny Edge Detection 70.9 70.4 71.3 70.8 

Laplacian Sharpening 74.9 74.2 75.2 74.7 

N/A 71.6 72.6 71.9 72.2 

ResNet152 60.4 

Gaussian Blur 64.0 62.8 65.7 64.2 

Canny Edge Detection 67.3 67.8 70.4 69.1 

Laplacian Sharpening 72.5 74.5 73.7 74.1 

N/A 59.8 62.5 64.9 63.7 

Xception 22.9 

Gaussian Blur 77.8 78.5 77.2 77.8 

Canny Edge Detection 76.0 75.3 76.2 75.7 

Laplacian Sharpening 80.9 81.7 78.5 80.1 

N/A 73.9 71.5 74.4 72.9 

InceptionV3 23.9 

Gaussian Blur 72.2 71.6 73.2 72.4 

Canny Edge Detection 73.5 70.7 75.3 72.9 

Laplacian Sharpening 74.3 72.6 78.2 75.3 

N/A 72.9 71.8 74.6 73.2 

InceptionResNetV2 55.9 

Gaussian Blur 66.0 64.2 66.4 65.3 

Canny Edge Detection 68.7 70.7 67.5 69.1 

Laplacian Sharpening 77.5 75.7 78.8 77.2 

N/A 76.9 77.2 76.8 77.0 

MobileNetV2 3.5 

Gaussian Blur 70.2 70.5 70.2 70.3 

Canny Edge Detection 74.8 75.8 73.2 74.5 

Laplacian Sharpening 88.2 90.3 83.1 86.6 

N/A 66.0 65.8 68.5 67.1 

EfficientNetB5 30.6 

Gaussian Blur 76.5 75.3 77.9 76.6 

Canny Edge Detection 74.9 72.9 76.2 74.5 

Laplacian Sharpening 82.2 81.4 81.9 81.6 

N/A 74.6 74.4 75.2 74.8 

EfficientNetB7 66.7 

Gaussian Blur 80.9 82.7 78.3 80.4 

Canny Edge Detection 79.1 82.2 79.0 80.6 

Laplacian Sharpening 87.4 88.6 85.1 86.8 

N/A 82.1 80.2 83.7 81.9 

DenseNet201 20.2 

Gaussian Blur 67.9 65.5 68.1 66.8 

Canny Edge Detection 68.2 68.8 68.1 68.4 

Laplacian Sharpening 71.4 68.2 73.9 70.9 

N/A 67.9 66.8 70.5 68.6 

Custom Keras Configuration 1.3 

Gaussian Blur 57.5 58.4 59.7 59.0 

Canny Edge Detection 75.8 74.3 72.7 73.5 

Laplacian Sharpening 81.4 79.5 82.6 81.0 

N/A 70.9 69.5 75.6 72.4 
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(a) 

 
(b) 

Fig. 10. Screenshots of the (a) real-time staff hand hygiene web updates 
generated for sample staff with ID=F0D74729 at the Sink Module on the 
central sever and (b) “staff hand hygiene compliance day report” page on 
the central server which tracks each staff member’s daily compliance 
pass/fail count and average hand cleaning quality.  

IV. SYSTEM PERFORMANCE AND EVALUATION 

Multi-level testing and data analysis was conducted for 

CareHAI. First each sensor was independently calibrated and 

tested to ensure their proper operation. Next, each module was 

tested for its individual functionality by stipulating hospital-like 

events.  

A. CNN-based Compliance Checks 

For the deep learning checks, 44 different CNNs were initially 

designed, trained, and validated to classify each WHO 

handwash/rub step. Validation Accuracy, precision, recall, and 

F1-score were the evaluation metrics used to determine optimal 

model performance. Accuracy is the ratio of total correct 

predictions to overall predictions on the validation dataset. 

Precision (or Positive Predictive Value) is the number of correct 

positive results divided by the total number of positive results 

predicted by the classifier. This measure describes the accuracy 

of the network in differentiating between positive and negative 

results. Recall (or True Positive Rate) is defined as the ratio of 

true positives to false negatives plus true positives. This measure 

describes the proportion of correctly classified positive data 

points to all actual positive data points. F1-Score represents the 

balance between precision and recall rate. In network 

classification, it is crucial that there is a high precision rate 

because that is necessary for accurate classification. But there 

should also be a high recall rate as that determines how well the 

network can “remember” its training and continue to identify the 

images correctly. This measure helps to describes the rate of this 

balance (harmonic mean of precision and recall). Table I shows 

each neural network’s performance based on the described 

evaluation metrics. Figure 11 shows a visualization of the table. 

 

 
Fig. 11. Validation Accuracy of CNN architectures using No Filter, 
Laplacian Sharpening, Gaussian Blur, and Canny Edge Detection. 
Overall, for each CNN architecture the Laplacian Sharpening filter was 
most effective in feature extraction and led to the highest accuracies. The 
best performing model architectures were MobileNetV2 and 
EfficientNetB7 using the Laplacian Sharpening Filter with validation 
accuracies of 88.2% and 87.4% respectively.  
 

 Based on the comparative analysis, MobileNetV2 and 

EfficientNetB7 using the Laplacian Sharpening Filter were 

found to be the two neural network architectures with the most 

optimal performance. Therefore, based on their architectural 

characteristics, using transfer learning, a hybrid model was 

developed, trained, and validated on the dataset. This hybrid 

model had a validation accuracy of 91.2% and F1 score of 90.3 

on the training and validation dataset which was significantly 

higher than the initial 44 comparative analysis models. This 

CNN model also surpassed the design criteria of an 80%+ 

validation accuracy and size under 70,000,000 model 

parameters. To further test this hybrid model, it was evaluated on 

the testing dataset (5% of the total dataset) on which it had an 

accuracy of 90.5% and was able to successfully classify 249 

images out of 275 while showcasing minimal bias towards each 

of the 6 hand motion classes as seen from its precision score of 

90.2, recall score of 91.0, and F1-score of 90.6. Based on this 

optimal performance, the hybrid model was chosen for the Rub 

and Sink Module hand cleaning compliance checks. 

B. System Updates/Alerts 

Lastly, complete system-level testing was conducted. All the 

modules were connected with the central server and data was 

collected and analyzed to see if all the modules work cohesively. 

Figure 12 (a-b) and Tables II and III show the system-level 

testing results. As per the results, CareHAI showed a high 

accuracy of 94% in reporting compliance updates to the server 

and 95% accuracy in receiving alerts from the server out of 100 

trials conducted for each event. 
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(a) 

 

 
(b) 

Fig. 12. (a.) Staff module’s accuracy in receiving compliance pass/fail 
alerts from other modules (out of 100 trials) (b.) Modules’ accuracy in 
sending compliance updates to the central server (out of 100 trails). 

C. Comparison of CareHAI’s CNN-based Compliance 
Checks to Previous Published Research 

To compare this paper’s work to previous research, 

CareHAI’s hand cleaning motion check CNN model (hybrid 

transfer learning of MobileNetV2 and EfficientNetB7 using the 

Laplacian Sharpening Filter) was trained, validated, and tested 

using Ivanovs et al. [32] hand-washing video dataset that was 

annotated according to WHO’s hand-washing guidelines.  

TABLE II 
ACCURACY IN RECEIVING COMPLIANCE 

UPDATES AND ALERTS 

Device 
Received 

Pass Alert 

Received 

Fail Alert 

Rub Module 94 96 

Bed Module 92 96 

Sink Module 96 92 

System-Level 

(Avg of 
Modules) 

95 

 
TABLE III 

ACCURACY IN SENDING COMPLIANCE 

UPDATES AND ALERTS 

Device 
Received 

Pass Alert 

Received 

Fail Alert 

Rub Module 93 98 

Bed Module 96 95 

Sink Module 94 94 

System-Level 

(Avg of 

Modules) 

94 

 
 

TABLE IV 
COMPARISON OF CAREHAI’S HAND HYGIENE MOTION CHECK ALGORITHM TO OTHER ALGORITHMS 

 

 [30] [31] [32] CareHAI 

Basis of Algorithm 
Bayesian sequential and 

decision-theoretic framwork 

Support Vector 

Machine 

CNN (MobileNetV2 

and Xception) 

Hybrid CNN 

(Feature Fusion of 

MobileNetV2 and 
EfficientNetB7) 

Hardware Used 
Camera, Laptop with prcessor 

(2GB RAM) 

High-Quality Camera, 

PC 

AirLive IP Cameras, 

Raspberry Pi 4 

OpenMV Camera 

and Wi-Fi Shield 

Locations Covered Sinks Sinks Sinks 
Sinks, Alcohol 

Dispensers 

Checks for the 6 WHO-required 

Hand Motions 

No (focuses on general hand 

wash + soap and towel usage)  
Yes Yes Yes 

Sends Hand Hygiene Alerts Yes (audio) No Yes (audio) 
Yes (vibration, 

visual) 

Overall Algorithm Evaluation 
Metric and Accuracy 

Conducted 20 Simulations of 

Hand Washing and Actor 
Trials (not enough data to 

calculate accuracy) 

Training/Testing 

Dataset Evaluation of 
Motion Detection Rate 

(86.6%) 

Validation Dataset 
Evaluation of Both 

CNNs (MobileNetV2 

– 64%, Xception – 
67%) 

Multi-Level Testing 

(90.5% on testing 
dataset, 89.8% on 

[24]’s dataset) 
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Based on the initial evaluation results, CareHAI’s CNN model 

performed with a validation accuracy of 88.4% on their dataset, 

it proves to be better than current published work (67%) [32]. 

Furthermore, this trained and validated model was integrated 

with a camera apparatus for real-time hand motion classification 

testing where it was able to detect 97 out of 108 hand motions 

correctly, leading to a real-time performance testing accuracy of 

89.8% when trained and validated using Ivanovs et al.’s dataset 

[32]. Figure 13 and 14 showcase a visualization of these results. 

 
Fig. 13. Graph of the Validation Accuracy of CareHAI’s hand cleaning 
motion check CNN model when trained on Ivanovs et al. [32] hand-
washing video dataset. CareHAI’s model performed well above the 

currently published benchmark of 67% as it had a validation accuracy of 
88.4%.  

 
Fig. 14. Normalized confusion matrix showcases that CareHAI’s hand 
cleaning motion check CNN model, when trained on Ivanovs et al. [32] 
hand-washing video dataset, had a real-time hand motion classification 
accuracy of 89.8%. 

 

TABLE V 
COMPARISON OF CAREHAI TO OTHER HAND HYGIENE COMPLIANCE SYSTEMS 

 

 [21] [22] [24] [26] [27] [28] CareHAI 

Communication 

Protocol 
N/A Bluetooth Wi-Fi 

Wi-Fi, 

ZigBee 
Bluetooth N/A Wi-Fi 

Basis of System Camera Laptop/PC N/A 
Raspberry 

Pi  

ESP Nodes, 

Smartphone 

Camera and 

ResNet152 
CNN 

Camera and 

ESP8266 
Microcontroller 

Sensors Used N/A 

IR, Pressure, 

Nintendo Wii 

Balance Board 

Wave 

Transmitters 

(868 MHz Radio 
Frequency and 

40 KHz 

Ultrasound) 

IR N/A N/A 

RFID 
Tags/Readers, 

Ultrasonic, IR, 

Water Detection, 
FSR 

Identifies Specific 

Staff 

Yes (not real-

time) 
No Yes Yes Yes No Yes 

Alerts Staff No 
Yes 

(audio/visual) 
Yes (audio) No No No 

Yes 

(visual/vibration) 

Checks for Hand 

Cleaning Quality (All 
WHO Steps)  

No No No No No No Yes 

Logs Compliance Data  
Yes (requires 

manual effort) 
No No Yes No No Yes 

Locations Covered 

ICU, HDU, ER 
Sinks and 

Alcohol 

Dispensers 

Alcohol 

Dispensers 

Alcohol 

Dispensers, 
Patient Beds 

Alcohol 

Dispensers, 
Sinks 

Alcohol 

Dispensers, 
Sinks 

Alcohol 

Dispensers 

Patient Beds, 

Sinks, Alcohol 
Dispensers 

Overall System 

Evaluation Metric and 

Accuracy 

Video Monitoring 

measured with 

Manual 
Observation (staff 

compliance rates 

of 67% and 81%) 

N/A (not 

enough 
experimentati

on conducted) 

N/A (not enough 

experimentation 

conducted) 

N/A (not 
enough 

experiment

ation 
conducted) 

Compared to 
proximity-

based  

solution (12% 
more reliable) 

Overall 
Detection 

of 

Staff/Push 
of 

Dispenser 

Button 
(95.5%) 

Sending and 

Receiving 
Alerts/Messages 

(94 and 95%) 
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Table IV showcases a detailed comparison of CareHAI’s 

CNN-based hand motion compliance checks to previously 

published research that was discussed in the Related Works 

section, in terms of their basis of algorithm, hardware usage, 

location coverage, algorithm ability, prediction time, and 

accuracy. CareHAI’s checks are novel, accurate, efficient, 

thorough, and ensure that hospital staff complete all required 

hand cleaning motions of the WHO-stipulated handwash/rub,  

outperforming all previous work in every evaluation category.   

D. Comparison of CareHAI to Other Proposed Hand 
Hygiene Compliance Systems 

Table V showcases a detailed comparison of CareHAI to other 

previously published hand hygiene compliance systems were 

discussed in the Related Works section, in terms of their 

functionality, communication protocol, hardware usage, location 

coverage, and overall evaluation results. CareHAI is novel, 

automated, highly accurate, thorough, and scalable for a 

healthcare setting. It mitigates the problems of current 

implemented solutions and outperforms all previous work, 

providing an optimal tool for implementation. 

V. LIMITATIONS AND FUTURE WORK 

This research focused on the development and technical 

evaluation of an artificial intelligence, microcontroller, and 

sensor-based system to track and monitor hand hygiene 

compliance among hospital staff. Our extensive dataset and 

rigorous evaluation criteria provide strong evidence of the 

effectiveness of our proposed system. However, we also 

acknowledge some limitations and directions for future work. 

One limitation is that the performance of the deep learning 

model may be affected by the quantity and quality of the training 

data. Although we collected a large and diverse dataset of hand 

hygiene motions that included a range of images taken in various 

lightings, backgrounds, and angles, it is possible that some rare 

or complex cases were not captured correctly. Therefore, we plan 

to expand our dataset with more data and annotations in the 

future. 

Another limitation is that while our approach achieves better 

performance than existing methods in terms of accuracy, speed, 

and scalability, there is still room for improvement in these 

aspects. For example, we could optimize the model architecture 

and hyperparameters to reduce the inference time and memory 

consumption. We could also explore domain adaptation to 

improve the generalization ability of the model to different 

environments and users. 

The biggest limitation of this work is the absence of a clinical 

study to validate the effectiveness of the proposed system in a 

real-world hospital setting. A clinical study would be an 

important and valuable component of validating the system's 

efficacy in reducing hospital-acquired infections and improving 

patient outcomes. However, a clinical study would require 

significant resources and approvals from an Institutional Review 

Board (IRB), which is beyond the scope of this work.  

One of our main future research steps is to test the system in 

real hospitals to collect on-field data and feedback from hospital 

staff and patients. This would allow us to evaluate the system’s 

usability, reliability, acceptability, and impact on hand hygiene 

compliance and infection rates. Another potential avenue for 

improvement is to add more configurable options for the Staff 

Module such as integrating it with existing smartwatches and 

mobile devices. This would increase the convenience and 

flexibility of using the system for different staff members. 

Furthermore, we could explore online learning techniques, which 

would allow the deep learning model to be updated in real-time 

as new data becomes available. This could enhance the 

adaptability and accuracy of the system to different situations 

and patients.  

VI. CONCLUSION 

In this paper, CareHAI, a novel, automated, and scalable 

system for hand hygiene compliance monitoring in healthcare 

facilities was successfully designed and tested. This system 

conducts detailed, and thorough deep learning and sensor-based 

checks at various critical points throughout a hospital to enforce 

and monitor staff’s hand hygiene compliance. This system 

provides immediate alerts to staff to inform them about their 

compliance and additionally stores all compliance events and 

results on a central server that can be used by hospital 

management. This system is designed in a robust way and can 

easily integrate into healthcare environments, it operates in real-

time, and sends immediate updates to staff without hampering 

the normal medical staff activity. This system’s deep learning-

based hand cleaning quality checks are based on an optimal and 

efficient convolutional neural network that was chosen through 

comprehensive analysis and comparison of 44 different CNNs. 

The designed hybrid model (transfer learning of MobileNetV2 

and EfficientNetB7 using the Laplacian Sharpening Filter) has a 

testing accuracy of 90.5% and F1 score of 90.6 which surpassed 

the design criteria goal. Through multi-level testing and data 

analysis, results show that this system has an accuracy of 94% in 

reporting compliance pass/fail/generic updates to the server and 

95% accuracy in receiving pass/fail alerts from the server. 

Furthermore, CareHAI was also evaluated on Ivanovs et al. [32] 

hand-washing video dataset to ensure it is more optimal than the 

current industry best. When trained, validated, and tested on the 

dataset, CareHAI performed exceptionally well as it had a 

validation accuracy of 88.4% compared to the current industry 

benchmark of 67% [32] and a real-time performance testing 

accuracy of 89.8%. 

CareHAI has the potential to significantly reduce rates of 

hospital-acquired infections around the world and save 

thousands of lives. With slight modifications, this system can be 

used in the food industry, schools, and even homes to track and 

monitor hand hygiene.  
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