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Abstract
Fisheries managers are in need of quantitative tools to inform decisions regarding se-
lection of robust management practices, prioritising research gaps and stocks to focus 
on, particularly where there are limited resources or data. To support these decisions, 
the use of Management Strategy Evaluation (MSE), that is, closed loop simulation-
testing of management procedures, is widely regarded as best practice. However, 
applying MSE is time- and computationally intensive, and requires highly skilled ex-
pertise and processes for stakeholder input and peer review. For data- and capacity-
limited fisheries, MSE may be particularly challenging to implement. Yet, these are the 
contexts where it is most critical to test assumptions, evaluate the implications of all 
sources of uncertainty and identify the most informative data sources. To facilitate 
wider use of MSE, the Method Evaluation and Risk Assessment (MERA) framework 
was developed as an accessible online interface, with quick processing time, focused 
on generic data-limited management procedures, but allowing progression to tailored 
and more data-rich methods. The framework links a quantitative questionnaire and 
data input standard to a flexible operating model with optional customisation via com-
mand line access to the back-end open-source R libraries. Here, we illustrate a case 
study application of MERA for the bocinegro (Pagrus pagrus, Sparidae) fishery in the 
Gulf of Cadiz, where in conjunction with fishery stakeholders, a custom management 
procedure was developed and tested and key research gaps and data collection priori-
ties were identified. We discuss implications for wider use of MSE in various contexts, 
including eco-certification and fishery improvement projects.

K E Y W O R D S
capacity-limited, eco-certification, fishery improvement, management procedure, management 
strategy evaluation, simulation testing
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1  |  INTRODUC TION

Fisheries management systems typically involve an ongoing cycle of 
harvest, data collection, data processing, resource assessment, pro-
vision of management recommendations and enforcement (Walters 
& Martell, 2004). Within such a system, managers of fisheries must 
make a number of critical decisions. For example, these may include 
the choice of stock assessment approach and how assessment out-
puts are to be interpreted in the provision of management advice 
(i.e. a harvest control rule). Managers are often also expected to 
guide their science programme in the direction most in need of re-
search, apportioning monetary budgets among various species and 
programmes such as data collection, scientific research, resource 
assessment and enforcement. Given that management generally 
involves the use of public money in the stewardship of public re-
sources, there is broad consensus that decision making should be 
guided by evidence-based approaches, and that for many of these 
decisions it is best practice to use Management Strategy Evaluation 
(MSE) (Goethel et al.,  2019; Punt et al.,  2016). However, use of 
MSE is still mostly limited to a small minority of high value, data-
rich stocks within well-resourced management areas of developed 
economies, with only a few exceptions (Goethel et al., 2019; Punt 
et al., 2016).

As many as 90% of the world's fisheries lack sufficient time-series 
data (e.g. annual catches, relative abundance indices) or capacity to 
apply conventional stock assessments, and derive management ad-
vice from such models (Costello et al., 2012). A large fraction of data-
limited fisheries are small-scale fisheries in the developing world. 
Our experience working in such fisheries in Mexico, Indonesia, East 
Africa and South America, that most are essentially unmanaged with 
fishing pressure constrained only by prevailing socioeconomic fac-
tors. Where management measures are implemented for such fish-
eries, these are generally input controls such as maximum fishing 
effort (e.g. days at sea), seasonal closures, spatial closures and size 
limits (Mees, 2007; Pilling et al., 2008; Ruddle, 1996).

In an effort to expand the evaluation and management of the 
world's stocks, a variety of ‘data-limited’ methods have been devel-
oped. Several of these methods focus on estimating stock status 
using limited data streams such as catch time series and life-history 
traits (e.g. Free et al., 2020), through mechanistic models and empir-
ically derived functions or proxies for depletion (Hordyk et al., 2015; 
Ovando et al., 2021). These methods, however, rely on assumptions 
that are particularly difficult to verify in data-limited contexts, with 
risk of biased or uninformative results (e.g. Free et al., 2020; Ovando 
et al., 2021; Rosenberg et al., 2018). Even when required assumptions 
are verified, their use is limited to gaining a snapshot of the status of 
a stock prior to the implementation of a management approach. This 
is because they rely on an assumed relationship between observed 
catch, or observed size structure, and stock population biomass that 
no longer holds true if catches or effort are being regulated (Free 
et al.,  2020). In particularly data-poor cases, estimates of biologi-
cal risk have been obtained using semi-qualitative approaches such 
as Productivity Susceptibility Analysis (PSA: Hobday et al.,  2011). 

For example, PSA may be used to audit fisheries to the Marine 
Stewardship Council (MSC) Fisheries Standard (Martin et al., 2012; 
MSC, 2018) and in Seafood Watch fisheries ratings (2016). There are, 
however, limitations to reproducibility and validation of these expert 
knowledge-based methods (Hordyk & Carruthers, 2018), and as is 
the case for other methods described above, they cannot be used to 
evaluate management responsiveness. MSC, for example, requires 
that a PSA is used as part of a Risk-Based Framework where it is 
combined with available data (e.g. CPUE trends, in a Consequence 
Analysis (CA)) and its use is highly precautionary and restricted to 
specific circumstances (MSC, 2018).

These approaches may help assess the status quo, in some cases, 
but are not useful to guide management decisions or monitor their 
effectiveness. On the other hand, it is possible to monitor and man-
age fisheries sustainably through data-limited harvest strategies 
(e.g. Carruthers et al., 2014; Carruthers & Hordyk, 2018; MSC, 2018) 
that, rather than relying on estimates of population status, use indi-
cators or proxies to inform specific control rules. These ‘data-limited’ 
indicators may be as simple as, progressive dynamic adjustments of 
catch or effort limits, for example, until a particular size-based indi-
cator target is reached (e.g. Prince & Hordyk, 2019) or according to 
relative abundance index levels (Carruthers et al., 2016; Geromont 
& Butterworth, 2015; Hoshino et al., 2020; Jardim et al., 2015), or 
trigger action based on a system of interlinked indicators with re-
spective thresholds (Dowling et al., 2015; Harford et al., 2021).

When adopting such data-limited management procedures (MPs, 
rules for calculating management advice from data, often referred to 
as ‘harvest strategies’) it becomes particularly crucial to conduct for-
malised performance testing, such as MSE, as, by their very nature, 
these MPs rely on fewer data.

There are two options for evaluating competing management 
strategies (including data collection, stock assessment modelling, 
harvest control rules and enforcement): experimentation and sim-
ulation testing using theoretical models. While models may provide 
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unreliable predictions if they fail to adequately capture critical sys-
tem dynamics (e.g. changing environmental conditions, unobserved 
exploitation, variable data quality), it is often the best option be-
cause the experimental approach is not practically feasible in most 
fisheries. Even if experimentation was feasible, the statistical power 
to detect system changes over relevant time horizons may be ex-
pected to be low (Legg & Nagy, 2006). Experimentation may also be 
expensive after accounting for the costs of additional data collection 
and lost fishery yields.

The theoretical testing approach relies on the development of 
systems dynamics models (‘operating models’) that encompass a 
range of plausible states of nature, to evaluate the expected per-
formance of alternative management strategies. While operating 
models can be used to inform a wide range of management ques-
tions (e.g. the expected benefit of more stringent enforcement or 
alternative data streams), previous applications in fisheries have 
generally focused on MSE and the comparative evaluation of MPs 
(Butterworth & Punt, 1999; Punt et al., 2016). While there have been 
criticisms of the use of operating models (Rochet & Rice, 2009, in 
reference to MSE), the potential advantages of the approach have 
made it an ongoing priority for developed fishery management 
systems at various scales, for example, California state fisheries 
(CDFW, 2018), federal fisheries in the United States (NOAA, 2019) 
and Canada (Anderson et al., 2021; Kronlund et al., 2013) and for 
high seas tuna stocks (Anon, 2018). Common impediments to more 
widespread development and adoption of the operating model 
approach to fisheries management include relatively high costs 
(compared with a one-off assessment of the population) and the un-
availability of suitably qualified analysts and data to inform various 
scenarios for system dynamics. Several tools have been proposed 
to assist with the implementation of data-limited fisheries methods. 
These are either focused on providing proxies to gain a snapshot of 
stock status, but do not test their performance in informing manage-
ment, or provide qualitative guidance on potential options based on 
structured processes involving stakeholders and expert opinion (e.g. 
FishPath, 2022), but require separate software to then analytically 
test their assumptions and performance.

The demanding costs and expertise of the operating model ap-
proach are particularly difficult to overcome in many data-limited 
fisheries, that is, based in developing economies or operated by 
small-scale producers, which lack the technical and financial invest-
ment needed to support complex analytical evaluations and large 
participatory processes. In these cases, we argue that more effi-
cient ways of organising key information about the fishery through 
a simpler data input approach, more effectively communicating 
technical concepts across different types of experts (e.g. between 
observers in the field and modellers) as well as other stakeholders 
through interactive data visualisation, can make the process more 
cost-effective and accessible, encouraging awareness and buy-in for 
this type of rigorous testing.

Here, we describe lessons learned from application of the MSE 
framework MERA for a range of data-limited and data moderate 
fisheries (Anon,  2022; Loneragan et al.,  2021; MERA,  2022). The 

primary objective of MERA  (2022), initially commissioned by the 
MSC, is to provide an accessible, open-source tool to support the 
adoption of robust data-limited MPs, by incentivising MSE testing 
and guiding the user through stepping stones towards improved 
data and more advanced methods. MERA is designed to assist in rap-
idly synthesising and documenting available information of a fishery 
in a working operating model that can be used to inform strategic 
decisions at various management levels including data collection, 
species prioritisation, MP selection and enforcement.

A secondary objective is to ensure flexibility and extensibility by 
linking MERA to flexible models and statistical libraries to allow for 
bespoke operating models, MPs and MSE when required, as well as 
tailored diagnostics. This ensures that MERA may be used through 
time, as the knowledge of the fishery and available data improve. 
MERA is intended to be applicable to a wide range of fisheries, 
data availability, biological, ecological and exploitation characteris-
tics. Additionally, it can be used to present information and results 
to diverse user groups including regional fishery management or-
ganisations, seafood ecolabelling auditors and international devel-
opment agencies such as the United Nations Food and Agricultural 
Organization.

Here we illustrate an applied case study of developing MSE for 
the data-limited bocinegro (Pagrus pagrus, Sparidae) fishery in the 
Gulf of Cadiz (Spain) using MERA, and discuss lessons learned on 
what can help overcome the barriers to wider use of MSE, particu-
larly in data-limited fisheries.

2  |  MATERIAL S AND METHODS

2.1  |  Overview

MERA has two inputs: a mandatory quantitative questionnaire and 
an optional standardised fishery data input table (Figure  1). The 
questionnaire contains 30 questions, 19 related to the fishery dy-
namics, that is, biological as well as harvesting characteristics and 
history, 7 questions about the management system, and a further 
4 regarding the types and quality of data that are available (see 
Appendix A and Appendix B for details on the mapping of questions 
to operating model dynamics. See the Appendices of Carruthers & 
Hordyk, 2018 for all operating model equations).

After completing the questionnaire users select one of three 
modes:

1.	 Management Planning—determining a suitable management 
procedure,

2.	 Management Performance—evaluating the current management 
procedure,

3.	 Status Determination—calculating stock status using available 
data.

The operating model is specified by sampling parameters for 
fishery and population dynamics. The historical dynamics of the 
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fishery can be reconstructed using only the sketched effort and 
specified depletion in the quantitative questionnaire. However, if 
time series data are available such as annual catches, relative abun-
dance indices or size composition data, the operating model may be 
conditioned (statistically fitted) on those data. Figure 2 illustrates 
these two pathways to specifying the operating model. For more 
detail on model conditioning and data requirements, we refer the 
reader to the MERA user guide (Carruthers, 2022). The status de-
termination mode always requires additional data to estimate stock 
status. Any operating model can be structured to include important 
aspects of system dynamics that are not included in the quanti-
tative questionnaire (such as spatial structure, fleet structure or 
sex-specific growth). In such cases, the operating model derived 
by the MERA questionnaire may be exported into the R statistical 
environment, modified and re-imported. MERA operating models 
are generated by the openMSE R packages (Hordyk et al., 2022): 
DLMtool (Carruthers & Hordyk, 2018) and MSEtool, and SAMtool 
(Huynh et al.,  2022). Where required, these packages contain 
functions to implement complex dynamics such as ontogenetic 
habitat shifts (e.g. age-based movement), fine-scale movement dy-
namics, time-varying movement, temporal changes in growth and 
natural mortality rate, shifting fleet size selectivity and economic 
constraints.

2.2  |  Quantitative questionnaire

The quantitative questionnaire is designed to include preva-
lent fishery dynamics that are critical in determining the rela-
tive performance among classes of management procedures (see 
Tables A1–A3 for the various questions, answers and correspond-
ing operating model parameter ranges). For example, longevity 
determines temporal variability in biomass and the responsive-
ness of the stock to changes in fishing dynamics which in turn 
affects whether MPs need to be closely linked to recent data. 
Furthermore, management objectives may require MPs that are 
biologically conservative and are likely to rebuild the population 
or those that are either less responsive to stock status or recom-
mend higher exploitation rates. Similarly, fishery selectivity, size 
at maturity, discard rates and post-release survival, all determine 
the relative success of MPs that regulate the size of capture (e.g. 
a minimum size limit).

For every question, all answers are initially selected by de-
fault, incurring the widest range of uncertainty in dynamics. If 
the user wishes to reduce the number of selected answers for a 
question, they are obliged to provide a written justification for the 
commensurate narrowing of uncertainty (e.g. citing values from 
other sources, Figure 3). This, in combination with assigning broad 

F I G U R E  1  MERA application structure 
and modes of use. Dashed lines represent 
optional functionality.
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ranges to each selectable answer, means that MERA is predisposed 
towards uncertain system dynamics, and hence a more precau-
tionary evaluation of biological risk (Risk Assessment), a more strin-
gent test of MP robustness (Management Planning, Management 
Performance) and greater uncertainty in estimated stock status 
(Status Determination).

2.3  |  Constructing operating models from the 
quantitative questionnaire

By default, operating models are constructed by sampling param-
eters from a truncated normal distribution defined by the param-
eter ranges of answers in the questionnaire. The exceptions are 
the parameters controlling somatic growth rate, which are imputed 
from the answers for natural mortality rate and maturity using meta-
analysis of life-history parameters (joint distributions of natural 
mortality rate, length at 50% maturity and von Bertalanffy growth 
parameter κ) (Thorson et al., 2017). Time series of historical exploita-
tion pattern and age-dependent variables such as maturity, growth 
and fishing gear selectivity are also sampled. For each simulation 
(each parameter/time series sample), numerical optimisation solves 
for the magnitude of historical exploitation (i.e. fishing mortality) 
that matches the sampled level of stock depletion (see Carruthers 
and Hordyk (2018) for more details).

2.4  |  Importing data

Data can be imported to MERA either in a standard object class (‘Data’, 
see Hordyk et al., 2022) or from a suitably formatted spreadsheet or 
text file. These data can be incomplete and patchy, including biological 
parameters controlling mortality and growth, and time series of fisher-
ies catches, indices of abundance (total biomass, vulnerable biomass, 
spawning biomass) and size composition of catches. Once imported, 
these real fishery data can be used to statistically fit operating models, 
estimate the status of the stock (Status Determination mode) and to 
identify which MPs are feasible (Management Planning mode). Given 
a completed MERA questionnaire that includes a sketch of historical 
fishing effort, an operating model can be conditioned using only a sin-
gle observation of catch or two observations of a relative abundance 
index. By importing data, various aspects of the operating model are 
now estimated (overriding aspects of the questionnaire), ensuring that 
simulated dynamics such as the scale of the fishery and population, 
the historical pattern of exploitation and the degree of stock deple-
tion, are consistent with empirical observations. Additionally, uncer-
tainties in the data are also then reflected in the operating model.

3  |  C A SE STUDY

Here, we demonstrate the use of some of the MERA modes in the 
case study of the bocinegro fishery of the Gulf of Cadiz, Spain. The 
case study was developed at a workshop convened by the Marine 
Stewardship Council and the University of British Columbia in Cadiz, 
Spain in October 2018, including participants from the Instituto 
Español de Oceanografía that were familiar with the local system 
and providing scientific advice. The workshop participants specified 
and documented a MERA questionnaire and discussed the history 

F I G U R E  2  Specification of MERA operating models. Operating 
model parameters are stochastically sampled from the quantitative 
questionnaire to provide multiple simulations of system dynamics. 
These include population parameters such as natural mortality 
rate (M), von-Bertanffy growth rate (K), steepness of the stock-
recruitment relationship (h), length at 50% maturity (LM) and 
fisheries parameters such as selectivity of the largest fish (SL) and 
observation model parameters such as bias (a fraction) of catches 
that are reported (FC). The operating model can be specified using 
only the quantitative questionnaire, including sampled values for 
stock depletion and the sketched historical effort (data-limited 
pathway, green solid arrows on the left) or alternatively, each 
simulation can be conditioned on available time series data (blue 
dashed arrows on the right).
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284  |    CARRUTHERS et al.

and current status of the fishery, data availability and current man-
agement. For more detailed information about this case study, the 
MERA files are available (Anon,  2022) from the online library of 
MERA case studies (MERA, 2022).

While the commercial fishery for bocinegro began in the 1960s, 
catch data and a catch-per-unit-effort based relative abundance 
index are only available since 2003 (Figure  4). The highest catch, 
in 2006, was just 67 tonnes. As such, bocinegro provides a typical 

F I G U R E  3  MERA user interface and quantitative questionnaire. In this screen shot, the user has specified the second of 19 fishery 
questions, regarding species longevity, and has provided a link to justify their selection (bocinegro, Pagrus pagrus, in the Gulf of Cadiz).
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example of a small-scale, data-limited fishery (for further details on 
the bocinegro MERA questionnaire see Anon, 2018).

To test a realistic management option, a custom MP was de-
veloped to provide catch advice from the data that are currently 
available. MERA includes more than 100 pre-coded MPs ranging 
from data-poor (e.g. management prescriptions such as size limits) 
to data-rich (e.g. stock assessments fitted to indices of abundance 
and size composition data). These MPs can provide management 
advice in the form of, catch limits, fishing effort limits, size lim-
its and spatial closures, or combinations thereof. However, in the 
case of bocinegro, only catch limits were considered viable by the 
participants since other management approaches could not be re-
liably enforced. Initial investigation of generic MP types identified 
index ratio approaches (setting catch advice to a fixed ratio of the 
abundance index data) as the best performing approach given the 
systems dynamics of bocinegro. However, such approaches were 
not feasible since they require a complete catch history that is not 
available for bocinegro. Additionally, they also provided relatively 
uncertain biological performance outcomes over the medium term 
(e.g. a wide range of stock depletion over a 10 year projection). A 
custom MP was developed with the broad objective of providing 
comparable yields to the current fishery but sufficient responsive-
ness to obtain acceptable long-term conservation performance. 
The MP imputed catches for the missing years in the real historical 
data and also included a control parameter for assumed stock de-
pletion over recent years that allowed for a simple control rule to 

be used to maintain a narrower projected range of stock biomass. 
The custom MP assumed that relative abundance indices were cal-
ibrated such that the mean index value from 2003 to 2005 corre-
sponded with a stock depletion of 40% (an MP control parameter) 
(Figure  4a) and that prior to the first observation in the year 
2000, historical catches had increased rapidly from zero in 1959 
and then decelerated to an asymptote equal to the catch in 2000 
(Figure 4b). The value of the depletion control parameter was se-
lected as an intermediate value in the range of depletion estimates 
for bocinegro over the years 2003–2005. In the bocinegro case 
study, this control parameter remained unchanged at the value ini-
tially proposed. However, consistent with MP refinement in other 
settings, the value of the control parameter could have been ad-
justed to better achieve management performance objectives, for 
example, reducing short-term mean yields in favour of reduced risk 
of depleted biomass levels over the long term. Based on this con-
trol parameter, an estimate of stock depletion D, was obtained as 
the mean calibrated index over the most recent 3 years. For year 
y, the custom MP sets catch advice C, according to mean historical 
catches to date M, and estimated depletion where: Cy = 2My-1Dy-1. 
This was an index-based adaptation of the ‘MC_adj’ MP tested by 
Harford and Carruthers (2017). It should be noted that when de-
veloping such an MP, the focus is evaluating the management per-
formance of the MP as revealed by close-loop testing rather than 
the theoretical validity of the functional form and assumptions of 
the MP algorithm.

F I G U R E  4  Observed (black) CPUE relative abundance index and catch data for bocinegro. Red annotations describe the assumptions 
of the custom MP. Stock depletion was assumed proportional to the index and calibrated such that the mean value of the index from 2003 
to 2005 (red points) corresponded with a depletion level of 0.4 (this assumed level of depletion is a control parameter in the MP). The red 
solid line in panel a is estimated stock depletion D: The mean calibrated index over the most recent 3 years. In panel b, increases in historical 
catches were assumed to decelerate to an asymptote (red dashed line) equal to the 2003 value from which mean historical values could be 
calculated (red solid line). For illustrative purposes, example catch recommendations (green solid line) are included that are calculated by the 
custom MP for previous years from 2006 to 2017 (the catches that would have been recommended by the MP given the data to date).
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3.1  |  Management planning mode

Management Planning mode aims to provide direct guidance to fish-
ery managers on prioritising data collection (see ‘value of informa-
tion analysis’ below), critical knowledge gaps (see ‘cost of current 
uncertainties analysis’, below), the system of fishery management 
(e.g. catch control, size limits, spatial closures), the relative impor-
tance of enforcing management measures and ultimately the selec-
tion of an MP that is likely to meet their management objectives. If 
real fishery data are uploaded, the feasibility of applying the MPs 
to the data is automatically evaluated and can be used to filter the 
results (i.e. MPs are flagged that require more data types or more 
complete data than are available).

At the heart of the Management Planning mode is a closed-loop 
simulation that compares the performance of numerous candidate 
MPs, including more than 100 data-limited and data-moderate 
MPs from the data-limited MSE R package DLMtool (Carruthers & 
Hordyk, 2018) and 20 data-rich (stock assessment-based) MPs from 
the data-rich MSE R package SAMtool (Huynh et al., 2022). Using 
these packages, users can rapidly develop custom MPs in R and im-
port these into MERA. The Management Planning mode provides 

access to a wide range of information about what occurred during 
MSE testing, including projected biomass, catches and fishing ef-
fort. These can be summarised in time-series projection plots, and 
performance metrics can be compared among MPs in performance 
trade-off plots (Figure 5).

The Management Planning results for bocinegro show a char-
acteristic negative trade-off among MPs between biomass objec-
tives and yield objectives (Figure 5). The shape of the trade-off was 
convex, providing some MPs with a desirable compromise among 
yield and biomass outcomes (e.g. the Custom MP or constant current 
fishing effort ‘Cur. Eff’). An idealised statistical catch-at-age stock as-
sessment (fishing at FMSY estimated from perfect information) ob-
tained higher probabilities of obtaining more than 50% MSY yields 
at the cost of a lower probability of remaining above the biomass ref-
erence level of 40% of unfished biomass levels. Given the data avail-
able and that management can only enforce a TAC (Total Allowable 
Catch) limit, the Custom MP was the only feasible management 
option. The Custom MP was a derivative of MC_adj (Harford & 
Carruthers, 2017) and provided comparable performance to MC_adj 
that relies on a reliable estimate of stock depletion. The Custom MP 
performed similarly to status quo fishing effort (Cur. Eff) but with 

F I G U R E  5  Projected fishery biomass and yield for five MPs and the corresponding performance trade-off in the long-term probability 
of exceeding reference levels (biomass above 40% of unfished, yield above 50% of MSY). Over a 50-year period, the performance of the 
Custom MP was compared with a data-rich stock assessment (Assessment—a perfect-information, statistical catch-at-age model fishing at 
FMSY), a depletion-based harvest control rule (MC_adj—from which the Custom MP was derived, see above), Depletion-Corrected Average 
Catch (DCAC, MacCall, 2009) and status-quo current fishing effort (Cur. Eff). The dark blue and light blue shaded areas of the projection 
plots (a) are the 50% and 90% probability intervals (200 simulations). The white line is the median value over all simulations. The solid and 
dashed dark blue lines are two example simulations. A reference level of 40% unfished biomass was intended as a proxy of MSY biomass 
(grey horizontal line). To calculate yield performance an arbitrary level of 50% of MSY was used. The performance trade-off plot (b) reveals a 
typical negative relationship between long-term biomass and yield outcomes among all MPs except DCAC.
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slightly lower yield performance and better biological performance 
(Figure 5). The average catch approach DCAC (MacCall, 2009) pro-
vided anomalous performance and tended to crash the stock provid-
ing worse yield and biomass performance than the other MPs.

For any MP that is tested in closed-loop simulation, perfor-
mance can be compared against the simulated quality of each data 
type, on a simulation-by-simulation basis. For example, if users 
specify catch under-reporting between 30% and 10% (Data ques-
tion 2, answer 2) these sampled values for catch reporting can be 
correlated with the projected yield for each simulation to deter-
mine the potential value of improving catch reporting. Similar to 
parameters controlling the quality of data, the parameters of the 
operating model system dynamics (e.g. natural mortality rate, so-
matic growth rate, catch overages) also can be related to quan-
tities such as yield. This ‘Cost of Current Uncertainties’ analysis 
reveals which areas of current understanding are most in need of 
further investigation, including uncertainties in how well manage-
ment advice is implemented (Figure 6).

In the bocinegro case study, the strongest determinant of future 
yields was the simulated range of stock resilience (‘Steepness’) that 
controls the extent to which expected recruitment is impacted by 
reductions in stock level (Fishery question 4, F4) followed by the 
simulated range of current stock depletion (Fishery question 3, F3), 
the interannual variability in recruitment (Fishery question 15, F15) 
and the implementation error in the TAC (the extent to which TAC 
implementation varies around TAC advice, Management question 3, 
M3) (Figure 6). Similarly, the value of information analysis (B) reveals 
that the yield performance of the Custom MP for bocinegro was sim-
ilarly impacted by observation error in annual catches (Catch Err.), 
observation error in the relative abundance index (Index Err.) and the 
level of consistent biases in catch reporting (Catch bias).

3.2  |  Management performance mode

It is considered best practice in MSE to compare real data that are 
collected while an MP is in use with those data predicted when the 

MP was adopted (Carruthers & Hordyk, 2019; Punt et al., 2016). If 
the predicted and observed data differ substantially this may indi-
cate unexpected MP performance due to operating model misspeci-
fication (often called ‘exceptional circumstances’), and therefore 
require a review of the operating models (and potentially the advice 
provided by the MP). MERA records projected catch and length data 
in addition to vulnerable, total biomass and spawning biomass indi-
ces. The user can then collect and upload to MERA any observed 
data of any of these types and compare these with those projected 
(Figure 7). This provides a necessary empirical check that the basis 
for MP adoption is still supported by observations, and additional 
motivation to continue and improve data collection while an MP is in 
use (Carruthers & Hordyk, 2018).

An MP has not yet been adopted for use in managing the bocine-
gro fishery. To demonstrate Management Performance mode, three 
simulated data sets were generated for the bocinegro case study, 
using the Custom MP. The ‘consistent’ data were generated from the 
same ‘Base’ operating model that provides the posterior predicted 
data. The ‘less consistent’ data were generated from the same Base 
operating model but with stock status and natural mortality rate that 
were 20% lower. The ‘inconsistent’ data set was generated from an 
operating model with stock status and natural mortality rate that 
were 40% lower. Figure  7 shows the ability to detect these oper-
ating model misspecifications using the exceptional circumstances 
protocols contained in MERA. In this case, an increasing frequency 
of ‘outlier’ observations can be seen in the ‘less consistent’ and ‘in-
consistent’ data sets, demonstrating that the protocols would have 
correctly identified those cases of operating model misspecification.

3.3  |  Status determination mode

The status of an exploited population is central to legal frameworks, 
seafood certification standards and a quantity of principal interest 
to various stakeholders including environmental NGOs. MERA uses 
an age-structured rapid conditioning model similar to a stock assess-
ment (function ‘RCM’ of the SAMtool package, Huynh et al., 2022) 

F I G U R E  6  Cost of current 
uncertainties (a) and value of information 
(b) diagnostics for the custom MP in 
the management planning mode. The 
cost of current uncertainties analysis 
examines the value (expressed here 
as the slope in fishery yield with 
respect to each parameter) across the 
parameters corresponding with the 
answers provided for each question. For 
example, as illustrated in panel a, the 
largest difference in yield occurs across 
the specified range in stock resilience 
(‘steepness’, fishery dynamics question 
4, F4).
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that uses the Template Model Builder R library to estimate stock 
status (i.e. ‘stock depletion’, spawning stock biomass relative to equi-
librium unfished levels) based on more than 30 combinations of data 
types (e.g. time series of catches, effort, relative abundance, size and 
age composition). MERA automatically detects the models that can 
be applied for status determination when the user uploads a data set.

For the bocinegro case study, four status determination ap-
proaches were available that used the various combinations of data. 
The approach applied was ‘C_E_I’ which used all three of the avail-
able data sets: recent catches (C) to scale the stock, fishing effort 
(E) sketched by the user in MERA to derive the historical pattern 
of exploitation, and a recent fishery-dependent index of vulnerable 

F I G U R E  7  Exceptional circumstances in the management performance mode. Since an MP has not been in use in the case of bocinegro, 
simulated data were used to demonstrate exceptional circumstances protocols. These simulated future data originate from the bocinegro 
MP and an unmodified version of the bocinegro operating model (consistent, panels a–c), the same MP projected for an operating model 
that is more depleted and has lower natural mortality rate (less consistent, panels d–f) and lastly an operating model where the stock is even 
more depleted and has even lower natural mortality rate (inconsistent, panels g–i). In each row the posterior predicted data (shaded grey 
areas) of the base operating model is unchanging, only the simulated projected data (points) vary. Data that fall inside the 90th probability 
interval are coloured black, those between the 90th and 95th probability intervals are coloured orange, and those outside of the 95th 
probability interval are coloured red.
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biomass (I). Status Determination reconstructed the stock in which 
rapid declines from unfished conditions occurred in the first 20 years 
following gradual rebuilding and a recent decline over the last 
15 years (Figure 8). The current spawning stock biomass is relatively 
uncertain and estimated to be between 15% and 45% of unfished 
levels (90% CI).

4  |  DISCUSSION

MERA is designed to provide a simulation-testing framework that is 
more readily accessible than more traditional command line MSE soft-
ware. A graphical interface with a simple questionnaire and guided 
steps is effective in bringing all the information around a fishery into 
a single, transparently documented, quantitative framework with effi-
cient computation. The framework can be applied as a first approach to 
select MPs that can achieve specified performance objectives, priori-
tise data collection and establish indicators for detecting exceptional 
circumstances. This type of framework can guide practitioners new to 
MSE to understand its application, or, for more experienced users, it 
can be a means of quickly facilitating group discussions and input from 
other stakeholders. We argue that these uses are particularly valuable 
in data- and capacity-limited fisheries to promote robustness testing 
and careful consideration of the major sources of uncertainty.

MERA is intended to offer a quantitative solution to fisheries 
that can only use data-limited and data-moderate options, by iden-
tifying MPs that are expected to achieve management objectives 
without accurate and precise estimates of stock status. The three 
use cases demonstrate how MERA can be used to account for uncer-
tainty in the fishery system in order to identify robust management 
procedures and quantify the value of alternative data collection 
and research programmes. With operating models and closed-loop 

simulation testing, MSE can account for biological, fishing and ob-
servation dynamics and provide quantitative MP performance 
outputs, for example, probabilistic estimates of biomass relative to 
reference levels, which are central to fishery legal frameworks and 
eco-certification standards.

The potential capabilities of the framework provided by MERA 
were explored in an application to the bocinegro fishery in the Gulf of 
Cadiz (see Loneragan et al., 2021 for MERA application to seven stocks 
in Indonesia). The bocinegro fishery is small and management advice is 
not actually provided. It was used here as an example of how MERA 
might be used. Feasible MPs were developed, research priorities were 
identified and stock status was quantified. To provide potential TAC 
advice for bocinegro, a new custom MP was designed that imputed 
missing catch data prior to 2003. When subjected to simulation testing 
in the Management Planning mode, the custom MP performed reason-
ably well and was identified as a feasible management option with an 
intermediate trade-off between biological and yield outcomes. Value 
of Information and Cost of Current Uncertainties analyses identified 
research and data priorities for bocinegro, including data-processing/
collection protocols for improving the precision of the annual catch 
data and relative abundance indices. Given the scale of the bocinegro 
fishery, the maximum theoretical value of these improvements was 
small in absolute terms at around 5 tonnes per year but large in relative 
terms (10–15% of recent catches) for research programmes relating to 
data precision (Figure 6).

The patchy bocinegro data allowed for only four of the possible 
30 status determination methods that use catch or relative abun-
dance index data. The availability of data for bocinegro is typical of 
a data-limited fishery, where catch and index data are unavailable 
for the time period of the historical fishery. The operating model 
conditioning approach used in MERA can use historical fishing ef-
fort data or user-sketched effort to constrain the historical stock 

F I G U R E  8  Spawning stock biomass relative to unfished (biomass in 1961) estimated by the rapid conditioning model using the 
combination of data ‘C_E_I’ that includes recent catches (C) sketched fishery effort (E), and recent relative abundance indices (I). Panel a 
is the estimated historical stock status where the white line denotes the median value, the dark blue box represents the 50th probability 
interval and the light blue region represents the 90% probability interval. Panel b is a boxplot where the 50% interval is denoted by the 
shaded box and the 95% probability interval is denoted by the whiskers.
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reconstruction. When applied to bocinegro the conditioning ap-
proach led to relatively wide estimates of depletion in the range of 
0.15–0.45 (90% CI) which provides a suitably challenging basis for 
the testing of candidate management procedures for a data-limited 
fishery.

There is a critical need for tools to inform the design and selec-
tion of robust fishery management systems in the face of imperfect 
information and high uncertainty. This can be considered a primary 
issue for global fisheries management since around 90% of stocks 
are data-limited and lacking sufficient data to conduct a conven-
tional assessment (Costello et al., 2012). This fraction is still as high 
as 60% of stocks even in countries with developed fisheries manage-
ment systems (e.g. USA, Newman et al., 2015). Without frameworks 
to demonstrate the potential value of alternative management op-
tions and data collection programmes, progress towards sustainabil-
ity is stalled in many fisheries. System dynamics modelling offers a 
possible path to address these challenges since it can evaluate the 
implicit performance of a prescriptive management procedure (e.g. a 
size limit or spatial closure) for a data-limited fishery for which it may 
never be possible to defensibly derive an explicit estimate of stock 
status (Carruthers & Hordyk, 2018).

By allowing for rigorous evaluation of management options for 
data-limited fisheries, frameworks such as MERA may unlock new 
incentive systems for improving the science and management of 
these stocks. This dynamic approach can facilitate more rigorous 
and formalised documentation of qualitative and expert knowl-
edge used to inform a management procedure. It can also promote 
more thorough explorations of the risks posed by a broad range of 
sources of uncertainty, including poor data quality or management 
enforcement gaps. More broadly, MP testing also emphasises imple-
mentation of robust and responsive management procedures over 
the identification of stock status as a means to achieve biological 
and fishery objectives (Hilborn,  2002). The bocinegro case study 
illustrates a first step of an iterative ongoing approach that cycles 
through status estimation, MP identification, MP adoption and mon-
itoring of exceptional circumstances.

The versatile and powerful uses of MSE come with trade-offs 
associated with its analytical complexity, broad scope of information 
covered, and its iterative, multi-stakeholder nature.

Even with a more user-friendly front-end such as MERA, the 
construction and conditioning of operating models require ded-
icated expertise. The interpretation of outputs demands a good 
understanding of the analytical properties of the underlying op-
erating model and of the management procedures being tested. 
In addition, a dedicated effort is needed to engage different 
experts to inform a realistic operating model, collate and pre-
pare data from different sources—especially in capacity-limited 
contexts where data governance and understanding of data col-
lection protocols may be lacking. Further, generic MPs such as 
those included by default in MERA will only be suitable in some 
contexts. In the bocinegro case-study, for example, the default 
MPs resulted in highly uncertain outcomes. A custom MP, coded 
through the command line version of the underlying packages 

(openMSE) and re-imported in MERA, resulted in better yield 
and biological performance, suggesting it made better use of 
the available data. Many fisheries are multi-gear, multi-fleet and, 
particularly in the case of small-scale operators, target mixed 
species. In such cases, command-line tailoring or additional 
modelling tools may be necessary to appropriately incorporate 
key variables (e.g. spatial, multi-species interactions), or to con-
sider other key influential drivers (e.g. environmental, economic). 
MERA offers the advantage of being easily linked to R command 
line packages that cover the gamut of these additional analyses, 
but these further applications will have to rely on a well-trained 
MSE expert familiar with the underlying R packages (i.e. Hordyk 
et al., 2022).

For species that are strongly environmentally driven and short-
lived, MERA is unlikely to produce precise projections that clearly 
distinguish between the relative performances of alternative man-
agement procedures. Since MERA assumes an annual model for 
population dynamics equations, it may not be appropriate for ap-
proximating the dynamics of species with multiple reproductive 
events during the year or those that change sex. This implies that 
MERA would not be suitable for evaluating pelagic fish stocks that 
live <3 years, and many invertebrates, without significant tailoring 
of the operating model (i.e. exporting the operating model from 
MERA, altering it using bespoke code and importing it back into 
MERA).

To follow best practice in the implementation of MSEs, multiple 
MERA analyses (operating models and closed-loop simulation tests) 
may be required so as to test different realistic alternative operating 
models, and explorations of the simulations delivering more extreme 
values (Punt et al., 2016) which may be easier to automate through 
command line coding rather than the MERA interface.

Lastly, a governance process is needed to ensure the inclusion of 
stakeholders in defining the management targets, assuring a trans-
parent and rigorous analysis and peer-review process, facilitating 
the clear communication of outcomes to all interested parties, and 
endorsing and adopting final recommendations. These activities 
rely on highly skilled staff and meeting costs that are often under-
estimated when using data-limited methods. Trained experts and 
well-designed processes may not even be available if MSE is not an 
embedded practice in the management advisory system.

Despite the need for expert support and, in many cases, addi-
tional work tailoring the MERA code or performing analyses outside 
of the MERA environment, we propose that this tool can play an 
important facilitation and capacity building role in introducing MSE 
to data-limited fisheries' management systems. It can help gather all 
relevant information from different experts to build an appropriate 
operating model, through an interactive questionnaire; make the 
best use of available data for conditioning; create greater awareness 
of the pitfalls of data-limited methods, encouraging more careful 
scrutiny; support consistent documentation for all parameter selec-
tions; and incentivise stepping stones of improvement, by helping 
prioritise what data to collect and review the current procedure in 
place using auxiliary data.
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Implementation of an appropriate procedure, coupled with mon-
itoring of some response variables that are able to track progress 
of the fishery will enable data-limited fisheries that are in fishery 
improvement projects (FIPs) to demonstrate their progress to FIP 
providers and retailers, and ultimately can build the best practice 
and evidence that will be required to ensure they meet sustainability 
benchmarks and, perhaps, even gain certification to eco-certification 
standards such as MSC.
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APPENDIX A

THE QUANTITATIVE QUEST​ION​NAI​RE​

​TA B L E  A 1  Quantitative fishery questions regarding population and exploitation dynamics

Fishery question Answers (multiple choice) Operating model parameter values

1. Fishery description Provide an overview of the resource 
including references to supporting 
information

Name the species, 
geographical location, 
management authority 
and duration of 
management

–

2. Longevity What is the maximum age (A) of the 
species?

Very short-lived
Short-lived
Moderate life span
Moderately long-lived
Long-lived
Very long-lived

5 < A < 7
7 < A < 10
10 < A < 20
20 < A < 40
40 < A < 80
80 < A < 160

3. Stock depletion What is the status of spawning stock 
biomass compared to ‘unfished 
levels’ (D)

Crashed
Very depleted
Depleted
Moderately depleted
Healthy
Underexploited

0.01 < D < 0.05
0.05 < D < 0.1
0.1 < D < 0.15
0.15 < D < 0.3
0.3 < D < 0.5
0.5 < D < 0.8

4. Resilience What fraction of unfished recruitment 
occurs at 20% of unfished spawning 
stock biomass (h)

Not resilient
Low resilience
Moderate resilience
Resilient
Very resilient

0.25 < h < 0.3
0.3 < h < 0.5
0.5 < h < 0.7
0.7 < h < 0.9
0.9 < h < 0.99

5. Historical effort 
pattern

How has fishing intensity varied 
historically (e.g. annual days of 
fishing)?

Stable
Two-phase
Boom-bust
Gradual increases
Stable, recent increases
Stable, recent declines

Adjustable skew, magnitude of recent 
changes and time-series truncation

6. Inter-annual variability 
in historical effort

What is the magnitude of inter-annual 
changes in fishing effort (σE) among 
years?

Not variable
Variable
Highly variable

10% < σE < 20%
20% < σE < 50%
50% < σE < 100%

7. Historical fishing 
efficiency changes

What percentage change in fishing 
efficiency (Δh) can be expected over 
previous years

Strongly declining
Declining
Stable
Increasing
Strongly increasing

-3% < Δh < −2%
−2% < Δh < −1%
−1% < Δh < 1%
1% < Δh < 2%
2% < Δh < 3%

8. Future fishing 
efficiency changes

What percentage change in fishing 
efficiency (Δf) can be expected over 
future years

Strongly declining
Declining
Stable
Increasing
Strongly increasing

−3% < Δf < −2%
−2% < Δf < −1%
−1% < Δf < 1%
1% < Δf < 2%
2% < Δf < 3%

9. Length at maturity At what fraction of asymptotic length 
(LM) can 50% of fish be assumed to 
be sexually mature?

Very small
Small
Moderate
Moderate to large
Large

0.4 < LM <0.5
0.5 < LM <0.6
0.6 < LM <0.7
0.7 < LM <0.8
0.8 < LM <0.9

10. Selectivity of small 
fish

Relative to asymptotic length, at what 
size do fish first become 50% 
vulnerable to fishing (S)?

Very small
Small
Half asymptotic length
Large
Very large

0.1 < S < 0.2
0.2 < S < 0.4
0.4 < S < 0.6
0.6 < S < 0.8
0.8 < S < 0.9

(Continues)

 14672979, 2023, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/faf.12726 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [24/05/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



294  |    CARRUTHERS et al.

Fishery question Answers (multiple choice) Operating model parameter values

11. Selectivity of large 
fish

What is the selectivity of fish of 
asymptotic length (SL)?

Asymptotic selectivity
Declining selectivity
Dome-shaped selectivity
Strong dome-shape

SL = 1
0.75 < SL <1
0.25 < SL <0.75
0 < SL <0.25

12. Discard rate Of the fish that are caught, what 
fraction are discarded (FD)?

Low
Low – moderate
Moderate
Moderate – high
High

0 < FD <1%
1% < FD < 10%
10% < FD < 30%
30% < FD < 50%
50% < FD < 70%

13. Post-release 
mortality rate

Of the fish that are discarded, what 
fraction die due to capture (FR)?

Low
Low – moderate
Moderate
Moderate – high
High
Almost all die

0 < FR <5%
5% < FR < 25%
25% < FR <50%
50% < FR < 75%
75% < FR < 95%
95% < FR < 100%

14. Recruitment 
variability

What is the magnitude of inter-annual 
changes in recruitment (σR)

Very low
Low
Moderate
High
Very high

10% < σR < 20%
20% < σR < 60%
60% < σR < 120%
120% < σR < 180%
180% < σR < 240%

15. Size of existing 
spatial closures

What percentage of the species habitat 
is included in existing marine spatial 
closures (rh)?

None
Small
Small-moderate
Moderate
Large
Very large
Huge

rh = 0
0 < rh <5%
5% < rh < 10%
10% < rh < 20%
20% < rh < 30%
30% < rh < 40%
40% < rh < 50%

16. Spatial mixing in/out 
of existing spatial 
closures

Among years, what fraction of fish leave 
the spatial closure and enter the 
fished area (Ph)?

Very low
Low
Moderate
High
Fully mixed

0 < Ph <1%
1% < Ph <5%
5% < Ph < 10%
10% < Ph < 20%
20% < Ph < 50%

17. Size of future spatial 
closures

What percentage of the species habitat 
is included in proposed future 
marine spatial closures (rf)?

None
Small
Small-moderate
Moderate
Large
Very large
Huge

rf = 0
0 < rf <5%
5% < rf < 10%
10% < rf < 20%
20% < rf < 30%
30% < rf < 40%
40% < rf < 50%

18. Spatial mixing in/
out of future spatial 
closures

Among years, what fraction of fish are 
expected to leave the spatial closure 
and enter the fished area (Pf)?

Very low
Low
Moderate
High
Fully mixed

0 < Pf <1%
1% < Pf <5%
5% < Pf < 10%
10% < Pf < 20%
20% < Pf < 50%

19. Initial stock depletion At the start of the historical time 
series, what was the stock level as 
a fraction of theoretical unfished 
stock size (D1)

Very low
Low
Moderate
High
Asymptotic unfished

0.1 < D1 < 0.15
0.15 < D1 < 0.3
0.3 < D1 < 0.5
0.5 < D1 < 1
D1 = 1

TA B L E  A 1  (Continued)
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TA B L E  A 2  Quantitative questions regarding the type of management system and its implementation

Management question
Answers 
(multiple choice) Operating model parameter values

1. Type of fishery 
management 
that is possible

Can fishery exploitation be controlled by measure such as Total 
annual catches (TAC), Total annual effort (TAE).

TAC
TAE
Size limit
Time-area 

closures

–

2. TAC offset What fraction (FC) of recommended catches are taken by the 
fishery

Large underages
Underages
Slight underages
Taken exactly
Slight overages
Overages
Large overages

40% < FC < 70%
70% < FC < 90%
90% < FC < 100%
95% < FC < 105%
100% < FC < 110%
110% < FC < 150%
150% < FC < 200%

3. TAC 
implementation 
variability

Given the offset between catch recommendations and catches 
of the fishery what is the maximum annual deviation (dC) 
from this offset?

Constant
Not variable
Low variability
Variable
High variable

0 < dC <1%
1% < dC <5%
5% < dC < 10%
10% < dC < 20%
20% < dC < 40%

4. TAE offset What fraction (FE) of recommended catches are taken by the 
fishery

Large underages
Underages
Slight underages
Taken exactly
Slight overages
Overages
Large overages

40% < FE < 70%
70% < FE < 90%
90% < FE < 100%
95% < FE < 105%
100% < FE < 110%
110% < FE < 150%
150% < FE < 200%

5. TAE 
implementation 
variability

Given the offset between effort recommendations and effort of 
the fishery what is the maximum annual deviation (dE) from 
this offset?

Constant
Not variable
Low variability
Variable
High variable

0 < dE <1%
1% < dE <5%
5% < dE < 10%
10% < dE < 20%
20% < dE < 40%

6. Size limit offset What fraction of a recommended minimum size limit (FS) is 
taken by the fishery

Much smaller
Smaller
Slightly smaller
Taken exactly
Slightly larger
Larger
Much larger

40% < FS < 70%
70% < FS < 90%
90% < FS < 100%
95% < FS < 105%
100% < FS < 110%
110% < FS < 150%
150% < FS < 200%

7. Size limit 
implementation 
variability

Given the offset between recommended minimum size limits 
and the minimum size that is taken, what is the maximum 
deviation (dS) from this offset?

Constant
Not variable
Low variability
Variable
High variable

0 < dS <1%
1% < dS <5%
5% < dS < 10%
10% < dS < 20%
20% < dS < 40%

 14672979, 2023, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/faf.12726 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [24/05/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



296  |    CARRUTHERS et al.

APPENDIX B

OPERATING MODEL ASSUM​PTI​ONS​

TA B L E  A 3  Data questions regarding the types of data that are available and the quality of these data

Data question Answers (multiple choice) Operating model parameter values

1. Types of data that are available What data types are 
collected and processed 
for making management 
recommendations using 
management procedures?

Historical annual catches
Recent annual catches
Historical abundance index
Recent abundance index
Fishing effort
Size composition data
Age composition data
Growth
Absolute biomass survey

–

2. Catch reporting bias What is the % difference 
between the catches 
reported and those taken 
(θC)

Strong under-reporting
Under-reporting
Slight under-reporting
Reported accurately
Slight over-reporting

−50% < θC < −30%
−30% < θC < −10%
−10% < θC < 0
−5% < θC < 5%
0 < θC < 10%

3. Hyperstability in indices How linear is the relationship 
between the index I, and 
the abundance A, where 
I ∝ Aβ

Strong hyperdepletion
Hyperdepletion
Proportional
Hyperstability
Strong hyperstability

0 < β < 1%
1% < β < 5%
5% < β < 10%
10% < β < 20%
20% < β < 40%

4. Overall data quality How extensive, accurate and 
precise are other aspects 
of the data collection?

Perfect
Good (accurate/precise)
Data moderate
Data poor (inaccurate/

imprecise)

See Table B1 for a detailed description 
of these observation error models

​TA B L E  B 1  Observation model types. Ranges provided are uniform random variables, with one draw per simulation. For example, for a 
simulation, a value of 0.011 may be drawn for the lognormal standard deviation of catch observation error from the uniform random variable 
in the range of zero to 0.05. All annual observation errors for this simulation are then sampled from a lognormal distribution with this 
standard deviation. For further details on the observation error model used in MERA see Carruthers and Hordyk (2018)

Overall data quality (answers to data question #4)

Quantity Type of error Perfect Good Data moderate Data poor

Error in annual catch observations Lognormal SD U[0, 0.05] U[0.1, 0.2] U[0.1, 0.3] U[0.2, 0.6]

Error in annual relative abundance 
index observations

Lognormal SD U[0, 0.05] U[0.1, 0.25] U[0.1, 0.4] U[0.2, 0.6]

Number of annual catch at age 
samples

Multinomial sample size U[500, 900] U[50, 100] U[25, 50] U[10, 20]

Number of annual catch at length 
samples

Multinomial sample size U[500, 900] U[50, 100] U[25, 50] U[10, 20]

Biases in estimates of natural 
mortality rate

Lognormal SD 0.01 0.05 0.2 0.4

Error in annual estimates of 
current stock status

Lognormal SD U[0, 0.05] U[0.025, 0.1] U[0.05, 0.1] U[0.05, 
0.2]

Biases in estimates of current 
stock status

Lognormal SD 0.01 0.2 0.5 0.75
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