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Abstract: With the purpose of improving aquaculture sustainability, the search for protein alternatives
to fishmeal makes it necessary to test different variables and the possible repercussions of new
ingredients. The use of insect meal as a protein source for aquaculture is well described, but the
complex composition of insect meals (fat and other components) can affect the physiology of fish. For
this reason, as a part of a bigger study, the aim of the current manuscript was to test diets based on
three different presentations of insect meal coming from yellow mealworm (Tenebrio molitor): full fat,
partially defatted, and supplemented with a long chain omega–3-enriched oil, and to evaluate their
effects on protein digestibility, biometric indices, immunological system and gut health (intestinal
histomorphology and microbiota) of rainbow trout (Oncorhynchus mykiss). Digestibility of the protein
and body indices showed a minor but consistent trend. The non-specific immunological system
did not show changes, but the histology of the intestine showed signs that insect meals could be
softening a mild inflammatory response. The gut microbiota suffered several changes, which could
be associated with the different amino acid and fatty acid compositions of the diets.

Keywords: aquaculture; rainbow trout; fishmeal replacement; yellow mealworm; insect meal;
nutrition; protein digestibility; immunology; histomorphology; microbiota

Key Contribution: The current manuscript provides further insight into the use of different diets
based on yellow mealworm showing the repercussions of the intestinal inflammatory response
and the microbiota composition of rainbow trout, including the possible repercussions of the
defatting process.
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1. Introduction

Aquaculture is seen as a promising solution for sustainable and efficient food pro-
duction [1]. However, it is ironic that this very industry faces its own sustainability
challenges, including its dependence on fishmeal. Despite reducing this dependence in
recent decades [2,3], the growth of this industry demands continued efforts to reduce
fishmeal consumption. As a result, the interest in protein alternatives to fishmeal, such as
vegetable meals, unicellular protein or insect meals, continues to grow.

Typically, these alternative ingredients have their advantages and disadvantages.
For example, fishmeal has excellent nutritional composition when compared to insect
meals [4–6], but its overexploitation has made it increasingly expensive [7], aside from
what was already mentioned about fishmeal being unsustainable. Vegetable ingredients
such as soybean meal were a first attempt to tackle this issue, but many among them
have a relatively poor protein value [8], contain antinutrients [9,10] and/or can induce
inflammatory effects in the gastrointestinal tract of fish, such as a shortening of mucosal
fold height or a loss of enterocyte supranuclear vacuoles [11,12]. Other new ingredients
like yeast or microalgae have good compositions and some of them have shown interesting
secondary functions [13–16], but they are expensive to produce, making it difficult to scale
their production to meet the needs of the animal feeding industry. Insect meals fall into
this category.

Insects grow and reproduce quickly, have good protein quality and can adapt well to
different feeding substrates [4,5,17,18]. Studies also suggest that insects can have positive
effects on fish physiology, like the enhancement of the antioxidant and immunological
systems [19–22]. This is why insect meals could be considered functional ingredients, even
though the biochemical principles behind these effects are not yet fully understood. For
example, it has been reported that the chitin of insects could be involved in the increase of
intracellular glutathione and in a scavenging effect of reactive oxygen species [23,24]. It
is also possible that the different sizes of chitin molecules could have different effects due
to their polymeric structure [25]. However, it is also described that high concentrations
of chitin in the feed can disrupt protein digestibility [26–28]. Insects have other inter-
esting components in their composition, such as the lauric acid of the black soldier fly
(Hermetia illucens) [29,30], the riboflavin of giant yellow mealworm (Tenebrio molitor) and
adult crickets (Acheta domesticus) [31] and several antimicrobial peptides [30,32]. Further-
more, the growing interest in insect meals as ingredients has led to many studies evaluating
the effects of insect-based diets on fish gut microbiota. Although it is still early to draw
firm conclusions, insect meals can modify the microbiome of fish [33–35].

The current manuscript is an extension of a trial that was previously reported [36].
Rainbow trout (Oncorhynchus mykiss) were fed five experimental diets to evaluate the dif-
ferences between a diet with a 50% replacement of fishmeal by full-fat yellow mealworm,
another one with partially defatted yellow mealworm, and two with full-fat yellow meal-
worm but enriched with an algal oil which had a high concentration of long-chain omega–3
polyunsaturated fatty acids. This article expands on what was mentioned for that trial to
test the effect of these diets on protein digestibility, biometric indices, evaluation of the
immunological system and gut health (intestinal histomorphology and microbiota).

2. Materials and Methods
2.1. Experimental Diets, Animals and Rearing Conditions

The diets and their composition (Tables 1–3), the animals and experimental conditions
used for this study were the same as in Melenchón et al. [36]. Five isoproteic (48.9%) and
isolipidic (18.5%) diets followed these principles: the control diet (C) had no fishmeal
replacement; one experimental diet (T) had a 50% replacement of fishmeal with full-fat
insect meal from yellow mealworm (Tenebrio molitor; Tebrio, Spain); one experimental
diet had a 50% replacement of fishmeal with a partially defatted insect meal from yellow
mealworm (diet dT; defatted yellow mealworm provided by Ÿnsect, France); the other two
experimental diets were similar to the T diet, but with an increasing replacement of fish oil
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with an experimental algal oil rich in long chain omega–3 polyunsaturated fatty acids (the
supplier decided to remain anonymous), 3.09% of algal oil for diet TO1 and 7.24% for diet
TO2. Diets were enriched with methionine and lysine to satisfy the requirements of the
fish [37,38].

Table 1. Formulation and proximate composition of experimental diets.

Ingredients (%; on dry basis) C T dT TO1 TO2

Fishmeal LT94 1 36.78 18.28 18.48 18.28 18.28
Yellow mealworm meal 2 - 19.05 - 19.05 19.05

Defatted yellow mealworm meal 3 - - 18.29 - -
Enriched omega–3 oil - - - 3.09 7.24

Wheat gluten 4 11.05 12.41 10.65 12.41 12.41
Soybean protein concentrate 5 15.09 16.4 15.41 16.4 16.4

Wheat meal 6 16.16 16.98 16.19 16.98 16.98
Soybean lecithin 7 1.27 0.48 1.27 0.48 0.48

Fish oil 8 11.87 8.68 11.9 5.6 1.45
Vitamin and mineral premix 9 1.95 1.93 1.95 1.93 1.93

Goma guar 10 1.95 1.93 1.95 1.93 1.93
Blood meal 10 3.89 3.86 3.90 3.86 3.86
Methionine 10 0.2 0.5 0.5 0.5 0.5

Lysine 10 - 0.1 0.1 0.1 0.1

Proximate composition
(%; on dry basis) C T dT TO1 TO2

Crude protein 49.19 48.76 48.98 49.25 48.23
Crude lipid 17.80 18.58 17.86 18.99 19.12
Crude fibre 0.97 2.15 2.35 2.25 2.47

Ash 8.63 8.49 6.31 6.22 6.12
Calcium (Ca) 0.43 0.24 0.17 0.18 0.20

Phosphorus (P) 0.31 0.24 0.24 0.24 0.24
Ca:P ratio 1.38 1.0 0.73 0.77 0.86

Data taken from Melenchón et al. [36]. 1 Norsildemel, Norway. 2 Tebrio, Spain. 3 Ÿnsect, France. 4 78% crude
protein (Lorca Nutrición Animal SA, Spain). 5 Soycomil, 60% crude protein, 1.5% crude lipid (ADM, Poland).
6 Local provider (Spain). 7 P700IP (Lecico, DE). 8 AF117DHA (Afamsa, Spain). 9 Lifebioencapsulation SL: Vitamin
and mineral premix (g/100 g feed unless otherwise specified): vitamin A 2,000,000 UI; vitamin D3: 200,000 UI;
vitamin E: 1.2; vitamin K3: 0.26; vitamin B1: 0.3; vitamin B2: 0.3; vitamin B6: 0.2; vitamin B9: 0.15; vitamin B12:
0.001; vitamin H: 0.03; inositol: 5; betaine: 5; calcium pantothenate: 1; nicotic acid: 2; Co: 0.006; Cu: 0.09; Fe: 0.06;
I: 0.005; Mn: 0.095; Se: 0.0001; Zn: 0.075; Ca: 19; K: 2.4; Na: 4.1. 10 Lorca Nutrición Animal SA, Spain.
C—control diet (no fishmeal replacement); T—50% fishmeal replacement with Tenebrio molitor; dT—50% fishmeal
replacement with partially defatted Tenebrio molitor; TO1—T diet supplemented with 3.09% of omega–3-enriched
oil; TO2—T diet supplemented with 7.24% of algal oil.

Rainbow trout eggs (Oncorhynchus mykiss) from the private company Mundova (Al-
bacete, Spain) were hatched and reared in the experimental facilities of the Aquaculture
Research Centre of “Instituto Tecnológico Agrario de Castilla y León” (ITACyL). 500 female
rainbow trout were allocated in a recirculation aquaculture system (20 cylindrical tanks,
500 L, four replicates per treatment) and were acclimated for three weeks. The experiment
began at an initial weight of 46.1 ± 0.1 g and took place for 89 days with the following
conditions: water temperature of 14.8 ± 0.7 ◦C, water dissolved oxygen of 7.8 ± 0.7 mg/L,
room photoperiod of 12 h light: 12 h dark, ammonia <0.1 mg/L and nitrite <0.1 mg/L. Fish
were hand-fed once per day (9:00 a.m.) to satiation or up to a maximum of 3% body weight.
Feed intake and mortality were monitored daily.
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Table 2. Amino acid composition of experimental diets.

Amino Acid Composition
(g/100 g Wet Feed) C T dT TO1 TO2

Essential amino acids

Arg 2.10 2.35 2.08 2.01 2.00
His 1.09 1.02 1.05 1.05 1.04
Ile 1.50 1.69 1.45 1.56 1.44

Leu 3.00 2.99 3.02 2.90 2.88
Lys 2.94 3.66 2.77 2.70 2.66
Met 1.01 1.15 1.23 1.18 1.13
Phe 2.07 2.19 2.01 1.96 1.95
Thr 1.48 1.56 1.48 1.31 1.36
Val 2.10 2.07 2.16 2.25 2.10

Non-essential amino acids

Ala 2.01 2.06 2.18 1.95 1.94
Asp 3.32 3.56 3.35 3.10 3.12
Cys 0.46 0.66 0.46 0.43 0.44
Glu 7.15 7.64 7.41 7.44 7.44
Gly 1.92 2.20 1.91 1.81 1.80
Pro 2.46 2.51 2.67 2.74 2.61
Ser 1.76 1.87 1.91 1.65 1.79
Tyr 1.63 1.78 2.94 2.12 2.42

Data taken from Melenchón et al. [36]. Experimental diets: C—control (no fishmeal replacement); T—50% fishmeal
replacement with Tenebrio molitor; dT—50% fishmeal replacement with partially defatted Tenebrio molitor;
TO1—T diet supplemented with 3.09% of omega–3-enriched algal oil; TO2—T diet supplemented with 7.24% of
algal oil.

Table 3. Fatty acid composition of experimental diets.

Fatty Acid Composition
(g/100 Total Fatty Acids) C T dT TO1 TO2

MYR; C14:0 3.68 3.26 2.55 3.16 3.20
PA; C16:0 21.13 19.37 17.35 20.75 22.74

POA; C16:1n–7 4.68 2.97 3.56 3.02 2.00
STE; C18:0 5.67 4.78 4.96 3.95 2.87

OA; C18:1n–9 13.67 23.05 16.17 20.47 17.14
VA; C18:1n–7 2.60 1.54 1.42 0.00 0.00
LA; C18:2n–6 8.77 18.69 13.75 15.31 15.21

ALA; C18:3n–3 1.12 1.33 1.56 0.95 0.87
SDA; C18:4n–3 0.82 0.44 0.89 0.61 0.51
GOA; C20:1n–9 0.98 0.76 1.75 1.14 0.56
ARA; C20:4n–6 1.66 1.22 1.56 1.17 1.26
EPA; C20:5n–3 8.31 3.92 6.42 6.33 8.51
DPA; C22:5n–3 1.33 0.89 1.49 1.08 1.12
DHA; C22:6n–3 18.79 14.05 19.07 16.10 19.20

Other (up to 100%) 6.79 3.73 7.50 5.96 4.81
∑SFA 30.48 27.41 24.87 27.86 28.81

∑MUFA 21.93 28.32 22.91 24.63 19.70
∑PUFA 40.80 40.54 44.73 41.56 46.67

∑n–3 30.37 20.63 29.42 25.07 30.20
∑n–6 10.43 19.91 15.31 16.49 16.47

∑n–6/∑n–3 0.34 0.97 0.52 0.66 0.55
∑Total fatty acids 100 100 100 100 100

Data taken from Melenchón et al. [36]. Experimental diets: C—control (no fishmeal replacement); T—50% fishmeal
replacement with Tenebrio molitor; dT—50% fishmeal replacement with partially defatted Tenebrio molitor;
TO1—T diet supplemented with 3.09% of omega–3-enriched algal oil; TO2—T diet supplemented with 7.24% of
algal oil.
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2.2. Sample Collection

A modified Guelph method [39] was followed during the last days of the experiment
(daily, approximately two weeks) to collect faeces from settling columns, one per tank; the
faeces were frozen and kept at −80 ◦C until they were analysed. At the end of the 89 days
trial, and after fasting for one day, two fish per tank were anaesthetised with an overdose
of tricaine methanesulfonate (MS-222; 300 mg/L) in order to obtain blood, liver, distal
intestine, pyloric caeca, skin mucus and dorsal fillet samples for different analyses. Other
measures were taken during the process to analyse butchering yield and somatic indices.
One exception was made for the previously mentioned: three fish per tank were taken for
microbiota analyses (gut content samples from the distal intestine). Samples for enzyme
determinations were kept in liquid nitrogen during the sampling procedure and frozen at
−80 ◦C until their individual analyses. Samples for histomorphology analyses were fixed
in 4% buffered formalin for 48 h before dehydration and processing. Gut content samples
for microbiota analyses were frozen at −80 ◦C until their individual analyses.

The Directive of the European Union Council and the Spanish Government [40,41]
was followed for the care and handling of the fish. The Bioethical Committee of “ITACyL”
approved this experiment (Authorization number: 2017/19/CEEA).

2.3. Chemical Analyses

The apparent digestibility coefficient of the protein was determined using acid-
insoluble ash as a marker in feeds and faeces [42]. The conversion factors for protein
analyses was 6.25 for feeds and faeces [43]. N and protein content in diets and fae-
ces, as well as amino acids and fatty acids from diets, were analysed as described in
Melenchón et al. [36].

2.4. Non-Specific Immune Status

The non-specific immune status of the fish was assessed as follows: lysozyme, an-
tiprotease, acid and alkaline phosphatases, and peroxidase activities, together with im-
munoglobulins concentration, were measured in plasma; acid and alkaline phosphatases,
peroxidase, esterase and carbonic anhydrase activities were measured in skin mucus.

A turbidometric method [44] with Micrococcus lysodeikticus (Sigma, St. Louis, MO,
USA) was used to measure lysozyme activity in plasma. The reaction was carried out for
20 min at 35 ◦C. The activity was expressed as U/mL, and one unit of activity was defined
as the amount of enzyme that catalyzed a decrease in absorbance of 0.001 per minute
at 450 nm.

The method described by Mashiter and Morgan [45] was followed to measure total
esterase activity in skin mucus at 25 ◦C. The chosen substrate was P-nitrophenyl acetate
(0.8 mM), and acetazolamide (1.6 mM) was used as the inhibitor of carbonic anhydrase
activity. Samples were then incubated for 10 min, and the increase of absorbance was
measured for 5 min at 405 nm. The activity was expressed in U/mg protein (1 unit was
defined as 1 µmol of substrate transformed per minute).

Antiprotease activity was measured in plasma following the method of
Thompson et al. [46]. The variation of optical density (410 nm, for 30 min) was used
to quantify the production of 4-nitroaniline, using the activity of trypsin in the absence
of plasma as control (CAS 90002-07-7, Acofarma, Spain). The activity was expressed in
U/mg protein (1 unit was defined as the amount of enzyme that inhibits by 50% the
control reaction).

The activity of acid and alkaline phosphatases in both plasma and skin mucus was
determined following the method of Huang et al. [47]. To measure acid phosphatase, a
buffer at pH 5 (CH3COOH/CH3COOHNa 0.1 M, MgCl2 1 mM) was used, and a buffer
at pH 10 (NaHCO3/NaOH 0.05 M, MgCl2 1mM) was used to measure alkaline phos-
phatase, while the chosen substrate for both reactions was P-nitrophenyl phosphate (Sigma,
St. Louis, MO, USA). The measurements were performed at 405 nm, 37 ◦C and 30 min. The
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activity was expressed in mU/mg protein (1 unit was defined as the amount of enzyme
required to transform 1 µmol of substrate per minute).

The method of Mohanty and Sahoo [48] was followed to determine the activity of
peroxidase in both plasma and skin mucus. TMB (3, 30, 5, 50-Tetramethylbenzidine) as a
20 mM solution was used as the substrate, while standard samples without plasma/skin
mucus were used as controls. After blocking the reaction for 2 min, samples were read at
450 nm. The activity was expressed in U/mg protein (1 unit was defined as the amount of
enzyme required to transform 1 µmol of substrate per minute).

The method described by Panigrahi et al. [49] was followed to determine total im-
munoglobulins in plasma. Immunoglobulins were precipitated by adding 12% polyethy-
lene glycol (PEG) to plasma samples (10 µL plasma, 40 µL of saline solution, and 50 µL
of PEG) and separated from the total proteins to calculate the difference in untreated
plasma. Protein content in untreated and PEG-treated plasma samples was determined
and immunoglobulin content was calculated by difference. The protein content of samples
was analysed using the method of Bradford [50], with bovine serum albumin used as
a standard.

2.5. Histomorphology
2.5.1. Samples Processing

Increasing ethanol solutions (25, 50, 75 and 100%) were used to dehydrate the fixed
samples, which were then embedded in synthetic paraffin. A rotary microtome (FINESSE
ME+ Thermo Scientific, Waltham, MA, USA) was used to obtain histological sections
(3–4 µm). Samples were processed with hematoxylin and eosin techniques. A light mi-
croscopy with graded objective lenses was used to evaluate five random regions per tissue
sample with an Olympus CX31 microscope and an Olympus EP50 microscope camera
(Olympus, Barcelona, Spain).

2.5.2. Distal Intestine and Pyloric Caeca Histomorphology Analyses

The protocol followed was very similar to the one described by Melenchón et al. [51].
Briefly, the chosen measurements for the quantitative analyses of the distal intestine and
pyloric caeca were villi height and width, enterocyte height, widths of stratum compactum,
muscular layer and lamina propria, with the latter being measured at three different heights
(apical, intermediate and basal lamina propria) to calculate a mean. Also, a subjective,
qualitative analysis was carried out to evaluate the levels of lamina propria inflamma-
tory infiltration and loss of supranuclear vacuolization of enterocytes. These subjective
parameters were evaluated as absent (−) mild (+), medium (++) or severe (+++) levels.

2.6. Distal Intestine Gut Content Microbiota Analysis

Frozen gut content samples were thawed on ice. DNA extraction was carried out
following the instructions of the commercial kits QIAamp Fast DNA Stool Mini Kit and
QIAamp PowerFecal DNA Kit (QIAGEN Iberia, Barcelona, Spain). A DNA purification
was carried out after the extraction, using the QIAGEN DNA blood&tissue kit (QIAGEN
Iberia, Barcelona, Spain), followed by quantification with a Qubit fluorometer 4 (Fisher
Scientific, Madrid, Spain). DNA samples were kept at −20 ◦C until library preparation.

Microbiome diversity was studied following the methodology of Hernández et al. [52].
Primers described by Klindworth et al. [53] were used to amplify the variable region
V3-V4 of 16S rRNA from the DNA samples using the 16S metagenomic sequencing library
protocol (Illumina, San Diego, MA, USA). Libraries normalised and pooled at 4 nM were
denatured with NaOH 0.2 N, and combined with PhiX (Illumina, San Diego, MA, USA) as
control. Samples were sequenced with parallel synthesis technology in a MiSeq platform
(Illumina, San Diego, MA, USA), using a 2 × 300 (paired-end) cycle V3 Kit (Illumina, San
Diego, MA, USA), following the Illumina sequencing protocols. After 72 h, approximately
7 GB of data was obtained and analysed through bioinformatics.
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Paired-end sequences were quality filtered using Sickle with default parameters [54].
Then, QiimeReporter [55] was used to perform the microbiota analysis. Basically, it uses
the DADA2 [56] package to infer Amplicon Sequence Variants (ASVs) and a pre-trained
Naïve Bayes classifier [57] for ASV taxonomic assignment using the SILVA 138 database as
a reference [58]. Chloroplasts, mitochondria and ASV without phylum assignment were
removed from further analysis. Taxons with an overall abundance ≥0.5% of the sample
were chosen, from both phylum and genus, to do the ANOVA analyses.

2.7. Statistical Analyses

The tank was used as an experimental unit since it was not possible to include the
tank as a random effect for the lack of freedom degrees; the diets and fish were randomly
assigned to each tank. A normalised analysis of variance (ANOVA) was performed and the
diet was included as a fixed effect; when the ANOVA revealed a significant effect among
diets (p-Value < 0.05), a post-hoc Tukey test was performed to compare the statistically
different means. Values are shown as mean ± standard error of the mean. Alpha diversity
indices Chao1, Shannon and Simpson were calculated from the results, as mentioned in the
bibliography [59–61]. A Principal Component Analysis was performed, and a biplot was
created to represent the relationship between diet composition (in relation to fatty acids
and amino acids) and microbiota gut content composition at the genus level. Previous to
Principal Component Analysis, the data were scaled to unit variance. The open-source
programming tool R [62] and its RStudio interface [63] were used to carry out the statistical
analyses, and the figures were created with RStudio Build 382.

3. Results and Discussion
3.1. Protein Use, Biometric Indices and Butchering Yield

There were no significant differences in growth performance among the experimental
diets, as mentioned in Melenchón et al. [36]. T and TO2 showed a significantly higher
protein efficiency ratio than dT, while TO1 and TO2 showed a significantly higher level
of apparent digestibility coefficient of the protein than C, T and dT. Also, TO1 and TO2
showed significantly lower numbers for intestinal somatic index. The butchering yield of
the fish was not statistically affected by the experimental treatments (Table 4).

Chitin might interfere with the digestibility of protein [26,64,65]. However, there are
also cases like the present experiment where this did not happen [20,21,34], which aims to
the idea that this phenomenon could be attenuated when the levels of chitin are low. The
chitin of the experimental diets was not measured during this study, but the levels found in
the different insect meals, 3.2% for full-fat yellow mealworm and 5.5% for defatted yellow
mealworm [36], suggest that even the highest value (dT diet) should be around 1%. In our
case, TO1 and TO2 showed a higher apparent digestibility coefficient of the protein than
the rest of the diets. The results of the intestinal somatic index, lower in TO1 and TO2, were
inversely related to those of the apparent digestibility coefficient of the protein. German
and Horn [66] described that, from the point of view of evolution, a longer intestine is
usually related to a lower digestibility of the diet; even though little is known about this
fact when talking within the same species, it is possible that less digestible diets could lead
to the development of a more active and bigger/longer intestine [67]. As an interesting
detail, our results on intestinal somatic index and apparent digestibility coefficient of the
protein followed this idea.
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Table 4. Growth performance, protein utilization, biometric indices and butchering yield in rainbow
trout fed experimental diets.

Growth performance C T dT TO1 TO2 SEM p-value F-value DF

IBW (g) 46.11 46.25 46.08 46.2 46.05 0.11 0.6461 0.92 4
Final length (cm) 29.94 29.86 30.06 30.01 29.84 0.12 0.6787 0.58 4

SGR (%/day) 2.47 2.46 2.48 2.47 2.46 0.01 0.592 0.72 4
FCR 0.86 0.85 0.86 0.85 0.85 0.005 0.4568 0.96 4

Protein utilization C T dT TO1 TO2 SEM p-value F-value DF

PER 2.63 ab 2.68 a 2.6 b 2.64 ab 2.67 a 0.02 0.0142 4.47 4
PPV (%) 46.89 48.83 46.66 47.05 47.1 0.68 0.2165 1.64 4

ADCprot (%) 88.31 b 88.86 b 88.18 b 90.5 a 91.1 a 0.22 <0.0001 36.07 4

Biometric indices C T dT TO1 TO2 SEM p-value F-value DF

CF (g/cm3) 1.55 1.55 1.54 1.55 1.55 0.02 0.9407 0.19 4
HSI (%) 1.33 1.3 1.2 1.17 1.14 0.15 0.1209 2.18 4
VSI (%) 11.14 10.45 10.02 10.13 9.94 0.36 0.1652 1.89 4
ISI (%) 4.58 a 4.3 abc 4.33 ab 3.82 c 3.99 bc 0.11 0.0021 7.09 4

IL/FL (%) 70.28 66.07 67.16 65 64.21 1.69 0.1524 1.96 4

Butchering yield C T dT TO1 TO2 SEM p-value F-value DF

Dressing yield (%) 89.95 90.6 90.54 90.87 91.28 0.32 0.0969 2.39 4
Filleting yield (%) 57.91 58.73 59.5 60.3 60.16 0.59 0.0597 2.87 4

Growth performance taken from Melenchón et al. [36]. Experimental diets: C—control (no fishmeal replacement);
T—50% fishmeal replacement with Tenebrio molitor; dT—50% fishmeal replacement with partially defatted
Tenebrio molitor; TO1—T diet supplemented with 3.09% of omega–3-enriched algal oil; TO2—T diet supplemented
with 7.24% of algal oil. IBW—initial body weight; SGR (specific growth rate) = [(ln FBW − ln IBW)/days] ×
100; FCR (feed conversion ratio) = [total feed intake (g)/(FBW − IBW)]; PER (protein efficiency ratio) = [total
weight gain (g)/protein intake (g)]; PPV (productive protein value) = [(protein gain (g)/protein intake (g)) ×
100]; ADCprot (apparent digestibility coefficient of the protein) = [1 − (marker in diet/marker in faeces) × (%
protein in faeces/% protein in the diet)] × 100; CF (condition factor) = [weight (g)/length3 (cm)] × 100; HSI
(hepatosomatic index) = [wet liver weight/FBW] × 100; VSI (viscerosomatic index) = [wet visceral weight/FBW]
× 100; ISI (intestinal somatic index) = [wet intestine weight/FBW] × 100; IL/FL (intestine length/fish length) =
[intestine length/fish length] × 100; dressing yield = (wet gutted body weight/FBW) × 100; filleting yield = (wet
fillet weight/FBW) × 100. a,b,c show statistically significant differences among diets (p < 0.05). Values expressed
as mean ± standard error of the mean (SEM; n = 4 tank per diet). DF—degrees of freedom.

3.2. Immunological System

There were no statistically significant differences for any of the variables measured in
plasma. In skin mucus, acid phosphatase showed significantly lower values in C, T and dT
treatments and a significantly higher value for TO1. A similar trend was highlighted for
alkaline phosphatase but showed significant differences only between C (lower) and TO1
(higher) (Table 5).

Even though it is described that insect-sourced ingredients might have a positive
effect on the performance of the immune system [19,21], there is no clear evidence able to
justify why these changes in the immune system occur after the inclusion of insect meals
in the feed. It is theorised that different components within the composition of insects,
such as their chitin, certain antibacterial peptides, or the lauric acid of black soldier fly
(Hermetia illucens), could be, at least, partially responsible for these effects [20,32,68,69].
Henry et al. [19] described an enhancement of the trypsin inhibition, bacteriolytic and
myeloperoxidase activities of rainbow trout serum after the partial substitution of fishmeal
with yellow mealworm meal. Kumar et al. [70] highlighted an increased lysozyme activity
in rainbow trout serum after a partial substitution of fishmeal with black soldier fly meal,
but also an increased peroxidase activity after a total replacement of fish oil with black
soldier fly oil. Interestingly, two of our own past experiments highlighted opposite results
to the ones described in this manuscript, with a lower level of alkaline phosphatase for
three out of four insect-based diets in one of those experiments [21] and a lower level of
acid phosphatase in a diet based on yellow mealworm in the other one [51]. However,
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these results were found in different tissues, the present case being one where the highest
values of phosphatases were found in skin mucus and not in plasma. Phosphatases are
not only enzymes related to external stressors and infections [47,71,72] but also good
indicators of tissue damage [73,74]. As it was described in the manuscript directly related
to this one [36], TO1 was one of the diets with the highest levels of liver oxidative stress
and lipidic accumulation and also had some of the highest values of long-chain omega–3
polyunsaturated fatty acids in the fillet. Considering that fish skin is an important reservoir
of long-chain omega–3 polyunsaturated fatty acids [75], it is not surprising that skin mucus,
a tissue that is persistently exposed to external aggressions, showed a higher expression of
these enzymes in TO1, the case of TO2 being close behind.

Table 5. Effect of dietary treatments on plasma and skin mucus immunological status of
rainbow trout.

Immunological system
(plasma) C T dT TO1 TO2 SEM p-value F-value DF

Lysozyme 2.22 2.22 1.99 1.68 2.62 0.21 0.0726 2.68 4
Antiprotease 163.75 168.86 164.46 164.12 130.77 9.21 0.0605 2.86 4

Acid phosphatase 973.55 919.88 746.49 1019.55 926.23 80.57 0.2133 1.65 4
Alkaline phosphatase 1040.85 834.1 1054.88 1036.89 930.7 63.17 0.1097 2.27 4

Peroxidase 0.82 0.94 0.76 0.81 0.76 0.07 0.3856 1.12 4
Immunoglobulins 17.48 18.18 16.19 15.1 16.25 0.86 0.1558 1.94 4

Immunological system (skin
mucus) C T dT TO1 TO2 SEM p-value F-value DF

Acid phosphatase 1256.02
b

1095.21
b

1376.64
b

2471.43
a

1642.04
ab 207.11 0.0024 6.87 4

Alkaline phosphatase 1286.65
b

2196.06
ab

2781.82
ab

3320.95
a

2694.87
ab 431.58 0.0457 3.15 4

Peroxidase 16.83 23.09 13.85 20.41 11.52 3.49 0.1771 1.82 4
Esterase 11.91 13.03 9.67 11.7 9.44 1.24 0.2426 1.53 4

Carbonic anhydrase 685.83 485.73 429.89 131.3 460.53 153.97 0.1608 1.96 4

Experimental diets: C—control (no fishmeal replacement); T—50% fishmeal replacement with Tenebrio molitor;
dT—50% fishmeal replacement with partially defatted Tenebrio molitor; TO1—T diet supplemented with 3.09%
of omega–3-enriched algal oil; TO2—T diet supplemented with 7.24% of algal oil. Lysozyme activity expressed
as U/mL; antiprotease, peroxidase and esterase as U/mg protein; acid and alkaline phosphatases and carbonic
anhydrase as mU/mg protein; immunoglobulins as mg/mL. a,b show statistically significant differences among
diets (p < 0.05); values are expressed as mean ± standard error of the mean (SEM; n = 4 tanks per diet). DF—degrees
of freedom.

3.3. Gut Health

Gut health was analysed from two different approaches: histomorphology (distal
intestine and pyloric caeca) and microbiota study.

3.3.1. Intestinal Histomorphology

Concerning the status of intestinal histomorphology, no changes were highlighted
for any of the quantitative variables, neither in the distal intestine nor in the pyloric caeca
[Figure 1]. Minor changes are described for the qualitative analysis: in the distal intestine,
the level of loss of enterocyte vacuoles was slightly higher in C (+) than in the rest of the
diets (−); in pyloric caeca, the level of inflammatory infiltration in the submucosa and
lamina propria layers was slightly higher in C and TO1 (+) than in T, dT and TO2 (−)
[Figure 2].
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Figure 1. Quantitative measures during histomorphology analyses of rainbow trout gut. Experi-
mental diets: C—control (no fishmeal replacement); T—50% fishmeal replacement with Tenebrio
molitor; dT—50% fishmeal replacement with partially defatted Tenebrio molitor; TO1—T diet supple-
mented with 3.09% of omega–3-enriched algal oil; TO2—T diet supplemented with 7.24% of algal
oil. Grey bars—distal intestine measures; striped bars—pyloric caeca measures. Values expressed as
mean ± standard error of the mean (SEM; n = 4 tanks per diet). Microphotograph representative of
measures for the gut: villi height (VH), villi width (VW), enterocyte height (EH), stratum compactum
(SC), muscular layer width (ML), lamina propria width (LP). Scale bar = 100 µm.
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Figure 2. Visual example of the histomorphology qualitative analyses carried out in rainbow trout
intestine. Pictures (A,B) (distal intestine), with (E,F) (pyloric caeca) are examples of the degree
of inflammatory infiltration and were taken at 100× magnification, scale bars = 50 µm. Pictures
(C,D) (distal intestine) are examples of the degree of vacuole loss and were taken at 400× magnifi-
cation, scale bars = 10 µm. Pictures on the left represent a negative level (−) of the variables, while
pictures on the right represent a low level (+).

Both qualitative variables (inflammatory infiltration and loss of enterocyte vacuoles)
are signs of an abnormal immunological status of the gastrointestinal tract, so it is rea-
sonable to assume that these results could be related to the same cause. It is known that
several vegetable ingredients like soybean meal can cause, among others, undesired effects
in the fish gastrointestinal tract, such as the previously mentioned [9–11,76,77], but it has
also been described that insect meals or even insect oil can provoke a reduction of these
inflammatory effects [70,78]. Even though the present experiment did not reveal a severe
case of inflammation, it is interesting to notice that three out of four insect-based diets
(T, TO1 and TO2) had a slightly higher amount of vegetable ingredients than C [36], suggest-
ing that this inhibitory effect might be considerable. However, the different natures of the
fat can influence the level of enterocyte vacuolization [79], so this could have been another
minor factor involved in this change. The rest of the variables remained very stable among
all treatments, which in general follows the trend of other studies related to insect-sourced
ingredients as the main target, especially when talking about yellow mealworm [80–82].
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3.3.2. Gut Content Microbiota Analyses

Alpha diversity

The C diet had a significantly higher score for the Chao1 index, followed by T and dT,
and with the lowest values for TO1 and TO2 diets. No differences were highlighted for the
Simpson index. Shannon index was significantly higher in T than in dT (Table 6).

In sum, the experimental ingredients (insect meals, especially the defatted one and the
algal oil) reduced the amount of absolute microbial populations. Chao1 index (richness)
was significantly lowered by dT, TO1 and TO2, which aims to the idea that the inclusion of
insect meals should be related to this change. Other experiments with both full-fat [83] and
partially defatted [84] insect meals obtained similar results, but it would be worthwhile
to mention that the opposite case has also been reported [34,85,86]. Shannon index only
showed differences between T (higher) and dT (lower), possibly meaning that the evenness
of the gut content microbiome was affected by the defatting process of the insect meal
used in dT. This is partially supported by the current bibliography related to insect-fed fish
since other experiments described lower levels of the Shannon index after using partially
defatted insect meals [87,88], even in the feed itself [89].

Bacterial composition

Results are given at phylum and genus levels, and showed several differences among
treatments. The results will be presented and discussed as groups to facilitate their overall
comprehension, but the most specific details can be found in Tables 7 and 8. At the phy-
lum level, Bacillota was the most dominant population with a total abundance that went
from ~66 to ~84% of the total. C treatment showed the highest values for Actinomycetota,
with lower numbers for T, dT and TO2, staying TO1 in the middle. Bacteroidota was
also higher for C, followed by T and dT, and with significant differences for the lowest
values of TO1 and TO2. Cyanobacteria followed a similar trend, but in this case, dT had
significant differences when compared with C and T, and TO1 offered the lowest results.
Bacillota offered opposite results, with a higher value in TO2, middle scores for dT and
TO1, and significantly lower levels for T and, finally, C. At the genus level, Peptostreptococcus
(15.84–27.04%), Peptoniphilus (13.06–18.47%), Nostoc (4.49–13.18%) and Streptococcus
(7.16–8.75%) were the most dominant. The number of Bacteroides and Falsiporphyromonas
was higher in C, with a decreasing trend towards T and dT, and significant differences
for TO1 and TO2. The amount of Nostoc was equivalent in C and T, with middle levels in
dT (significantly different) and significantly lower levels for TO2 and TO1, in that order.
Bacillus, Brevibacillus and Enterococcus followed similar trends, with significantly higher
scores for T, TO1 and TO2 and lower for C and dT. dT showed the highest numbers for
Helcococcus, Peptoniphilus, Citroniella and Peptostreptococcus, with medium values in C, TO1
and TO2 diets, and the lowest values in T, the case of Peptostreptococcus being more accused
in these differences.

Bacterial composition was also affected by the experimental diets (Tables 7 and 8). At
the phylum level, there was an accused increase in Bacillota, especially for dT, TO1 and
TO2, which seems to be a very common and steady result associated with the increase of
insect meals in fish feedings [33–35,85]. This trend was inversely followed by Bacteroidota,
a point where the bibliography offers more dispersed conclusions, even though a decrease
in this population has been described as well [86,90,91].

The analysis at the genus level was reinforced with a Principal Component Analysis
biplot between microbiota genus vs. amino acid and fatty acid compositions of the diets
[Figure 3]. Three main groups of results are highlighted. First and foremost, the amount
of Bacillus, Brevibacillus and Enterococcus suffered the most drastic changes among diets,
with results close to zero in C and dT. According to the Principal Component Analysis,
these differences were related to the levels of omega–6 fatty acids and linoleic acid in
diets. Bacillus and Enterococcus are known for having probiotic properties in fish and
promoting intestinal health [92–94]. Similar results were found in other trials with insect-
fed fish [35,81,85,95], where these or other lactic-acid bacteria proliferated, which is positive
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from the point of view of using insect meals for fish diets. These results, and especially
those of TO1 and TO2, matched the higher apparent digestibility coefficient of the protein
previously described in this same study (Table 4). Because C and dT had the lowest values
for these bacteria in our case, even though their populations showed some kind of tropism
towards insect meals, it is possible that insect fat acted as the most relevant component.
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Figure 3. Principal Component Analysis of main distal intestine content microbiota genus of rainbow
trout vs. feed composition (amino acids and fatty acids). Experimental diets: C—control (no fishmeal
replacement); T—50% fishmeal replacement with Tenebrio molitor; dT—50% fishmeal replacement
with partially defatted Tenebrio molitor; TO1—T diet supplemented with 3.09% of omega–3-enriched
algal oil; TO2—T diet supplemented with 7.24% of algal oil. Acronyms used for amino acids and
fatty acids follow the same key as Tables 2 and 3.

The second group of results comprised Bacteroides, Falsiporphyromonas and Nostoc,
which suffered a decrease in dT and a more pronounced decrease in TO1 and TO2. These
populations showed a strong correlation with the amino acids leucine, threonine and
aspartate, and with stearic and vaccenic acids, at the same time that they showed an
inverse and strong relationship with polyunsaturated fatty acids. Lastly, Helcococcus,
Citroniella, Peptostreptococcus and Peptoniphilus conformed to a third group that, with due
differences, showed intermediate values for C, TO1 and TO2, and opposite behaviours
between dT (highest values) and T (lowest values). The Principal Component Analysis
revealed the particular relevance of omega–3, docosahexaenoic acid and eicosapentaenoic
acid for this case, and an interesting interaction with tyrosine, even though its contribution
was lesser. According to the composition of the insect meals [36], the diets (Table 2) and
the bibliography [5], yellow mealworm is rich in tyrosine, which was reflected in the
results of dT but not those of T in the Principal Component Analysis. This suggests
that the composition of insect protein and omega–3 might be major determinants for the
development of these bacteria, while high levels of oleic acid, omega–6, or even the higher
omega–6/omega–3 ratio found in diets with insect fat (particularly marked in the T diet)
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could have acted as inhibitors, which would also make sense with the intermediate levels
found in TO1 and TO2. Talking about the particular case of Peptostreptococcus, it is an
anaerobic bacterium known for its ability to ferment amino acids, including those with
an aromatic group [96,97], such as tyrosine. Even though no differences in growth were
reported in this experiment [36], Peptostreptococcus had also been identified as an indicator
taxa of fast-growing rainbow trout [98], which is a positive aspect of the evaluation of
defatted yellow mealworm as an ingredient. Furthermore, the defatting process allows the
concentration of more yellow mealworm protein in a diet formulation and, consequently, a
higher amount of tyrosine.

Table 6. Effect of dietary treatments on microbiota alpha diversity of rainbow trout distal
intestine content.

Alpha Diversity Index C T dT TO1 TO2 SEM p Value F Value DF

Chao1 309.75 a 278.26 ab 240.81 bc 230.33 c 224 c 9.68 <0.0001 14.12 4
Simpson 0.93 0.95 0.91 0.93 0.93 0.01 0.1253 2.15 4
Shannon 3.85 ab 4.03 a 3.67 b 3.78 ab 3.79 ab 0.07 0.034 3.47 4

Experimental diets: C—control (no fishmeal replacement); T—50% fishmeal replacement with Tenebrio molitor;
dT—50% fishmeal replacement with partially defatted Tenebrio molitor; TO1—T diet supplemented with 3.09% of
omega–3-enriched algal oil; TO2—T diet supplemented with 7.24% of algal oil. a,b,c show statistically significant
differences among diets (p < 0.05); values are expressed as mean ± standard error of the mean (SEM; n = 4 tanks
per diet). DF—degrees of freedom.

Table 7. Effect of dietary treatments on OTU composition at phylum level of rainbow trout distal
intestine content.

Relative OTU
Composition at
Phylum Level

C T dT TO1 TO2 SEM p Value F Value DF

Actinomycetota 1 2.76 a 1.83 b 2.05 b 2.21 ab 1.78 b 0.15 0.0018 7.28 4
Bacteroidota 2 12.44 a 11.21 ab 8.52 ab 5.84 b 5.50 b 1.41 0.0103 4.86 4
Cyanobacteria 13.86 a 12.51 a 7.99 b 4.75 c 6.11 bc 0.58 <0.0001 47.33 4

Bacillota 3 65.67 c 69.17 bc 78.78 ab 79.04 ab 83.59 a 2.97 0.0034 6.36 4
Pseudomonadota 4 4.14 4.08 1.92 7.61 2.01 2.79 0.6128 0.69 4

Other 1.13 1.20 0.74 0.54 1.00 - - - -
1: Phylum Actinomycetota, previously named Actinobacteria [99]; 2: phylum Bacteroidota, previously named
Bacteroidetes [99]; 3: phylum Bacillota, previously named as Firmicutes [99]; 4: phylum Pseudomonadota,
previously named as Proteobacteria [99]. Experimental diets: C—control (no fishmeal replacement); T—50%
fishmeal replacement with Tenebrio molitor; dT—50% fishmeal replacement with partially defatted Tenebrio
molitor; TO1—T diet supplemented with 3.09% of omega–3-enriched algal oil; TO2—T diet supplemented with
7.24% of algal oil. a,b,c show statistically significant differences among diets (p < 0.05); values are expressed as
mean ± standard error of the mean (SEM; n = 4 tanks per diet). Chosen taxons had an overall abundance ≥ 0.5%
of the sample. OTU—Operational taxonomic units. DF—degrees of freedom.

Table 8. Effect of dietary treatments on OTU composition at the genus level of rainbow trout distal
intestine content.

Relative OTU
Composition at

Genus Level
C T dT TO1 TO2 SEM p Value F Value DF

Bacteroides 3.7 a 3.61 ab 2.59 abc 1.69 bc 1.42 c 0.44 0.0054 5.69 4
Falsiporphyromonas 7.47 a 6.46 ab 5.11 ab 3.62 b 3.55 b 0.83 0.0155 4.35 4

Nostoc 13.18 a 11.91 a 7.56 b 4.49 c 5.77 bc 0.56 <0.0001 46.84 4
Bacillus 0.21 b 2.94 a 0.25 b 2.79 a 2.5 a 0.17 <0.0001 69.58 4

Brevibacillus 0.02 b 8.06 a 0.004 b 7.12 a 8.05 a 0.5 <0.0001 71.58 4
Enterococcus 0.23 b 1.78 a 0.27 b 2.51 a 2.41 a 0.19 <0.0001 33.63 4
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Table 8. Cont.

Relative OTU
Composition at

Genus Level
C T dT TO1 TO2 SEM p Value F Value DF

Streptococcus 7.45 7.16 8.75 8.12 7.85 0.47 0.1948 1.73 4
Helcococcus 1.18 ab 0.86 b 1.39 a 1.22 a 1.13 ab 0.08 0.0055 5.67 4

Peptoniphilus 14.86 ab 13.06 b 18.47 a 16.2 ab 17.64 a 0.9 0.0048 5.86 4
Citroniella 2.01 a 1.55 b 2.27 a 2.04 a 1.95 ab 0.1 0.0023 6.89 4

Peptostreptococcus 20.23 bc 15.84 c 27.04 a 19.33 bc 23.05 ab 1.55 0.0018 7.32 4
Other 29.46 26.77 26.3 30.86 24.67 - p-value F-value DF

Experimental diets: C—control (no fishmeal replacement); T—50% fishmeal replacement with Tenebrio molitor;
dT—50% fishmeal replacement with partially defatted Tenebrio molitor; TO1—T diet supplemented with 3.09% of
omega–3-enriched algal oil; TO2—T diet supplemented with 7.24% of algal oil. a,b,c show statistically significant
differences among diets (p < 0.05); values are expressed as mean ± standard error of the mean (SEM; n = 4 tanks
per diet). Chosen taxons had an overall abundance ≥ 0.5% of the sample. OTU—Operational taxonomic units.
DF—degrees of freedom.

4. Conclusions

Despite showing no changes in growth, the use of protein was more efficient for TO1
and TO2, a result that was reflected as well in the intestinal somatic index. No changes
were spotted in the performance of the non-specific immune system, but the activity of
acid and alkaline phosphatases was higher for diets enriched with omega–3 (especially
TO1). Intestinal histomorphology was mostly unaffected by the diets, but a mild level
of inflammation was described for C, suggesting that insect meal-based diets could be
softening a minor inflammatory effect induced by the vegetable ingredients present in all
diets. Lastly, the diets modified the gut microbiome in a significant way, showing solid
relationships with the amino acid and fatty acid composition of the diets.
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82. Mikołajczak, Z.; Rawski, M.; Mazurkiewicz, J.; Kierończyk, B.; Józefiak, D. The Effect of hydrolyzed insect meals in sea trout
fingerling (Salmo trutta m. trutta) diets on growth performance, microbiota and biochemical blood parameters. Animals 2020,
10, 1031. [CrossRef]

83. Zarantoniello, M.; Randazzo, B.; Gioacchini, G.; Truzzi, C.; Giorgini, E.; Riolo, P.; Gioia, G.; Bertolucci, C.; Osimani, A.;
Cardinaletti, G.; et al. Zebrafish (Danio rerio) physiological and behavioural responses to insect-based diets: A multidisciplinary
approach. Sci. Rep. 2020, 10, 10648. [CrossRef] [PubMed]

84. Gaudioso, G.; Marzorati, G.; Faccenda, F.; Weil, T.; Lunelli, F.; Cardinaletti, G.; Marino, G.; Olivotto, I.; Parisi, G.; Tibaldi, E.; et al.
Processed animal proteins from insect and poultry by-products in a fish meal-free diet for rainbow trout: Impact on intestinal
microbiota and inflammatory markers. Int. J. Mol. Sci. 2021, 22, 5454. [CrossRef] [PubMed]

85. Rimoldi, S.; Antonini, M.; Gasco, L.; Moroni, F.; Terova, G. Intestinal microbial communities of rainbow trout (Oncorhynchus
mykiss) may be improved by feeding a Hermetia illucens meal/low-fishmeal diet. Fish Physiol. Biochem. 2021, 47, 365–380.
[CrossRef] [PubMed]

86. Tran, H.Q.; Prokešová, M.; Zare, M.; Gebauer, T.; Elia, A.C.; Colombino, E.; Ferrocino, I.; Caimi, C.; Gai, F.; Gasco, L.; et al. How
does pikeperch Sander lucioperca respond to dietary insect meal Hermetia illucens? Investigation on gut microbiota, histomorphol-
ogy, and antioxidant biomarkers. Front. Mar. Sci. 2021, 8, 680942. [CrossRef]

87. Rimoldi, S.; Gini, E.; Iannini, F.; Gasco, L.; Terova, G. The effects of dietary insect meal from Hermetia illucens prepupae on
autochthonous gut microbiota of rainbow trout (Oncorhynchus mykiss). Animals 2019, 9, 143. [CrossRef]

88. Biasato, I.; Chemello, G.; Oddon, S.B.; Ferrocino, I.; Corvaglia, M.R.; Caimi, C.; Resconi, A.; Paul, A.; van Spankeren, M.;
Capucchio, M.T.; et al. Hermetia illucens meal inclusion in low-fishmeal diets for rainbow trout (Oncorhynchus mykiss): Effects on
the growth performance, nutrient digestibility coefficients, selected gut health traits, and health status indices. Anim. Feed Sci.
Technol. 2022, 290, 115341. [CrossRef]

89. Terova, G.; Gini, E.; Gasco, L.; Moroni, F.; Antonini, M.; Rimoldi, S. Effects of full replacement of dietary fishmeal with insect meal
from Tenebrio molitor on rainbow trout gut and skin microbiota. J. Anim. Sci. Biotechnol. 2021, 12, 30. [CrossRef]

90. Antonopoulou, E.; Nikouli, E.; Piccolo, G.; Gasco, L.; Gai, F.; Chatzifotis, S.; Mente, E.; Kormas, K.A. Reshaping gut bacterial
communities after dietary Tenebrio molitor larvae meal supplementation in three fish species. Aquaculture 2019, 503, 628–635.
[CrossRef]

91. Piazzon, M.C.; Naya-Català, F.; Pereira, G.V.; Estensoro, I.; del Pozo, R.; Calduch-Giner, J.A.; Nuez-Ortín, W.G.; Palenzuela, O.;
Sitjà-Bobadilla, A.; Dias, J.; et al. A novel fish meal-free diet formulation supports proper growth and does not impair intestinal
parasite susceptibility in gilthead sea bream (Sparus aurata) with a reshape of gut microbiota and tissue-specific gene expression
patterns. Aquaculture 2022, 558, 738362. [CrossRef]

92. Chang, C.-I.; Liu, W.-Y. An evaluation of two probiotic bacterial strains, Enterococcus faecium SF68 and Bacillus toyoi, for reducing
edwardsiellosis in cultured European eel, Anguilla anguilla L. J. Fish Dis. 2002, 25, 311–315. [CrossRef]

93. Capkin, E.; Altinok, I. Effects of dietary probiotic supplementations on prevention⁄treatment of yersiniosis disease. J. Appl.
Microbiol. 2009, 106, 1147–1153. [CrossRef] [PubMed]

94. Dimitroglou, A.; Merrifield, D.L.; Carnevali, O.; Picchietti, S.; Avella, M.; Daniels, C.; Güroy, D.; Davies, S.J. Microbial manipula-
tions to improve fish health and production—A Mediterranean perspective. Fish Shellfish Immunol. 2011, 30, 1–16. [CrossRef]
[PubMed]

95. Józefiak, A.; Nogales-Mérida, S.; Mikołajczak, Z.; Rawski, M.; Kierończyk, B.; Mazurkiewicz, J. The utilization of full-fat
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