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thermocline was deeper, SST was higher, macronutrients, chlorophyll and primary production
were low along the entire transect, with most properties lacking strong latitudinal trends. In spring,
the thermocline, macronutrients, chlorophyll and primary production rose along the entire section
but most dramatically in the north where upwelling was stronger. Prochlorophytes and other small
open-ocean phytoplankton were more abundant in winter along the entire transect and to the
south in spring, whereas diatoms, a characteristic coastal group of phytoplankton, were more
abundant in spring and in the north. Surface iron was higher in the north in winter, but lower there
in spring, presumably reflecting drawdown by diatoms. These results are detailed in the figure
captions.
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