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ABSTRACT
This paper derives, under minimal modelling assumptions, a simple to use theorem for obtaining
both order-1 and order-2 stability criteria for a common class of particle swarm optimization (PSO)
variants. Specifically, PSO variants that can be rewritten as a finite sum of stochastically weighted
difference vectors between a particle’s position and swarm informers are covered by the theorem.
Additionally, the use of the derived theorem allows a PSO practitioner to obtain stability criteria that
contains no artificial restriction on the relationship between control coefficients. The majority of
previous stability results for PSO variants provided stability criteria under the restriction that certain
control coefficients are equal; such restrictions are not present when using the derived theorem. Using
the derived theorem, as demonstration of its ease of use, stability criteria are derived without the
imposed restriction on the relation between the control coefficients for four popular PSO variants.

1. Introduction
The particle swarm optimization (PSO) algorithm, orig-

inally developed by Kennedy and Eberhart [1], has become a
widely used optimization technique [2]. Given PSO’s popu-
larity, it has undergone a considerable amount of theoretical
investigation, to list just a few, [3, 4, 5, 6, 7, 8, 9, 10, 11].

While meta-heuristics have been used to solve numerous
real world problems, they typically lack the theoretical un-
derpinning and guarantees that classical optimization tech-
niques have. As such there is still a substantial need to bridge
this gap between the theoretical work and the algorithmic
design. By analyzing meta-heuristics from a theoretical per-
spective it allows the field to better understand how the un-
derlying dynamics of the algorithm behavior and what the
driving forces of this behavior are. This understanding can
facilitate algorithmic improvements; a notable example of
this is the covariance matrix adaptation evolutionary strat-
egy (CMA-ES) [12], which has had a number of its improve-
ments made possible directly from theoretical analysis. The-
oretical understanding of the coefficient space also makes it
possible to efficiently use meta-heuristics on new real world
problems, as the behavioral implications of certain parame-
ter choices can be theoretically guaranteed, which can dras-
tically minimize the range of coefficients that need to be con-
sidered during parameter tuning.

There are a number of aspects of PSO behaviour that can
be investigated from a theoretical perspective. However, the
focus of this paper is on the criteria needed for order-1 and
order-2 stability of PSO particles. Specifically, order-1 and
order-2 stability occurs when particle positions converge to a
constant in first and second order moment respectively [13]1.
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1Some authors have considered the stricter condition where the second

The vast majority of theoretical studies have focused on re-
ducing the modelling assumption used to obtain the stability
criteria for PSO with inertia (referred to as canonical PSO
(CPSO) in this paper), as proposed by Shi and Eberhart [14].
A detailed discussion of the systematic weakening of these
modelling assumptions can be found in [11].

The focus of this paper is instead on providing an easy to
use theorems for obtaining stability criteria for PSO variants,
while using the minimal modelling assumptions2 proposed
by Cleghorn and Engelbrecht [11]. The general aim of this
paper is to provide a theorem that allows a researcher to still
obtain stability criteria even if they have made alterations,
within reason, to the fundamental PSO algorithm. Recent
empirical studies have shown that selecting PSO control co-
efficients that are both order-1 and order-2 stable are vital to
the performance of PSO [15], and as such being able to eas-
ily obtain stability criteria for a PSO variant is an important
issue for the field.

While progress in many aspects of PSO stability theory
has been made there are still some common shortcomings
that appear in the literature. While often not all these short-
comings are present, at least one generally is. The main lim-
iting factors that appear in existing PSO stability research
are:

• The derived stability criteria is too variant specific,
making extrapolation past the variant under question
challenging or impossible, often even under trivial al-
teration.

• There are restrictions imposed on the control coeffi-
cient in order to produce a more theoretically tractable

order moment converges to zero. A detailed justification for using conver-
gence to a constant second order moment is provided in [13].

2The term minimal is used, since Cleghorn and Engelbrecht [11]
proved that order-1 and order-2 stability is present only if the non-stagnant
distribution assumption holds, as defined in Section 4. The work of [11] is
the most general in terms of modelling assumptions as well broadness of
the result at present.
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model. This restrictionmay not be fundamentally prob-
lematic if the practitioner is fully aware of what these
restrictions are. However, even with proper knowl-
edge of the imposed restrictions, using stability crite-
ria under such coefficient relationship restrictions ar-
tificially excludes stable control coefficients, which is
far from ideal.

• The derived stability criteria relies on strongmodelling
assumptions, such as the removal of stochasticity or
assuming full informer stagnation.

• The stability result proved is sufficiently general, but
application of which is far from mathematically triv-
ial. This limiting factor increases the probability of
errors in the derivation and also fundamentally dis-
suades PSOpractitioners from deriving criteria for their
proposed variant.

It should be stressed that strides have been made at re-
ducing or removing many of these stated limitations. That
said, at least one of the stated limitations is present in all
existing works. At present the last stated limitation is not
addressed at all in the literature, but is directly addressed
within this paper without incurring the other stated limita-
tions unnecessarily.

This paper provides a theoretical frameworkwithout these
four limiting factors for a class of PSO variants. The PSO
variants this paper considers are those that can be rewritten
as a finite sum of stochastically weighted difference vectors
between a particle’s position and swarm informers. Many
PSO variants can be written in this stated form. The canoni-
cal PSO is in this form naturally, with two particle informers,
namely, the personal best position and the neighbourhood
best position (or global best in the case of a fully connected
swarm). The classic PSO variants, unified PSO (UPSO) [16]
and fully informed PSO (FIPS)[17], both use multiple in-
formers, and can be written as a finite sum of stochastically
weighted difference vectors. There is also a more recent
trend of adding a third informer to PSO’s update equation to
guide a particle’s movement based on information external
to the swarm itself. Specifically, in the work of Scheepers
[18], a variant of PSO for multi-objective optimization uti-
lizes a third informer from the Pareto front archive. A similar
idea was also present in the work of Meier and Kramer [19],
where gradient based information was used to construct a
third informer to assist PSO in the training of recurrent neu-
ral networks.

The theorem presented in this paper, for obtaining sta-
bility criteria, also removes a common restriction present in
existing stability work on PSO variants. Specifically, many
previous order-2 stability results of PSO variants have pro-
vided stability criteria under the restriction that control co-
efficients are equal [20, 21, 22]; such restrictions are not
present when using the provided theorem. An additional the-
orem is also provided for obtaining the fixed points for the
expectations and variance of particle positions.

A brief description of PSO, and its general form, is given
in Section 2, followed by a summary of existing relevant

PSO theory in Section 3. The theoretical derivations of cri-
teria for stability along with the limit points for particle po-
sitions are provided in Section 4. Section 5 demonstrates the
use of the stability theorem by deriving the stability criteria
for four PSO variants. Additionally, Section 5 provides the
first order-1 and order-2 stability criteria for the comprehen-
sive learning PSO (CLPSO)[23] as well as the first stabil-
ity criteria for UPSO without restrictions on the relationship
between control coefficients. An empirical demonstration of
the negative impact of not meeting order-1 and order-2 sta-
bility criteria is presented in Section 6. A summary of the
paper’s findings is presented in Section 7.

2. Particle Swarm Optimization
Particle swarm optimization was originally inspired by

the complex movement of birds in a flock. The variant of
PSO this section focuses on is the CPSO algorithm [14].

TheCPSO algorithm is defined as follows: Let f ∶ ℝd →
ℝ be the objective function that the CPSO algorithm aims to
find an optimum for, where d is the dimensionality of the ob-
jective function. For the sake of simplicity, a minimization
problem is assumed from this point onwards. Specifically,
an optimum o ∈ ℝd is defined such that, for all x ∈ ℝd ,
f (o) ≤ f (x). In this paper the analysis focus is on objective
functions where the optima exist. Let Ω (t) be a set of N
particles3 in ℝd at a discrete time step t. Then Ω (t) is said
to be the particle swarm at time t. The position xi of particle
i is updated using

xi (t + 1) = xi (t) + vi (t + 1) , (1)
where the velocity update, vi (t + 1), is defined as

vi (t + 1) = wvi (t) + c1r1(t)⊗ (yi(t) − xi (t))
+ c2r2(t)⊗ (ŷi(t) − xi (t)), (2)

where r1,k(t), r2,k(t) ∼ U (0, 1) for all t and 1 ≤ k ≤ d. The
operator ⊗ is used to indicate component-wise multiplica-
tion of two vectors. The position yi(t) represents the “best”position that particle i has visited, where “best” means the
location where the particle had obtained the lowest objective
function evaluation. The position ŷi(t) represents the “best”position that the particles in the neighbourhood of the i-th
particle have visited. The coefficients c1, c2, and w are the
cognitive, social, and inertia weights, respectively.

There are numerous PSO variants that alter equation 2 of
the CPSO algorithm. The focus of this paper is on PSO vari-
ants whose velocity update equation can be rewritten into the
following form:

vi (t + 1) = �0 ⊗ vi (t) +
I
∑

�=1
�� ⊗

(

� � (t) − xi (t)
) (3)

xi (t + 1) = xi (t) + vi (t + 1) (4)
where all ��,k form an arbitrary set of independent distribu-
tions with well defined mean and variance for each 0 ≤ � ≤

3The impact of the choice of N on PSO variants had recently been
analyzed [24].
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I , and �� represents each of the I particle informers. An in-
former is a general term for a point to which a particle is at-
tracted to or its update is guided by. For example in the equa-
tion (2), yi is an informer because the particle is attracted to-
ward its personal best position due to the term yi(t) − xi(t).Any positional formation that the particle is guided towards
is an informer. For example, in the work done by Meier and
Kramer [19], a position was used as a third informer that
was constructed based on gradient information of a recur-
rent neural networks.

In order to make referring to this general PSO formula-
tion easier it is referred to as N-Informer PSO (NIPSO). A
full algorithm description of NIPSO variants is presented in
Algorithm 1 for completeness.
Algorithm 1 PSO algorithm

Create and initialize a swarm, Ω (0), of N particles uni-
formly within a predefined hypercube of dimension d.
Let f be the objective function.
Let yi represent the personal best position of particle i,
initialized to xi(0).Let ŷi represent the neighbourhood best position of parti-cle i, initialized to xi(0).Initialize vi(0) to 0.
Let t = 0
repeat

for all particles i = 1,⋯ , N do
if f (xi) < f (yi) then

yi = xi
end if
for all particles îwith particle i in their neighbour-

hood do
if f (yi) < f (ŷ î) then

ŷ î = yi
end if

end for
end for
t = t + 1
for all particles i = 1,⋯ , N do

update the velocity of particle i using equation (3)
update the position of particle i using equation (4)

end for
until stopping condition is met

3. Current PSO Stability Analysis
The derivation of stability criteria is one of the most the-

oretically studied aspects of PSO, with the vast majority of
work being focused on CPSO. Early work included a num-
ber of simplifying assumptions. The two most notable of
which are the deterministic assumption and the stagnation
assumption.

The deterministic assumption is where it was assumed
that c1r1(t) and c2r2(t)were held constant [4, 3, 25, 26]. Themajority of recent work have dropped the necessity of this
assumption and have derived stability criteria with the in-

clusion of stochasticity. The move to the stochastic context
necessitated considering both the first and second order mo-
ments of particles, as pointed out by Poli [20]. The move to
a fully stochastic context made finding both necessary and
sufficient conditions for stability more challenging, with a
number of early works only being able to provide conserva-
tive stability regions, such as the work of Kadirkamanathan
et al. [27] and Gazi [6]. However, Poli [28] was able to
obtain a non-conservative stability region by not relying on
Lyapunov conditions [29]. However, Poli’s work, like the
other studies mentioned here, relied on the stagnation as-
sumption.

At this point attention shifted to trying to weaken the
stagnation assumption. The stagnation assumption assumes
that the informers are unchanging (stagnant), which is a sig-
nificant simplification to the PSO’s dynamics. Liu [9] im-
proved the modelling accuracy with weak stagnation, where
it was assumed that yî(t) = yî, for all t sufficiently large,
where î is the index of the particle that has obtained the best
objective function evaluations. Bonyadi and Michalewicz
[22] improved the modelling by proposing the stagnant dis-
tribution assumption, inwhich the informerswere rathermod-
elled as random positions sampled from fixed distributions.
More recently, Cleghorn and Engelbrecht [11], improved the
modelling by using the non-stagnant distribution assump-
tion, in which the informers are modelled as random po-
sitions sampled from a time dependent distribution. What
makes the work of Cleghorn and Engelbrecht a useful point
from which to build a theoretical framework is that the mod-
elling assumption itself was shown to be a necessary condi-
tion for order-1 and order-2 stability. What this implies is
that even if an objective function dependent approach to sta-
bility analysis is considered, the criteria found in [11] would
still necessarily hold.

Almost all existing work has derived of stability crite-
ria directly for specific PSO variants, with most focusing on
CPSO. A number of PSO variants have been directly stud-
ied [7, 19, 30, 31]. Recently, Cleghorn and Engelbrecht [11]
proved Theorem 1 which allows for the derivation stability
criteria for all PSO variants with the componentwise form:

xk(t + 1) = xk(t)� + xk(t − 1)� + t (5)
where � and � are well defined4 random variables, and (t)is a sequence of well defined random variables. The index
k indicates the vector component. The full theorem is now
stated to assist in the subsequent derivations in Section 4:
Theorem 1. The following properties hold for all PSO vari-
ants of the form described in equation (5), where E[⋅] and
V [⋅] 5 are the expectation and variance operator respectively
, and �(⋅) is the spectral radius of a matrix.

4In the context of this work a well defined random variable is one that
has a mean and variance.

5For the sake of completeness: the expected value of a function
G ∶ ℝ → ℝ of a continuous random variable X ∼ p(x) is given by
EX [g(x)] = ∫ g(x)p(x)dx where p is the probability density function.
The variance of a function G ∶ ℝ → ℝ of a continuous random variable
X ∼ p(x) is given by VX [g(x)] = ∫ (g(x) − EX [g(x)])

2p(x)dx where p is
the probability density function.
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1. Assuming it converges, particle positions are order-1
stable for every initial condition if and only if �(A) < 1,
where

A =
[

E[�] E[�]
1 0

]

and it =
[

E[t]
0

]

. (6)

2. The particle positions are order-2 stable if �(B) < 1
and (jt) converges, where

B =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

E[�] E[�] 0 0 0
1 0 0 0 0
0 0 E[�2] E[�2] 2E[��]
0 0 1 0 0
0 0 E[�] 0 E[�]

⎤

⎥

⎥

⎥

⎥

⎥

⎦

and

jt =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

E[t]
0

E[2t ]
0
0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(7)

under the assumption that the limits of (E[t�]) and
(E[t�]) exist.3. Assuming that x(t) is order-1 stable, then the following
is a necessary condition for order-2 stability:

1 − E [�] − E [�] ≠ 0 (8)
1 − E

[

�2
]

− E
[

�2
]

−
(

2E [��]E [�]
1 − E [�]

)

> 0 (9)

4. The convergence of E[t] is a necessary condition for
order-1 stability, and the convergence of both E[t]
and E[2t ] is a necessary condition for order-2 stabil-
ity.

While the generality of Theorem 1 is useful, it can make
it potentially challenging for practitioners to quickly obtain
stability criteria for their custom PSO variant from the the-
orem without a considerable amount of calculation. An ex-
ample of the rigorous use of Theorem 1 can be found in [32].

In order to reduce the burden on practitioners to derive
stability criteria, a specialization of Theorem 1 to the class
of PSOs described by equations (3) and (4) is proposed in
this paper. The intention of the specialization is to make ob-
taining stability criteria as easy as possible, while still main-
taining a sufficient degree of generality to cater for a range
of variations in the PSO update equation formulation. The
overarching goal of the specialization is to reduce the need
to perform full stability analysis for most simple variants of
PSO. In particular if a practitioner wished to augment the
PSO update equations, ideally they should be able to quickly
determine what the stability criteria of their bespoke vari-
ant is. Knowledge of the stability criteria is of vital impor-
tance for parameter tuning as it has been demonstrated that
the stability of PSO particles is highly correlated to the per-
formance of PSO [15].

At present the majority of existing second order stability
criteria published have restricted the relationship between

Table 1
Summary of symbols needed in the use of novel theorem 2 and
3

Symbol Meaning
E[⋅] Expectation operator
V [⋅] Variance operator
⊗ Component-wise multiplication
�(⋅) Spectral radius operator
xi Particle i’s position
vi Particle i’s velocity
� � The �-th particle informer
�0 The stochastic weighting of the old velocity
�� (� ≥ 1) The stochastic weighting of � � (t) − xi (t)
�

∑I
�=1 V [��]

 
∑I

�=1 E[��]

control coefficients. Specifically, the coefficients of CPSO
have often been restricted such that c1 and c2 were assumed
either equal [28] or to have equal means and variances [22].
The theorem proved in the next section removes any such
restriction, and can therefore produce stability criteria for
arbitrary coefficient relationships.

4. Specialization to N-Informers
This section provides the derivation of order-1 and order-2

stability criteria for the class of PSO variants as defined in
equations (3) and (4), which are collectively referred to as
NIPSO. Furthermore, the order-1 and order-2 fixed points
are derived. In order to facilitate ease of use for a practitioner
the symbols required to use the two theorems are summa-
rized in Table 1.
Theorem 2. The following properties hold for all NIPSO
combinations, under the non-stagnant distribution assump-
tion for each informer.6

1. Particle positions are order-1 stable for every initial
condition if and only if

−1 < E[�0] < 1 (10)
and

0 <
I
∑

�=1
E[��] < 2(E[�0] + 1) (11)

2. Particle positions are order-2 stable for every initial
condition only if

−1 <
E[�0]

√

1 − V [�0]
< 1 (12)

and

0 <  <
−2

(

E[�0]2 + V [�0] − 1
)

1 − E[�0] +
�(1+E[�0])

 2

(13)

6Non-stagnant distribution assumption:
Let �i(t) be an informer. It is assumed that �i (t) is a random variable sam-
pled from a time dependent distribution, such that �i(t) has a well definedexpectation and variance for each t and that lim

t→∞
E[�i(t)] and limt→∞V [�i(t)]exist. A detailed justification of this modelling choice is given by Cleghorn

and Engelbrecht [11].
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where � =
I
∑

�=1
V [��] and  =

I
∑

�=1
E[��].

Proof (1): Let the non-stagnant distribution assumption
hold for each of the I informers 7 . Rewriting equations (3)
and (4) into the general form of equation (5) leads to:

� = (1 + �0) −
I
∑

�=1
��

� = −�0

t =
I
∑

�=1
��� � (t)

In order to utilize part (1) of Theorem 1 to obtain the
order-1 stability criteria, the matrixA and the vector it must
be constructed as defined in equation (6). The required ex-
pectations are calculated as follows:

E[�] = 1 + E[�0] −
I
∑

�=1
E[��] (14)

E[�] = −E[�0] (15)

E[t] =
I
∑

�=1
E[��]E[� � (t)] (16)

which leads to
A =

[

1 + E[�0] −
∑I

�=1 E[��] −E[�0]
1 0

]

(17)

and
it =

[
∑I

�=1 E[��]E[� � (t)]
0

]

. (18)

SinceE[��] is well defined for each � andE[�� (t)] is well de-fined and convergent for each �, by the non-stagnant distri-
bution assumption it follows that it,0 is convergent and there-fore it is convergent. In order to find the criteria needed to
satisfy the condition �(A) < 1, the eigenvalues of A are re-
quired and are calculated to be:

�1, �2 =
� ±

√

�2 − 4E[�0]
2

(19)

where � = 1+E[�0]−∑I
�=1 E[��]. After some simplification

it is found that �(A) < 1 holds if and only if

−1 < E[�0] < 1 and 0 <
I
∑

�=1
E[��] < 2(E[�0] + 1). (20)

It follows from part (1) of Theorem 1 that NIPSO is order-1
stable if and only if the criteria of equations (20) and (11)
hold.

Proof (2): Let the non-stagnant distribution assumption
hold for each of the I informers. In order to obtain the nec-
essary conditions for order-2 stability, part 3 of Theorem 1 is
utilized. A number of expectations are required to construct

7Strictly speaking, only a well defined expectation and limit point of
the informer is needed to prove part 1.

the matrix B and the vector jt. Specifically, E[�2], E[�2],and E[��] are required, and calculated as

E[�2] = E
⎡

⎢

⎢

⎣

(

1 + �0 −
I
∑

�=1
��

)2
⎤

⎥

⎥

⎦

= 1 + 2E[�0] − 2
I
∑

�=1
E[��]

− 2E[�0]
I
∑

�=1
E[��] + E

⎡

⎢

⎢

⎣

(

I
∑

�=1
��

)2
⎤

⎥

⎥

⎦

, (21)

where

E
⎡

⎢

⎢

⎣

(

I
∑

�=1
��

)2
⎤

⎥

⎥

⎦

= V

[

I
∑

�=1
��

]

+

(

I
∑

�=1
E[��]

)2

=
I
∑

�=1
V [��] +

∑

i≠j
cov

(

�i, �j
)

+

(

I
∑

�=1
E[��]

)2

=
I
∑

�=1
V [��] +

(

I
∑

�=1
E[��]

)2

, (22)

since each �i are independent. Substituting equation (22)
back into equation (21) leads to,

E[�2] = 1 + 2E[�0] − 2(1 + [�0])
I
∑

�=1
E[��]

+
I
∑

�=1
V [��] +

(

I
∑

�=1
E[��]

)2

. (23)

The expectation of �2 and �� are easily calculated as:
E[�2] = E[�20] = V [�0] + E[�0]

2 (24)

E[��] = E

[

−�0

(

(1 + �0) −
I
∑

�=1
��

)]

= −E[�0] − V [�0] − E[�0]2 − E[�0]
I
∑

�=1
E[��].

(25)
For equation (8) in part 3 of Theorem 1 to be satisfied the
following condition must hold:

 =
I
∑

�=1
E[��] ≠ 0 (26)

For equation (9) in part 3 of Theorem 1 to be satisfied the
following condition must hold:

1 + 2E[�0] + 2(1 + E[�0]) − � −  2 − V [�0] + E[�0]2−
(

2
(

−E[�0] − V [�0] − E[�0]2 − E[�0] 
) (

1 + E[�0] −  
)

1 + E[�0]

)

> 0,

which is simplified using a method similar to that of Bonyadi
and Michalewicz [22], to equal the criteria of equations (12)
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and (13). The necessary condition of part 2 of Theorem 2 is
therefore proved.

It is worth verifying that the stability criteria of equations
(12) and (13) are not only a necessary condition for order-2
stability, but in fact sufficient as well. This is achieved by
verifying that if the criteria of equations (12) and (13) are
satisfied then �(B) < 1, from Theorem 1 part 2. All the ex-
pectations needed to construct matrix B have already been
obtained while deriving the necessary condition. In order
to verify that �(B) < 1 the empirical approach of Bonyadi
and Michalewicz [22] and Cleghorn and Engelbrecht [11] is
used. Specifically, for I = 1, 2,⋯ , 50 informers8 the experi-
mental procedure followed is: I×108 random configurations
representing {E[�0], V [�0],⋯ , E[�I ], V [�I ]} are generatedsuch that equations (12) and (13) are satisfied. In all of the
cases it was found that if equations (12) and (13) were sat-
isfied, then the condition �(B) < 1 held. This finding is
strong evidence that the criteria is sufficient for order-2 sta-
bility.
Theorem 3. The following properties hold for all NIPSO
combinations:

1. Under order-1 stability the fixed points of the particle
position expectations are:

Exi,k =
∑I

�=1 E
[

��
]

E
[

��,k
]

∑I
�=1 E

[

��
]

(27)

where E[��,k] is the limit of E[��,k (t)].2. Under order-1 and order-2 stability, the fixed points
of the particle position variances are:

Vxi,k = (28)
(

1 + E[�0])
)

(

�1 − 2�2Exi,k + �3E
2
xi,k

)

2 
(

1 − E2[�0] − V [�0]
)

− �
(

1 + E[�0]
)

+  2
(

E[�0] − 1
)

where

�1 =
I
∑

�=1

(

E2[��]V [��,k] + E2[��,k]V [��] + V [��]V [��,k]
)

,

�2 =
I
∑

�=1
V [��]E[��,k], � =

I
∑

�=1
V [��],  =

I
∑

�=1
E[��],

with E[��,k] and V [��,k] as the the limit of E[��,k (t)]
and V [��,k (t)] respectively.

Proof (1): Under the assumption of order-1 stability each
particle i converges to a fixed point in expectation. Let such
a fixed point be called Exi . The fixed point is calculated by
rewriting equations (3) and (4) into the following component-
wise second order recurrence relation form:

xi,k (t + 1) =xi,k (t) (1 + �0) − �0xi,k(t − 1)

+
I
∑

�=1
��
(

��,k (t) − xi,k (t)
)

. (29)

8While the experimental verification was only done up to 50 informers,
there is no clear reason why it would fail to hold for higher informer counts.
Practically speaking, a variant with more than 50 informers seems unlikely.

Applying the expectation operator leads to
E[xi,k (t + 1)] = E[xi,k (t)](1 + E[�0]) − E[�0]E[xi,k(t − 1)]

+
I
∑

�=1
E[��]

(

E[��,k (t)] − E[xi,k (t)]
)

. (30)

Then by settingE[xi,k(t−1)] = E[xi,k(t)] = E[xi,k(t+1)] =
Exi,j and E[��,k (t)] to its limits E[��,k], equation (30) can
be rearranged to find an explicit expression for Exi,j , thusobtaining equation (27).

Proof (2): Under the assumption of order-1 and order-2
stability each particle i converges to a fixed point for each
of the following sequences: E[xi(t)], E[xi(t)xi(t − 1)], and
E[x2i (t)]. Let such fixed points be calledExi ,Exixi , andEx2irespectively as we will be working in the limit. First define

)xi,k(t) = xi,k(t) − E[xi,k(t)] = xi,k(t) − Exi,k . (31)

It follows that V [xi,k(t)] = E[)2xi,k(t)], where )2xi,k(t) de-notes the square of equation (31). In order to obtainV [xi,k(t)],consider the class of recurrence relations as defined in equa-
tion (5), and that )xi,k(t) can be rewritten as

)xi,k(t) = �)xi,k(t − 1) + �)xi,k(t − 2) + di,k(t − 1) (32)
di,k(t − 1) = t−1 − Exi,k (1 − � − �). (33)

Squaring and applying the expectation operator to equation
(32) leads to
E[)2xi,k(t)]

= E[�2]E[)2xi,k(t − 1)] + 2E[��]E[)xi,k(t − 1))xi,k(t − 2)]

− E[di,k(t − 1)]
(

2E[�]E[)xi,k(t − 1)] + 2E[�]E[)xi,k(t − 2)]
)

+ E[�2]E[)2xi,k(t − 2)] + E[di,k(t − 1)]2. (34)
In order to simplify equation (34) consider that

E[)xi,k(t))xi,k(t − 1)] = E[)xi,k(t − 1))xi,k(t − 2)] (35)
and

E[)xi,k(t − 2)] = E[)xi,k(t − 1)] = E[)Exi,k ] = 0, (36)
which follows from order-1 and order-2 stability [33]. Now

E[)xi,k(t))xi,k(t − 1)]

= E[�]E[)2xi,k(t − 1)] + E[�]E[)xi,k(t − 2))xi,k(t − 1)]
+ E[di,k(t − 1)]E[)xi,k(t − 1)]. (37)

Using equations (35) and (36), equation (37) can be rear-
ranged to yield,

E[)xi,k(t))xi,k(t − 1)] =
E[�]E[)2xi,k(t − 1)]

1 − E[�]
. (38)

Now all that remains is to substitute equation (38) into equa-
tion (34), and utilize the fact thatE[)2xi,k(t−1)] = E[)2xi,k(t)](once again this is permissible in the limit), to obtain

E[)2xi,k(t)] =
E[di,k(t − 1)2]

1 − E[�2] − E[b2] −
2E[��][�]
1 − E[�]

. (39)
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Equation (39) represents the variance fixed point for the large
class of PSOs. However, our focus is on the case where

� = (1 + �0) −
I
∑

�=1
��

� = −�0

t =
I
∑

�=1
����,k (t) .

Substituting these specific �, �, and t into equation (39) andperforming a substantial amount of simplification (which is
omitted for the sake of brevity), leads to equation (28) as was
required to be proved.

It is at this point worth reflecting on the four common
limitations, where at least one of which is present, in existing
PSO stability work mentioned in Section 1:

• The first limitation stated is that most existing stabil-
ity is very variant specific. This limitation is mostly,
but not completely, removed in this paper. The pre-
sented theory only applies to PSO variants that can
be reformulated into the NIPSO form. That said, the
NIPSO formulation allows for a considerable amount
of variation. Specifically, the variants can possess any
number of informers, as well as allowing any com-
bination of well defined stochastic weighting coupled
with any number of tunable coefficients. This degree
of allowable variation is combinatorially substantial.

• The next limitation stated is that many stability results,
for PSO variants, artificially impose restrictions on the
relationship between control coefficient. This limita-
tion is completely removed in new the theorems pre-
sented in this paper, with the criteria for stability as
well as fixed points being directly obtainable without
needing to assume any relationship between the co-
efficients. This fact is directly visible from equations
(10-13) where each �i, i = 0,… , I, are handled di-
rectly.

• The third limitation stated was the reliance on overly
strong modelling assumption. The results presented
in this paper do not suffer from this problem as both
Theorem 2 and 3 are derived using Theorem 1, which
holds under provablyminimalmodelling assumptions.
This implies that the presented stability theorems also
hold under minimal modelling assumptions, as no ad-
ditional assumptions are used to prove the presented
theorems.

• The last limitation stated was the difficulty of using
existing stability results, with simple alterations to
the PSO potentially requiring pages of mathematical
derivation. This is one of the main strengths of the
theorems provided in this paper, with derivation of
new results becoming comparatively trivial. The best
way to illustrate this is via demonstration, which is
done in the next section, where result that would have
previously required a substantial amount of technical
derivation are obtained in a couple of simple steps.

5. Application of Stability Results
In this section a number of existing stability criteria are

re-derived to demonstrate how Theorem 2 can be easily ap-
plied to rapidly obtain stability criteria. Furthermore, many
previous stability results on PSO variants have considerably
restricted the allowable relationship between control coeffi-
cients, such a limitation is not present in this section. All
derived criteria contained in this section have no restriction
on the coefficient relations.

Stability criteria for CPSO, CLPSO, FIPS, and UPSO
are derived in sections 5.1, 5.2, 5.3, and 5.4 respectively.
5.1. Canonical PSO

Consider the case of the CPSO algorithm, as defined by
equations (1) and (2). After dropping the particle and com-
ponent indices, without loss of generality 9, the stability cri-
teria for CPSO can be obtained by using two informers with
�0 = w, �1 = c1r1, and �2 = c2r2, where r1, r2 ∼ U (0, 1).
In order to utilize Theorem 2,  and � are required and cal-
culated as:

 =
2
∑

�=1
E[��] =

c1
2
+
c2
2
, � =

2
∑

�=1
V [��] =

c21
12
+
c22
12
. (40)

Substituting  and � into the criteria of equations (10-13)
the following criteria for order-1 and order-2 stability are ob-
tained:
−1 < w < 1 and 0 < c1 + c2 <

4
(

1 −w2
)

1 −w +
(

c21+c
2
2

)

(1+w)

3(c1+c2)2

. (41)

The criteria in equation (41) is CPSO’s full order-1 and order-
2 stability criteria without using the simplified case where
c1 = c2. If the simplification is reimposed, the following
commonly reported form reappears:

−1 < w < 1 and 0 < c1 + c2 <
24

(

1 −w2
)

7 − 5w
. (42)

It is interesting to observe that the weighting between c1 and
c2 has a direct influence on the size and shape of the stabil-
ity region as illustrated in Figure 1, where the cross-sections
of the stability region, with fixed inertia values, are shown.
Figure 2 demonstrates the complex relationship between the
cross-sections of the stability region of w and c1 pairs for
differing c2 values, with the regions of stable pairs decreas-
ing in size and changing shape as c2 is varied from 3 to 0.5
in figure 2a. In Figure 2b the stable region reaches its max-
imal volume at c2 = 0 and once again begins decreasing
and becomes more oval in shape as c2 is varied from 0 to
−1.5. Additionally, both figures 1 and 2 demonstrate that
using equation (42) without the knowledge that it had been
derived with the restriction that c1 = c2, would lead to a

9Dropping the indices can be done without loss of generality, because
each dimension of each particle, can be treated as its own recurrence rela-
tionship which only differs in indices. Since each of the recurrence relation-
ships has the same set of coefficients and structure, the solution to one is the
same across all of them. In terms of potential coupling within an objective
function itself or among particles, the non-stagnate distribution assumption,
as with the stronger stagnation assumption, induces the decoupling.
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practitioner misclassifying the stability of parameter config-
urations, making the use of equation (41) clearly preferable.

The stable region presented in equation (41) is the largest
region in the literature that guarantees both order-1 and order
2 stability for CPSO, and is believed to be maximal given
the agreement found between the necessary and sufficient
conditions of Theorem 1.

−2 −1 1 2 3 4
c1

−2

−1

0

1

2

3

4

c 2

w=0.9
w=0.8
w=0.7
w=0.6

w=0.5
w=0.4
c1+ c2=0

(a) Order-2 stable regions for w = 0.4 to 0.9.

−2 −1 1 2 3 4
c1

−2

−1

0

1

2

3

4

c 2

w=0.3
w=0.2
w=0.1
w=0
w= −0.1
w= −0.2
w= −0.3

w= −0.4
w= −0.5
w= −0.6
w= −0.7
w= −0.8
w= −0.9
c1+ c2=0

(b) Order-2 stable regions for w = −0.9 to 0.3.

Figure 1: Order-2 stable regions of CPSO under fixed inertia
values. The interior region of the elliptic shapes correspond to
where equation (41) is satisfied for a given w.

5.2. Comprehensive Learning Particle Swarm
Optimizer

The CLPSO algorithm is a comparatively more recent
PSO variant, proposed by Liang et al [23] in which the au-
thors alter PSO’s update equation to include an informer de-
rived from all other particles’ historical best information.
Specifically, the velocity update equation for CLPSO is:

vi (t + 1) = wvi (t) + cr ⊗
(

li(t) − xi (t)
) (43)

−2 −1 1 2 3 4

c1

−1.0

−0.5

0.0

0.5

1.0

w

c2=0.5
c2=1
c2=1.5

c2=2.0
c2=2.5
c2=3

(a) Order-2 stable regions for c2 = 0.5 to 3.

−1 1 2 3 4

c1

−1.0

−0.5

0.0

0.5

1.0

w

c2=0.0
c2= −0.25
c2= −0.5
c2= −0.75

c2= −1
c2= −1.25
c2= −1.5

(b) Order-2 stable regions for c2 = 0 to −1.5.

Figure 2: Order-2 stable regions of CPSO under fixed c2 values.
The interior region of the elliptic shapes correspond to where
equation (41) is satisfied for a given c2. The same visual pattern
is observed if c1 is fixed and c2 is varied due to the symmetry
present in (41).

where r ∼ U (0, 1)d and

li,k(t) =

{

yi,k(t) if s > PCi
pi,k(t) otherwise (44)

where s ∼ U (0, 1) and PCi is referred to as the learning
probability and pi,k(t) is constructed, for each dimension k,
using two entity tournament selections across all personal
best positions in the swarm. The selectable index is reset
after a refreshing gap on non-improvement. More precise
details can be found in [23].

The position li,k(t), at each time step t, can be modelled
as a Bernoulli distribution with support {yi,k(t), pi,k(t)} thatis parameterized by PCi. In this context, under the non-
stagnant distribution assumption on li,k(t), stability analy-
sis is possible. After dropping the particle and component
indices, without loss of generality, the stability criteria for

CW Cleghorn and B Stapelberg.: Preprint submitted to Elsevier Page 8 of 13



Particle Swarm Optimization: Stability Analysis using N-Informers under Arbitrary Coefficient Distributions

CLPSO can be obtained by considering, �0 = w, �1 = cr,
r ∼ U (0, 1). The following calculations are required to use
Theorem 2:

 =
I
∑

�=1
E[��] = E[�1] =

c
2

(45)

� =
I
∑

�=1
V [��] = V [�1] =

c
12

(46)

Substituting  and � into the criteria of equations (10-
13) the following criteria for order-1 and order-2 stability are
obtained:

−1 < w < 1 and 0 < c <
6
(

1 −w2
)

2 −w
. (47)

The size and the shape of the region corresponds with the
line c2 = 0 shown in Figure 2b, if c1 = c.
5.3. Fully Informed PSO

The FIPS algorithm is an early PSO variant proposed by
Kennedy and Mendes [17], based on the observation that in
human society individuals are not influenced by only a sin-
gle individual, but rather by a statistical summary of the state
of their neighbourhood. In the FIPS algorithm, the velocity
equation of CPSO is altered such that each particle is influ-
enced by all its neighbours. Specifically, the velocity update
equation for FIPS is:

vi (t + 1) = wvi (t) +
|i|
∑

m=1
m ⊗

(ym(t) − xi (t))
|i|

, (48)

wherei is the set of particles in particle i’s neighbourhood,
ym(t) ∈i, and m,k ∼ U (0, ĉ), were c1 + c2 = ĉ.After dropping the particle and component indices, with-
out loss of generality, the stability criteria for FIPS can be
obtained by considering I = | | informers and setting �0 =
w and �� = �

| |

for 1 ≤ � ≤ | |. The following calculations
are required to use Theorem 2:

 =
I
∑

�=1
E[��] =

| |

∑

�=1

E[�]
| |

=
| |

∑

�=1

ĉ
2| |

= ĉ
2

(49)

and

� =
I
∑

�=1
V [�] =

| |

∑

�=1
V
[

�
| |

]

=
| |

∑

�=1

ĉ2

12| |

2
= ĉ2

12| |

. (50)

Substituting  and � into the criteria of equations (10-13)
the following criteria for order-1 and order-2 stability are ob-
tained:

−1 < w < 1 and 0 < ĉ
2
<

12| |

(

1 −w2
)

3| | + 1 +w(1 − 3| |)
. (51)

The derived criteria is in agreement with existing criteria
of both Cleghorn and Engelbrecht [30] and García-Gonzalo
and Fernández-Martinez [34], but are obtainedwithminimal
calculations, and under a weaker modelling assumption.

5.4. Unified PSO
The UPSO algorithm was designed by Parsopoulos and

Vrahatis [16] as a weighted merger between the local best
PSO and the global best PSO. The PSO variant utilizes the
additional control parameter, u ∈ [0, 1], called the unifica-
tion factor, to control the importance placed on either the
global best PSO update or the local best PSO. Specifically,
the update equations for UPSO are:

gi (t + 1) = wvi (t) + c1r1 ⊗ (yi(t) − xi (t))
+ c2r2 ⊗ (g(t) − xi (t)) (52)

li (t + 1) = wvi (t) + c1r′1 ⊗ (yi(t) − xi (t))

+ c2r′2 ⊗ (ŷi(t) − xi (t)) (53)
vi (t + 1) = ugi(t + 1) + (1 − u) li(t + 1) (54)
xi (t + 1) = xi (t) + vi (t + 1) , (55)

where r1,k, r2,k, r′1,k, r′2,k ∼ U (0, 1), and both yi(t) and ŷi(t)
are defined as before with the addition of g(t) as the global
best position with the swarm at time step t.

Without loss of generality the particle and component
indices are dropped again. In order to rewrite UPSO into
the NIPSO form, substitute equations (52) and (53) into the
velocity update equation (54) to arrive at

v (t + 1) = wv (t) + c1(ur1 + (1 − u)r′1)(y(t) − x (t)) (56)
+ c2ur2(g(t) − x (t)) + c2(1 − u)r′2(ŷi(t) − x (t)).

Now equation (56) is in the NIPSO form with I = 3 and
�0 = w, �1 = c1(ur1 + (1 − u)r′1), �2 = c2ur2, and �3 =
c2(1 − u)r′2. In order to calculate  the following additional
terms are required:

E[�1] = c1uE[r1] + c1(1 − u)E[r′1]

=
c1u
2
+
c1(1 − u)

2
=
c1
2

(57)
E[�2] = c2uE[r2] =

c2u
2

(58)

E[�3] = c2(1 − u)E[r′2] =
c2(1 − u)

2
. (59)

The summation of equations (57), (58), and (59) leads to

 =
3
∑

�=1
E[��] =

c1
2
+
c2u
2
+
c2(1 − u)

2
=
c1 + c2
2

. (60)

In order to calculate  the following additional terms are
required:
V [�1] = c21V [ur1 + (1 − u)r

′
1]

= c21
(

u2V [r1] + (1 − u)2V [r2] + 2u(1 − u)COV [r1, r′2]
)

= c21

(

u2

12
+
(1 − u)2

12

)

= c21

(

u2 + (1 − u)2

12

)

(61)

V [�2] = V [c2ur2] =
c22u

2

12
(62)

V [�2] = V [c2(1 − u)r′2] =
c22 (1 − u)

2

12
. (63)

The summation of equations (61), (62), and (63) leads to

� =
3
∑

�=1
V [��] =

(c21 + c
2
2 )
(

u2 + (1 − u)2
)

12
. (64)
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Table 2
Summary of the Order-1 and Order-2 stability criteria explicitly derived

Variant Number of Informers Number of Coefficients Order-1 and Order-2 Criteria

CPSO 2 3 |w| < 1 and 0 < c1 + c2 <
4(1−w2)

1−w+(c21+c
2
2 )(1+w)∕(3(c1+c2)

2)

CLPSO 1 2 |w| < 1 and 0 < c < 6(1−w2)
2−w

FIPS | | 2 |w| < 1 and 0 < ĉ
2
< 12| |(1−w2)

3| |+1+w(1−3| |)

UPSO 3 4 |w| < 1 and 0 < c1 + c2 <
4(1−w2)

1−w+(c21+c
2
2 )(u2+(1−u)2)(1+w)∕(3(c1+c2)2)

Substituting  and � into the criteria of equations (10), (12),
and (13) the following criteria for order-1 and order-2 stabil-
ity are obtained:

−1 < w < 1 (65)

0 < c1 + c2 <
4
(

1 −w2
)

1 −w +
(c21+c

2
2 )(u2+(1−u)2)(1+w)
3(c1+c2)2

. (66)

The criteria of equations (65) and (66) is the first deriva-
tion of full USPO stability criteria without artificial restric-
tions on the control coefficients. As with the CPSO case,
in Section 5.1, the weighting between c1and c2 has a clear
influence on the size and shape of the stability region, as il-
lustrated in Figure 3, where the cross-sections of the stability
region, with fixed inertia values are shown.

In the restricted case where c1 = c2 is considered, thefollowing criteria are obtained:
−1 < w < 1 (67)

0 < c1 + c2 <
24

(

1 −w2
)

7 − 5w + 2(u2 − u)(1 +w)
. (68)

which is in agreement with the derived criteria of Cleghorn
and Engelbrecht [31] with minimal calculations needed, and
under a weaker modelling assumption.
5.5. Derived Order-1 and Order-2 Criteria

A compact summary of the order-1 and order-2 criteria
explicitly derived in this section are presented in Table 2 for
the reader’s convenience.

6. Impact of Unstable Coefficients on
performance
In this section a succinct empirical demonstration of how

selecting coefficients that fail to meet the order-1 and order-
2 stability criteria has a substantially negative effect on PSO
performance is presented. One of themain findings of Cleghorn
and Engelbrecht [15] was that the CPSO actually performed
worse than random search for the vast majority of unstable
coefficient choices 10. In this section a similar test is done
for the four PSO variants presented in Section 5.

In order to examine the effect of unstable parameter con-
figurations on performance, a set of unstable parameter con-
figurations is needed. The approach taken to construct this
set for each PSO variant considered is as follows:

10The study of Cleghorn and Engelbrecht [15] only considered the c1 =
c2 case

−3 −2 −1 1 2 3 4
c1

−3

−2

−1

0

1

2

3

4

c 2

u=0.25 w=0.9
u=0.25 w=0.8
u=0.25 w=0.7
u=0.25 w=0.6

u=0.25 w=0.5
u=0.25 w=0.4
c1+ c2=0

(a) Order-2 stable regions for u = 0.25 and w = 0.4 to 0.9.

−3 −2 −1 1 2 3 4 5
c1

−3

−2

−1

0

1

2

3

4

5
c 2

u=0.25 w=0.3
u=0.25 w=0.2
u=0.25 w=0.1
u=0.25 w=0
u=0.25 w= −0.1
u=0.25 w= −0.2
u=0.25 w= −0.3

u=0.25 w= −0.4
u=0.25 w= −0.5
u=0.25 w= −0.6
u=0.25 w= −0.7
u=0.25 w= −0.8
u=0.25 w= −0.9
c1+ c2=0

(b) Order-2 stable regions for u = 0.25 and w = −0.9 to 0.3.

Figure 3: Order-2 stable regions of UPSO under fixed inertia
and unification values. The interior region of the elliptic shapes
correspond to where equations (65) and (66) are satisfied for a
given w and u.

• Let S be the set of coefficient choices that satisfy the
order-1 and order-2 stability criteria of the variant.

• For each coefficient in the PSO variant, let li and uirepresent the infimum and supremum of the coeffi-
cient when satisfying the corresponding order-1 and
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−2 −1 1 2 3 4
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0.0

0.5

1.0

w

c2=0.5
c2=1
c2=1.5

c2=2.0
c2=2.5
c2=3

(a) Order-2 stable regions for u = 0.25 and c2 = 0.5 to 3.
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c1

−1.0

−0.5
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1.0

w

c2=0.0
c2= −0.25
c2= −0.5
c2= −0.75

c2= −1
c2= −1.25
c2= −1.5

(b) Order-2 stable regions for u = 0.25 and c2 = 0 to −1.5.

Figure 4: Order-2 stable regions of UPSO under fixed inertia
and unification values. The interior region of the elliptic shapes
correspond to where equations (65) and (66) are satisfied for
a given u and c2. The same visual pattern is observed if c1 is
fixed and c2 is varied due to the symmetry present in (66).

order-2 stability criteria respectively11.
• The set of unstable parameter configurations, US is

defined as,
US =C ⧵ S (69)
C =[l1 − d1, u1 + d1] ×⋯ × [lp − dp, up + dp]

di =(u1 − l1)∕2

where × is the Cartesian product, ⧵ is the standard set
minus, and p is the number of coefficients in the vari-
ant.

The sizing of US is selected to provide a reasonably large
coverage of possible unstable configurations without using
coefficients that have unjustifiably large magnitudes, given

11The infimum is the largest lower bound and the supremum is the small-
est upper bound.

Table 3
Lower and upper bound on coefficient values for each variants
that could satisfy order-1 and order-2 stability criteria . Note
that these values should not be interpreted as stability criteria
but merely the limits of what could satisfy them. Entries an-
notated with * were numerically derived.

Variant Coefficients Infimum Supremum
CPSO c1, c2 −1.69* 3.32*

w -1 1
CLPSO c 0 12(2 −

√

3)
w 1 -1

FIPS (| | = 4) ĉ 0 (6912 − 1632
√

6)∕605
w 1 -1

UPSO c1, c2 −2.64* 4.44*
w -1 1

their commonly used ranges. For all variants considered,
all the originally recommended coefficient combinations are
contained within S ∪ US.

The CPSO, FIPS, UPSO, and CLPSO variants, for which
stability criteria were derived are empirically examined. For
each variant we uniformly sample 2000 configurations from
the corresponding unstable set, US. The infimum and
supremum of the coefficient value that could satisfy the cor-
responding order-1 and order-2 stability criteria is summa-
rized in table 3. In the case of UPSO a minimum and max-
imum value of 0 and 1, respectively, is used for the unifi-
cation factor to preserve algorithmic intent of the variant.
Each sampled configuration is run 50 times on each of the
30 CEC-2014 Benchmark problems in 30-dimensions. Each
variant is given a function evaluation budget of 105. Each
variant is set to have a population size of 20 and the Von-
Neumann topology is used when appropriate. A direct way
to seeing failure of the PSO configuration is if the PSO per-
forms worse than a trivial random search12. As such, for
each CEC-2014 benchmark a random search is performed
and repeated 50 times.

The intention is not to demonstrate which part of the sta-
ble region, S, that results in the best performance, but rather
to illustrate the danger of utilizing unstable configurations.
It should be noted that failure to perform better than random
search is specifically utilized to demonstrate the severity of
failure that unstable parameter configuration can induce.

The following procedure is followed for all considered
variants. For each configuration, on each benchmark prob-
lem, a two-tailed Mann–Whitney U test is used to check
if there is any significant difference between the PSO vari-
ant with a unstable configuration and the random search. If
there is a difference, single-tailed versions are used to de-
termine which performed statistically significantly better. A
0.95 confidence level is used. In Table 4 the obtained results
are summarized, where the percentage of unstable configu-
rations that performed better than, equal to, or worse than
random search based on the aforementioned statistical test

12In this paper a trivial random search is defined to be one where the
search space is sampled uniformly at random until the function evaluation
budget is meet and the best found candidate solution is used.
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Table 4
Performance of PSO variant’s run using unstable configura-
tions compared to a trivial random search over the CEC-2014
benchmark suite.
Variant Unstable Config Win Draw Random Win
CPSO 2.456% 5.088% 92.456%
CLPSO 1.654% 7.312% 91.035%
FIPS 1.629% 4.082% 94.290%
UPSO 2.103% 4.632% 93.265%

are presented. The reported results are averaged over the 30
benchmark problems.

As illustrated in Table 4 over 91% of unstable configura-
tions perform statically significantly worse than a trivial ran-
dom search for all variants considered. In general if a practi-
tioner is using a meta-heuristic, like PSO, they would expect
it to perform better than random search, which implies that a
draw with a trivial random search is clearly a failing config-
uration. Over the four considered PSO variants, more than
97.5% of unstable configurations performed worse or equal
to random search. The small fraction of configurations that
performed better than random searchwere all just marginally
over the relevant stability criteria boundaries.

One aspect that table 4 does not fully capture is the ex-
tremely poor objective function values that unstable configu-
ration can actually result in. Specifically, on average, the ob-
jective function values obtained by unstable parameter con-
figurations were found to be orders of magnitude worse than
the stable configurations. As an illustrative example, con-
sider the CEC2014’s benchmark function, Rotated Discuss.
Almost all stable configurations found the optimal solution
(with the value of 0), whereas the vast majority of unstable
configurations resulting in the the best found objective func-
tion values being over 106.

The findings presented in this section imply that failure
to satisfy stability criteria results in a very high probability
of algorithmic failure. It follows that being aware of a PSO
variant’s stability criteria is invaluable information when it
comes to parameter tuning. Parameter tuning of a meta-
heuristics is often a necessary, but computationally expen-
sive step, when trying to tackle challenging real world prob-
lems. This computational cost is driven by two primary fac-
tors; the underlying objective function’s evaluation time, and
the number of configurations considered. By knowingwhere
not to look, namely at unstable configurations, significantly
better parameter settings can be obtained, as resources are
not wasted testing parameter configurations that will almost
certainly fail to perform well.

7. Conclusion and Future Work
In this paper general theorems for rapidly obtaining

order-1 and order-2 stability criteria and fixed points for a
class of PSO variants are derived. Specifically, PSO vari-
ants that can be rearranged into a sum of difference vec-
tors between informers and the current particle positions,
are catered for. From this general derivation, stability cri-

teria can be obtained for a set of custom PSO variants in a
direct manner without substantial mathematical calculation.
Given the direct link between PSO performance and the sat-
isfaction of order-1 and order-2 stability criteria, the theo-
rems provided in this paper will be directly applicable to the
PSO community as a whole.

Furthermore, the proven theorems allow for stability cri-
teria to be derivedwithout unnecessary restrictions on the re-
lationship between control coefficients. In this vein, stability
criteria for the canonical PSO and, for the first time, the uni-
fied PSO are derived without restrictions on the relationship
between control coefficients in this paper. The first stabil-
ity order-1 and order-2 stability criteria for comprehensive
learning PSO was also derived using the proven theorems.

One of the main lingering issues in PSO theory is the
lack of a tractable mathematical approach to analyzing the
few PSO variants with component-wise coupling, such as
SPSO2011[35]. Which to date has required empirical ap-
proaches to analysis. It would be particularly impactful if
the theorems presented in this paper could be extended to
deal with this case in future work.
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