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Abstract: Gorgonians play a fundamental role in the deep sea (below 200 m depth), composing
three-dimensional habitats that are characterized by a high associated biodiversity and playing an
important part in biogeochemical cycles. Here we describe the use of a benthic lander to monitoring
polyps activity, used as a proxy of gorgonian feeding activity of three colonies of Placogorgia sp. Images
cover a period of 22 days with a temporal resolution of 30 min. In addition, this seafloor observatory
is instrumented with oceanographic sensors that allows continuous monitoring of the hydrographic
conditions in the site. Deep-learning is used for automatic detection of the state of the polyps
registered in the images. More than 1000 images of 3 large specimens of gorgonians are analyzed,
annotating polyps as extended or retracted, using the semantic segmentation algorithm ConvNeXt.
The segmentation results are used to describe the feeding patterns of this species. Placogorgia sp.
shows a daily pattern of feeding conduct, depending on the hours of day and night. Using a Singular
Spectrum Analysis approach, feeding activity is related to currents dynamics and Acoustic Doppler
Current Profile (ADCP) return signal intensity, as proxy of suspended matter, achieving a linear
correlation of 0.35 and 0.11 respectively. This is the first time that the behavior of the Placogorgia
polyps, directly related to their feeding process, is described.

Keywords: polyps activity; deep-sea gorgonian; semantic segmentation; animal forest

1. Introduction

As cosmopolitan animals, deep-sea gorgonians are found in a wide variety of ge-
ographical locations and depth ranges, settling primarily on rocky substrates such as
continental shelves, slopes, canyons, and seamounts [1]. Their typical fan shape adds
an important three-dimensional component to the ecosystem, adding complexity to the
seascape, attracting numerous epibenthic species and thus concentrating a high level of
biodiversity [2,3]. However, gorgonians are highly vulnerable to impacts caused by fishing
gear due to their fragility, low recovery capacity, and low growth rates [4–6]. As a result,
they are included in the EU Habitats Directive as components of the 1170 Reefs and are
cataloged as Vulnerable Marine Ecosystems (VME).

Gorgonians are passive suspension feeders and play an important role in biogeochemi-
cal cycles by transferring energy from the water column to the benthos [7,8]. The activity of
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the polyps, which includes expansion and retraction, depends mainly on food availability
and local currents [9,10]. Octocorals are suspension feeders that primarily filter small or-
ganic particles from the water, including phytoplankton, ciliates, bacterioplankton [11,12],
and mesozooplankton [13]. Although corals are known to feed on zooplankton and other
particulate material, further studies are necessary to elucidate the specific natural prey
per species.

Their fans may exceed one meter in height and are usually located perpendicular
to the direction of the prevailing current [14,15]. This orientation strategy maximizes the
volume of water flowing through the polyps, increasing their access to food.

The feeding behavior of deep-sea corals is influenced by environmental factors and
food supply. Gorgonians seem to benefit from the acceleration of the current flow [16].
Some studies show that the optimal feeding rates for gorgonians are at moderate flow
velocities. Feeding rates initially increase with flow velocity, reach a peak in the range of 8
to 15 cm·s−1, and then decrease with low and high flow velocities [17–19]. However, the
optimal feeding speeds vary according to the species evaluated, and these types of studies
are scarce.

The study of deep ecosystems is complex due to the difficulty of accessing them.
Methodologies that require the extraction and death of specimens from the seafloor must be
limited to avoid damage to these valuable ecosystems. For this reason, image-based studies
are essential for increasing knowledge of deep marine ecosystems. Within this approach,
the use of underwater Remotely Operated Vehicles (ROVs) or Remotely Operated Towed
Vehicles (ROTVs) is a common practice. However, remotely operated vehicles record data
at a specific time, and their use requires large oceanographic vessels with high costs and
time-consuming operations.

Monitoring the activity rhythms of deep-sea coral species can provide information
about basic biology, such as feeding and reproduction processes. Identifying the relation-
ships between this activity and physical variables enables the replication of the behavior of
the target species and modeling of their response to future conditions. The activity rhythms
of gorgonian polyps during feeding processes are not well understood in most deep-sea
species. Several similar studies have focused on cold-water coral reefs (CWC) dominated
by Madrepora oculata Linnaeus, 1758, and Desmophyllum pertusum (Linnaeus, 1758). These
reefs can be found at moderate depths in northern latitudes and are transferable to cap-
tive experiments due to their survival in aquariums. These factors facilitate the study of
polyp activity or rhythms in the CWC [20–22]. In deeper areas, the feeding rhythm of the
Paragorgia arborea and its relationship with hydrographic conditions have been studied
in detail [23–25].

In order to understand the dynamics and behaviors of deep-sea species, it is necessary
to develop methodologies that allow the capture of data from deep-sea habitats over long
periods of time. This approach can be achieved with deep multiparameter observatories or
oceanographic landers. This tactic is useful for evaluating benthic species and habitat char-
acterization in Marine Protected Areas (MPAs) and VME using underwater cameras [26–28].
It is a technological challenge to achieve systems with numerous sensors that work at great
depths and remain in operation for long periods of time. Moreover, reducing the costs will
make it possible to have more sampling sites and increase our observation capacity.

As our ability to observe deep habitats advances, the need to develop image-processing
methodologies based on automation techniques becomes more evident. Deep-learning-
based techniques have boosted ocean data processing. Using these algorithms, image
annotation can be carried out automatically, achieving the automatic identification and
classification of species that inhabit the deep sea [29–31], and even advancing in the
mapping of deep-sea habitats [32–35]. The use of a deep learning model for the semantic
segmentation of images, also known as pixel-level classification, is a task in computer
vision that involves classifying each pixel in an image into one of several predefined
classes. This technique seems useful for applications such as self-driving cars and medical
image analysis, but its application in underwater images is still scarce. However, this
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technique has proven to be a significant advance in the process of automating the labeling
of underwater images [36–38].

Marine Protected Areas are important conservation tools to mitigate the effects of
climate change and other anthropic pressures on marine ecosystems, as well as to protect
biodiversity, emphasizing VME characteristic species, as cold water corals and sponges
grounds. Studies on deep-sea corals help us better understand their biology and the role
they play in ecosystems. Given their high vulnerability to anthropogenic impacts, such as
deep-sea mining or fishing, this information is essential to understand in detail the effects
of these human activities on them [39]. Therefore, the aims of this study are to (1) describe
the activity of the gorgonian Placorgia sp. polyps, (2) to develop an automatic methodology
to monitor feeding activity using deep learning, and (3) to relate gorgonian behavior to
environmental conditions and food availability.

2. Materials and Methods
2.1. Study Area

Le Danois Bank, also known as “El Cachucho”, the first offshore Marine Protected
Area (MPA) in Spain [40], is located in the Cantabrian Sea, off the northern coast of Spain.
It is a large offshore bank and seamount surrounded by slopes and a complex system of
channels and canyons (Figure 1a). This MPA was later included in the OSPAR Network of
MPAs in 2009 and the Natura 2000 Network as a Special Area of Conservation (SAC) in
2011. The management plan includes specific measures for fishing activities, oil exploration,
minerals and military activity. The bank and its intra-slope basin cover an area of 234,000
hectares, with depths ranging from 425 to 4000 m. The main circulation patterns show
the presence of anticyclonic flow at the seamount summit. However, the entire system is
affected by strong and variable along-slope currents, making it a complex and dynamic
environment [41]. These characteristics make the MPA a crucial biodiversity hotspot in the
Cantabrian Sea [42].

The area is home to deep gorgonian forests, which were crucial in its designation as
MPA. The gorgonian Placogorgia sp. forest, where this study is focused, is located in a
hard bottom seamount in the southwest of the bank, with a bathymetric range of 500 to
600 m and a surface area of 2.88 hectares (Figure 1b). The gorgonian colonies in this area
are fan-shaped and grow at different densities, curvatures, and with varying numbers of
branches (Figure 1c).

Figure 1. Cont.
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Figure 1. (a) Location map of El Cachucho MPA. The red circle shows the location of the gorgonian
forest, yellow square is MPA limits and green square is the buffer area; (b) 3D bathymetric de-
tailed map of the zone and the arrow indicates location of the lander deployment site; (c) Some of
Placogorgia sp. colonies settled in the rocky substrate of the gorgonian forest.

2.2. Placogorgia sp. Colonies Morphometric Characterization

The use of photogrammetric techniques has greatly advanced the study of benthic
species by enabling three-dimensional reconstructions of marine habitats. This approach
provides a precise measurement of the size and orientation of specific specimens and allows
for accurate evaluation of the habitat’s three-dimensional component, which is directly
related to the biodiversity associated with it [43–45]. Estimation of gorgonian population
structure (i.e., maximum height, density), morphometrics (i.e., maximum width, fan area),
and biomass are valuable data for description of gorgonian forests [46,47]. It has also been
useful in studying basic aspects of the biology of sessile species, such as growth rates and
degradation suffered in coral reefs [48–53].

In 2019, a detailed characterization of the 3D sizes of this gorgonian population was
carried out [47], generating valuable information about the group of gorgonians that inhabit
this area, being for the moment the only aggregation of this species present in the entire pro-
tected area. The study was carried out through the analysis of the video transects obtained
at the Le Danois Bank, using the Politolana underwater towed vehicle during the July
2017 ECOMARG survey. Video-sections were decomposed in thousands of geo-positioned
overlapping images processed using photogrammetric Pix4D Mapper Pro software (Pix4D
SA, Prilly, Switzerland). This software carries out an advanced automatic triangulation
based purely on image content and an optimization technique. The triangulation algorithm
is based on binary local key points, searching for matching points by analyzing all images.
Those matching points, as well as approximate values of image position and orientation
provided by the Politolana telemetry system, are used in a bundle adjustment to reconstruct
the most probable position and orientation of the camera for every acquired image. For
this study, the focal length, principal point and radial/tangential distortions were set as
initial theoretical values, while the final internal and exterior orientation parameters of
the camera were determined by bundle adjustment processing. The distance between
parallel lasers beams (separated 20 cm) is used as reference scale. Using three-dimensional
reconstructions, the size and orientation of each of the three specimens were calculated by
digitizing the contour of the fan in the point cloud. The orientation and surface area covered
by the fan were directly related to the specimens’ ability to capture food and withstand the
existing currents in the area.

2.3. Image and Oceanographic Data Registration

In May 2022, a lander was deployed in a gorgonian forest at a depth of 515 m using
a new vehicle called LanderPick [54]. The LanderPick concept (Figure 2a) consists of a
specific towed vehicle that deploys and recovers lightweight oceanographic landers. The
system allows the lander to be positioned with high accuracy at the desired geographical
point using the Super Short Base Line (SSBL) system and the Dynamic Positioning System
of the oceanographic vessel. LanderPick uses a real-time video camera, lasers, and thrusters
to choose its orientation and facing camera to the specific target (Figure 2b). It also allows
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the recovery of landers without the need for automatic releases or abandoning material
at the bottom. The low-cost design makes it possible to reduce the price of deployments
operations, thereby increasing the observation capabilities of deep-sea ecosystems.

Figure 2. Description of the data acquisition (a) Moment of the maneuver on the vessel starboard
deck with the LanderPick vehicle. Design and equipment of the lander system: 1. Landerpick: de-
ploy/recovery system, 2. Flashes (2), 3. High definition camera, 4. ADCP, 5. CTD, 6. Batteries;
(b) Positioning and facing operation of the lander with the LanderPick vehicle in front of the 3 colonies
of gorgonians; (c) view of the registered images.

The camera system is based on a Raspberry Pi4 computer with a HQ Sony IM477
12.3 megapixels sensor. For data storage an external USB 3.0 250 Gb SSD was chosen.
The time-lapse controller is based on an Arduino Pro Mini. This programmable module
maintains the low-cost concept. The programming language is Python for the Rapsberry
and C for the Arduino-based time-lapse PLC controller. For lighting, it was necessary to
develop a system of spotlights based on high luminosity COB LED chips experimentally
adjusted to 40 W to maintain low power consumption. To power the system two indepen-
dent 12 v 150 Ah AGM batteries mounted in fiberglass containers flooded with dielectric
oil with an elastic pressure compensation membrane were used. The camera was located
0.8 m above the sea floor with an angle of 30◦ and configured in time-lapse mode with
an interval of 30 min. To describe the hydrographical conditions, the lander is equipped
with an upward-looking Acoustic Doppler Current Profiler (ADCP) RDI Workhorse Sen-
tinel 300 kHz recording the vertical structure of the currents every 20 min, a SeaBird37
CTD (Conductivity-Temperature-Depth) recording at 20-min intervals, and an RBR solo-T
thermistor with a high sampling rate of 5 s.

The camera was placed 1.5 m away from a group of colonies of Placogorgia sp. The
three complete specimens selected for this study are recorded in the camera’s Field Of View
(FOV) (Figure 2c). From 6 to 29 May 2022, photographs were taken every 30 min, generating
a dataset of 1074 images. On the other hand, the oceanographic variables were recorded
from 6 May to 22 October 2022, corresponding to the total duration of the deployment.
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2.4. Image Processing

In this section, a semantic segmentation model is employed to assign each pixel of the
images to specific classes. The selected model is based on ConvNeXt [55], a neural network
architecture that has demonstrated its effectiveness in segmentation tasks, similar to the
one being addressed in this study. The pre-defined classes are class 1, which corresponds
to active polyps, and class 2, which includes inactive polyps, including intermediate polyp
states where the polyps are partially contracted. Therefore, class 1 only comprises the part
of the scene where the polyps are fully expanded, enabling the observation of gorgonian
behavior at different spatial scales: overall scene, per gorgonian, and intra-specimens
(apical, central, and basal zone of the gorgonian fan).

2.4.1. Training and Test Dataset

To perform this task, it was decided to work with approximately one-fifth of the total
images, given that gorgonians are static elements and do not exhibit significant changes
across the image set. Therefore, a 70-image dataset was selected for training (50 images)
and validation (20 images), while a set of 30 randomly selected images was used to test the
best model. Evaluation of the model’s performance was carried out using metrics such as
precision and the Jaccard index or IoU (Intersection-Over-Union) [56].

2.4.2. Data Augmentation

To expand the data variability and improve the model’s generalization capacity [57,58],
data augmentation techniques were applied to the training and validation dataset. Given
the small number of samples and the similarity between them, brightness and contrast
variation, rotation, and cropping were selected as data augmentation methods. A pre-
liminary visual analysis of the image set revealed differences in gorgonian position due
to movement, as well as in illumination and blur, primarily due to water turbidity and
camera configuration.

2.4.3. Model

ConvNeXt is a deep learning backbone that is used for semantic segmentation. It is
an up-to-date convolutional network and an adaptation of old convolutional networks
such as Resnet, with newer techniques like vision transformers. This adaptation enables
ConvNext to become one of the most powerful tools for image segmentation. ConvNeXt is
a convolutional neural network or CNN-type neural network architecture that differs from
other architectures because it uses Convolution blocks with channel groups, improving the
network’s learning capacity [59,60].

The ConvNeXt architecture consists of several Convolution blocks with channel
groups, followed by pooling layers and fully connected layers. The Convolution blocks
with channel groups are an improvement to conventional Convolution layers, as they
divide the input channels into groups and only connect them to a subset of the output
channels, reducing the number of parameters in the network and improving its learning
capacity. The ConvNeXt architecture is characterized by having Convolution blocks with
channel groups and a residual Convolution block structure, improving the network’s learn-
ing capacity and reducing overfitting. Moreover, it can have multiple Convolution blocks
with channel groups followed by pooling layers and fully connected layers, achieving
better performance in computer vision tasks.

The ConvNeXt block is illustrated in Figure 3, with the convolution layer being fol-
lowed by Linear Normalization and Gaussian Error Linear Unit (GELU). To obtain the best
model, the selected model was trained with different variations of the training parameters.
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Figure 3. ConvNeXt block architecture with the different layers: convolution layer, Linear Normal-
ization (LN) and Gaussian Error Linear Unit (GELU).

The block above applies a mathematical operation called convolution, which is a
process of multiplying a small matrix, called a kernel or filter, over a section of the input
image. This operation is performed at all possible positions of the image, generating a new
image called a feature map.

yi,j,k =
U

∑
u=1

V

∑
v=1

C

∑
c=1

wu,v,c,kxi+u−1,j+v−1,c

After the convolutional layer, the ConvNeXt network applies the Linear Normal-
ization layer, which normalizes the activations of the feature map using the Frequency
Division Normalization (FDN) technique. This layer helps to reduce the covariance be-
tween channels of the previous layer and improve the generalization ability of the network.

yi = α
xi − µ

σ
+ β

Finally, the network applies the Gaussian Error Linear Unit (GELU) activation layer,
which is a non-linear function used to introduce non-linearities in the network. Where x is
the input to the activation function and Φ(x) is the cumulative distribution function of
the standard normal distribution. It is a mathematical function that assigns a cumulative
probability to a given value of the standard normal random variable, also known as the
error function.

GELU(x) = xΦ(x)

2.5. Temporal Dynamics Analysis

The annotated images obtained through automatic segmentation have been analyzed
according to predefined categories. The data on polyp activity have been independently
analyzed for each gorgonian specimen to determine whether there are any differences in
behavior among the three specimens or if they exhibit a common pattern. The temporal
patterns of extension and retraction, as well as the duration of each period, have been
compared. By using a semantic segmentation model, an analysis of the states of the polyps
within each gorgonian specimen has been conducted to identify any differences in activity
based on their location within the specimen. Each specimen has been divided into three
sections (apical, central, and basal), and the activity of each zone has been described
and compared.

The feeding activity of the Placogorgia sp. forest has been defined by analyzing
time series that describe the activity of the polyps and integrating the percentage of ex-
tended/retracted polyps from the overall scene. This method allows for a more accurate
description of the feeding activity and also enables the behavior of the specimens to be
related to the unique environmental variables recorded in the area.

Two temporal scales have been used to explore the existence of patterns in polyp
activity and its relation to the environmental dynamics; (1) the behavior of the polyps based
on the time of day (diel), that is, the averaged percentage of active polyps over 30-min
sampling periods throughout the day, and (2) the half-hourly behavior over the whole
period covering a time series of 22 days.
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To address this analysis, a Singular Spectrum Analysis (SSA) approach was used. SSA
is a time series analysis method that decomposes and forecasts time series data using tools
from time series analysis, multivariate statistics, dynamical systems, and signal processing,
and employs the singular value decomposition as its main mathematical tool [61]. SSA
decomposes the original time series into a trend component and oscillatory components
that can be associated with periodicity and noise. Time series data is analyzed using a
trajectory matrix constructed from lagged vectors. The matrix is a Hankel matrix and
can be decomposed into eigenvectors and eigenvalues. By selecting a certain number
of eigenvectors, a lower-dimensional subspace can be defined, onto which the data is
projected, the resulting matrix is an approximation to the original trajectory matrix [62]. It
should be noted that is a model-free method, meaning it can be applied to all types of time
series data and is not restricted to monthly or quarterly data, unlike some other methods
that have only been programmed for monthly or quarterly series [63]. SSA analysis was
implemented using the Rssa library [64] in R [65].

3. Results
3.1. Placogorgia sp. Colonies Morphometric Characterization

The size of the three colonies was measured in three-dimensional space, and the
height, width, and fan surface area covered by each specimen were selected as suitable
parameters of colony size (Figure 4). The fan surface area, with an average of 0.33 m2, is a
more representative parameter of biophysical characteristics, such as biomass, age, number
of polyps, and feeding capacity. The geometry size of each colony was calculated using a
complete three-dimensional digital model of the gorgonians, and the irregular perimeter of
each colony was manually digitized on the 3D point cloud. The main data on the 3D point
cloud densification and geometry size of each colony are presented in Tables 1 and 2.

Table 1. Data on the 3D point cloud densification.

Average Ground Sampling Distance (GSD) in cm 0.27

Median of keypoints per image/matches per calibrated image 9420/2635.9

Number of 2D Keypoint for Bundle Block Adjustment 2,928,034

Number of 3D Points for Bundle Block Adjustment 1,032,815

Number of 3D Densified Points/Average Density (per m3) 15,259,747/159,417

Mean reprojection error 0.11

Figure 4. Cont.
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Figure 4. Three-dimensional point cloud reconstruction of study site. (a) General view of the zone;
(b) Zoom in the digitalized perimeter of colonies with the perimeter enclosed area forming with
successive planar triangles (colors used to distinguish different triangles); (c) Three-dimensional
point cloud with current representation (speed and direction).

Table 2. Data on the geometry size of each colony.

Placogorgia sp.
Id Code Height (cm) Width (cm) Fan Surface Perimeter

(m)/Area (m2)
Fan Orientation

(deg)

Left 90.8 59.9 4.18/0.35 139

Center 81.7 57.2 2.68/0.16 142

Right 86.4 85.2 4.35/0.47 145

3.2. Hydrographic Dynamics

Regarding the hydrographic conditions registered at the deployment site (Figure 5),
from May to October, it could be observed that the general current cycle is a pulse towards
the West during low tide. This current rotates north and weakens, practically disappearing
towards the NE phase. During June, warmer waters entered the site, and stronger currents
were recorded in autumn. In May, which comprises the lander image acquisition, the
environmental data registered matched the general current regime, and no anomalous
event stood out. Relating to the specific geometry of these three gorgonian colonies with
the environmental data registered at the site, it can be seen how these specimens are
settled with the concave side facing the prevailing current flows, although not strictly
perpendicular (Figure 4c).

3.3. Semantic Segmentation Model Performance

The application of the semantic segmentation model results in the classification of
each pixel image into predefined classes, namely background, active polyps, and retracted
polyps. From the 1074 images in the enclosed dataset, 50 images were used for training,
20 for validation, and 30 for testing. A data augmentation strategy was applied, increasing
the initial training set from 50 images to over 250. Several pre-trained weights of ConvNeXt
are available, but in this study, ConvNeXt-B pre-trained with the ADE20K dataset was
chosen. Transfer learning was applied, changing a few parameters of the pipeline to adapt
the model to this specific task.

Due to the high resolution of the images a batch size of 4 was chosen, a smaller
batch size reduces the amount of memory required to train the model and help prevent
overfitting, along with an AdamW optimizer, using a βs value of (0.9, 0.999). A learning
rate of 0.0001 ensured a slow and steady learning process allowing the model to converge
to a good solution without overshooting. To add regularization to the model and prevent
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overfitting the weight decay was set to a value of 0.05, together with a dropout value of 0.1.
Finally, through experimentation on the validation set, the best epoch was found to be 40.
This value represents the point at which the model achieved the best performance without
overfitting to the training data.

Figure 5. Environmental variables registered at site. From top to down: current speed, current
direction, current (u, v) components, pressure, temperature and salinity. (a) Environmental variables
records from the lander over the duration of the deployment, 7 May–22 October 2022. Blue rectangle
indicates photo registration period; (b) Environmental variables records from the lander over the
photo registration, 6 May–29 May 2022.

The results obtained for the test set of 30 images were functional, with an average
precision of 99% and an IoU of 96.4%. This means that the model can correctly classify
99% of the pixels in the test images and has a 96.4% form similarity with the true labels.
Tables 3 and 4 present the results of evaluations on 30 different random images with a
percentage of class presence close to 1/5, indicating that for each closed gorgonian, about
four open gorgonians can be found, which resembles the behavior observed by experts in
the biology of the species. In addition to these metrics, visual tests were performed to assess
the quality of the segmentations generated by the model. The results showed a high degree
of precision in the identification of objects and areas of interest in the images (Figure 6).

Table 3. Mean accuracy and IoU over test dataset.

DS_Name Accuracy Mean IoU Recall F1Score

ds0 0.99 0.964 1 0.995
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Table 4. Accuracy and IoU over classes.

Class Name Accuracy Mean IoU Recall F1Score

close 0.991 0.925 1 0.995

open 0.984 0.98 1 0.992

Figure 6. Results of the segmentation generated by the implemented model (a) An original image,
center colony appears with retracted polyps; (b) Result of the automatic segmentation with the areas
of interest colored by category (green: active, orange: retracted).

3.4. Temporal Behavior of Polyps and Its Relation with Environmental Dynamics

Direct visual observation of the image data series revealed that the periods in which
the Placogorgia sp. gorgonians remain with the polyps extended in the feeding process are
always greater than the periods in which the polyps remain retracted. Figure 7 shows the
total percentage of open polyps in the image during the 22 days of sampling in 30-min
intervals. Yellow tones represent 100% of active polyps in the scene, while purple or blue
colors represent retracted polyps moments.

To study the variations of polyps activity within each colony, the gorgonians were
divided into three distinct sections: lower, middle, and upper. A mesh with a variable grid
size was implemented to detect the activity state in each section. Within each specimen, all
the polyps on the colonies open and close in synchrony regardless of the area where they
are located. Therefore, there is no difference in the behavior of polyps within each colony,
and in general, polyps are all extended or all retracted (Figure 7a).

An analysis based on each entire colony revealed that there are small differences
between the three specimens that appear in the scene (Figure 7b). The three colonies do not
have total synchrony, so the polyps in each specimen do not extend and retract at the same
time. The three Placogorgia colonies are located very close to each other and therefore, they
are subject to the same environmental variables. But there may be differences in behavior
due to differences in their size or morphometry or the existence of elements that modify
the micro-current flows.

Table 5 shows the basic statistics of the time that each of the gorgonians remains open
or closed throughout the 22 days of observation. It can be seen how the gorgonians have
similar behavior patterns (Figure 8). Colony 1 (left) and colony 2 (center) have very similar
behavior while colony 3 (right) differs from the other two specimens. Colonies 1 and 2 have
maximum times in which the polyps remain open, around 2.5 days (60 h). While colony 3
never exceeds 40 h remaining with extended polyps. With the exception of this parameter,
the rest of the statistics of the feeding activity follow similar characteristics throughout the
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22 days. The duration of the polyps extended periods varies remarkably, with a minimum
of 0.5 h to a maximum of 63.5 h. But the duration of the closed event is more uniform. The
time that the gorgonians remain retracted is always less than 12 h, with a mean value of
approximately 3.5 h.

Figure 7. Total percentage of open polyps in the image during the 22 days of sampling in intervals of
30 min. Yellow tones represent 100% of extended polyps in the scene (a) Three sections (lower, middle
and upper), purple tones show retracted polyps moments; (b) Total percentage of open polyps for
each colony (left, center, right), blue tones show retracted polyps moments.

Many scleractinian corals exhibit diel cycles of polyp expansion and contraction,
which are regulated by diel sunlight patterns. However, these temporal patterns are largely
unknown in most species of deep environments. In this study, the time series of the
percentage of active polyps at the scene over 22 days was averaged along the day in 30-min
sampling periods. Figure 9 shows the active polyps percentage with black bars for each
time interval (half hour). The x-axis represents the hours of the day, and the horizontal
blue lines indicate the means of open polyps percentage for each half hour. This plot
enables the underlying hourly pattern to be seen clearly, which is especially useful in
identifying changes within specific times. The orange stripe marks the daylight hours. The
graph reveals greater feeding activity (active polyps) during daylight hours, with a higher
likelihood of finding gorgonians in a retracted state at night.
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Table 5. Basic statistics of the time (hours) that each of the gorgonian colony remain open or closed
through-out the 22 days of lander observation.

Max Min Mean Std. Dv.

Gorgonian#1—left

Extended time 60.0 5.50 25.3 15.9
Retracted time 11.0 0.5 4.3 2.8

Gorgonian#2—center

Extended time 63.5 0.5 20.8 17.4
Retracted time 5.0 0.5 2.8 1.4

Gorgonian#3—right

Extended time 43.5 0.5 23.3 12.4
Retracted time 6.0 0.5 3.3 1.9

Figure 8. Time of the <90% percentage of open polyps (continuos lines) and time of the >90%
percentage of open polyps (discontinuos lines) in the image during the 22 days of sampling.

The SSA analysis of the different variables time series (percentage of active polyps,
current speed, current direction, and ADCP return signal intensity series) showed the
enormous weight of the first component, always greater than 85% of variance explained,
which, by looking at the behavior of the eigenvectors, is interpretable as the trend in all
the cases. This behavior was expected given the short number of available records, which
makes it difficult to obtain a clear signal of periodicity. Table 6 offers an outlook of the
first 6 components, noting the great percent of variability explained by the eigenvectors of
the first component, characteristic, as we have already said, of the trend. This is why the
reconstructed series, considered to compare the behavior of the polyps with environmental
variables, only considered the trend. Figure 10 shows the time series of the different
variables with the red line showing the reconstructed series based on the trend obtained
for these data with SSA.
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Figure 9. Percentage of active polyps (black bars) for each time interval (half hour). The hours of
the day are represented in x-axis, and the horizontal blue lines indicate the means of open polyps
percentage for each half hour. The orange stripe highlights the hours of the day.

Figure 10. Original variables time series (black line) with the reconstructed series (red line) based
on trend obtained for SSA analysis. X-axis indicates day of May. (a) Percentage of polyps activity;
(b) ADCP return signal intensity; (c) Current speed; (d) Current direction.
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Table 6. Variance explained by eigenvectors for the % of active polyps and selected environmen-
tal variables.

Variance Explained (%)

Trend Periodicity

eigenvectors 1 2 3 4 5 6
% of active polyps 95.7 0.83 0.82 0.59 0.47 0.4

current speed 86.09 2.79 2.54 0.97 0.88 0.87
current direction 86.71 1.75 1.62 0.72 0.68 0.49
ADCP intensity 99.8 0.04 0.03 0.01 0.01 0.01

This decomposition and reconstruction approach was applied to the polyps activity
and the main environmental variables that can directly influence gorgonian feeding (current
speed and direction, and ADCP return signal intensity) (Figure 11). While the different
curves show some similarity in behavior over time, differences can also be observed.
The level of fit for these reconstructed trend series was assessed using linear regressions,
resulting in an R2 score of 0.37 for current speed and 0.11 for current direction and ADCP
return signal intensity.

Figure 11. Cont.
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Figure 11. Reconstructed time data series using trend. X-axis indicates day of May. (a) Percent-
age of polyps activity and current speed; (b) Percentage of polyps activity and current direction;
(c) Percentage of polyps activity and ADCP return signal intensity.

4. Discussion

Octocorals are vulnerable components of deep-sea benthic communities, however
their natural diets and feeding conduct are little known due to the difficulty of accessing
them. Gorgonians are passive filter feeders and their polyps have a very limited ability to
capture food and because of this, they depend mainly on environmental conditions that
favor their feeding. The environmental conditions that determine the availability of food
for octocorals in deep-sea are mainly the conditions of currents. In this regard, it is known
that the feeding process is optimal when currents of moderate speed occur in the area and
in a perpendicular direction to its fan-shaped body. Very slow currents do not bring food to
their polyps, while very strong currents do not allow the polyps to capture that food. For
this reason, in this study the behavior of polyps has been analyzed against the available
environmental data in search of evidence that corroborates these statements.

Differences in polyp activity can be produced due to changes in temperature and cur-
rent speed, but especially in response to increasing nutritional stimuli [9]. The gorgonians
remain with open polyps, that is, in active mode while they are feeding. The tentacles of
the polyps catch passing particles and carry them to the stomach where they are digested.
After digestion, the polyp expels the remains through the same opening. When gorgonians
contract, it is mainly because there are not optimal conditions for feeding, that is, there
is less availability of food or environmental conditions are not favorable for trapping the
particles on which they feed [66,67].

Precisely defining the fan-shaped growth, i.e., the size, shape and orientation of the
gorgonian can provide information about the local current near the seafloor, due to the
existence of a relationship of growth with hydrodynamic conditions. Thanks to the very
high resolution three-dimensional reconstruction, the specific geometry of these 3 gorgonian
colonies can be related to the recorded oceanographic data. It can be seen how these three
specimens are arranged with their concave side facing the prevailing current flows in
the site. This is contrary to what was stated in [47], given that although the geometric
data of the gorgonian population was available, there was no record of environmental
data at the site. Gorgonians grow by forming a concave side that helps them create small
micro-currents and turbulence in the path of the water flow. These small turbulences help
in the feeding process of the polyps that are located mainly on that side of the fan.

The semantic segmentation model presented in this work shows high performance in
terms of accuracy and IoU and can generate accurate and detailed image segmentations.
One of the main advantages of semantic segmentation is that it allows for a more fine-
grained understanding of an image, compared to traditional object detection methods.
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This is because it not only detects objects in an image, but also segments them into their
individual parts and classifies each part according to its semantic content. This model
has immense potential to be used in modeling applications. Thanks to the segmentation
model implemented, it has been possible to extract the conduct data of the gorgonians
according to the state of their polyps automatically. Therefore, a robust methodology has
been established for the image data processing of future long time photo-landers.

All the polyps in the colonies, regardless of the area where they are located, open and
close in synchrony. This agrees with previous studies carried out in Paramuricea clavata [10].
But it must be taken into account that the low temporal resolution, one photo every 30 min,
may mean that the existing data is not the most suitable for studying this phenomenon.

There are different processes within the water column related to the time of day, for
example the migratory movements of zooplankton to surface waters to feed at night and
their return to the deep layers during daylight hours. These patterns mean that species
have developed differential strategies to optimize their feeding and protection against
predators. The biological processes that occur in shallow waters depending on the periods
of light and darkness are well known, however little is known about the daily cycles in the
deep-sea environment. Placogorgia sp. has been found to be most active in feeding during
the day, probably in this hours the food concentrations are highest, and remain least active
at night. Research in this area is ongoing to better understand of the trophic ecology of
gorgonians and their role in benthic−pelagic coupling processes [68].

As passive suspension-feeders, gorgonians are highly dependent on prevalent currents
to flow water through the colony. Several studies show that to optimise the feeding process
the moderate currents are needed. For example for Pseudopterogorgia acerosa colonies the
colony-feeding rates are highest during moderate flow velocities (10–15 cm·s−1), and
reduced at low (0–5 cm·s−1) and high (20–25 cm·s−1) velocities [17]. The polyp activity
data obtained for Placogorgia have been analyzed throughout the entire time series. These
data show times when gorgonians remain active for longer periods of time, and also show
other times when gorgonians contract more frequently. In addition, it can be observed how
the periods of time in which the gorgonians remain with their retracted polyps are stable
throughout the series. Digestion time is dependent upon temperature but in this case the
temperate are very constant along the sampling period around 10.8–11.0 Celsius degree.
The average length of polyp retracted periods is 3.4 h very similar to digestion time of other
species of gorgonians [10].

To address the relation between current dynamics and food availability with the
gorgonian feeding behaviour, the SSA approach has been used. The percentage of active
polyps of the trend reconstructed time series are compared with the same reconstructed
series for current speed, current direction and ADCP return signal intensity. ADCP return
signal intensity is used here like an approximation of backscatter. The concentration of
suspended sediment is assumed to be directly proportional to acoustic intensity (voltage
recorded by the ADCP) and logarithmically proportional to acoustic attenuation due to
water and sediment concentration. Linear regressions analyses revealed low correlations
between the number of open colonies and all environmental variables (current speed 0.37
and direction and acoustic backscatter 0.11). But the graphs (Figure 11) show that feeding
activity was positively correlated with all of them. It should be noted, for example, in
the middle of the observation period, especially low values are recorded in the activity of
polyps, from May 17 to 20, which correspond to days in which very low current speeds
(mean 7.4 cm·s−1 and mode 4.3 cm·s−1) of the observation periods are recorded, and which
also coincide with infrequent current directions (values from 45◦ to 90◦ deg). In these days
ADCP return signal intensity also registered low values.

Both the reconstructed time series of the percentage of active polyps and the selected
environmental variables exhibit a sharp decrease at a specific point in time (between May
18th to 20th). This suggests a decline in food availability on those dates and a possible
relationship between the low food availability and the prevailing environmental conditions
at that time.
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The number of open polyps of the Placogorgia sp. colonies, indicative of active feeding,
do not show any seasonal pattern, since the short period of time observed does not allow
recording seasonal changes in environmental variables.

5. Conclusions

This study shows that deep-sea octocoral Placogorgia sp. feeding based on their polyps
activity is related to environmental variables and depending of local current dynamics. The
information obtained on the feeding behavior of this species of gorgonian helps to better
understand its biology and therefore to establish early protection measures. Achieving the
registration of images together with environmental values in long periods of time will allow
us not only to model but also to predict the feeding activity and health of this valuable
forest animal. The methodology here presented highlights the potential of deep-learning
based methods for fast and reliable monitoring of behavior of gorgonians and the capacity
of three-dimensional point cloud to describe in detail morphometry of gorgonian forests.
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