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Abstract
Canopy-forming seaweeds sustain critical ecosystem services in coastal habitats. Around 
the world, many of these seaweeds are suffering strong declines, mainly attributed to the 
progressive increase in sea surface temperature, in combination with other stressors due 
to current global changes. The southernmost part of the NE Atlantic is among those areas 
most affected by climate change. In this study, we estimated the distributional contractions 
of seven of the most conspicuous seaweeds from the Atlantic coasts of the Iberian Pen-
insula using an “Extent of Occurrence” methodology. Overall, during the last three dec-
ades, range shifts have been more pronounced east of the Cantabrian Sea than along the 
western coast of the Iberian Peninsula. In particular, regions with a semi-permanent sum-
mer upwelling seem to be critical to the persistence of brown seaweeds, fucoids and kelps. 
Range contractions of the cold-temperate fucoids were estimated to be ca. 21% and 45% for 
Himanthalia elongata and Fucus serratus, respectively; and for the kelps Saccharina latis-
sima and Laminaria hyperborea, 6% and 14%, respectively. Range contractions for warm-
temperate kelps were estimated to be ca. 13% and 10% for Saccorhiza polyschides and 
L. ochroleuca, respectively. Finally, a decline in the warm-temperate red algae Gelidium 
corneum occurred only in the easternmost area of the Cantabrian Sea (Basque Country), 
leading to a distributional contraction of 7%. We recommend conservation actions to better 
manage the remnant populations of these canopy-forming seaweeds, and their inclusion in 
national and regional catalogues of endangered species and on international Red Lists.

Keywords Kelp forests · Fucoids · Red algae · Climate change · Range contraction · 
Community replacement
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Introduction

Ecological systems are currently affected by a wide variety of impacts, as a result of the 
increases of human activity (Raudsepp-Hearne et  al. 2010; Jorgenson and Clark 2011). 
Current rates of biodiversity loss are exceeding those of the historical past and show no 
indication of slowing (Ceballos et  al. 2015). Global climate change, pollution, overex-
ploitation, invasive species, and habitat fragmentation are the main drivers of the overall 
decline in biodiversity (Millennium Ecosystem Assessment 2005). Marine systems domi-
nated by habitat-forming species (e.g., corals, sponges, oysters, seagrasses, kelps) are criti-
cal to ecosystem services (Palumbi et al. 2009; Laffoley and Baxter 2016). The previously 
mentioned threats affect their physiological and ecological performance, ultimately causing 
their decline (Walther et al. 2002; Hoegh-Guldberg and Bruno 2010; Smale and Wernberg 
2013). Concurrently, community phase shifts may occur, because the dominant habitat-
forming organisms are eliminated and/or replaced by a different group of species (Airoldi 
et al. 2008). This leads to consequences for associated biodiversity and trophic interactions 
(Hawkins et al. 2009; Wahl et al. 2015). Examples include temperate to tropical seagrasses 
(Waycott et al. 2009), mangroves (Polidoro et al. 2014; Fusi et al. 2015), corals (Pandolfi 
et  al. 2003; Munday et  al. 2008; Jones et  al. 2014), and large canopy-forming seaweeds 
(Steneck and Johnson 2013; Wernberg et al. 2011, 2016).

Coastal systems dominated by canopy-forming seaweeds are one of the most ecologi-
cally and socio-economically important habitats in temperate waters (Steneck et al. 2002; 
Smale et  al. 2013; Bennett et  al. 2016). Through provisions of food, shelter and habitat 
to other species of flora and fauna, seaweeds provide a structural and trophic framework 
that supports a high diversity of associated organisms (Bustamante et  al. 2017; Teagle 
et  al. 2017). In addition, seaweeds provide many other ecosystem services, such as  CO2 
sequestration, nutrient cycling, and shoreline protection (Duarte 2016; Krause-Jensen and 
Duarte 2016). A growing body of global evidence reveals a decline in seaweeds in different 
regions, mainly driven by increases in seawater temperature, along with a higher frequency 
and intensity of extreme climatic events (e.g., Wernberg et al. 2013, 2016; Fernández 2011; 
Tanaka et al. 2012; Duarte et al. 2013; Smale and Wernberg 2013; Krumhansl et al. 2016). 
These losses may have relevant consequences for local economies and biodiversity (Voer-
man et al. 2013; Vergés et al. 2016).

The Atlantic coast of Europe is a hotspot of warming, as sea surface temperatures have 
risen 0.3–0.8 °C per decade since the mid-20th century (OSPAR 2010; Lima and Wethey 
2012; Smale et  al. 2013). The southernmost region, the Iberian Peninsula, is among the 
areas most affected by climate change (Belkin 2009). The Iberian Peninsula has been tradi-
tionally divided into three biogeographic sub-regions. A “cool” region is located around W 
Portugal and NW Spain, characterized by seasonal, cold, nutrient-rich upwelling during the 
summer. The two “warmer” sub-regions include: the north of the Iberian Peninsula—the 
easternmost area of the Cantabrian Sea—and the south of the Iberian Peninsula—Algarve 
and the western end of the Strait of Gibraltar (OSPAR 2010). Differences in the summer 
temperature historically shaped the distribution of two different groups of seaweeds domi-
nating the intertidal and subtidal zones (Gorostiaga et al. 2004; Bárbara et al. 2005; Araújo 
et al. 2009; Gallardo et al. 2016). On the one hand, cold- to warm-temperate brown sea-
weeds follow a W–E gradient (along the Cantabrian Sea) and a N–S gradient (from the 
Galician Rías to the Strait of Gibraltar) in terms of abundance. For most of these seaweeds, 
the Iberian Peninsula is their southernmost distributional limit, serving as refuge in the 
last glacial period (Hoarau et al. 2007; Maggs et al. 2008; Assis et al. 2017b). On the other 



Biodiversity and Conservation 

1 3

hand, red algae such as Gelidium corneum are characteristic of the northern, southwestern 
and, to a lesser extent, southern Atlantic coasts (Santos and Duarte 1991; Marqués et al. 
1982; Gorostiaga et al. 2004).

In this study, we compiled published information, technical reports, and experts’ 
knowledge on seven of the most conspicuous canopy-forming seaweeds from the Atlan-
tic coasts of the Iberian Peninsula: the warm-temperate kelps Laminaria ochroleuca and 
Saccorhiza polyschides, the cold-temperate kelps and fucoids L. hyperborea, Saccharina 
latissima, Himanthalia elongata and Fucus serratus, and the warm-temperate red alga 
Gelidium corneum. Despite historical fluctuations in the distribution of these seaweeds 
(i.e., periods of expansion and retraction), a continuous decline was apparent since the late 
1990s, mostly along the northern Iberian Peninsula. Local and regional studies have pro-
vided evidence of declining trends in the abundance of these canopy-forming seaweeds 
(e.g., Fernández 2011; Díez et  al. 2012; Voerman et  al. 2013; Araújo et  al. 2016; Assis 
et al. 2016; Muguerza et al. 2017; Borja et al. 2018). At the same time, reduced recruit-
ment and growth (e.g., Fernández 2011), and range contractions have been described (e.g., 
Duarte et al. 2013; Fernández 2016; Assis et al. 2016). Following the International Union 
for Conservation of Nature (IUCN) Red List criteria, which determines the relative risk of 
extinction of flora and fauna, our objective was to determine and quantify changes in the 
geographic range of the targeted species along the Atlantic coasts of the Iberian Peninsula. 
To accomplish this aim, we used the “Extent of Occurrence” (EOO) methodology (IUCN 
2013). This work is expected to provide useful scientific recommendations for the conser-
vation of canopy-forming seaweeds across the Atlantic Iberian Peninsula.

Materials and methods

We gathered information from the scientific literature, technical reports and the most 
recent knowledge from experts on the status, trends, and historical and present distribu-
tion on the Atlantic Iberian Peninsula, of the canopy-forming seaweeds: F. serratus, H. 
elongata, S. latissima, L. hyperborea, L. ochroleuca, S. polyschides and G. corneum. We 
also screened for information regarding major threats to these seaweeds. At the time of 
organizing the information, seven ecological regions were identified for the Iberian Pen-
insula, following Ramos et al. (2016) for the N and NW coasts, Tuya et al. (2012) for the 
W coasts, and Bermejo et  al. (2015) for the S coasts. In the N Iberian Peninsula (from 
the French border to Ria de Vivero, 43°41.5′N, 7°35.9′W), two regions are distinguished: 
Eastern and Western Cantabrian, with Ria de Villaviciosa (43°32.4′N, 5° 23.2′W) as the 
border. In the NW Iberian Peninsula (from Ría de Vivero to the N Portuguese-Spanish bor-
der) two regions are distinguished: Upper and Lower Rías, separated by the Finisterre Cape 
(41°52.3′N, 8°51.7′W). On the W Iberian Peninsula (between N and S Portuguese-Spanish 
borders), two regions are differentiated: Northern and Southern Portugal, divided by the 
Nazaré Canyon (39° 35.9′N, 9° 4.6′O). In the south of the Iberian Peninsula, the region of 
the Strait of Gibraltar, from Punta Camarinal (36°4.7′N, 5°47.8′W) to Gibraltar (36º4′N, 
5°20.7′W) was considered.

Estimation of range shifts

We assembled a GIS database using ArcView (v.10.2.1.) to include all presence records 
from different databases (Global Biodiversity Information Facility, GBIF; Ocean 
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Fig. 1  Extent of Occurrence (EOO) of warm-temperate kelps with an intertidal and subtidal distribution 
(Laminaria ochroleuca and Saccorhiza polyschides). Ecological regions correspond to those described by 
Ramos et al. (2016), Tuya et al. (2012) and Bermejo et al. (2012) (see “Materials and methods”). Numbered 
lines correspond to the limits of ecological units. FR–SP France–Spain border, RVi Ría Villaviciosa, RV Ria 
de Viveiro, FC Finisterre Cape, SP–PT Spain–Portugal border, NC Nazaré Canyon, PT–SP Portugal–Spain 
border, PC Punta Camarinal, Gib Gibraltar. The outer coastline represents kelp distribution during Period 1 
(1980’s–1990’s), dark polygons correspond to estimated EOO. The inner coastline corresponds to Period 2 
(2013–2016), dark polygons correspond to estimated EOO; dashed lines indicate areas where the kelps have 
not been found; light polygons correspond to areas where sparse isolated individuals have been found in the 
deep subtidal zone

▸

Biogeographic Information System, iOBIS), and herbarium collections from the Iberian 
Peninsula (BCN-Phycophyta, BIO- Cryp, FCO, HGI-A, MA-Algae, MACB, MAF-Algae, 
MGC-Phyc., MUB, PO, SANT, UALG, and VAL; herbarium abbreviations follow Thiers 
(2017). The geographic position of each record was checked for consistency to avoid 
redundancies and incongruences from the different data sources. Those presences errone-
ously geo-referenced, on land or far from the coastline, were omitted or corrected with the 
aid of experts. To estimate species’ distributional shifts, we grouped the available informa-
tion on presence records of each seaweed into two periods: during the 1980’s and 1990’s 
(hereafter, Period 1) and the present time, i.e., between 2013 and 2016 (hereafter, Period 
2). We then calculated the differences in the “Extent of Occurrence” (EOO; IUCN 2013) 
during the two periods. We did not consider sites where species were observed as sparse 
individuals. The EOO is defined as the smallest area that can be drawn to include all the 
known, inferred or projected presence sites of a species (IUCN 2013). This estimation 
may exclude geographic discontinuities or disjunctions within the overall distribution of 
the species (e.g., large areas of unsuitable habitat). EOO has seldom been used for sea-
weeds. Thus, we adapted this parameter using two distinct methodologies for subtidal and 
intertidal species. For the species present in the lower intertidal and subtidal zones, EOO 
was delimited using the minimum convex polygon method, or convex hull (IUCN 2013). 
We built the convex hulls using the Minimum Bounding Geometry tool of ArcGIS, from 
1:25,000 maps. The polygons were corrected, such that areas of unsuitable habitats (i.e., 
areas of sand and muddy bottoms) were discarded. This was implemented from a layer of 
substrate type (EMODnet Seabed Habitats, Populus et al. 2017). Because of the distribu-
tion in depth of the species, polygons were clipped with the bathymetric layer (General 
Bathymetric Chart of the Oceans, 30 arc-sec interval grid). For Laminaria spp., a maxi-
mum depth of 25 m was used (Gili et al. 1979; Arroyo et al. 2006; Guinda et al. 2012); in 
the case of S. latissima, S. polyschides and G. corneum, layers were cut to a maximum of 
20 m depth (Borja and Gorostiaga 1990; Gorostiaga et al. 1998; Borja et al. 2004; Fernán-
dez 2011). Distributional shifts were calculated by comparing the measured area  (km2) of 
the polygons between Period 1 and Period 2, which provided the percentage of EOO loss 
for each species.

The intertidal species H. elongata and F. serratus have a linear distribution along rocky 
fringes, normally < 1 km in width. We used the linestring of the coastline from 1:25,000 
maps, but exclusively including rocky shores based on digital images. An exception was 
made in the case of F. serratus in NW Spain (Galician Rías) and the Northern Portugal 
region, because the distribution of this species is restricted to a few localities (Duarte et al. 
2013, 2015). In this case, the distribution was estimated with several independent linear 
transects  (1  km width) parallel to the coast. We estimated distributional contractions by 
comparing the length (measured in km) of the linestring of the coastline covered by the 
species during Period 1 and Period 2, and estimating the percentage lost.
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Results

A total of 49 published studies and technical reports provided information on the distribu-
tion of the targeted seaweeds at local and regional scales (Table 1). A total of 21 studies 
reported declines in the targeted seaweeds associated with several threats. Global warming 
was regarded as the most relevant stressor. However, other factors were also reported as 
relevant, such as irradiance and intensification in the frequency of swells, and non-climatic 
factors such as fish grazing.

Range shifts

Seaweeds with intertidal and subtidal distributions

For the warm-temperate kelps Laminaria ochroleuca and Saccorhiza polyschides, a total 
of 212 and 106 occurrences were obtained, respectively. Both kelps were distributed from 
the Eastern Cantabrian to the Strait of Gibraltar during Period 1 (Fig. 1). Both kelps were 
commonly found forming mixed forests. Information on the decline of L. ochroleuca from 
Period 1 to Period 2 was found for the Eastern and Western Cantabrian. Changes in the 
geographical range of L. ochroleuca have been assessed using quantitative data from East-
ern Cantabrian and Northern Portugal. In the case of L. ochroleuca, in Period 1, accord-
ing to quantitative local-scale studies, dense kelps forests (50–75% cover) were observed in 
the intertidal and subtidal zones. In Period 2, forests of L. ochroleuca were not observed 
in the previously mentioned regions; sparse individuals of small size were largely found 
inhabiting the subtidal zone (Fig. 1). This resulted in an estimated EOO decrease of 10% 
(Fig. 1, Table 2) from Period 1 to Period 2 (i.e., in the last ca. 30 years). Although the 

Table 2  Estimated “Extent of Occurrence” (EOO), distributional shifts and contraction rates for the stud-
ied seaweeds. Period 1 correspond to EOO between the 1980’s and 1990’s and Period 2 between 2013 
and2016. N/A, not applicable

Species EOO period 1 EOO period 2 N shift W shift Overall shift Distributional 
contraction 
(%)

Species with intertidal and subtidal distribution  (km2)
 Warm-temperate kelps
  Laminaria ochroleuca 1559 1415 N/A 144 144 10
  Saccorhiza poly-

schides
1350 1178 22 150 172 13

 Cold-temperate kelps
  Laminaria hyperborea 1379 1189 72 118 190 14
  Saccharina latissima 787 736 21 30 51 6

 Warm-temperate red seaweeds
  Gelidium corneum 1370 1280 N/A 90 90 7

 Species with intertidal distribution: fucoids (km)
  Himanthalia elongata 978 769 33 176 209 21
  Fucus serratus 197 109 1 87 88 45
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obtained information did not allow the detection of a decreasing trend in the distribution 
of this kelp in Southern Portugal, it should be noted that expert knowledge suggests local 
declining trends.

We found information on the decline of S. polyschides through Period 1 to Period 2 for 
the Eastern and Western Cantabrian and Southern Portugal. In Period 1 and according to 
quantitative local-scale studies, dense kelp forests (85–100% cover) were observed in the 
intertidal and subtidal zones of those these regions. Through Period 1 to Period 2, a con-
tinuous decline in population density was observed in the Eastern Cantabrian, where the 
kelp has not been found to date (Fig. 1). In the Western Cantabrian and Southern Portugal, 
fluctuations in the presence and abundance of this kelp have been observed in both periods. 
During Period 2, this kelp was not observed in the southernmost tip of Southern Portugal 
(Fig. 1). This resulted in an estimated EOO decrease of 13% (Fig. 1, Table 2) in the last ca. 
30 years.

In the case of the cold-temperate kelps Laminaria hyperborea and Saccharina latissima, 
a total of 74 and 144 occurrence records were obtained, respectively. In Period 1, both 
kelps were distributed from the Western Cantabrian to Northern Portugal. During Period 
1, L. hyperborea was commonly found intermixed with L. ochroleuca and S. polyschides. 
The presence of S. latissima was rare and distributed from the westernmost end of Western 
Cantabrian to the upper tip of Northern Portugal. Qualitative information from local-scale 
studies and experts’ knowledge showed declining trends of both kelps from the Western 
Cantabrian to Northern Portugal (Fig. 2). In Period 2, only some sparse subtidal individu-
als of L. hyperborea and S. latissima were observed in both regions. Thus, in Period 2, the 
distribution of both kelps was limited to the Upper and Lower Rías and, to a lesser extent, 
the upper tip of Northern Portugal. This led to EOO decreases of 14% and 6%, respec-
tively, for L. hyperborea and S. latissima (Fig. 2, Table 2) in the last ca. 30 years.

For G. corneum, a total of 96 occurrences were recorded. In Period 1, this seaweed was 
distributed all along the Atlantic coast of the Iberian Peninsula, from the Eastern Canta-
brian to the Strait of Gibraltar. Dense beds of the species were mainly distributed in the 
Western and Eastern Cantabrian, Southern Portugal and the Strait of Gibraltar. Changes 
in the distributional range of G. corneum have been assessed using quantitative data from 
Eastern Cantabrian. Published literature, technical reports and experts’ knowledge showed 
a continuous decline in G. corneum biomass (up to ~ 80%) and coverage (up to ~ 60%) since 
the 1990’s-2000. However, some studies have suggested an increase in abundance in the 
Western Cantabrian and the westernmost part of the Eastern Cantabrian. Overall, the esti-
mated EOO reduction for G. corneum was 7% (Fig. 3, Table 2) in the last ca. 30 years.

Seaweeds with intertidal distribution

A total of 87 and 44 occurrences were found for H. elongata and F. serratus, respectively. 
During Period 1, the distribution of both fucoids covered the lower intertidal zone from the 
Western Cantabrian to Northern Portugal. According to information from studies and sur-
veys, both species have disappeared, since 2000, from numerous localities (Fig. 4) of the 
Western Cantabrian and Northern Portugal. Only F. serratus remains in a few localities of 
the Western Cantabrian, mostly as sparse individuals of depauperated conservation status, 
i.e., “dwarf-morphs”. Estimated EOO reductions were 21% and 45% for H. elongata and F. 
serratus, respectively (Fig. 4, Table 2) in the last three decades. The current distribution of 
both fucoids is restricted to the NW corner of the Iberian Peninsula (Upper and Lower Rías 
and Northern Portugal), where ongoing declines have been recently reported.
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Discussion

In this study, we compiled the most recent information on the local and regional decline of 
seven of the most conspicuous cold- and warm-temperate canopy-forming seaweeds from 
the Atlantic coasts of the Iberian Peninsula. By estimating the “Extent of Occurrence” 
(EOO, IUCN 2013), we quantified their range contractions over the last three decades.

Several studies point towards the continuous increase in seawater temperature as the 
most relevant threat to these seaweeds (this study, Table  1). Seaweeds are temperature-
dependent organisms for which growth and photosynthesis are reduced when temperatures 
differ from the optimum (Breeman 1988; Lüning 1990). The distribution of these seaweeds 
on the Atlantic coast of the Iberian Peninsula has historically been associated with the 
August oceanic isotherm of 20 °C (Lüning 1990). Since the 1980’s, the Atlantic coastal 
waters of the Iberian Peninsula have experienced a significant warming. The greatest sea-
water temperature increases have been observed during spring, summer and early autumn 
and, subsequently, the warm season is lengthening (Lima and Wethey 2012; Costoya et al. 
2015; Piñeiro-Corbeira et  al. 2016). Overall the range shift in the brown seaweeds was 
estimated to be higher westward along the Cantabrian Sea, than northward along the W 
Iberian Peninsula. This may be explained by the fact that the longitudinal increase in sea-
water temperature in the Atlantic Iberian Peninsula has been twice as high as the latitudi-
nal increase (Gómez-Gesteira et al. 2008). Seawater temperature increases have been more 
pronounced towards the eastern Cantabrian Sea, achieving an increase of ca. 0.26 °C per 
decade (Goikoetxea et al. 2009). In all other regions, seawater temperature increases have 
been ca. 0.15 °C (Gómez-Gesteira et al. 2011; Piñeiro-Corbeira et al. 2016; Goela et al. 
2016) due to the cooling effects of periodically upwelling events in near-shore waters. In 
addition to ongoing warming, periods of > 30 consecutive summer days of seawater tem-
peratures > 20 °C, i.e., the maximum survival threshold for most species (Table 1), have 
been detected since 2000 (Fernández 2011; Díez et al. 2012; Assis et al. 2017a). In turn, 
summer heat waves have also been documented. For example, in 1997, 2003 and 2006, sea-
water temperature reached > 25 °C in the Eastern Cantabrian (Díez et al. 2012). In 2003 
and 2006, seawater temperature reached maximum values of ~ 23 °C in the Western Canta-
brian (Voerman et al. 2013). Particularly for Laminaria ochroleuca and Saccorhiza poly-
schides this has been indicated as a key reason for the observed range shifts in the West-
ern and Eastern Cantabrian, respectively (Fernández 2011; Díez et  al. 2012; Muguerza 
et al. 2017; this study, Table 1). Similarly, this may explain the shifts of the other kelps, 
as experiments demonstrate for Saccharina latissima (Simonson et al. 2015). Increases in 
seawater temperature above species’ temperature thresholds, during prolonged periods, 
cause severe damage to cellular structures, limiting tissue growth (Martínez et  al. 2012; 
Simonson et al. 2015). Thus, photosynthesis, growth and individual survival are negatively 
affected (Flukes et al. 2015). Individual and populations resilience are reduced and, there-
fore, species are more vulnerable to other stressors (Whal et al. 2015). On the other hand, 

Fig. 2  Extent of Occurrence (EOO) for cold-temperate kelps with an intertidal and subtidal distribution  
(Laminaria hyperborea and Saccharina latissima). Ecological regions correspond to those described by 
Ramos et  al. (2016) and Tuya et  al. (2012) (see “Materials and methods”). Numbered lines correspond 
to the limits of the ecological units. RVi Ría Villaviciosa, RV Ria de Viveiro, FC Finisterre Cape, SP–PT 
Spain–Portugal border, NC Nazaré Canyon. The outer coastline represents the kelp distribution during 
Period 1 (1980’s–1990’s), dark polygons correspond to estimated EOO. The inner coastline corresponds to 
Period 2 (2013–2016), dark polygons correspond to estimated EOO; dashed lines indicate areas where the 
kelps have not been found; light polygons correspond to areas where sparse isolated individuals have been 
found in the deep subtidal zone

▸



Biodiversity and Conservation 

1 3



 Biodiversity and Conservation

1 3

while S. polyschides has almost disappeared from the Eastern Cantabrian, extreme fluctua-
tions (periods of extinction followed by recolonization) have been observed in the West-
ern Cantabrian and Southern Portugal (Assis et al. 2017a; this study). These fluctuations 
have been associated with the seasonal effect of winter temperatures on microscopic stages 
and nutrient availability during spring, i.e., the sporophyte growth phase (Fernández 2011; 
Assis et al. 2017a). However, if current warming conditions persist, projections through the 
next three decades predict the extinction of this kelp in these regions (Assis et al. 2017a).

Because of the current warming conditions, the current distribution of the targeted 
brown seaweeds is restricted to the influence of cold-water nutrient rich upwelling (Ber-
mejo et al. 2012; Ramos et al. 2016; Lourenço et al. 2016; this study, Table 1). Cold-
temperate fucoids and kelps find refuge along the NW corner of the Iberian Peninsula 
(Upper and Lower Rías, and Northern Portugal). Warm-temperate kelps are not only 
found along the NW corner of the Iberian Peninsula, but also throughout Southern Por-
tugal and Strait of Gibraltar. However, indications of an ongoing decline have been 
observed, particularly in the intertidal zone of the Upper and Lower Rías (Piñeiro-Cor-
beira et al. 2016), raising uncertainty on the potential role of these regions as refuges for 
these species in the near future (Martínez et al. 2015b).

Along the Atlantic European coasts, other studies have shown declining trends of 
the targeted canopy-forming seaweeds, mainly driven by global warming (reviewed by 

Fig. 3  Extent of Occurrence (EOO) for the warm-temperate red algae Gelidium corneum. Ecological 
regions correspond to those described by Ramos et al. (2016), Tuya et al. (2012) and Bermejo et al. (2012) 
(see “Materials and methods”). Numbered lines correspond to the limits of the ecological units. RVi Ría 
Villaviciosa, RV Ria de Viveiro, FC Finisterre Cape, SP–PT Spain–Portugal border, NC Nazaré Canyon. 
The outer coastline represents the algal distribution during Period 1 (1980’s–1990’s), dark polygons cor-
respond to estimated EOO. The inner coastline corresponds to Period 2 (2013–2016), dark polygons corre-
spond to estimated EOO; light polygons correspond to areas where a sharp decline in G. corneum meadows 
was observed

Nota adhesiva
See "Attached files" menu for amended figure
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Araújo et al. 2016). The cold-temperate brown seaweeds of our study are distributed up 
to the Arctic region. In the English Channel, declines in abundances of L. hyperborea, 
driven by warmer winter temperatures, were observed (Yesson et al. 2015; Assis et al. 
2016). In Scotland, the Irish and the North Seas, Skagerrak and Norway, L. hyperborea 
has been documented to be stable, whereas F. serratus has increased in abundance (Yes-
son et al. 2015; Araújo et al. 2016). Even S. latissima has increased after a significant 
reduction driven by overgrazing by sea urchins (Norderhaug et al. 2015; Araújo et al. 
2016). The distribution of the warm-temperate kelps, L. ochroleuca and S. polyschides, 
has extended to the British Isles and mid-Norway, while decreasing in northern France 
(Smale et al. 2015; Yesson et al. 2015; Araújo et al. 2016) due to warmer summer tem-
peratures. Therefore, all of this evidence suggests that the distributional limit of the 
targeted brown seaweeds is shifting poleward.

The decline in canopy-forming seaweeds, driven by increases in seawater tempera-
ture, has been described in other regions worldwide. In the central Atlantic coast of 
Nova Scotia, 85–99% of the biomass of S. latissima and L. digitata was lost over the last 
three decades, leading to a regime shift from kelps to turf-dominated rocky reefs and 
invasive seaweeds (Filbee-Dexter et al. 2016). On the SW coast of Japan, Tanaka et al. 
(2012) reported that kelp forests dominated by Ecklonia spp. have mostly disappeared 
over an area of ca. 700 km. Similarly, these authors showed that temperate Sargassum 
spp. have been replaced by the tropical species Sargassum ilicifolium. On the western 
temperate coast of Australia, the gradual increase in seawater temperature over the last 
three decades, in combination with extreme marine heat waves (Wernberg et al. 2013), 
has facilitated a shift toward communities dominated by turfs, invertebrates and corals 
of subtropical affinity (Wernberg et al. 2013, 2016).

Other climatic and non-climatic factors may also threaten the presence of the tar-
geted seaweeds. The presence of cold-temperate seaweeds along Northern Portugal 
has been associated with cold-water upwelling (Lima et al. 2007). The magnitude and 
frequency of the summer upwelling has been observed to be weakened (Lemos and 
Pires 2004) due to a decrease in favorable winds (Sydeman et  al. 2014). Because of 
upwelling instability, not only may water temperature be warmer, but the period of 
summer stratification also increases, reducing the availability of nutrients, which are 
also important for kelp performance (Fram et al. 2008; Franco et al. 2018). The inter-
tidal fucoids, F. serratus and H. elongata, are probably also influenced by climatic fac-
tors related to emersion times (Viejo et  al. 2011; Duarte et  al. 2013), e.g., increased 
air temperatures (Helmuth et al. 2002) and irradiance (Martínez et al. 2012; Sanchez-
Lorenzo et al. 2013). On the northern coast of the Iberian Peninsula, an average annual 
increase of ca. 2.3 W m−2 per decade, from 1985 to 2010, has been reported (Sanchez-
Lorenzo et al. 2013). Increased solar irradiance in F. serratus has been associated with 
photosynthetic inhibition and damage (Martínez et  al. 2012). In the easternmost area 
of the Eastern Cantabrian (Basque Country), increasing levels of irradiance during 
summer, in combination with seawater temperature increases, and decreases in solar 
irradiance during winter, have gradually threatened the intertidal and subtidal Gelid-
ium corneum populations (Díez et  al. 2012; Muguerza et  al. 2017; Quintano et  al. 
2015; Borja et  al. 2018). Moreover, storms are becoming more frequent and intense, 
and increased wave energy has had a strong dislodging effect on G. corneum (Borja 
et  al. 2013, 2018). Seaweeds are likewise affected by local stressors such as water 
quality, invasive species, harvesting, trampling and habitat modification (Wahl et  al. 
2015; Mineur et  al. 2015). However, on the Atlantic coasts of the Iberian Peninsula, 
the mid- and long-term effects of these stressors are less studied than other variables 
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regularly monitored at global and regional scales (e.g., seawater temperature, nutrients, 
irradiance, wave intensity). For example, seaweed harvesting increased in NW Iberia in 
recent years, particularly for edible species used as human food (e.g., L. ochroleuca, L. 
hyperborea, S. polyschides, H. elongata, S. latissima). However, the effects of harvest-
ing have not been properly assessed (García-Tasende and Peteiro 2015). It is recom-
mended that studies on the effects of exploitation on the targeted seaweeds are carried 
out. The resilience of the populations under current conditions of global must be also 
considered at the time of designing exploitation plans. In addition, warming contrib-
utes to accelerating population growth and grazing activities of mesograzers (Vergés 
et al. 2016). Several studies have demonstrated that kelps are intensely consumed not 
only by native fish, but also by tropical species moving to temperate areas because of 
the warming of the oceans (Tuya et  al. 2012; Brodie et  al. 2014; Franco et  al. 2017; 
this study, Table 1). On the NE Atlantic European coasts, the percentage of introduced 
seaweed species account for around 20% of the worldwide total (Williams and Smith 
2007); for example, the Galician Rías is considered an outstanding European Atlan-
tic hotspot of introduced marine species (Bárbara et al. 2008). Non-native species can 
affect native ones, including competition for available resources (substratum, nutrients, 
solar radiation). Climate-driven changes may affect the dispersion of non-native spe-
cies because of the variation in the currents system. Also, competitive interactions may 
occur considering the onset of new thermal conditions and availability empty ecologi-
cal niches (Davidson et al. 2015).

On the Atlantic coasts of the Iberian Peninsula, the consequences of the loss of can-
opy-forming seaweeds may be relevant to associated assemblages, because their structural 
and functional role cannot be easily fulfilled by other species (Crowe et al. 2013). Studies 
of community replacement on these coasts reported, in the subtidal zone of the Eastern 
Cantabrian (Díez et al. 2012), an increase in less conspicuous seaweeds, such as coralline 
algae (e.g., Lithophyllum incrustants and Ellisolandia elongata), warm-water filamentous 
species (e.g., Gayliella flaccida and Aglaothamnion tenuissimum), and introduced sea-
weed species (e.g., Asparagopsis armata, Bonnemaisonia hamifera, Sargassum muticum 
and Codium fragile). Introduced species, such as A. armata, have also been observed to 
spread in the subtidal zone of previously kelp-dominated areas of the Western Cantabrian, 
together with other warm-temperate species (e.g., Gelidium corneum, Jania squamata and 
Dictyota dichotoma) (Voerman et  al. 2013). In the intertidal zone, an increase in oppor-
tunistic species (e.g., Ulva and Ceramium spp.) (Duarte et  al. 2015) has been observed. 
Because large macroalgae regulate key functions, the loss of canopy-forming seaweeds is 
expected to lead to a simplification of the food-web complexity and length (Graham 2004; 
Airoldi et al. 2008; Byrnes et al. 2011). This occurred in the intertidal assemblages domi-
nated by F. serratus in the Western Cantabrian region (Duarte et  al. 2015), where this 
fucoid was replaced by ephemeral and turf-forming species, leading to a decline in associ-
ated diversity and food-web complexity.

Fig. 4  Extent of Occurrence (EOO) for fucoids with intertidal distribution (Himanthalia elongata and 
Fucus serratus). Ecological regions correspond to those described by Tuya et al., (2012) and Ramos et al. 
(2016) (see “Materials and methods”). Numbered lines correspond to the limits of the ecological units. RVi 
Ría Villaviciosa, RV Ria de Viveiro, FC Finisterre Cape, SP–PT Spain–Portugal border, NC Nazaré Can-
yon. The outer coastline represents the fucoids’ distribution during Period 1 (1980’s–1990’s), dark lines 
correspond to estimated EOO. The inner coastline corresponds to Period 2 (2013–2016), dark lines cor-
respond to estimated EOO; dashed lines indicate areas where the fucoids have not been found; light lines 
correspond to areas where sparse isolated individuals have been found

▸
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Recommendations for management and conservation

In this study, we quantified the distributional shifts of seven of the most conspicuous 
canopy-forming seaweeds from the Iberian Peninsula. Given their importance as habi-
tat-forming species, or ecosystem engineers, conservation actions must be established to 
better manage remnant populations. We have summarized their status and trends, show-
ing a major decline in kelp abundance with respect to their entire distributional range 
within the NE Atlantic. An overall IUCN Red List assessment, considering the Euro-
pean coasts, is highly recommended. In the case of the fucoids, we propose adapting the 
standard methodology used by the IUCN guidelines, which suggests measuring EOO, 
in the case of linear habitats, through 2 × 2 km grids (IUCN 2013). Nonetheless, at least 
regarding the distribution of the targeted fucoids on the Atlantic coast of the Iberian Pen-
insula, the use of a system based on areas would not be realistic and would lead to bias 
and overestimations. Thus, we recommend that thresholds should be adapted for coastal 
linear habitats.

Scientific knowledge on the dynamics of communities dominated by seaweeds has 
potential applications to the better management of coastal ecosystems. The management 
and conservation of the targeted seaweeds should involve improved monitoring of critical 
areas, such as those regions where the species are currently distributed in the NW Iberian 
Peninsula. The reduction of local threats (e.g., invasive species, overexploitation) should 
be examined and considered at the time of elaborating management plans. In-situ studies 
to evaluate the potential success of transplantation methodologies and to assess if these 
strategies are cost-effective to boost the size and long-term viability of wild populations 
are highly recommended, together with ex situ conservations methods (e.g., seed banks, 
and cultures). Our study indicates the paramount importance of better implement of marine 
policies, such the Marine Strategy Framework Directive (Directive 2008/56/EU) on the 
sub-region Bay of Biscay and Iberian Peninsula, according to, at least, three of the estab-
lished descriptors (Commission Decision (EU) 2017/848): 1—biodiversity is maintained; 
4—elements of food webs ensure long-term abundance and reproduction; 6—the sea floor 
integrity ensures functioning of the ecosystems.
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