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Abstract 

Inter-individual differences in gut microbiota composition are hypothesized to generate 

variation in host fitness – a premise for the evolution of host-gut microbe symbioses. 

However, recent evidence suggests that gut microbial communities are highly dynamic, 

challenging the notion that individuals harbour unique gut microbial phenotypes. 

Leveraging a long-term dataset of wild meerkats, we reconcile these concepts by 

demonstrating that the relative importance of identity for shaping gut microbiota 

phenotypes depends on the temporal scale. Across meerkat lifespan, year-to-year 

variation overshadowed the effects of identity and social group in predicting gut 

microbiota composition, with identity explaining on average less than 2% of variation. 

However, identity was the strongest predictor of microbial phenotypes over short 

sampling intervals (< 2 months), predicting on average 20% of variation. The effect of 

identity was also dependent on meerkat age, with the gut microbiota becoming more 

individualized and stable as meerkats aged. Nevertheless, whilst the predictive power of 

identity was negligible after two months, gut microbiota composition remained weakly 

individualised compared to that of other meerkats for up to one year. These findings 

illuminate the degree to which individualised gut microbial signatures can be expected, 

with important implications for the time frames over which gut microbial phenotypes may 

mediate host physiology, behaviour and fitness in natural populations. 
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Introduction 

Inter-individual differences in gut microbiota compositions can lead to variation in host 

health (1), pathogen susceptibility (2–4) and measures of fitness such as survival (5, 6). 

Although the mechanisms underpinning these relationships remain poorly understood, 

one possibility is that hosts maintain individualized and stable microbial symbionts that 

are disproportionally important for mediating long-term physiological and behavioural 

phenotypes (7). However, there is increasing evidence that gut microbial communities 

are highly dynamic (8–10), and the role of individual identity in shaping longitudinal 

dynamics remains puzzling (11). This uncertainty hinders efforts to unequivocally link 

gut microbiota communities to host phenotypes, to understand the temporal scales over 

which microbe-mediated selection may act, and to decipher how phylosymbiotic 

relationships between hosts and microbes evolve and persist (12–14).   

The individuality and stability of gut microbial communities provide rich information on 

the ecological and evolutionary processes that maintain their structure and function. 

Individuality refers to the extent a trait varies between individuals, whilst stability 

measures trait variation over time within an individual. For example, strong individual 

signatures in the gut microbiota may be expected where transmission between hosts is 

limited, or where personalized gut microbiotas are both advantageous to fitness and 

under host genetic control. In contrast, individualised microbial signatures are expected 

to be weak if transmission between hosts is frequent, or in ecological contexts where 

dynamic (i.e. unstable) gut microbiotas confer a higher fitness advantage than 

individualized and stable microbiotas (15).  
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The individuality and stability of gut microbiotas across different host species remains 

unclear, in part due to the sparsity of longitudinal data. In humans from industrialized 

countries, the gut microbiota is generally rather individualised, even over many years 

(16–18). Yet, this long-term individuality conceals a highly dynamic community that is 

revealed by daily sampling (10), suggesting that while human gut microbial communities 

are highly dynamic over the short term, they nevertheless maintain some level of 

individuality. This is potentially due to modern human lifestyles buffering the gut 

microbiota from environmental effects or because most studied subjects do not share 

the same environment. Longitudinal studies of wild non-human primates also report 

highly dynamic gut microbiotas (8, 19, 20), but recent evidence suggests that 

individualised responses to changing environments limit the formation of individualized 

microbial compositions over long time scales (21). These findings suggest that microbial 

dynamics, rather than composition per se, are individualised. 

In this study we gathered longitudinal information on the individuality and stability of the 

gut microbiota using 965 samples collected from 157 wild meerkats (Suricata suricatta; 

mean number of samples per ID = 6, min. = 3, max. = 14) belonging to 22 social groups, 

sampled between 1997 and 2019 (Supplementary figure 1). Meerkats are small 

insectivorous mongooses living in social groups of two to fifty individuals in the arid 

regions of southern Africa. Social groups are largely made up of related individuals, and 

whilst dispersal and immigration between groups occurs frquently, most individuals 

remain in the same social group for life. The population under study is part of the 

Kalahari Research Project, which has monitored tagged individuals since 1993 (22). 

Here we analyse 16S gut microbiota data described previously (9), and which was 
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generated using an internal standard to quantify 16S copy number. Previous research 

demonstrated that the gut microbiota of this population differs from that of previously 

studied primates in that it undergoes strong diurnal oscillations, yet relatively weak 

seasonal changes (9), potentially generating particularly high microbial turnover rates 

on a daily basis. In this study, we only include individuals that were sampled at least 

three times, therefore we analyse 965 samples out of 1,109 reported in (9). 

We measured the individuality of the gut microbiota in two ways: firstly by estimating its 

repeatability, which is defined as the proportion of total phenotypic variation that is 

attributed to individuals, and is also referred to as the Intraclass Correlation Coefficient 

(ICC) when applied other sources of variation (23, 24). We additionally measured 

individuality by estimating beta dissimilarity between pairs of samples, which differs 

from repeatability by being a relative rather than an absolute measure (i.e. how 

individualised is a meerkat’s gut microbiota compared to that of other meerkats). We 

measured microbial community stability by estimating taxa turnover between 

consecutive sampling events.  

Applying these definitions, our aims were to 1) quantify repeatability for a range of 

single-taxon and community phenotypes, and to compare repeatability to the effects of 

social group membership and year of sample collection; 2) identify microbial 

phylogenies that are most likely to demonstrate long-term repeatability; 3) investigate 

how a) sampling interval and b) age affect the relative influence of repeatability 

compared to the effects of social group and year of sample collection; and 4) examine 

whether changes to repeatability are determined by shifts in overall community stability. 

Lastly, (5), we apply pairwise beta dissimilarity measures to test whether gut microbial 
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communities remain individualised compared to other meerkats as a function of 

sampling interval. 

 

Results 

1) Weak repeatability and strong inter-year variation across phenotypes 

We calculated the ICC for meerkat identity (repeatability), social group membership, 

and year of sample collection for 39 collapsed genera that were detected in 50% of 

samples, which together accounted for 82% relative abundance (Supplementary table 

1). Year of sample collection had the strongest effects across genera (87% significant; 

mean ICC = 0.081) with social group membership (62% significant; mean ICC = 0.02) 

and identity (26% significant; mean ICC = 0.016) having weaker effects (Fig. 1a). The 

genera Christensenellaceae (R-7 group) and Ruminococcaceae (UCG-005) were most 

likely to be characterised by inter-individual variation. Year of sample collection was 

also the most important predictor of bacterial load, alpha diversity measures, and the 

first axis of variation of beta diversity ordinations, and was particularly associated with 

suites of rarer, non-core taxa (captured by Unweighted Unifrac; Fig. 1b). Both individual 

identity and social group were largely unimportant for explaining gut microbiota alpha 

and beta diversity across the 20-year study period (Fig. 1b).  

We next modelled taxa abundances at the amplicon sequence variant (ASV) level, 

including 121 ASVs that were detected in over 30% of samples and which together also 

accounted for 79% of relative abundance (Supplementary table 2). Year of sample 

collection again had the strongest effects across ASVs (87% significant, mean ICC = 
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Figure 1) ICC measures and 95% confidence intervals for meerkat identity (repeatability), social group membership, and year of sample collection on a) the 

abundances of 39 genera that were detected in at least 50% of samples, and b) community phenotypes, including bacterial load, three measures of alpha 

diversity (observed ASV richness, Shannon diversity, and Faith’s phylogenetic diversity), and the first axis of variation extracted from ordinations based on 

three beta diversity distances (weighted Unifrac, unweighted Unifrac, and Bray Curtis). Colours are scaled by their relative effect size (ICC), and greyed out if 

they are not significant. PD = Faiths phylogenetic alpha diversity. 
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0.09±0.06 s.d), with social group membership (60% significant, mean ICC = 0.04±0.03 

s.d.) and identity (39% significant, mean ICC = 0.05±0.02 s.d.) having weaker effects 

(Supplementary figure 2). Weak correlations existed between the effects of identity, 

year, and social group, with ASVs that tended to be characterised by identity, also 

tending to be characterised by social group membership (Pearson’s r = 0.27, p = 0.003), 

whilst taxa characterised by inter-group variation tending to be buffered from year 

effects (Pearson’s r = -0.26, p = 0.006; Supplementary figure 3). The most individually 

repeatable ASVs belonged to the genera Blautia and Bacteroides. However, these 

genera were not significantly repeatable within individuals at the genus level, suggesting 

that identity effects often act at higher taxonomic resolutions than genus level.  

We tested whether the weak influence of identity was dependent on model structure by 

excluding social group membership and year from models. Excluding social group and 

year of sample collection considerably inflated the contributions of identity, with the 

majority of ASVs becoming significantly associated with identity (Supplementary figure 

4).  

2) Specific phylogenetic lineages are more likely to be repeatable 

To test whether patterns in ICC were centred around particular phylogenetic branches, 

we estimated the phylogenetic signal in associations with identity, social group 

membership, and year. We found localised phylogenetic signals for individual identity 

(Moran’s I = 0.00728, P = 0.014), social group (Moran’s I = 0.00711, P = 0.018), and 

yearto-year variation (Moran’s I = 0.02, P = 0.003; Fig. 2). Individual identity was 

predominantly associated with members of the Phylum Bacteroidetes, in particular 

Rikenellaceae, Alistipes, and some Bacteroides members, as well as some specific 
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Figure 2) Phylogenetic signal in ICC for individual identity (repeatability), social group membership, and year of sample collection across 121 ASVs with over 

30% prevalence in the overall sample. ASVs for which ICC is higher than average are coloured in red. The major phyla are indicated. 
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Firmicutes genera, including Blautia, and Ruminoccocus torques group. In contrast, 

social group had wide-spread effects across members of Firmicutes, with particularly 

notable associations with cellulose-degrading Marvinbryantia, potentially reflecting 

different levels of plant consumption amongst social groups. Year effects characterised 

members of the phyla Fusobacterium and Proteobacteria, some members of 

Bacteroides, and members of Lachnospiraceae. The most abundant genus, Clostridium 

sensu stricto 1, which undergoes strong diurnal oscillations (9), demonstrated no 

phylogenetic signal in association with any variables.  

3a) Repeatability is strong at short time intervals but weakens over time 

Whilst identity had weak effects over the whole study period, we hypothesised that it 

may be more important over shorter time frames. To test this, we examined whether 

sampling interval affects ICC estimates for identity, social group membership, and year 

for each of the 121 ASVs analysed above. Therefore, we generated subsets of data that 

reflected a range of sampling intervals, from pairs of samples collected less than a 

month apart, to pairs collected over 1000 days apart, and repeated models for each 

sampling interval. As predicted, individual identity was more important than social group 

and year when longitudinal samples were taken within two months of each other, but 

the importance of identity decreased rapidly as sampling interval increased (Fig. 3a). 

When samples were longitudinally sampled within the same month, mean and median 

repeatability were 0.2 and 0.15, respectively, with some ASVs having a repeatability as 

high as 0.39 (Supplementary figure 5). When including only samples that were taken 

over two months apart, year of sample collection became the most important predictor 
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Figure 3) Temporal trends in ICC (top panel) and ASV turnover between sampling events (lower panel) of meerkat gut microbiomes. Top panel: median ICC 

(and standard error) of individual identity (repeatability), social group membership, and year of sample collection from models predicting the abundances of 

121 ASVs when samples are categorised by a) time intervals between sampling from the same individual; and b) different meerkat age categories. Bottom 

panel: Temporal predictors of ASV turnover between consecutive sampling events from the same individual, extracted from a GAMM, showing the 

association between ASV turnover and d) the number of days between samples; and e) the age of the meerkat at the point of the first sample. 
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of ASV abundances (Fig. 3a). Social group had, on average, weak effects (median ICC 

< 0.05) across all time frames.  

3b) Repeatability increases with age 

We tested whether ICC was also influenced by meerkat age by categorising samples by 

meerkat age (young, < 2 years; adult, 2 – 4 years; old, >4 years).  The effect of identity 

did indeed increase with age, being lowest in young meerkats (median = 0.015, 10% 

significantly repeatable), higher in adults (median = 0.05, 37% significantly repeatable), 

and highest in older meerkats (median = 0.08, 35% significantly repeatable; Fig. 3b). 

Interestingly, the effect of year also increased with age, possibly due to older meerkats 

being sampled over many years (Fig. 3b). In contrast, the effect of social group 

decreased in older meerkats (Fig. 3b), potentially suggesting that as gut microbial 

communities become more individualized with age, microbial communities are buffered 

from group effects, such as horizontal transmission from group members. 

4) Changes in repeatability are reflected by shifts in community stability 

Low long-term repeatability at the ASV level may be driven by high community turnover, 

in which case we would predict that the timeframes associated with low repeatability 

would also be associated with higher ASV turnover, and vice versa. To test this 

association, we measured ASV turnover (the proportion of ASV appearing or 

disappearing) between consecutive samples taken from the same individual, and tested 

whether ASV turnover was predicted by the amount of time elapsed between samples 

and meerkat age. 
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Mean community turnover between sampling events was very high (~80% of ASVs 

appeared or disappeared between sampling events). Turnover increased with the 

amount of time elapsed between samples (Fig. 4c), yet also was dependent on meerkat 

age, with turnover being much higher in meerkats under one year of age (Fig. 4d; 

Supplementary table 3). 

5) Despite low repeatability, gut microbiota composition remains marginally 

individualized when compared to other meerkats 

Although the effect of identity on gut microbiota composition is negligible after two 

months, this does not preclude that an individual’s gut microbiota remains more similar 

to itself than to gut microbiotas of other meerkats. We tested this hypothesis by 

estimating beta similarity between pairwise samples and modelling similarity as a 

function of time interval between sampling, for samples collected up to two years apart. 

Comparisons were categorised as comparing either samples of the same individual, 

samples of different individuals within the same social group, or different individuals of 

different social groups.  

We found that samples taken from the same individual did tend to be more similar than 

to samples taken from other individuals, and match more closely with gut microbiotas 

from members of the same social group, independent of the distance metric applied 

(Fig. 4a-c). However, these effects had low explanatory power, suggesting substantial 

variation (GAMMs: Bray Curtis: p < 0.001, R2 = 0.002; unweighted Unifrac: p < 0.001, 

R2 = 0.002; weighted Unifrac: p < 0.001, R2 = 0.001). Notably, patterns in inter-

individual beta dissimilarity over time were non-linear (Fig. 4a-c), with gut microbiotas of 
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Figure 4) Beta dissimilarity of meerkat gut microbial communities as a function of sampling interval for samples collected up to two years apart, coloured by 

comparison type (grey: within individual; blue: between individuals from the same social group; and red: between individuals from different social groups) and 

based on a) Bray Curtis; b) unweighted Unifrac, and c) Weighted Unifrac distances. The dashed grey line indicates the one year mark. Lower beta 

dissimilarity indicates higher similarity in community composition. 
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different individuals beginning to converge again after one year, hinting at seasonal 

effects over the first year.  

 

Discussion 

Longitudinal studies of wild populations are scarce but invaluable to dissect short- and 

long-term evolutionary and ecological dynamics. For gut microbiota, long-term data 

allows us to tease apart how much variation is explained by identity, social group 

membership, and yearly shifts in a way that is not possible from cross-sectional studies 

conducted over short time scales. We leveraged an extensively sampled and well-

studied wild meerkat population (>20 years) to show that, over long time intervals, year 

of sample collection had stronger effects on the abundances of most common ASVs 

than identity or social group membership, and in addition is more influential in shaping 

overall alpha and beta diversity. However, the contribution of identity is considerably 

higher over shorter time intervals, associated with specific phylogenetic groups of taxa, 

and increases with meerkat age. Increased repeatability with age is underpinned by an 

increase in overall microbial community stability, and not due to increased stability of 

particular taxa. Lastly, we found that whilst the effect of identity was negligible after two 

months, meerkat gut microbiotas remained weakly individualised compared to that of 

other individuals for up to one year. These findings suggest that the downstream 

physiological effects of individualized gut microbiotas are likely to act over the scale of 

weeks or months, rather than years. 
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Our findings of weak long-term contributions of individual identity to gut microbial 

composition, an exponential decay in microbiota similarity within individuals over time, 

and increases in taxon repeatability with age, all align closely with those found in a 

decade long study of baboons (8, 25), suggesting that such dynamics may be 

consistent across host species. These patterns in longitudinal dynamics may resolve 

the conflicting reports of the major drivers of gut microbiota dynamics across different 

species, with different findings being due to variable sampling intervals and designs 

rather than inherent differences amongst species.  Nevertheless, this does not preclude 

the possibility of differences in gut microbiota stability and associated drivers between 

host species. For example, individual host traits such as age, sex and social dominance 

rank generate individualized microbial signatures that are stable over short time frames 

in baboons (25), yet these traits do not have a strong stabilizing effect in meerkats (9).  

We distinguished between taxa whose temporal variation is characterised by inter-

individual, inter-group, or inter-year variation. Pinpointing taxa associated with inter-

individual variation is important for being able to link the gut microbiota to immutable 

host traits encoded by genetics and responsible for host fitness; yet, this is highly 

challenging when different sources of variation are nested in structure. In humans, 

members of the phylum Bacteroidetes tend to be characterised by strong inter-individual 

variation (17), and this also appears to be the case in meerkats, with the Bacteroidetes 

genera Alistipes, Rikenellaceae, and Bacteroides all tending to be associated with 

meerkat identity. Some specific lineages of Firmicutes were also associated with 

identity, including Blautia, Ruminoccocus torques group, and Christensenellaceae R-7 

group. Many of these genera have been found to be significantly heritable in mammals 
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(8), and therefore may be more likely to be associated with host traits such as genotype, 

physiology, or fitness. Together, these lines of evidence suggest that future studies of 

mammalian host-gut microbe interactions may benefit from focussing on these lineages 

as a potential mediator of host health and fitness. 

We found that inter-year variation was mostly associated with members of the phyla 

Fusobacterium and Proteobacteria, as well Bacteroides (phylum Bacteroidetes) and 

Lachnospiraceae (Phylum Firmicutes). Fusobacterium and Proteobacteria tend to make 

up only a small component of mammalian gut microbial communities, with some 

exceptions including bats (26) and some primates (27), yet there is evidence that they 

are often highly abundant in diseased individuals suffering with a dysbiotic gut microbial 

community (28–30). The exact mechanism that causes this year-to-year variation 

remains unclear, given that the amount of rainfall is not an important predictor of gut 

microbiota composition in this population (9). However, longer term climatic conditions, 

such as drought, are known to affect population health in this system. Climate extremes 

have long term effects on reproduction (31, 32), mortality (33), and tuberculosis 

prevalence (34, 35), and together these may produce signals of dysbiosis in the gut 

microbiota.  

We found that social group membership played a secondary role to year effects in 

explaining gut microbial variation, but was nevertheless associated with a wider suite of 

taxa than meerkat identity. Indeed, excluding social group from models incorrectly 

inflated the importance of individual identity for explaining gut microbiota composition. In 

addition, gut microbial beta diversity tended to be more similar to other social group 

members than to non-group members for up to a year (Fig. 4). It is unclear whether 

17



 

these group effects are based on shared responses to environment, ample opportunity 

for microbial transmission between individuals, or reflect the higher genetic relatedness 

of group members. This underscores the importance of decomposing the often nested 

effects of identity, social group membership, and long-term conditions when 

synthesizing the relationship between gut microbial phenotype and both host genotype 

and fitness.  

Taken together, our findings paint a picture of a highly dynamic gut microbial 

community, whereby individuals can perhaps be distinguished if sampling intervals are 

short, and idiosyncratic responses leading to weakly individualised gut microbial 

signatures for up to a year. Whilst our findings do provide some support for 

individualised dynamics of gut microbiotas, they also call into question how close a 

match between host genotype and microbial phenotype can be expected. In contrast to 

stochastically-fluctuating taxa, individualized microbes are expected to be heritable (8), 

and associated with a host’s genotype and evolutionary lineage (12, 14). As such, 

individuality and repeatability form the conceptual basis of linking commensal microbiota 

with, for instance, host immunogenetics (36). However, increasing evidence suggests 

that interactions between host genetics and the gut microbiota may vary across life, with 

MHC-gut microbiota associations dependent on age in bats (37), and microbiota 

heritability shifting with age and season in baboons (8). As such, associations between 

host genotype and the gut microbiota may be very strong under certain ecological 

contexts, yet much weaker when averaged across seasons and demographic groups.  

In conclusion, our findings demonstrate that the dynamics of specific microbial lineages 

are differentially driven by either identity, social group membership, or inter-year 
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variation, with implications for the mechanisms by which host-gut microbe symbioses 

function and evolve.  These results inform how to study gut microbiota dynamics of 

natural populations in the future, and the time frames over which gut microbial 

phenotypes may mediate host physiology, behaviour and fitness. 

 

Material and Methods 

Study population and sample collection 

The study population inhabits the Kalahari Desert region in South Africa (-26.96S, 

21.83E). Individuals from this population are individually marked and have been 

monitored three to five times a week since 1993 by the Kalahari Meerkat Project (22). 

Faecal samples have been collected across the entire study period from almost all 

monitored individuals. For this study, we analysed a subset of the samples included in 

(9), excluding any individuals that had three samples or less. We therefore included a 

total of 965 samples collected from 157 wild meerkats (mean samples per ID = 7.5, min. 

= 4, max. = 14) belonging to 22 social groups, sampled between 1997 and 2019 

(Supplementary figure 1). Faecal samples were collected from the ground immediately 

after a meerkat was observed defecating, and were stored next to an icepack and 

frozen at -20 °c within 6 to 8 hours. For long-term storage, samples were then either 

frozen at -80c (before 2008) or freeze-dried (after 2008). Effects of storage were 

minimal and are investigated in Risely et al. (9). Fifteen soil samples were also collected 

from the same area, which were used to remove soil contaminants and were treated 

identically to faecal samples. 
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DNA extraction with internal standard, 16S rRNA amplification and sequencing 

Before DNA extraction, NAP buffer was added to all samples (38). A subsample of 0.6 

±0.05 µg (wet) was taken, and 3µl of ZymoBIOMICS Spike-in Control I (High Microbial 

Load) was added to each subsample prior to DNA extraction. This internal standard 

consists of cells belonging to Imtechella halotolerans and Allobacillus halotoleranss, two 

species which are rarely found in gut microbiota communities. An internal standard 

allows us to quantify ratios of absolute abundance by adding a known number of cells to 

each sample by which to normalise microbiota counts after sequencing. This method 

measures 16S copy number rather than absolute abundance, but has shown to 

accurately reflect variation in absolute abundances when care is taken to standardize 

faecal sample mass (39–42). We have shown previously with this dataset that sample 

identity accounts for 90% of variation in estimated bacterial load, whilst 10% is technical 

variation (9). 

The bacterial genomic DNA was extracted using the NucleoSpin 96 Soil kit (Macherey-

Nagel) following the manufacturer’s instructions, and the hypervariable V4 region of the 

16S rRNA gene was amplified using the primer pair 515 F (5-

GTGCCAGCMGCCGCGGTAA-3) and 806 R (5-GGACTACHVGGGTWTCTAAT-3). We 

used the Fluidigm Access ArrayTM for Illumina Sequencing Systems for indexing and 

adding Illumina adaptor sequences. After purification (NucleoMag® NGS Clean-up and 

Size Select, Macherey-Nagel) and quantification (QuantiFlour® dsDNA Systemt, 

Promega) of barcoded samples, the normalized pooled sample library was sequenced 

as paired-end run on Illumina MiSeq platform (2 x 250bp) at the Institute of Evolutionary 

Ecology and Conservation Genomics, Ulm University. Samples were sequenced across 
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four Illumina runs (MiSeq Reagent Kit v2, 500-cycles). Extraction and PCR negative 

controls were included on all runs. 

Microbiome bioinformatics and normalisation 

All sequence reads were processed using QIIME2 version 2020.2 (43). Sequences 

were merged, quality filtered, and chimeras were removed using the DADA2 pipeline 

(44) to generate 34,248 amplicon sequence variants (ASVs) with an average of 34,050 

reads per sample (44, 45). Primers were trimmed and reads were truncated at 244 

(forward) and 235 (reverse) base pairs, based on the visualization of quality plots. ASVs 

were assigned a taxonomy using SILVA version 132 (46). A tree was built using 

QIIME2’s fragment insertion method (47). ASVs were filtered if they were not bacteria, 

not assigned to a phylum (as these are assumed to be spurious), or if they were 

classified as mitochondria or chloroplasts. These filtering steps discarded 8% of AVS 

and 1.8% of reads, with the vast majority of these belonging to mitochondria and 

chloroplasts. We used the function decontam::isContaminant (48) using the ‘prevalence’ 

method to identify soil microbes using 15 sand samples as a reference, and to remove 

them from the dataset. We then divided taxa counts per sample by Allobacillus 

halotolerans abundance per sample to quantify ratios of absolute abundance across 

samples (described in 9). Both Allobacillus and Imtechella were then removed, and all 

further analysis were conducted on normalised reads. Because some samples had very 

high relative abundances of spike-in, we only retained samples for which read depth of 

the true microbiome (minus the internal reference) was over 5,000. After processing and 

the removal of soil samples, 26,122 ASVs remained in the final dataset, with an average 

of 27,080 reads per sample. 
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Sample metadata 

Detailed analysis of the biological and environmental factors that are associated with 

meerkat gut microbiotas was conducted in (9). Here, our aim was to quantify the 

contributions of identity, social group, and year whilst controlling for important sources 

of variation identified in that study. The most important predictors of taxa abundances 

identified were time of day, meerkat age, season, as well as sequencing depth, 

sequencing run, and storage. We therefore included these variables in all models 

(described below). We measured time of day in reference to sunrise because this is 

more biologically meaningful than time of day. We calculated sunrise times per day 

using suncalc::getSunlightTimes (49). We categorised season into wet (October to 

April) and dry (May to September). 

Statistical analysis 

We quantified the contributions of individual identity, social group membership, and year 

for predicting the abundances of 39 genera that were detected in over 50% of samples, 

121 single-taxon phenotypes at the ASV level that were detected in at least 30% of 

samples, and seven community phenotypes that represented measures of bacterial 

load, alpha diversity, and beta diversity. We lowered the threshold to 30% at the ASV 

level because only few ASVs reach high prevalences, whilst many genera do. 

Therefore, a 50% threshold for genera level and 30% threshold of ASV level both 

capture approximately 80% of sequence reads. Altering this threshold does not affect 

reported ICC values, but rather shifts which taxa are presented. We also estimated ICC 

for seven community phenotype metrics, including bacterial load (16S copy number 

estimated using the internal standard), observed ASV richness, Shannon diversity, 
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Faith’s phylogenetic diversity, and the first axis of variation from a Multidimensional 

Scaling (MDS) ordination using weighted Unifrac, unweighted Unifrac, and Bray Curtis. 

We chose MDS over Non-Multidimensional Scaling (NMDS) methods because NMDS 

models did not converge on our data, even with prevalence filtering. These measures 

were calculated in R using phyloseq::estimate_richness() (50), 

metagMisc::phyloseq_phylo_div() (https://github.com/vmikk/metagMisc), and 

phyloseq::ordinate().  

We estimated the adjusted Intraclass Correlation Coefficient (ICC) of all three variables 

when included as random effects in a Generalized Additive Mixed model (GAMMs), 

fitted using the mgcv package (51), controlling for time of day, meerkat age, and 

sequencing depth as non-linear factors, and season (wet/dry), sample storage method, 

and sequencing run as fixed factors. We accounted for temporal autocorrelation by 

including an autocorrelation term in the model, nested by year. Smoothed terms were 

fitted using cubic (“cr”) splines. 

ICC and 95% confidence intervals of the three random effects were calculated using the 

R function rptGam::rptgam (https://github.com/elipickh/rptGam). We chose a GAMM 

approach with a Gaussian distribution because both changes in microbiota abundances 

across the day and with sequencing depth are non-linear, and ICC and 95% confidence 

intervals become increasingly challenging to estimate with other distributions such as 

Poisson. Reliable approaches for estimating ICC from models with negative binomial 

error distributions and/or zero inflation parameters are not yet available. GAMMs are 

also more likely to converge than linear models when data has high levels of 

nestedness, as it does here. Nevertheless, using a Gaussian approach may not always 
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be appropriate if taxa counts are zero-inflated. We therefore also estimated ICC 

applying various modelling approaches, including linear models with square root 

transformed ASV counts modelled with a Poisson distribution, and applying both 

frequentist and Bayesian methods to linear models and comparing ICC estimates to 

GAMMs. All methods returned highly correlated estimates for ICC (Supplementary 

figure 6), suggesting that estimates are robust to different modelling approaches. 

Phylogenetic signal of microbial phenotypes 

We tested for phylogenetic signal in ICC using the functions phylosignal::lipamoran and 

phylosignal::phyloSignal (52), applying Moran’s I index as a measure of the correlation 

between ICC and bacterial phylogenetic structure.  

ICC changes with sampling interval and age 

To test how ICC changes with sampling interval, we generated subsets of data based 

on how far apart samples were taken for the same individual, and reran all models for 

each ASV and each sampling category. To do this, we made pairwise comparisons for 

every sample collected from the same individual, and calculated sampling interval for 

each comparison. For sampling interval, we generated X categories (0 – 30 days, 30 - 

60 days, 60 – 90 days, and so forth). Mean sample size per category was 200, with a 

minimum sample size of 70, and samples could be included in more than one category.  

We then reran identical GAM models as described above per ASV and per sampling 

interval category. 

We applied a similar approach to test how ICC changes with meerkat age, but instead 

of creating subsets of data based on sampling intervals, we subsetted samples based 
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on meerkat age at the time of sampling (young: < 2 years, n = 346; adult: 2 – 4 years, n 

= 465; old: >4 years, n = 154). GAM models were then rerun on the 121 ASVs, using 

identical parameters as described above, on each age subset.  

Community stability measured by ASV turnover 

We estimates ASV turnover between consecutive samples collected from the same 

individual using the function codyn::turnover (53). We then modelled changes to 

turnover using a GAMM with a Gaussian distribution and the number of days between 

samples and the age of the meerkat at the first sample as fixed effects, while 

accounting for meerkat ID, social group membership, and year as random effects. Note 

that because samples tended to be taken regularly from individuals across the sampling 

interval, meerkat age at the first sample and meerkat age at the second sample were 

highly correlated (Pearson’s r = 0.97, p < 0.0001; Supplementary figure 7a), therefore 

both variables had almost identical effects when included in the model. In addition, days 

between samples was not correlated with age at second sample (Pearson’s r = 0.0003, 

p = 0.9; Supplementary figure 7b), therefore estimates were not bias by co-correlation 

between explanatory variables. Removing or adding variables had no effect on the 

model estimates, indicating that results are robust to changes in model structure. 

Changes to beta dissimilarity within and between individuals with sampling interval 

We calculated pairwise beta dissimilarity for all samples collected within two years of 

each other (n = 127,885 comparisons), applying Bray Curtis, unweighted Unifrac, and 

weighted Unifrac. We limited comparisons to two years apart because meerkats are 

mostly rather short-lived, and within-individual comparisons over two years apart were 
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comparatively rare. We assigned pairwise comparisons into three categories, based on 

whether the samples were taken from the same individual, a different individual in the 

same group, or a different individual in a different group. We then statistically tested the 

associations applying GAMMs, with beta dissimilarity as the response variable, and 

sampling interval as the smoothed variable, with smoothing factors fitted separately by 

comparison type. 
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