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Abstract: The Miombo woodland is the most extensive tropical woodland in south-central Africa.
However, field sample plot data on forest cover changes, species distribution and carbon stocks in the
Miombo ecoregion are inadequate for effective forest management. Owing to logistical challenges that
come with field-based inventory methods, remote sensing plays an important role in supplementing
field methods to fill in data gaps. Traditional satellite and manned aircraft remote sensing platforms
have their own advantages and limitations. The advent of unmanned aerial systems (UASs) has made
it possible to acquire forest data at unprecedented spatial and temporal scales. UASs are adaptable to
various forest applications in terms of providing flexibility in data acquisition with different sensors
(RGB, multispectral, hyperspectral, thermal and light detection and ranging (lidar)) at a convenient
time. To highlight possible applications in the Miombo woodlands, we first provide an overview
of the Miombo woodlands and recent progress in remote sensing with small UASs. An overview
of some potential forest applications was undertaken to identify key prospects and challenges for
UAS applications in the Miombo region, which will provide expertise and guidance upon which
future applications in the Miombo woodlands should be based. While much of the potential of using
UASs for forest data acquisition in the Miombo woodlands remains to be realized, it is likely that
the next few years will see such systems being used to provide data for an ever-increasing range of
forest applications.

Keywords: UAS; Miombo woodlands; forest structure; tree species; forest degradation

1. Introduction

The Miombo woodland covers 2.7 million km2 in Africa, mainly Angola, the southern
parts of the Democratic Republic of Congo, Malawi, Mozambique, Tanzania, Zambia and
Zimbabwe [1]. The Miombo woodlands are characterized by the dominance of three key
deciduous genera belonging to the family Fabaceae, subfamily Caesalpinioideae, in the
genera Brachystegia, Julbernadia and Isoberlinia [2]. They occur in areas with generally poor
soil nutrients and characterized by distinct wet and dry seasons, with annual mean rainfall
ranging from 650 mm to 1500 mm [2,3]. Ref. [4] The Miombo woodlands are divided into
dry and wet woodland types in line with rainfall in the zone of occurrence [4] as well as
species composition and structure (see Table 1).
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Table 1. Categorization of the Miombo Woodlands.

Category Dominant Species Average Canopy Height Occurrence Annual Rainfall

Dry Miombo
Brachystegia spiciformis,

Brachystegia boehmii, and
Julbernardia globiflora

15 m, with less
crown overlap

southern Malawi,
Mozambique and

Zimbabwe
less than 1000 mm

Wet Miombo

Brachystegia floribunda,
Brachystegia glaberrima,
Brachystegia longifolia,

Brachystegia wangermeeana,
Julbernardia paniculata,

Isoberlinia angolensis and
Marquesi macroura

Trees greater than 15 m
with some

crown overlap

eastern Angola,
northern Zambia, DRC,

central Malawi and
south-western Tanzania

more than 1000 mm

The Miombo woodland is home to natural-resource-dependent communities and
offers a multiplicity of ecoservices ranging from food (fruits, honey, edible insects and
bush meat), construction materials (poles, timber and fiber), fuel (charcoal and firewood)
and medicine- and water-provisioning services [5–8]. However, rapid population growth
coupled with increases in electricity tariffs and the prices of petroleum products has
led to increased demand for land for settlement and agriculture expansion as well as
overexploitation of timber and fuel wood products [5,9]. Consequently, there is a rapid
upsurge in deforestation and degradation of the woodlands across the ecoregion [10,11].

However, current estimates of forest cover changes, species distribution and carbon
stocks in the Miombo ecoregion are inadequate for effective forest management, and
international reporting requirements, such as the Reducing Emissions from Deforestation
and Forest Degradation plus (REDD+), are necessary for forest conservation [3,10,12,13].

Many studies have been conducted on UAS applications in forestry in a number of con-
tinents with the goal of sharing knowledge on their utility, e.g., Refs. [14–18]. Nevertheless,
a review focusing on UAS forestry applications in Miombo woodlands is still not available.
A web-based search for articles on the keywords “Unmanned Aerial Systems”, “Unmanned
Aerial Vehicles”, “Unoccupied Aerial vehicles”, “Remotely Piloted Aircraft Systems” and
“Drones” and their acronyms “UAS”, “UAV” and “RPAS”, in combination with commonly
used synonyms in forestry, including “forest”, “forestry” and “forests”, from 1st January
2010 to 31st December 2020 in the Web of Science Database (WoS) based on author affili-
ations revealed that Africa had the smallest number of publications of all the continents
(Figure 1). Thirty-two articles were published with participation of African-affiliated au-
thors, and only nine of those articles were purely UAS-forestry-application-related articles
from sub-Saharan Africa. Furthermore, all these articles were published between the years
2016 and 2021. Table 2 shows that these studies were focused on biomass estimation and
other forest structural attributes. Only three of these studies included other forest applica-
tions, namely: (i) height estimates of woody vegetation for monitoring disturbance from
fire and grazing [19], (ii) use of multispectral UAS imagery to estimate pre-fire AGB for
the purpose of quantifying the fuel load [20] and (iii) extracted tree crown morphology
for predicting tree species [21]. With the continuous improvement of UAS platforms, sen-
sors and processing technologies, the number of applications in sub-Saharan Africa are
expected to increase, making it necessary to undertake a review of UAS applications in
forestry to understand the associated opportunities and challenges in forest monitoring
and management. Therefore, this paper is designed to summarize UAS applications in
forestry and their implications for management of Miombo woodland attributes.
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Figure 1. Showing number of forest-related UAS publications by continent.

2. UAS Platforms, Sensors and Data Processing
2.1. Classification of UASs

There are many classifications of UASs, which are based on different characteristics
such as size, weight, endurance and range capabilities (Table 3: Anderson and Gaston,
Ref. [14]). The majority of UASs used in forest applications are in the small and micro classes
because of their relatively low cost and ease of operation compared to other classes [15].
This trend in the application of UASs is expected to continue in the Miombo woodlands,
e.g., Refs. [22,23], and therefore, this study will be focused on these two classes. Typically,
UASs are classified based on the take-off and landing technique: (i) horizontal take-off
and landing characteristic of fixed-wing (FW) aircraft (i.e., airplanes) and (ii) vertical take-
off and landing characteristic of rotary-wing (RW) aircraft (i.e., helicopters, multi-rotor
quadcopters, hexacopters, etc.). RW aircraft have the capability for vertical take-off and
landing, making them suitable for deployment and launching in areas with limited space
such as built-up areas and forests. Compared to FW aircraft, RW aircraft are cheaper, more
compact and portable, easier to use for both autopilots and humans, and are more stable,
leading to superior image quality [15,24]. The major limitation of RW aircraft is that they
have complex mechanical systems with many rotor blades and so consume a lot of power,
leading to low speed and less endurance and less thus flight time and area coverage per
flight compared to FW aircraft.

FW aircraft have high speed, a large payload capacity and longer endurance and
are able to cover longer distances within one flight, which makes them more suitable for
mapping large areas compared to RW aircraft. The disadvantage of FW aircraft is their
inability to engage in vertical take-off and landing, which makes them less suitable for
applications in dense forest environments with limited space, and they are relatively more
expensive than RW vehicles [24]. In addition, FW aircraft have lower stability, especially in
windy conditions, which can impact image quality [15]. In terms of potential for application
in the Miombo woodlands, which are characterized by generally open canopies, both FW
and RW aircraft have high potential for application, but the RW vehicle is likely to dominate
in line with global trends as revealed in a study by [17], who carried out a global review
of the application of UASs in forestry from 2010 to 2019 and found that RW vehicles were
more popular than FW platforms. A similar study by [18] corroborated these findings.
The RW vehicle’s ease of use, affordability and compactness gives it an edge over its FW
counterpart, albeit the FW vehicle has the advantage of high endurance. Furthermore,



Forests 2022, 13, 1812 4 of 27

most UAS study sites are small, and regulations in the Miombo ecoregion countries require
that the line of sight of the pilot is maintained, a requirement with which RW aircraft
are compatible.

Table 2. Summary of studies that applied UASs in forestry in sub-Saharan Africa.

UAS/Type Sensor Aim Location Product Performance Reference Year

SenseFly eBee (FW) RGB

Biomass estimation and
impact of DTMs
generated from

different methods on
AGB estimates

Malawi AGB r2 = 0.58 − 0.67 [22] 2016

SenseFly eBee (FW) RGB Assess influence of plot
size on AGB estimation Malawi AGB r2 = 0.31 − 0.64 [25] 2017

Soleon Coanda
x12 (RW) RGB

Monitor disturbance of
fire and grazing on
woody vegetation

Namibia Mean tree
height metrics r2 = 0.7 [19] 2017

SenseFly eBee (FW) RGB, NIR

Assess UASs’ influence
with regard to image

resolution, sensor type
and image overlap

on AGB
estimation accuracy

Malawi AGB r2 = 0.55 − 0.76 [23] 2019

Unspecified DJI
(RW) RGB, and MS

Monitoring structural
characteristics
of vegetation

Botswana
Mean tree

heights, crown
area

N/A [26] 2020

Phantom 4
DJI (MR) RGB

Derive tree heights and
assess sensitivity of
derived heights on

AGB estimation

Ethiopia AGB r2 = 0.99 [27] 2021

Spark DJI (RW) RGB Assess woody and
herbaceous phytomass Senegal AGB r2 = 0.59 and 0.71 [28] 2021

Spark DJI (RW) RGB Estimate tree height
and crown area Senegal

Mean tree
heights, crown

area
r2 = 0.84 and 0.93 [21] 2021

Matrice 100
DJI (RW) MS Monitor pre-fire AGB Botswana and

Mozambique AGB r2 = 0.91 and 0.77 [20] 2021

RW = rotary wing, FW = fixed wing, RGB = red, green, blue, MS = multispectral, AGB = aboveground biomass.

Table 3. Classes of UAS platforms.

Size Large Medium Small Micro

Operating range Up to 500 km Up to 500 km <10 km <10 km
Endurance Up to 2 days Up to 10 h <2 h <1 h

Flying altitude 3–20 km <4 km <1 km <250 m
Payload 50 kg 50 kg 5–30 kg <5 kg

2.2. UAS Sensors

UASs are flexible platforms with the capability to host a wide variety of sensors
that can be used for different types of forest applications, including: forest inventory,
conservation and monitoring of natural resources, fire monitoring, disease detection
and mapping and many others [17]. In this section, we present some of the sensors
most commonly applied in forestry studies with great potential for application in the
Miombo woodlands.

2.2.1. Visible-Light Sensors (RGB)

The sensors that are sensitive to the portion of the electromagnetic spectrum (EM),
about 0.4–0.7 µm, which is also sensed by the human eye, are referred to as visible-light
or red, green and blue (RGB) sensors [29]. According to a review by [24], RGB sensors
are the most commonly used sensors in UAS systems for forestry. A review by [17]
on the global development and application of UAS technology in forestry from 2010 to
2019 revealed that 57% of UAS forest applications used RGB sensors. The major factors
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contributing to their popular use include: (i) their low cost compared to other sensors;
(ii) their less complicated, easy-to-operate and lightweight design; (iii) their low cost and
readily available processing software; (iv) the ease with which their RGB images can be
processed compared to those from other sensors; and (v) the fact that most low-cost UASs
come with an RGB camera integrated into the system [17,24]. These attributes explain
why the RGB sensor is the most commonly applied in pioneering forestry applications in
sub-Saharan Africa [19,21–23,25–28].

Despite their wider application, the limited spectral range of RGB sensors makes them
inadequate for analyzing many vegetation parameters that require spectral information
beyond the narrow visible spectrum [30]. For example, a study by [31], in nature reserves
in Amtsvenn, Germany, demonstrated that a combination of UAS-RGB images with multi-
spectral Pleiades images significantly improved overall tree species classification from 62%
to 84% compared to using UAS-RGB images alone. Similar observations were made by [32],
who found that the addition of a near-infrared band to an RGB sensor improved the tree
species classification by about 11%. In [26], the effectiveness of UAS imagery for monitoring
structural characteristics vegetation was assessed in a semiarid savanna woodland, Chobe
Enclave, in northern Botswana, by comparing multiple approaches for extracting woody
vegetation structure from UAS imagery. They assessed the efficacy of UAS imagery from
RGB sensors and multispectral sensors to extract vegetation structure parameters (crown
area and fractional woody cover) and found that the NIR band in the multispectral sensor
improved tree crown delineation and estimates of crown area, fractional woody cover and
herbaceous cover. However, despite the limitations of RGB sensors in the discrimination of
tree species and studies of forest health, photogrammetric point clouds derived from RGB
stereo images have been found to be comparable to and cost less than three-dimensional
(3D) lidar data [33], which are currently lacking in the Miombo woodlands.

2.2.2. Multispectral

Multispectral sensors are sensitive to the visible part of the spectrum as well as
wavelengths that fall beyond the visible spectrum, which may include: near-infrared
(0.7–1.3 µm), middle-infrared (1.3–3 µm) and thermal-infrared (3–14 µm) regions [29], and
spectral bands are stored as separate images in monotone. This allows for flexibility in
choice of spectral bands to form desired image composites for image analysis. However,
separate spectral bands increase the sophistication, weight and cost of the sensor as well
as the processing and storage requirements for the resulting imagery [34]. Multispectral
sensors that include the near-infrared (NIR) part of the EM have significant advantages in
vegetation applications because of the high vegetation reflectance in NIR compared to the
visible part of the EM. Many studies have used UASs with multispectral sensors in forest-
management-related applications, for example: (i) species identification [32,35–37] and
(ii) exploiting the dissimilarities in reflectance properties between the visible and near-
infrared regions to calculate vegetation indices and monitor plant health [38–40]. The
advantage of these sensors compared to RGB sensors is that the addition of NIR increases
the possibility for computing various vegetation indices [41,42] required for analyzing veg-
etation health and increases the possibilities for discriminating among various tree species,
e.g., Refs. [32,43]. For example, Ref. [44] compared UAS RGB and multispectral imagery io
classify different vegetation covers and found that multispectral-based classification results
were 10–15% higher than RGB-image-based results. The disadvantages of the multispectral
sensors compared to RGB sensors include their higher cost and the requirement for more
complex pre-processing methods in order to extract useful information from the captured
images. As a result, fewer studies have employed UAS multispectral sensors compared to
RGB sensors [17], and this is also reflected in the number of studies in sub-Saharan Africa
under this review (Table 2). The Miombo woodland canopy is characterized by diverse
tree species with a similar appearance [2], and the addition of NIR bands improves RGB
sensors’ capability to discriminate among tree species that might otherwise be difficult
to identify.
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2.2.3. Hyperspectral Sensors

Hyperspectral sensors capture imagery in narrow spectral bands over a continuous
spectral range, recording the spectra for all pixels in the scene. They capture more detailed
information than multispectral sensors because an entire spectrum is acquired at each pixel.
The major advantage of hyperspectral sensors is that they are able to discriminate among
small spectral details over narrow bands of the EM, which could otherwise be generalized
by multispectral broadband sensors [45]. This is useful for detailed vegetation analysis,
for example, discrimination between different vegetation species [46–48]. According to
the comparison of UAS sensors in a review by [24], the disadvantages that limit their
application with UASs include their heavy payload, high cost, the requirement for a
huge amount of storage space due to the large number of bands and complexity of data
acquisition and analysis. Yao et al. [49] added that most hyperspectral sensors are linear-
array and require specialized processing software, and users are expected to take care of
data formats and geometric corrections. Due to these disadvantages, only a few studies
have utilized this sensor type in other parts of the world [17,18], and none so far have
been conducted in sub-Saharan Africa. However, with continuous developments in both
sensor and processing software technologies, some of the stated limitations are expected
to be overcome, and the cost is expected to decrease, which will open room for more
applications [24], including in sub-Saharan Africa.

2.2.4. Thermal Sensors

Thermal infrared sensors capture information about the temperature of the heat
emitted by objects, as opposed to reflected solar radiation, and images are produced based
on temperature response of the emitting objects as opposed to their spectral reflectance
properties. The application areas for UAS thermal sensors in forestry studies include:
forest fire monitoring [50,51], forest health monitoring [52] and detecting warm-blooded
animals in the forests [53]. The use of UAS thermal sensors in forestry studies is limited
(see [17] for the number of published articles on UAS thermal sensors compared to those
on other sensors and [18] for summary of applications) and is yet to be applied in sub-
Saharan Africa. This could be due to their low spatial resolution compared to RGB and
multispectral sensors, which limits the number of applications for which the data can
be used. Another challenge for active fire remote sensing is the huge dynamic range of
the brightness temperatures, which presents much more of an engineering challenge to
measure. As a result, most thermal IR images saturate where there are active flames,
especially the sensors light enough to be a feasible payload on a UAS [24]. Thermal cameras
are also more expensive than RGB sensors, further limiting their application in the Miombo.

2.2.5. LIDAR Sensors

Lidar is an active laser-based remote sensing technology that measures distance based
on the return time of emitted light [54]. The advantage of lidar in forest applications lies
in its ability to characterize forest structure in 3D with high accuracy [55]. For example,
studies in conifer stands by [56] in Norway and by [57] in British Columbia used airborne
lidar to estimate stand height with (r2 = 0.90) and volume with (r2 = 0.45 to 0.89). The other
important advantage is its ability to penetrate the forest canopy, which makes it possible
to capture understory vegetation as well as bare earth terrain in forested areas, although
terrain accuracy is reportedly reduced with increasing canopy cover [58]. For example, an
assessment of a lidar-generated DTM in a mountainous forested area of western Washington
State, United States of America, under varying vegetation conditions [58] found a mean
DTM error ranging from 0.16 m for bare ground to 0.31 m for dense canopy. Examples
of applications of UAS-mounted lidar (UAS-lidar) systems in forestry include: below-
canopy mapping [59], tree stem detection and diameter measurements [60], forest change
detection [61] and estimating forest structure parameters [62,63]. Despite its advantages
compared to other sensors, UAS-lidar applications are still less pronounced, as evidenced
by the number of articles published in a review by [17], and so far, there is no example of
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its application in sub-Saharan Africa. The major drawback of a UAS-lidar is its heavier
payload, which requires bigger and relatively more expensive drones, and the associated
higher cost of lidar sensors. However, the ability of lidar to penetrate forest canopies
and detect bare earth elevations in difficult forest environments [64] compensates for
some of the disadvantages; with expected reductions in cost and improvements in sensor
technology, the number of studies employing this technology is expected to increase. A
pioneering study by [65] developed a UAS-mounted lidar system (UAS-lidar) and were
able to estimate tree heights and detect utility poles. In a similar study, Ref. [66] developed
a low-cost UAS-lidar system with an accompanying workflow for producing 3D point
clouds, and used it to measure tree location, height and crown width.

2.3. Data Processing

Typically, many UAS sensors will generate huge data volumes, which need to be
processed to derive meaningful information to satisfy various forestry applications. There
are several post-processing options for UAS imagery that can be pursued to satisfy intended
forestry applications. Some common outputs from UAS imagery include: (i) mosaicking,
which gives a seamless synoptic view of the area under study, (ii) 3D point clouds, which
are used in forest inventory and estimating forest structure parameters, (iii) vegetation
indices for monitoring forest health and discriminating between different species and
(iv) classification and regression.

2.3.1. Mosaicking

UASs use small-format optical sensors that capture a series of overlapping pho-
tographs covering an area. Such single images cover an area of very limited spatial extent
of a forest for meaningful analysis and need to be stitched together to form one composite
image known as a mosaic. Most UAS optical imagery processing software uses a scale
invariant feature transform (SIFT) algorithm for mosaic UAS imagery. Jia et al. [67] divides
the mosaicking process into three stages: (i) image pre-processing (correction for image
distortion); (ii) image registration (feature extraction, feature matching, model transforma-
tion and parameter estimation); and (ii) image fusion (eliminating discontinuity of color to
achieve smooth transition from one photo to another). Finally, the mosaic is georeferenced
using ground control points or orthorectified using a DTM.

2.3.2. Three-Dimensional Point Clouds

Three-dimensional (3D) point clouds are generated either directly using active li-
dar UAS sensors, e.g., as in [60,68], or indirectly from passive optical UAS digital aerial
photography (DAP) using the structure from motion approach (SfM) [22,69–71].

The SfM approach stems from computer vision automatic feature-matching algo-
rithms [72], and the principle is well-described in Westoby et al. (2012) and Iglhaut et al.
(2019). According to Westoby et al. [73], SfM involves the re-establishment of the camera
pose and scene geometry simultaneously through matching features in multiple overlap-
ping, offset images and generating 3D point clouds in the image space coordinate system.
The image space 3D point cloud is transformed into the object space in real-world coordi-
nates by the use of ground control points (GCPs) with known coordinates in both systems
to generate a digital surface model (DSM), orthomosaic or other point cloud statistics. The
DSM is the key product from which a canopy height model (CHM) can be generated by
subtracting a digital terrain model (DTM) from a DSM [74].

Conversely, the UAS lidar sensor directly generates a 3D point cloud, which under-
goes three processes to produce a CHM: (i) de-noising to remove outliers (e.g., signals
bouncing off from captured birds flying above the canopy) to generate a DSM; (ii) filtering
or classifying, which entails separating ground from non-ground points to generate a DTM
representing the ground terrain; and (iii) normalizing the DSM to generate a CHM by
subtracting the DTM from the DSM.
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Two methods have been applied to extract forest attributes from point clouds: the
area-based approach (ABA) and individual tree detection (ITD) [75,76]. In ABA methods,
forest characteristics, such as mean tree height, mean diameter, basal area, volume and
biomass, are estimated at the stand or plot level using statistics calculated from point clouds,
resulting in canopy height and density metrics used in regression, discriminant analysis or
nonparametric estimation techniques, e.g., as in [77–81]. In the ITD methods, individual
trees are segmented from point clouds, and tree-level attributes such as tree height, crown
width and crown base height can be derived either directly from point clouds or statistical
metrics such as those used in area-based approaches using crown metrics derived from
point cloud data within individual tree segments [82–84].

The ABA approach can operate accurately with lower LIDAR pulse densities but
requires more field-measured plots for calibration. On the other hand, the ITD-based
approach requires fewer field data for calibrating the individual tree measurements [75].
However, the application of the ITD approach is still limited compared to ABA due the
lack of generic algorithms that can extract individual trees in varying complex forest envi-
ronments, especially broadleaf trees, which have an inconsistent morphological structure
that is difficult to model using existing algorithms [76].

2.3.3. Image Classification

Apart from extracting point clouds for estimating forest structure parameters, ultra-
high-resolution (UHR) optical UAS imagery can be classified to extract various forest char-
acteristics that include (i) forest cover maps, (ii) forest burn severity, (ii) forest health [39]
and forest tree species identification [37,85]. Classification of UHR UAS imagery is either
based on pixel-based classifiers, e.g., maximum likelihood algorithm [43], or geographic-
object-based image analysis (GEOBIA), machine learning (ML) algorithms [32] or a broad
range of variants and hybrids of these methods [86]. However, the UHR UAS imagery
presents new challenges, which include intra-crown spectral variability [37,43], illumina-
tion differences due to occlusion [87] and challenges in tree crown extraction [88]. GEOBIA,
in which the classification is based on image objects that correspond to targeted real-world
objects (e.g., individual tree crowns) instead of individual pixels [89], has been found to be
effective in addressing some of these challenges [32].

GEOBIA has two main processing steps: (i) image segmentation, which is the process
of dividing an image into homogeneous regions or objects that correspond to discernible fea-
tures in remote sensing imagery, e.g., trees, buildings, grasslands and water bodies [90,91];
and (ii) classification of segmented image objects. Segmentation algorithms are cate-
gorized by the approach used to divide image objects: (i) pixel-based, (ii) edge-based,
(iii) region-growing and (iv) the hybrid method; a detailed discussion of these approaches
can be found in [90,92]. In natural forest environments, segmented objects correspond to
individual tree crowns. Therefore, GEOBIA entails first delineating individual tree crowns
(ITCs), followed by classification of identified ITCs into appropriate species based on the
spectral characteristics of ITCs [88]. Tree species classification based on ITCs has been
found to yield better results compared to pixel-based classification; for example, Ref. [37]
reported 60% and 80% accuracy for the pixel-based approach and GEOBIA, respectively.
Segmentation techniques have been applied to delineate ITCs from different UAS products,
such as orthophoto mosaics, CHMs, point clouds or a combination of these. For example,
Ref. [86] extracted ITCs from UAS-SfM- and UAS-lidar-generated point clouds in a Euca-
lyptus plantation in Valongo, Porto, Portugal, with accuracies of 80% and 96%, respectively.
In a study by [32], multispectral UAV images acquired over a northern hardwood forest in
Eastern Ontario, Canada, were segmented, and the generated image objects were classified
using a machine learning (ML) algorithm (random forests) to identify different tree species.
A study by [93] used GEOBIA to identify different vegetation species in the Himalayan
Langtang National Park, Nepal, by segmentation, followed by multilevel image analysis,
and achieved 78% accuracy.
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2.3.4. Vegetation Indices

Vegetation indices (VIs) are useful algorithms for quantitative and qualitative monitor-
ing and evaluation of vegetation cover, vigor, health and growth dynamics [42]. VIs are
based on the reflection of EM radiation by vegetation, which makes it possible to distin-
guish vegetation from other ground elements. As a result, many VIs have been developed
for various vegetation monitoring applications [41,42]. There are two broad categories of
VIs that are commonly extracted from optical UAS imagery for monitoring vegetation (see
Table 4 for formulae used to calculate these indices): (i) those that are based on multispectral
or hyperspectral imagery (e.g., the Ratio Vegetation Index (RVI), Normalized Difference
Vegetation Index (NDVI), Simple Ratio (SR) Vegetation Index, etc.) and (ii) those that are
computed based on the visible spectrum (e.g., Excess Greenness Index (ExG), Normalized
Difference Index (NDI)), Red–Green Ratio Index (RGRI), etc.).

Table 4. Examples of visible-spectrum- and multispectral-based indices.

Examples of Multispectral-Based Indices

Index Abbreviation Formula

Normalized Difference Vegetation Index NDVI NIR−R
NIR+R

Ratio Vegetation Index RVI R
NIR

Simple Ratio Index SR NIR
R

Excess Greenness Index ExG 2G − R − B
Normalized Difference Index NDI G−R

G+R
Red–Green Ratio Index RGRI R

G
New Green–Red Vegetation Index NGRVI G2−R2

G2+R2

Green Leaf Index GLI 2G−R−B
2G=R+B

The NDVI is the most widely used VI, and is calculated from multispectral images
as the normalized ratio between the red and near-infrared bands and used to detect and
monitor vegetation status [42]. However, with regard to UASs, as revealed above, the RGB
sensors are the most commonly used sensors, but they do not have the near-infrared band
that facilitates vegetation detection. As a result, there are new efforts to establish VIs based
on RGB sensors, as demonstrated in a study by Zhang et al. [94], who introduced the new
Green–Red Vegetation Index (NGRVI) to extract vegetation information from the arid and
semiarid Lake Ebinur Basin of the Xinjiang Uygur region of China with more than 90%
accuracy. Another study by Agapiou [95] explored the use of various published VIs on
openly licensed RGB UAS imagery from several case studies in different countries with
different environments and found that Green Leaf Index (GLI) yielded the best results for
all case studies.

3. UAS Applications in Forestry

Many forestry practitioners have successfully explored the use of UASs in different
forest applications, namely: forest inventory and estimation of dendrometric parame-
ters [22,63,69,82,96]; forest health [39,40]; species identification [35,37]; forest fire monitor-
ing [97,98]; and detecting and quantifying canopy gaps [99,100]. However, many factors
impede the full operationalization of UASs in forestry, due to variation in (i) forest structure
and composition, (ii) landscapes, (iii) management and exploitation regimes and (iv) UAS
regulations. Therefore, to better guide the application of UASs in forestry, more compara-
tive studies are needed to determine suitable UAS remote sensing technologies for various
forest environments and/or forestry applications [15].

3.1. Overview of UAS Applications in Forest in Sub-Saharan African

Based on the reviewed literature (Table 2), only five countries have applied UASs in
forestry thus far in sub-Saharan African: three studies in Sahelian savanna, Senegal; three
in the Miombo woodlands, Malawi; one in two countries, Botswana and Mozambique;
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and one in Namibia. As has been already noted, most of sub-Saharan Africa is lagging
behind in UAS applications in forestry, and the following sections give an overview of
these studies divided into two categories: biomass and tree attribute estimation, and
disturbance monitoring.

3.1.1. Estimation Biomass and Other Vegetation Structural Attributes

A study by [28] assessed woody and herbaceous species phytomass using RGB UAS
imagery collected in the Sahelian savanna in northern Senegal. Plot-level cross-validation
revealed an r2 of 0.59 for woody phytomass and 0.71 for herbaceous phytomass, which con-
firmed the feasibility of low-cost UAS imagery for assessing Sahelian savanna phytomass.
Another study by [21] applied UAS-SfM technology to estimate tree height and crown area
in the Sahelian savanna in northern Senegal; they were able to achieve a strong correla-
tion with ground measurements, r2 = 0.84 and r2 = 0.93 for tree height and crown area,
respectively. They employed the random forest algorithm to classify tree species within
the same study area by utilizing tree canopy morphology and canopy colors measured by
UASs, and were able to predict tree species within an error of 20%. Kachamba et al. [22]
evaluated the application of 3D data derived from UAS imagery for biomass estimation
and also compared impacts of digital terrain models (DTMs) generated based on differ-
ent methods and parameter settings in the Miombo woodlands, Muyobe Forest, Mzimba
District, northern Malawi. The biomass was estimated at r2 = 0.58 − 0.67; there were no
significant differences (p = 0.985) between tested DTMs except for that based on the Shuttle
Radar Topography Mission (SRTM) (r2 = 0.12). In a subsequent study in the same study
area, Kachamba et al. [25] assessed the influence of sample plot size on the efficiency of
UAS-assisted biomass estimates. The results of this study were that a design-based field
sample inventory assisted by three-dimensional point clouds obtained from aerial imagery
acquired with a UAS showed that the root mean square errors as well as the standard error
estimates of mean biomass decreased as sample plot sizes increased. Another study by
Domingo et al. [23] in the same area assessed the influence of image resolution, camera
type and side overlap on the prediction accuracy of biomass models constructed from
ground-based data and UAS data. They compared the prediction accuracy of models
reflecting two different image resolutions (10 and 15 cm ground sampling distance) and
two camera types (NIR and RGB). They also assessed the effect of two different side overlap
levels (70% and 80%) using data from the RGB camera. They found that accuracy improved
when using the RGB camera which had finer image resolution compared to using the NIR
camera which had coarser image resolution and decreased model accuracy. Though these
studies yielded promising results, they were all carried out within the same study area
of the Miombo woodlands. Therefore, to have conclusive results, more tests need to be
carried out in different settings of the Miombo woodlands, with different species covering
varying climatic and edaphic environments. In [26], the effectiveness of UAS imagery
for monitoring structural characteristics of vegetation in a semiarid savanna woodland,
in Chobe Enclave, northern Botswana, was assessed by comparing multiple approaches
for extracting woody vegetation structure from UAS imagery. They assessed the efficacy
of UAS imagery from RGB and multispectral sensors in extracting vegetation structure
parameters (crown area and fractional woody cover). They found that the NIR band in
the multispectral sensor improved tree crown delineation, crown area estimates and frac-
tional woody cover and herbaceous cover within the study area. They also compared the
region-growing and height threshold segmentation algorithms for delineating tree crowns
and found that both performed well in the grass-dominated savanna sites where trees
and shrubs are clearly distinguishable, but the height threshold outperformed the other
region-growing algorithm in tree-dominated sites. A study by [27] derived tree heights
from RGB UAS imagery and SfM techniques and assessed the sensitivity of derived tree
heights on the estimation of aboveground biomass (AGB) in Desa’a dry land Afromontane
Forest, northern Ethiopia, and achieved adjusted values of coefficients of determination, r2,
of 0.98 and 0.99 for estimated tree heights and biomass, respectively.
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3.1.2. Disturbance Monitoring

Mayr et al. [19] used UASs to monitor grazing and fire disturbances using the height
of woody vegetation in a savanna in the northern Otjozondujupa region, Namibia, and
achieved a good relationship between ground measurements and UAS-derived measure-
ments (R2 = 0.7, RMSE < 0.9). A study by [20] combined multispectral UAS imagery and
meteorological data from the ERA-5 land dataset to model instantaneous pre-fire AGB.
Ground data were collected in two savanna regions of Southern Africa with different
rainfall patterns: the north-west district (Ngamiland), Botswana, with 660 mm mean an-
nual rainfall; and Nissan Province, northern Mozambique, with 940 mm mean annual
rainfall. Their model was able to predict AGB with r2 = 0.91 and r2 = 0.77 for live grass and
total fine fuel, respectively. However, their model was less effective in predicting biomass
for other classes, such as wood debris, that are not significant for emissions in regions
under consideration.

3.2. Estimating Forest Structure Parameters in Miombo Woodlands

The combination of UASs with non-radiometric RGB sensors and SfM (UAS-SFM)
technology is a popular approach for estimating forest structure parameters [17,34,101].
This is mainly due to the low cost and easy accessibility associated with UAS RGB sensors
as well as the processing software used in this approach [33]. The application of a UAS-SfM
approach in characterizing forest structure has been demonstrated in many parts of the
world, for example: temperate deciduous forests in Maryland, USA [102], tropical forest
in Cambodia [103], temperate European beech forests in Italy [104], open-canopy mixed
conifer forest in Wyoming, USA [82], mixed conifer–broadleaved forest in Japan [105], tropi-
cal woodlands in Malawi [22], tropical premontane wet forests in southern Costa Rica [106],
mangrove forests in Malaysia [107], subtropical forests in Dinghushan, China [108] and dry
sclerophyll eucalypt forests in Tasmania, Australia [62].

UAS-lidar data have been applied in the same way as data from manned airborne
platforms [65,96,109,110]. Other studies have used integrated systems with both UAS-
SfM and UAS-lidar, but this is usually done for synergistic benefit and to compare the
performances of the two approaches [62,63]. Although they have been shown to be more
accurate than UAS-SfM, only a few studies have used UAS-lidar systems for estimating
forest structure parameters due to the high cost and heavy payload associated with lidar,
which requires bigger and more sophisticated drones compared to UAS-SfM [68,109].
However, with continuous innovation in lidar sensors and UASs, prices are expected to
decrease to make UAS-Lidar methods readily available to many forest managers.

Three-dimensional information from both UAS-SfM and UAS-lidar is suitable for de-
scribing the upper canopy layer of forests [63,111]. However, UAS-SfM has been observed
to be inadequate in dense canopies with more than 60% cover due to the low accuracy of
the DTM caused by poor optical image penetration in dense canopies [62,112]. In contrast,
lidar has been shown to be more effective in generating a highly DTM, even in dense
canopies with over 60% cover [58,113,114].

Therefore, for the Miombo woodlands, we conclude that UAS-SfM can be used as a
low-cost alternative to estimate forest attributes including height, canopy dimensions and
biomass in the dry Miombo woodlands and under leaf-off conditions in the wet Miombo
woodlands. UAS-lidar can be used to estimate forest structure attributes including different
layers of vertical canopy structure in both wet and dry Miombo woodlands. This detailed
forest inventory information is required for sustainable forest management at a local or
stand level and for international reporting mechanisms such as Reducing Emissions from
Deforestation and Forest Degradation, plus forest conservation, sustainable management
of forest and enhancement of carbon stocks (REDD+) and Monitoring, Reporting and
Verification (MRV), which provides a financial incentive to developing countries for forest
conservation and implementation of sustainable forest management based on national
carbon stocks reported to the United Nations Framework Convention on Climate Change,
UNFCCC [115,116]. However, Ref. [33] cautions that even with some reported successes in



Forests 2022, 13, 1812 12 of 27

the application of UAS-SfM technology, challenges such as (i) differences in data acquired
at different times due to variations in illumination conditions for different seasons, (ii) low
accuracy of UAS-SfM DTMs in dense forest environments such as some parts of the wet
Miombo, (iii) lack of UAS image acquisition and processing protocols that would produce
consistent SfM data across different forest types and conditions and (iv) image-matching
challenges such as illumination differences and changes in the position of branches due
to wind for images acquired for different times and positions. Nevertheless, the DTM
challenge can be overcome by the use of lidar sensors, which are now available as smaller
payloads and relatively cheaper versions that are able to be mounted on UASs. UAS-lidar
technology can be used to provide a one-off accurate DTM, which can be used repeatedly
since terrain in forest environments generally remains stable over a long time. Thus,
the less costly UAS-SfM DSM can be used with the UAS-lidar DTM to provide a more
accurate CHM for detailed multi-temporal 3D forest structure information for many forest
applications, including monitoring.

3.3. Phenology of Miombo Woodlands

Ultra-high-resolution UAS imagery provides the spatial detail required to study both
leaf and flowering phenology of Miombo tree species. Further, the flexibility with which
data can be acquired with UASs provides an opportunity for optimally timed capture
of important phenological events that are difficult to capture by other remote sensing
platforms such as satellites due to cloud cover or unsynchronized data capture relative
to occurrence of the event. For example, Ref. [117] acquired UAS imagery for 34 dates
over a 12-month period to monitor tree-species-level leaf phenology in a tropical forest in
Panama and revealed undescribed patterns of high intraspecific variation and complex
leaf cover changes for some species. This approach could be promulgated to the Miombo
woodlands to study phenologies that are not yet well-understood. Most Miombo species
are deciduous or semideciduous, shedding their leaves in the dry season, and new leaves
flush weeks to a month or more before the onset of the rainy season [2]. The young
Brachystegia leaves are concentrated with anthocyanin, giving rise to a reddish spring
foliage. Flowering of most Miombo trees and shrubs occurs just prior to the rainy season
(September-October), with the exception of Julbernardia paniculata (February–April) and
J. globiflora (November to April). Further, the understory herbaceous layer dries soon after
the rainy season. Additionally, the distinct structure of Miombo woodlands, especially the
variation across seasons (Table 2), gives an indication of the potential of the use of UASs in
Miombo woodland management.

3.4. Classification of Miombo Tree Species

The Miombo dominant canopy species have similar physiognomy, resulting in a simi-
lar appearance, which is attributed to the fact that most of these species are of the family
Caesalpiniodeae [2]. This familial similarity in appearance presents challenges as there is
high spectral similarity between co-occurring species, which may be difficult to discrim-
inate between using low-spatial/spectral/temporal-resolution remote sensing imagery.
UAS platforms provide flexibility to accommodate multiple sensors (RGB, multispectral,
hyperspectral and lidar), which can be used to acquire ultra-high-spatial-resolution imagery
at convenient frequent intervals for use in the identification of tree species [24]. UASs enable
the acquisition of imagery at sub-meter resolution, making it usable for the identification
of individual tree species. However, ultra-high spatial resolutions may lead to different
spectral responses from different parts of the same tree, such as leaves, branches and trunks,
which can make it difficult to identify trees at the species level due to variation in textures
and spectral signatures within the same tree. Other challenges in using high-resolution
optical data from UASs for classification of tree species that might affect the quality of
results include: (i) variation in illumination conditions for images taken on different dates
and at different times of day that will result in different spectral responses for the same
objects, (ii) intraspecies variation in phenological development, which is common in the
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Miombo woodlands and (iii) similarities in leaves and morphology of different tree species
in the Miombo woodlands, which will result in the mixing of different species. As a result,
object-based image analysis is preferred to conventional pixel-based classifiers for UAS
imagery. For example, a study by [32] showed an improvement in classification results
for identifying tree species from 50 to 60% for pixel-based classification to 80% percent for
object-based classification using the same UAS imagery in the same area.

Flexible Temporal Frequency

UASs provide a flexible temporal frequency [15] at which data can be acquired to
ensure that collection coincides with important phenological events that can help in dis-
criminating among different tree species. The proper timing of these events in the Miombo,
for example, can help in discriminating between: (i) the herbaceous layer and the tree
canopy using the Normalized Difference Vegetation Index (NDVI) at the end of the rainy
season in May, (ii) Brachystegia species and other species at leaf flushing using reddish color
and (iii) Julbernardia species using the late flowering event [2]. For example, [118] used the
random forest (RF) classification algorithm to classify five deciduous species groups on a
130-hectare broadleaved forest in Grand-Leez, Belgium, using single-date, two-date and
three-date multispectral UAS image combinations at critical phenological stages and found
that three-date combinations yielded superior results compared to the other combinations
because of the different phenological characteristics of different species.

3.5. Monitoring Disturbances

A UAS may be a useful tool in monitoring the disturbances and recovery of the
Miombo woodland at the landscape level. The disturbances in the Miombo mainly arise
from the interaction of three factors, namely [2]: (i) anthropogenic influences, (ii) fire and
(iii) herbivory.

3.5.1. Anthropogenic Disturbances

Disturbances as a result of Miombo woodland utilization by people include com-
plete clearing for cropping, shifting cultivation, selective harvesting of trees for timber,
firewood, charcoal production, medicine and livestock grazing. While disturbances from
huge clearings for cropping and charcoal production are detectable using freely available
moderate-resolution satellite imagery such as Landsat and Sentinel, e.g., as in [10,119],
small-scale disturbances from selective cutting and lopping of trees and understory grazing
are difficult to detect from such imagery and occur at spatial and temporal scales that
are difficult and costly to cover using field methods [120–122]. Furthermore, for shifting
cultivation agriculture, which is common in the Miombo woodlands, some clearings are
too small (0.5–2 ha) to be covered by moderate-resolution imagery [10]. UASs can be used
to capture ultra-high-spatial-resolution imagery with the timing and frequency required
to monitor disturbances and recovery from selective harvesting and lopping of trees and
bridge the temporal and spatial gap between freely available satellite imagery and field
methods. For example, a study by [123] used repeated UAS flights to monitor selective
logging at the individual tree level in a pine-dominated forest in Germany; they were
able to detect felled trees with a precision and recall of 97.5% and 91.7%, respectively. In
a post-harvest assessment of charcoal and timber, Ref. [103] used UAS imagery before
and after a selective logging event in a tropical forest in Myanmar to quantify changes in
aboveground biomass (AGB). In addition, UAS methodologies proposed by [124,125] to
quantify harvested timber and detect illegal logging in protected areas may be useful in
monitoring such areas as the Miombo woodlands. Further, UAS-SfM imagery can be used
to monitor biomass changes due to grazing in open Miombo woodlands with less than 50%
canopy cover, while in forests with greater than 50% canopy cover, UAS-lidar, which can
penetrate through the canopy and give a full vertical characterization of the forest, can be
used to monitor disturbances related to understory grazing [112].
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3.5.2. Fire-Related Disturbances

Fires are a major cause of changes in the structure and composition of Miombo wood-
lands [2]. Therefore, pre-fire, during-fire and post-fire forest management are important.
UASs with ultra-high spatial resolution and flexibility of deployment are one of the emerg-
ing remote sensing tools for fire management [97,126,127]. Grass and woody plant leaf litter
are the major fuel load for fires in the Miombo woodlands [128] that could be quantified
using UASs to assess the risk and serve as an early warning indicator for the likelihood
of a fire occurrence. In terms of fire prevention and early warnings, Ref. [129] proposed a
methodology based on high-resolution UAS-lidar point clouds that can be used to charac-
terize forest fuel load. [130] used a UAS mounted with infrared and visible-light sensors to
capture imagery and employed reflectance in six wavelengths in the visible and infrared
ranges to estimate fuel moisture in grasslands in western Washington, United States of
America (USA). Another study by [131] evaluated the feasibility of using UAS imagery
for estimating forest canopy fuels in a ponderosa pine stand in Flagstaff, Arizona, USA,
and accurately estimated canopy cover (R2 = 0.82, RMSE = 8.9%). During a fire event,
UASs with thermal infrared sensors can be used for active fire detection and monitoring.
For example, Ref. [50] deployed a fleet of three UASs mounted with infrared and thermal
sensors to measure and monitor the evolution of fire and demonstrated that UASs can
cover the gap between the spatial measurement scales of cameras deployed on satellites
and on towers. Ref. [132] used UAS thermal infrared imagery to track the development
of an active wildfire in real time and generated valuable data for managing the wildfire
emergency response. For assessment of post-fire damage and recovery, the potential of
using indices derived from RGB sensors mounted on a UAS was demonstrated in studies
by [127] and [126], who were able to assess the extent and severity of fires and subsequent
recovery of the ecosystems at the landscape scale. The above examples of application of
UASs in fire studies speak to the potential that UASs have in bridging the data gap in fire
studies in the Miombo woodlands.

3.5.3. Herbivore-Related Disturbances

Herbivores have been associated with causing changes in plant biomass, forest struc-
ture and diversity across the African savannas [4]. In the Miombo woodlands, the largest
share of herbivory-related disturbances have been attributed to elephants [2,133,134]. For
example, a study by [135] revealed that increased elephant numbers in Chizarira Na-
tional Park, Zimbabwe, contributed to the destruction of 67% of the 500 original mature
Brachystegia boehmii trees. Another study by [136], who monitored biomass changes over
a four-year period (1972–1976) in the Sengwa Wildlife Research Area in Zimbabwe, re-
ported a 46% decline in the biomass of canopy trees, a 42% decline in basal area and a 23%
decline in density, which was attributed to elephants. Other studies in similar environ-
ments have attributed the structure changes in vegetation cover to the combined effect of
elephants and fire [137,138] The impact of herbivory on vegetation is heterogenous and
mainly species-specific and occurs at different spatial scales [2,134,135]. The interactions
between herbivores and vegetation as well as their spatial heterogeneity are essential for
understanding ecosystem structure and function in the Miombo woodlands [2]. Though
remote sensing has been identified as an essential tool for quantifying the impacts of her-
bivory on vegetation structure [139,140], it is still underutilized for this purpose in the
Miombo woodlands [3]. The advent of UASs has provided an opportunity to collect high-
spatial/temporal-resolution imagery data that are suitable for quantifying herbivory [14].
For instance, Ref. [141] used repeated UAS flights from 2018 and 2019 to quantify vegeta-
tion impacted by rodents in four complex landscapes of northern Sweden. They applied
image raster math by subtracting 2019 NDVI imagery from 2018 NDVI imagery to estimate
changes in NDVI values as an indication of rodent impacts on vegetation. These methods
and high-resolution UAS imagery have the potential to be used in monitoring disturbances
caused by herbivores in the Miombo, which occur at smaller spatial scales that would
otherwise be difficult to detect using medium-resolution satellite imagery.
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3.6. Bridging the Data Gap

Miombo woodlands exhibit multifaceted vegetation patterns varying from sparse to
dense vegetation emanating from edaphic factors and disturbances (anthropogenic, fires
and herbivory) [2]. If not well-captured, small-scale spatial variation in vegetation cover can
lead to inaccurate quantification of biophysical and ecological properties of vegetation [142].
Effective forest management and international reporting requirements such as REDD+
require vegetation data products covering the whole spatial spectrum from detailed field
inventories to satellite remote-sensing-based wall-to-wall mapping [122]. On one hand,
detailed field inventory methods have been used to estimate biophysical properties of
vegetation within the Miombo ecoregion [7,143–145], though these studies were conducted
on relatively small sites that are inadequate for regional wall-to-wall mapping. On the
other hand, medium-spatial-resolution imagery (10–250) has been used in mapping forest
cover changes [10,11,146,147] and estimating charcoal-related degradation [119,148] in
the Miombo woodlands and achieved promising results that can be used for wall-to-
wall mapping. However, medium-resolution satellite imagery is unable to detect forest
changes that occur at a smaller spatial scale in the Miombo woodlands [149], for example:
(i) selective tree harvesting for firewood, charcoal production and timber [150], (ii) shifting
cultivation and small field clearings of less than two hectares [10] and (iii) under-canopy
biomass removal due to grazing [143]. As evidenced by this review, UAS technology has
demonstrated its potential to bridge the spatial data gap that exists between detailed field
inventory methods and satellite-based remote sensing methods that are required for wall-
to-wall mapping of the Miombo woodlands. This can be achieved through a two-phase
sampling design where areas covered by a UAS are sampled with field plots and areas
covered by wall-to-wall satellite imagery are sampled using a UAS.

3.7. Current Status of Application of UASs in Miombo Woodlands

Although there is great potential for the application of UASs in the Miombo woodlands,
the current status of application (Table 5) is still at a rudimentary level, and all studies
were focused on estimation of forest structure attributes using the RGB and NIR sensors,
and were carried out at one site in the dry Miombo [22,23,25]. Other forest applications
and UAS sensors, which have been evinced by earlier reviews [14–18,24], are yet to be
exploited in the Miombo woodlands. This shows that more studies need to be undertaken
in different environments of the Miombo woodlands to actualize the potential benefits of
UAS technology.

Table 5. Overview of UAS application status in the Miombo woodlands.

Application Sensors No. of Studies Country/Category

Estimation of forest structure (AGB,
BA, CW, TD, CC, TH, TV) RGB, NIR 3 Malawi., dry Miombo

Classification of tree species N/A N/A N/A
Forest health N/A N/A N/A

Forest fire N/A N/A N/A

AGB = aboveground biomass, BA = basal area, CW = canopy width, TD = tree density, CC = canopy cover, tree
height, TV = tree volume, RGB = Red, Green Blue N/A = None applicable, NIIR = Near infrared.

4. Challenges for UAS Implementation in the Miombo Woodland

Although the advent of UAS technology has presented a lot of opportunities to
improve management of forest resources in the Miombo woodland region, they come with
challenges which need to be understood for successful implementation of the technology
(Table 6). These challenges come from the limitations of UAS technology as well as global
operating guidelines and regulations.
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Table 6. Summary of opportunities and challenges for potential UAS application areas in the Miombo
woodlands.

Application Opportunity Challenges

Estimation of forest structure (AGB, BA,
CW, TD, CC, TH, TV)

Availability of affordable UAS-SfM in
mostly open woodlands

Low accuracy of DTM in dense
forest environments

Variation in illumination conditions
Phenological differences

Limited area coverage area coverage
per flight

Availability and reducing cost of
UAS-Lidar for DTMs

Heavy payload and high cost
Limited area coverage per flight

Flexibility for
multi-temporal deployment

Classification of tree species

Availability and reducing cost of UAS
multispectral, hyperspectral sensors
Availability of OBIA and machine

learning algorithms
Phenological differences in tree species

Flexibility for
multi-temporal deployment

Difficulties in separating different species
using RGB sensors with limited

spectral resolution
High cost of multispectral and

hyperspectral sensors
Steep learning curve for machine

learning algorithms
Cost of specialized processing software
Heavy payload demanding larger and

more expensive UASs for
hyperspectral sensors

Interspecies homogeneity
Intraspecies heterogeneity due to

variation in illumination conditions
Steep learning curve for processing

hyperspectral imagery
Limited area coverage per flight

Forest health
Availability of multispectral and

hyperspectral sensors
Availability of vegetation indices

Heavy payload demanding larger and
more expensive UASs for

hyperspectral sensors
Vegetation phenology

Steep learning curve for processing
hyperspectral imagery

Limited area coverage per flight

Forest fires Availability of multispectral and
thermal sensors

Heavy payload demanding larger and
more expensive UASs for thermal sensors

High cost of sensor and
specialized software

Steep learning curve for
processing algorithms

Forest degradation

Availability of low-cost RGB sensors
Availability and reducing cost of UAS

multispectral, hyperspectral, thermal and
lidar sensors

High cost of multispectral, hyperspectral,
thermal and lidar sensors

Steep learning curve for processing
hyperspectral and lidar data

Limited area coverage per flight
Difficulties in characterizing small-scale

degradation activities with freely
available satellite imagery

AGB = aboveground biomass, BA = basal area, CW = canopy width, TD = tree density, CC = canopy cover, tree
height, TV = tree volume, UAS = unmanned aerial system, SfM = structure from motion, DTM = digital terrain
model, LIDAR = light detection and ranging, RGB = Red, Green Blue, OBIA = object-oriented image analysis.

4.1. Regulation

Globally, UASs are subjected to aviation safety rules just like manned aircraft, and
countries have developed legislation to regulate the use of UASs with the goal of min-
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imizing the risks to other airspace users and also to both people and property on the
ground [151]. Therefore, it is important for any UAS operators to consult the legislation reg-
ulating drone use in the country of intended use [152]. In the Miombo woodland ecoregion,
the Democratic Republic of Congo (DRC), Malawi, Tanzania, Zimbabwe and Zambia have
legislation and Mozambique a directive guiding the operation of UASs, while in Angola
there is no known legislation [153].

Despite good intentions, the implementation of UAS regulations presents barriers
to their successful application in forestry. A frequent challenge is the time needed to
approve an application for flying permits [154], which might result in missing the timing
of data collection for important forest-related research events in the Miombo woodlands
(e.g., vegetation phenological events) [128]. The other challenge is the restriction that the
UAS should be flown within the visual line of sight (VLOS) of the pilot, which restricts
the area that can be flown per flight. Furthermore, the restriction that a UAS be flown
up to a maximum height of 120 m aboveground (and for Malawi, 45 m aboveground)
results in increased resolution of the captured imagery and the number of captured photos,
which increases computer processing demands. Where there are disparities in the laws and
policies on the use of UASs among the Miombo ecoregion countries, cross-frontier projects
among practitioners and researchers, which are very important in forest management, may
be negatively impacted.

4.2. Site Environment Challenges

A detailed understanding of the operational site’s potential hazards and distractions
is a key requirement for successful mission planning and execution of UAS data collec-
tion [155]. Some sections of the Miombo woodlands are home to a variety of wildlife, some
of which are aggressive (e.g., lions, buffalos and elephants, among others) [128], and may
distract the operators of UASs. Furthermore, flocks of Guinea fowls and large birds of prey
such as eagles and other birds that inhabit Miombo woodlands might cause bird strikes
on UASs. To mitigate such wildlife accidents, UAS operators should be aware of their
occurrence and behavior beforehand.

Site topography has been found to have a big influence on the quality of 3D point
clouds required for estimating forest structure parameters [23,106]. For example, a study
by [23] conducted in the Miombo woodlands found that errors in tree height estimates
increased with increases in the steepness of the slope, with the largest errors coming from
slopes above a 35% incline. Another study by [156] used UAS-SFM to quantify boreal forest
structure and composition in interior Alaska, USA, and reported difficulties in acquiring
data along the steep slopes due to problems in adjusting the UAS platform to sustain a
constant flight altitude above the entire site terrain.

4.3. Weather Limitations

UAS operations are sensitive to weather conditions, such as high wind speed, precipi-
tation and extreme temperatures, which might impede UAS data collection at the optimal
time of capturing relevant events (e.g., phenology, fire, insect infestations and many others)
and sometimes may damage UAS components [157]. In addition, varying illumination con-
ditions during image capture affect image quality, which may complicate image processing
and lead to poor results [158]. Furthermore, wind-induced motion of leaves and branches
during image capture can bring about complications in processing UAS imagery, resulting
in the mismatch of features in overlapping images and poor-quality orthophotos and 3D
point clouds [33]. According to historical climate data [159], in the Miombo ecoregion, high
wind speeds are experienced between June and October, a period when most Miombo tree
species go through leaf dropping, flowering and leaf shooting, while rainfall occurs around
November to April [2]. Clouds are a prominent feature in the Miombo ecoregion, especially
from November to June [159], and changes in cloud conditions during data collection can
lead to changes in illumination conditions, which can cause biased estimation of measured
spectral and structural variables [160,161]. Adverse weather conditions may result in
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poorly timed UAS operations and an inaccurate assessment of forests or affect operations
times, resulting in project delays, which may discourage potential forest managers from
using the technology. High overlap and side lap as well as restricting flight times to around
noon have been proposed as some of the mitigating measures for unfavorable illumination
conditions [33,161]. Ultimately, observation of prevailing weather conditions in the area of
interest is critical to proper flight timing to reduce the effects of wind, clouds and shadow
within imagery in order to produce the best data possible for the intended application [162].

4.4. Limitation of UAS Sensors

Most cameras that are used in UASs are not designed for remote sensing applications,
and as such spectral response curves for such cameras are poorly calibrated, making it
difficult to convert brightness values into radiance [34], which is essential for comparative
analyses. Moreover, most consumer-grade cameras have limited spectral resolution and no
infrared band, which limits their application for vegetation analysis. Another limitation
of such cameras is that they are susceptible to vignette, where the center of the image
appears brighter than the edges [163], which is a result of differences in light paths between
the center and edges of the lens, causing a radial shadowing effect at the edges of the
image [34]. Such negative effects have to be corrected in order to preserve spectral and
structural attributes that are required for vegetation monitoring [87]. In instances where
information beyond the visible part of the EM is required (e.g., species discrimination and
detailed vegetation analysis), multispectral or hyperspectral sensors can be used [18].

Furthermore, for optical sensors, single UAS photos are usually mosaiced before any
analysis at the landscape level [67], but the process of mosaicking presents challenges
caused by vignetting, relief displacement and misregistration, as well as image artifacts
created when image-balancing algorithms fail [34]. Poor-quality mosaics cause errors in
spectral analysis, which can lead to biased estimates of forest inventory attributes. Some
of the mosaic artifacts can be mitigated by following the UAS data collection protocol
proposed by [161].

4.5. Endurance Challenge

The major limitation of most small UASs that are used in forest applications, espe-
cially multi-rotors, is low endurance, which means they can cover only a small area per
flight [15,24]. Flight times for most UAS batteries range between 10 and 30 min [164].
However, this limitation is mitigated by mission planning software, which allows the pilot
to pre-plan a photographic mission, set mission parameters (flying height, end lap, side
lap, camera shutter speed, aircraft speed, etc.), predetermine the flight time and area to be
covered and fly the aircraft autonomously, with minimal intervention. When the battery
power is nearly depleted, the aircraft automatically comes back to land and the pilot can
change the battery and re-launch the aircraft to continue the mission where it ended. Even
with this capability of mission planning software, the limited area coverage per flight is
still a challenge, which may discourage some practitioners from embracing this technology
in the Miombo ecoregion.

4.6. Processing and Storage Challenges

Automatic interpretation of ultra-high (under 10 cm)-resolution images collected by
UASs for species mapping is challenging to achieve using per-pixel classifiers that are im-
plemented in most commonly used commercial image processing software packages [37].
However, progress has been reported in the use of GEOBIA and machine learning tech-
niques to classify tree species [32,165], though these solutions tend to be site-specific and
data-dependent, and thus cannot be easily generalized. Furthermore, image interpretation
using GEOBIA and machine learning requires expensive specialized commercial software
or open-source software with a steep learning curve, which might be beyond the capacity
of most forest managers in the Miombo ecoregion. Another challenge is that ultra-high-
resolution data collected by UASs demand expensive computer hardware with a high
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processing and storage capacity, which might be unaffordable for many institutions in the
Miombo ecoregion countries and therefore may impede their application. For example,
Agisoft Metashape, a popular software for generating point clouds and building mosaics
from UAS imagery, requires a minimum of 16 GB for processing UAS imagery [166]. De-
pending on the size of the project and available hardware, processing of UAS imagery to
generate meaningful data products for various applications can take many hours, which
can be discouraging for many professionals.

4.7. Vegetation Cover Challenges

Miombo woodlands are generally open with little overlap between tree crowns
(Table 4), but the density of trees varies in response to climate, topography, disturbance
and edaphic factors [2,3]. Vegetation cover has a significant influence on the performance
of data processing algorithms and quality of generated data products [69,167]. The qual-
ity of a CHM, which is a fundamental product in the estimation of vegetation structural
attributes [168], is highly correlated to the quality of the DTM used in generating it [74].
Mlambo et al. [112] evaluated the performance of UAS-SfM in two United Kingdom sites:
(i) Meshaw, Denvo, which has a relatively open canopy and (ii) Dryden, Scotland, which
has a closed canopy. Comparison of the CHM generated by lidar and UAS-SfM 3D point
clouds exhibited high correlation (r2 = 0.75) at Meshaw. At Dryden, there was poor correla-
tion between UAS-SfM-estimated and ground-measured tree heights (r2 = 0.19), which was
attributed to poor canopy penetration of UAS imagery. Their study recommended that the
effect of poor canopy penetration can be mitigated by capturing UAS imagery during leaf-
off season in deciduous forests. Their recommendations were corroborated by [169], who
used leaf-off UAS-SfM-derived DTMs as a ground reference for supporting teak plantation
inventory in the dry forests of the coastal region of Ecuador. A study by [170] assessed
tree damage in the West Virginia Research Forest using a leaf-on generated UAS-SfM DSM,
which gave better definition of the top canopy definition, and the leaf-off DTM, which gave
a better definition of the ground. From lessons learnt from [112,169,170], we anticipate
challenges in the quality of DTMs that will be generated by UAS-SfM in the closed-canopy
environments that characterize some parts the Miombo. However, the UAS-SfM DTM
quality challenge can be mitigated by either using leaf-off UAS imagery or UAS-lidar to
generate a one-off DTM that can be used repeatedly with multi-temporal UAS-SfM DSM to
compute CHMs for monitoring forest structural attributes.

In terms of classification of individual tree species, the detection accuracy of ITCs
tends to decrease with increases in the tree density, species diversity and canopy structural
complexity, which ultimately affects the quality of the final tree species classification
results [36,171,172]. The Miombo woodlands are characterized by irregular tree crowns
with a similar appearance [2]. In wet Miombo, there is typically overlapping of the crowns
of neighboring trees. These attributes of the Miombo have been reported to cause challenges
in identification of ITCs in similar forest environments [36,37,118]. Some studies use fusion
of structural and spectral information and multi-temporal imagery [35,118] to improve the
accuracy of identification of tree species.

4.8. Future Directions

This review has evinced progress in UAS technology in various forest applications,
though it is not yet fully embraced within the Miombo ecoregion as such data gaps still
exist. There are several potential future directions for applying UAS technology in the
Miombo woodlands, including, the choice of sensors and, data processing techniques
which are available for the monitoring of Miombo woodlands. It is hoped that future
research explores the utility of UAS technology to fill existing data gaps in (i) estimation of
forest structural attributes, (ii) identification of tree species, (iii) monitoring forest health,
(iv) monitoring forest fires, and (v) monitoring small scale degradation, which are critical
to meeting the objectives of the REDD+ project. Challenges still exist in developing and
operationalizing the UAS data collection and processing techniques in monitoring the
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Miombo woodlands. The existence of studies focusing on the use of UAS technology to
estimate vegetation parameters within the Miombo ecoregion in the recent past [22,23,25],
sets the tone for UAS based studies. With continuous improvement in UAS sensor and
data processing technology coupled with the reduction in prices of specialized sensors [24],
it is envisaged that more studies focusing on the use of UAS technology for monitoring
the Miombo woodlands. The focus should be towards developing best practices for data
collection, data processing techniques and model validation, which can be achieved by
testing the technology in different environments of the Miombo. Some of the initiatives
that could be undertaken to enhance operationalization of the use of UAS technology in
the Miombo woodlands are proposed in Table 7. It is anticipated the use of UAS based
methods will complement the existing methods to fill the existing spatial gap between
ground-based methods and wall to wall satellite imagery.

Table 7. Future directions.

Application Sensors Future Studies

Estimation biomass and other vegetation
structural attributes RGB, MS, HS, Lidar

-Comparing results from different algorithms in
different environments and growth stages

Comparing results of data collected in
different seasons

-Comparing results from different sensors and
combination of sensors

-testing the models for robustness and
transferability to different environments

Classification of tree species RGB, MS, HS, Lidar

Comparing the potential of data from different
sensors and combination of sensors to classify

tree species
Comparing potential of using a combination of

multi-temporal, and multi-spectral/hyperspectral
data for classifying tree species

Comparing results from different algorithms in
different environments and growth stages

Forest health monitoring MS, HS, Lidar

Comparing results from different indices in
assessing forest health

Exploring the use of a combination UAS- Lidar
and Mult—spectral/hyperspectral imagery in

monitoring forest health

Forest fire monitoring RGB MS, Thermal, Lidar

Use of UAS-lidar and UAS-SfM in quantifying
combustible as early warning system for fire

Use of UAS thermal infrared imagery to track
active fires

Use of UAS imagery to assess post fire damage
and recovery

5. Conclusions

The Miombo woodlands ecoregion suffers from a lack of quantitative estimates of
forest cover changes, species distributions and carbon stocks, which is key information
required for effective forest management and international carbon MRV requirements.
UASs present an alternative and supplementary method to rapidly collect forest data at
high spatial and temporal resolution that are required for monitoring and management of
the Miombo woodlands. The key attributes of the Miombo woodlands provide a potential
area for application of UAS technology in undertaking forest inventory, which is important
for forest monitoring and management. It is a useful tool for estimating forest structure
attributes, species identification, effects from fire and forest degradation, all of which are
necessary for forest management. However, if the UAS technology is to be widely applied
in the Miombo region, it is also important to comply with restrictive regulations and to
obtain required flight permits.
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