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Abstract

Precipitation is one of the major constraints influencing the diversity, structure, and activity
of soil microbial communities in desert ecosystems. However, the effect of changes in
precipitation on soil microbial communities in arid soil microbiomes remains unresolved. In
this study, using 16S rRNA gene high-throughput sequencing and shotgun metagenome
sequencing, we explored changes in taxonomic composition and functional potential across
two zones in the Namib Desert with contrasting precipitation regime. We found that
precipitation regime had no effect on taxonomic and functional alpha-diversity, but that
microbial community composition and functional potential (beta-diversity) changed with
increased precipitation. For instance, Acidobacteriota and ‘resistance to antibiotics and toxic
compounds’ related genes were relatively more abundant in the high-rainfall zone. These
changes were largely due to a small set of microbial taxa, some of which were present in
low abundance (i.e. members of the rare biosphere). Overall, these results indicate that key
climatic factors (i.e. precipitation) shape the taxonomic and functional attributes of the arid
soil microbiome. This research provides insight into how changes in precipitation patterns
associated with global climate change may impact microbial community structure and
function in desert soils.
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Introduction

Deserts constitute one-fifth of the Earth’s total surface area [1] and represent one of the
harshest environments as they are characterised by scarce and irregular rainfall combined
with very high temperatures [2]. Considering the current climate change scenarios, deserts
and other dryland areas have been projected to increase by 11-23% by the end of this
century [3, 4]. Notwithstanding these hard conditions, deserts harbour a surprisingly high
biodiversity, including some of the most threatened species in the world [5].



Microbial communities are considered the dominant ecological drivers of these ecosystems
[6] because they regulate, among others, organic matter decomposition, carbon cycling,
nitrogen cycling and mediate nutrient acquisition [7]. Desert microbiomes display a lower
species diversity and are phylogenetically and functionally distinct from those of other
biomes [8, 9]. This suggests that their responses to fluctuating environmental changes might
also be distinct [10]. Microbial diversity, composition, and activity in desert soils are highly
dependent on factors such as temperature, moisture, and the availability of organic carbon
[11]. Of these, water availability is the primary factor limiting microbial activity [12] and
therefore the ability of the arid soil microbiome to sustain, among others, nutrient cycling
functions [13].

The Namib Desert is a coastal desert on the western side of Southern Africa. It is the oldest
hyper-arid desert on the planet (ca. 5 million years) with a highly variable surface
temperature (0—60 °C) [14, 15]. The Namib Desert has scarce and unpredictable rainfall
inputs, receiving an average of 5-18 mm in the central zone, increasing gradually from the
coast inland (~ 10 mm at the coast to ~ 60 mm 100 km inland) [16, 17]. An important
ecological feature of the Namib Desert is the frequently occurring coastal fog, reaching as
far as 75-km inland. The fog is influenced by the cold Benguela current and the southwest
trade winds on the coast [18]. The contribution of rainfall and fog has led to a well-defined
gradient of xeric stress across the Namib desert [17].

Gradients of precipitation have been suggested as good systems to evaluate the impact of
precipitation on microbial communities [13]. Initial studies analysing soils across low [19]
and steep [20] precipitation gradients found that microbial diversity was not constrained by
precipitation and that water availability had a significant effect on microbial community
composition. More recent studies, however, found that both microbial diversity and
community composition are shaped by steep precipitation gradients [13, 21]. These
contrasting results call for further investigation on how precipitation regime shapes
microbial community composition and function.

In an earlier study across the Namib Desert xeric gradient [17], it was shown that both
microbial community structures and activities differed significantly between the three xeric
zones (fog, mid- and high-rainfall). Microbial community structures were inferred using T-
RFLP analysis, and their functional capacities were determined using extracellular enzyme
activity assays. The combination of these methods does not, however, provide detailed
information on the taxonomic compositions and functional attributes of those communities.
This information is important because both taxonomy and function can influence the
stability and resilience of microbial communities and their functions in the context of
climate change. For instance, highly functional redundant microbial communities should be
more functionally stable, as functional redundancy should act as a buffer against changes in
diversity and composition [22].

Here, with the use of high-throughput amplicon sequencing (targeting 16S rRNA genes), we
investigate the bacterial community diversity and composition in soils from two rainfall
zones (medium rainfall and high rainfall) across the intrinsic xeric gradient in Namib Desert.
In addition, the functional potential of those communities was assessed using shotgun
metagenomics. The working hypotheses were (1) that the taxonomic and functional
diversities would increase from the mid-rainfall zone to the high-rainfall zone due to an



increase in water availability, which also can influence nutrient availability and (2) that the
taxonomic and functional composition between the two zones would be distinct. To
investigate these hypotheses, three basic questions were addressed: Is precipitation regime
and other environmental variables associated with specific microbial taxa? Is microbial
diversity and composition altered across the two rainfall zones? Would possible changes in
community composition have a direct effect on community function?

Materials and Methods

Study Site and Sampling

Eighteen surface soil (0-5 cm) samples were collected across a west—east transect
(23°11'76.1"S 15°16'69.2"E), which spans three xeric zones (fog, mid- (MR) and high-rainfall
(HR)) [16]. Samples were collected from the mid (n =9) and high rainfall (n = 9) zones. The
total annual precipitation in the year of collection (2018) was 3 mm for the MR zone and
111 mm for the HR zone (http://www.sasscalweathernet.org/). Data collected from 1998 to
2015 corroborates the delimitation of the three zones and revealed that the rainfall
patterns of the mid- and high-rainfall zones have been stable over time [23]. Using sterile
conditions, at each site (distant ca. 10 km apart), four aliquots of approx. 50 g of soil were
taken with sterile 50-ml polypropylene Falcon tubes (Grenier, Bio-One) at 100-m spacing.
The four aliquots at each site were combined in a whirl-pack sample bag (Nasco, WI, USA) to
make a composite sample. Composite soil samples were kept at 42C, transported to the
laboratory within 5 days of collection and stored at -80 °C for molecular analysis.

Sample Preparation and DNA Sequencing

Soils were analysed for soil pH, total carbon, nitrogen, phosphorous, and major cations (K,
Na, Mg, Ca) at Bemlab, South Africa (Supplementary Table S1). Soil samples were sieved

(2 mm) and dried overnight at 50 °C. Soil pH was measured using the slurry technique (1:3
soil/deionised water) with a Crison Bench pH meter (Crison Instruments, Barcelona, Spain).
Total C and N were determined using a Truspec elemental determinator (LECO, USA). Total P
was measured using the P Bray method [24]. Salt concentrations (K*, Ca%*, Mg?*) were
measured using ammonium acetate extraction with inductively coupled plasma atomic
emission spectroscopy (ICP-OES; Spectro Genesis, Spectro Analytical Instruments GmbH,
Germany). Rainfall data were accessed from two weather stations of the SASSCAL network
(http://www.sasscalweathernet.org/) in the mid-rainfall area (Vogelfederberg station) and
the high-rainfall area (Ganab station). Metagenomic DNA was extracted from the soil
samples (n = 18), using the DNeasy Powersoil Kit (Qiagen, Valencia, CA, USA) as per the
manufacturer’s instructions. Samples were submitted for sequencing at a commercial
supplier (MR DNA Lab, Shallowater, TX, USA, http://www.mrdnalab.com). Shotgun
metagenomic sequencing was performed on a HiSeq 2500 ultra-high-throughput
sequencing system (llluminalnc., San Diego, CA, USA) using paired-ends (2 x 250 bp) for 500
cycles as per the manufacturer’s instructions.

Targeted sequencing of the 16S rRNA gene amplicons were amplified using primers 515F (5'-
GTGYCAGCMGCCGCGGTAA-3') and 806R (5'-GGACTACNVGGGTWTCTAAT-3'). Paired-end

2 x 250 bp sequencing was performed on an lllumina MiSeq instrument according to
manufacturer’s instructions (lllumina Inc., San Diego, CA, USA) with the parameters as
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described (https://support.illumina.com/16s-metagenomic-library-prep-guide-15044223-
b.pdf).

The metagenome sequence data and 16S amplicon sequence data are available on NCBI
(http://www.ncbi.nlm.nih.gov/PRINA592367).

Metagenome Assembly and Functional Annotation

Raw reads were quality filtered using FastQC [25] and trimmed using PrinSeq [26]. Reads
were assembled using SPAdes v3.12 [27], with default settings and the ‘meta’ parameter
specified. The quality of each assembled metagenome (n = 18) was assessed using QUAST
v5.0.2 [28]. Gene prediction was performed using Prodigal v2.6.3 [29] with the ‘meta’
parameter specified. The protein files from the gene prediction were then used for
functional annotation. The functional annotation was carried out using two approaches.
First, assembled contigs were uploaded and annotated with the Metagenomics Rapid
Annotation using SEED Subsystems (MG-RAST) pipeline version 4 [30]. Broader functional
pathways were generated using the SEED database (SEED levels 1 to 3), and frequency
values of the hits of each individual subsystem for each metagenome were normalized
before statistical analysis. Second, protein families were annotated using the pFam database
[31]. For this, the prodigal protein files were scanned against Interpro’s database (which
houses member database signatures such as pFam) using the InterProScan software [32],
which uses Hidden Markov Models (HMM) allowing for a high quality alignment. The latter
approach was followed because it has been reported that MG-RAST does not apply very
stringent thresholds (e.g. e-value < 1.0e-5 and identity > 60%), and therefore annotation
lacks specificity at the individual functional level [33].

Amplicon Sequencing Analysis

Sequence reads were demultiplexed using Sabre (https://github.com/najoshi/sabre) and
primers and barcodes were removed using Cutadapt [34]. Amplicon sequence variants
(ASVs) were resolved using DADA?2 version 1.14 [35] in R version 3.3 [36]. Quality filtering
was done using the following parameters: MaxEE = (2,2), truncLen = (220, 200), with all
other parameters were set to default. The error rates were estimated by learnErrors and
sequences were dereplicated using derepFastq with default parameters.
removeBimeraDenovo was used to remove chimeric sequences. Taxonomy was assigned
against the Silva non-redundant database version 138 (https://www.arb-silva.de). The
resulting taxonomy and read-count tables constructed in DADA2 were imported into
phyloseq [37] for downstream analysis.

Data Analyses

The analyses were done in R [36] v3.3 using the packages phyloseq [37], microbiome [38],
tidyverse [39], vegan [40] and metacoder [41]. Richness and Shannon diversities were
calculated using the vegan package [40]. Faith’s phylogenetic diversity (PD) was calculated
using the picante package [42]. Taxonomic (ASVs) and functional (SEED level 3) community
data were Hellinger-transformed, and both the Bray—Curtis and normalized UniFrac distance
measures were used to generate dissimilarity matrices. The correlation between taxonomic
and functional dissimilarities was assessed using a Mantel test. The differences in
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community composition and function, and environmental conditions were visualised using
Principal Coordinates Analysis (PCoA) and Principal component analysis (PCA), respectively.
A permutational analysis of variance (PERMANOVA) was carried out to test for differences in
composition between habitats (mid-rainfall and high-rainfall) using the ‘adonis’ function in
vegan. In order to test for differences in composition within habitats, a test for homogeneity
of multivariate dispersions (PERMDISP) was done using the ‘betadisper’ function in vegan.
The effect of environmental conditions in explaining variation in microbial community
structure was assessed by distance-based Redundancy Analysis (db-RDA). To assess the
ASVs that differed in relative abundance between the two rainfall zones, generalized linear
models implemented in DESeq2 [43] were used. For the analysis of ecotypes, the ASVs were
clustered into 97% similarity OTUs using the Opticlust algorithm [44] with Mothur [45].

To determine the statistical differences between the functional profiles of the two climatic
zones, the Statistical Analysis of Metagenome Profiles (STAMP) software was used [46]. The
table of frequency of hits generated by the SEED database was used as the input file (at
levels 1 and 2). The P values were calculated using the Welch’s t test [47, 48] and corrected
for multiple comparisons using Benjamini—Hochberg false discovery rate [49]. The alpha
diversity metrics for the functional profiles were calculated using SEED level 3. In order to
better understand the relationship between taxonomy (at the class level) and function
(SEED level 2), network analysis was used. To this end, all possible Spearman’s rank
correlation coefficients were calculated. Only correlations with p > 0.8 and P values < 0.01
were selected. We included only the positive correlations in the results because we were
interested in those taxa that could potentially perform specific functions. The nodes in the
reconstructed network represent taxonomical or functional groups and the edges represent
significant correlations between the nodes [50]. The networks were visualized using Igraph
[51]. Core functions were assessed using protein domain families generated by the pFam
database and defined as those present in 95% of samples and at > 0.01% of cumulative
relative abundance. The core functional profile was represented by a heatmap that was
created using the ComplexHeatmap [52] package in R.

Results

Soil Chemistry and Climate

Physicochemical analysis showed low nutrient levels in all samples for most of the measured
parameters (Supplementary Fig. S1). Statistically significant changes were observed for Ca
and Na, which were both higher in the mid-rainfall zone (Kruskal-Wallis x* = 7.7-10.1;

p <0.05), while C, P, NHs and mean annual precipitation were higher in the high-rainfall
zone (Kruskal-Wallis x> = 5.7-13.1; p < 0.05). PERMANOVA analysis showed a clear
distinction in abiotic factors between the two rainfall zones (PERMANOVA: F ratio = 7.97,

P <0.001).

Soil Taxonomic Profiles

A total number of 667 353 reads were obtained (averaging 37 075 reads per sample),
resulting in 4 366 ASVs. Of those, 1 047 (24% of the ASVs) were shared between the two
zones, while 2 043 (47%) were unique to the high-rainfall zone and 1 276 (29%) were unique
to the mid-rainfall zone (Supplementary Fig. S2).
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The overall taxonomic analyses showed a total of seventeen phyla present across the two
zones, with thirteen phyla showing relative abundances greater than 1% (Fig. 1a).
Proteobacteria with a mean relative abundance of 28% (+ 5% SD) dominated the soils in
both rainfall zones, followed by Actinobacteriota (22% + 8%), Bacteroidota (19 + 8%) and
Acidobacteriota (7 £ 3%). A relatively low abundance of Firmicutes (4 + 5%),
Verrucomicrobiota (3% + 1%), and Abditibacteriota (3% + 2%) was found; with
Crenarchaeota (6% * 3%) as the dominant archaeal group. A significant increase in the
relative abundance of Acidobacteriota (Fig. 1b) from the mid-rainfall to the high-rainfall
zone was noted (Kruskal-Wallis x2 = 10.4; P < 0.05), while the other phyla were equally
distributed between the two rainfall zones.
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Fig. 1. Relative abundance of the major phyla based on 16S rRNA gene sequences in both rainfall zones (a),
showing the significant increase of Acidobacteriota (KW, P < 0.05) in the high-rainfall zone (b). HR high-rainfall,
MR mid-rainfall

Using DESeq we found that 86 ASVs differed in abundance between the two zones (Fig. 2).
53 ASVs increased significantly in the high-rainfall zone compared with the mid-rainfall zone.
The largest increase (a 9.76 log-fold change) belonged to ‘Candidatus Nitrosphaera’, phylum
Crenarchaeota. Other ASVs that were more abundant in the high-rainfall zone were
members of the genera Bryobacter (Acidobacteriota) and Chlorogloeopsis PCC - 7518
(Cyanobacteria). In contrast, 33 ASVs decreased significantly in the high-rainfall zone
compared with the mid-rainfall zone. The largest decrease (a 10.02 log-fold change) was
seen within the genus Adhaeribacter (Bacteroidota). By clustering of the 86 ASVs into OTUs
(97% identity cut-off), it was found that several of these OTUs were composed of different
ASVs with specific preferences for one of the two rainfall zones (Supplementary Table S2).
For instance, OTU-02 (belonging to the genus Adhaeribacter, phylum Bacteriodota) was
represented by 3 different ASVS: ASV-170 and ASV-57, more abundant in the mid-rainfall
zone, and ASV-307, more abundant in the high-rainfall zone.
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Sources of Community Variation

Based on the 16S rRNA gene sequence data, alpha-diversity (richness, Shannon and
Faith’s phylogenetic diversity (PD)) was not significantly different between the two zones
(Kruskal-Wallis; P > 0.05). Principal coordinate analysis (PCoA) using Bray—Curtis
dissimilarities after Hellinger transformation showed that the high-rainfall zone harbored
different prokaryotic communities than the mid-rainfall zone (PERMANOVA: F ratio = 3.6,
P <0.001) (Fig. 3). Comparable results were obtained using normalized weighted UniFrac
distances (Supplementary Fig. S3). Thus, hereafter, we used Hellinger-transformed Bray—
Curtis distances. Importantly, communities from the high-rainfall zone were considerably
more variable in their ASVs composition than communities from the mid-rainfall zone
(PERMDISP: F ratio = 8.5, P <0.01). Using distance-based redundancy analysis (db-RDA), it
was observed that community composition was largely driven by the rainfall zone and the
levels of phosphorous and nitrate, which together explained 38% (18% rainfall zone, 11%
phosphorus and 9% nitrate) of community variation (Supplementary Fig. S4).
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Fig. 3. PCoA ordination of Bray—Curtis distances (after Hellinger transformation) between microbial
communities in the mid-rainfall (MR) and high-rainfall (HR) zones (PERMANOVA: F ratio = 3.6,
P<0.001)

Soil Functional Profiles

The number of sequence reads per metagenome ranged from 9 868 998 to 11 726 910

(10 632 908 on average). Using MG-RAST SEED level 3 data, richness was not significantly
different between the two zones (Kruskal-Wallis; P < 0.05). However, Shannon diversity,
which includes richness and evenness information, showed an increase in the high-rainfall
zone (Kruskal-Wallis; P> 0.001). The Bray—Curtis distances (beta-diversity) after Hellinger
transformation were determined for the functional profiles (SEED level 3), ordinated
through Principal Coordinate Analysis (PCoA) and the differences between the two zones
were tested using PERMANOVA analysis. The results showed that the high-rainfall zone
harbored different functional profiles than the mid-rainfall zone (PERMANOVA: F ratio = 3.5,
P <0.005) (Fig. 4).
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profiles (SEED level 3) in the mid-rainfall (MR) and high-rainfall (HR) zones (PERMANOVA: F
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At the top SEED level (level 1), the subsystems ‘sulphur metabolism’, ‘metabolism of
aromatic compounds’, ‘regulation and cell signalling’, ‘motility and chemotaxis’ and
‘virulence, disease and defence’ were more abundant in the high-rainfall zone compared
with the mid-rainfall zone (Welch'’s t tests P < 0.05, Fig. 5(a)). In contrast, the subsystems
‘Nucleosides and nucleotides’ and ‘clustering based subsystems’ (i.e. protein biosynthesis,
ribosomes and recombination related clusters) were more abundant in the mid-rainfall zone
(Welch’s t tests P < 0.05). Subsystems relating to dormancy and sporulation were present in
very low abundance and did not differ between the two zones. In addition, several
subsystems related to stress were identified in higher abundance but they did not differ
significantly between the two zones. At SEED level 2 (Fig. 5(b)), the mid-rainfall microbiomes
showed an increased abundance of functional groups responsible for carbohydrate
fermentation and secondary functions such as resistance to antibiotics and toxic compounds
(Welch’s t tests, P < 0.05), while the high-rainfall microbiomes were more enriched in DNA
replication and protein synthesis functions (Welch’s t-tests, P < 0.05).



(@)

Nucleosides and Nucleotides

Clustering-based subsysti
Viirulence Disease and Defense
Sulfur Metabolism
Motility and Chemotaxis
Regulation and Cell signaling
Metabolism of Aromatic Compounds
Fatty Acids Lipids and Isoprenoids
Iron acquisition and metabolism
Secondary Metabolism
Respiration
Protein Metabolism
Miscellaneous
Cell Division and Cell Cycle
Potassium metabolism
DNA Metabolism
Mitrogen Metabolism
Phages Prophages Transposable elements Plasmids
RNA Metabolism
Cofactors Vitamins Prosthetic Groups Pigments
Phosphorus Metabolism
Amino Acids and Derivatives
Membrane Transport
Dormancy and Sporulation
Carbohydrates
Stress Response
Cell Wall and Capsule
Photosynthesis

HR MR

(b)

Putative Isoquinoline l-oxidoreductase subunit

95% confidence intervals

r
0.0

T r T
14.2 -0.4 -0.2

T
0.0 02

2.48e-3
3.12e-3
3.77e-3
3.10e-3
3.88e-3
9.06e-3
0.013
0.071
0.065
0.101
0.096
0.089
0.085
0.080
0.084
0.079
0.137
0.138
0.159
0.208
0.230
0.408
0.458
0.475
0.505
0.495
0.551
0.593

g-value (corrected)

Mean proportion (%) Difference in mean proportions (%)

Cytochrome biogenesis =

Coenzyme F420

Fatty acids

Alpha-proteobacterial cluster of hypotheticals
Resistance to antibiotics and toxic compounds
Protein and nucleoprotein secretion system Type IV
Pyrimidines

DNA recombination

Organic sulfur assimilation
Ribosomal Protein L28P

Antiporters

Arginine urea cycle polyamines
Aminosugars

Polysaccharides

Protein secretion system Type Il
Pyridoxine

Molybdopterin oxidoreductase
Siderophores

Clustering-based subsystems
Putrescine/GABA utilization cluster
Plasmid related functions

Protein processing and modification
DNA replication

Purines

Riboflavin FMN FAD

Toxins and superantigens
Phosphate metabolism

Flagella protein

Fermentation

Triacylglycerols

Periplasmic Stress

_—

HR MR

95% confidence intervals

9.38e-3
0.020
0.013
0.021
0.017
0.015
0.013
0.021
0.021
0.021
0.020
0.021
0.020
0.021
0.022
0.025
0.033
0.033
0.037
0.038
0.040
0.040
0.043
0.048
0.047
0.046
0.048
0.048
0.048
0.047
0.048
0.047

T
0.0

T
2.5

T
0.2

Mean proportion (%) Difference in mean proportions (%)

10

g-value (corrected)



Fig. 5. Relative abundance of functional categories for the high-rainfall (MR) and mid-rainfall (HR)
zones. (@) SEED subsystem level 1 and (b) SEED subsystem level 2. Statistical differences of the
functional profiles were determined using Welch’s t tests in STAMP. Corrected g values were
calculated using the Benjamini—-Hochberg false discovery rate

Core Functional Profile

Core functions were defined as those present in 95% of the samples and at > 0.01% of
cumulative relative abundance (Supplementary Fig. S5). As expected, the predicted core
functional profile revealed a relatively high abundance of protein families linked to general
housekeeping functions (i.e. DNA repair, cellular regulation, protein biosynthesis) (3, 2 and
2% relative abundance). Proteins involved in general homeostasis functions of the soil
system (nutrient and energy metabolism) were also detected (13%), as well as the presence
of general stress response (7%) and oxidative stress (5%) protein families.

Relating Microbial Taxonomy and Function

For alpha-diversity, taxonomic richness and phylogenetic diversity were positively correlated
with functional diversity (Spearman p =0.7, P<0.001 in both cases); however there were no
positive correlations with Shannon diversity. Likewise, changes in microbial community
composition were positively correlated with changes in microbial community function
(Mantel p=0.6, P<0.001).

Network analysis showed that the networks for the two rainfall zones were substantially
different (Fig. 6). Overall, the number of positive correlations was higher in the mid-rainfall
compared with high-rainfall zone. In the mid-rainfall zone, the network presented 97 nodes
and 153 edges; while for the high-rainfall zone, the network had 104 nodes and 118 edges.
For the mid-rainfall zone, Planctomycetes (0.9% relative abundance), Rubrobacteria (9.7%),
Chloroflexia (1.9%) and Vicinamibacteria (0.1%) were the classes that were positively
correlated with more functions, whereas Alphaproteobacteria (24.7%), Entotheonellia
(0.04%), Actinobacteria (8.2%) and Rubrobacteria (6.3%) were the microbial classes that
were positively correlated with more functions in the high-rainfall zone.
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Fig. 6. Networks based on correlation analysis (Spearman’s p > 0.8, P < 0.01) with the taxonomic and
functional profiles in the mid-rainfall (MR) and high-rainfall (HR) zones. Red nodes indicate
taxonomic affiliation (at the class level) and blue nodes indicate functional categories based on
subsystems at level 2 (SEED database). The size of the nodes is proportional to the number of
connections (degree). (1) Alphaproteobacteria, (2) Entotheonella, (3) Actinobacteria, (4)
Rubrobacteria, (5) Myxococcia, (6) Planctomycetes, (7) Longimicrobia, (8) Thermoleophilia, (9)
Chloroflexia, (10) Vicinamibacteria, (11) Nitrospira, (12) Gammaproteobacteria, (13) Acidimicrobiia
and (14) Bacteroidia

Discussion

The Effect of the Environment on the Diversity of the Soil Microbiome

The physicochemical soil analysis revealed low nutrient levels comparable with other
studies performed in the region [14, 17, 53]. The levels of Ca?* and Na?* decreased
significantly from the mid-rainfall to the high rainfall zone. Since the Namib is a coastal
desert, salt aerosol deposition is expected to decrease from the coast inland [54].
Conversely, the content of C, P and NH4* were higher in the high-rainfall zone. These
observations in combination with the PERMANOVA results support the conclusion that the
two zones have contrasting environmental conditions and that the high-rainfall zone
appears to support more benign conditions.

The ubiquitous presence of phyla such as Proteobacteria, Actinobacteriota, Bacteroidota
and Acidobacteriota across the two zones was expected, as these phyla have been
consistently reported in studies across the Namib Desert [55,56,57,58] and seem to be
among the most dominant in soil bacterial communities worldwide [59]. Interestingly,
Acidobacteriota were over-represented in the high-rainfall zone compared to the mid-
rainfall zone. This pattern has been observed in other studies [60,61,62] and appears to be
related to the alteration of nutrient pools in the soil, for example, after precipitation events
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[61]. However, in addition to nutrient availability, other factors such as microbial
interactions (e.g. competition) may contribute to the abundance of Acidobacteriota.

There were no significant differences (at the ASV level) in alpha-diversity (richness, Shannon
and Faith’s phylogenetic diversity) between the two zones. Thus, rejecting the initial
hypothesis that microbial diversities would increase from the mid-rainfall zone to the high-
rainfall zone. These findings are in agreement with those from a recent experimental study
[63], suggesting that an increase in precipitation does not always result in higher microbial
diversity. However, these results were in contrast with results from Scola et al. (17), who
found that alpha diversity increased from the coast inland. This study employed T-RFLP
analysis which, although a reliable technique, may have not detected fine scale changes in
bacterial community diversity [64]. The results presented here also indicate that the
microbial diversity of these soils is not affected by salt levels. More likely, the narrow range
in precipitation differences in these study sites contributed to the pattern observed.
However, the structure and composition (beta-diversity) of the microbial communities were
significantly different between the two zones.

The distance-based redundancy analysis revealed that in addition to precipitation regime, P
and NOs* were other important factors shaping microbial community composition. This is
not unexpected, as it is well known that the levels of nitrogen and phosphorous commonly
shape the composition and structure of microbial communities in soils [65, 66] and other
ecosystems [67]. Furthermore, the decrease in beta-diversity among the microbial
communities from the mid-rainfall zone might be an indication of biotic homogenization
[68], the process by which the similarity of communities increases over time and/or space.
Biotic homogenization can occur, for instance, in harsher environmental conditions because
a substantial proportion of the regional species pool can be filtered out due to niche-
selection [69]. Indeed, the mid-rainfall zone seems to contain fewer microbial ASVs
compared with the high-rainfall zone (2 323 ASVsumr vs 3 090 ASVsug). In addition, higher
productivity due to higher nutrient levels and/or heterogeneities in one or more
environmental factors might have led to more divergent communities in the high-rainfall
zone [68, 70].

We detected differences in the abundances of several ASVs between the two rainfall zones.
For instance, seven ASVs belonging to the genus Bryobacter (phylum Acidobacteriota) were
more abundant in the high-rainfall zone compared to the mid-rainfall zone. This could be
due to the relatively higher levels of carbon in these soils compared to mid-rainfall soils, as
members of this genus are known to degrade plant-derived polymers such as cellulose [71].
The increased abundance of Chlorogloeopsis PCC — 7518 (Cyanobacteria) in the high-rainfall
zone could be attributed to the increased levels of phosphorus in this zone. Many
cyanobacteria fix nitrogen, which requires high levels of energy and therefore P (e.g. ATP).
Conversely, the mid-rainfall zone was enriched with ASVs within the genus Rubrobacter and
Solirubrobacter (both from the phylum Actinobacteriota). Members from these genera were
also abundant in the driest locations in other desert studies [21, 63]. Several strains of
extremophilic Rubrobacter have been shown to express classic phenotypes of UV- and y-
radiation and desiccation resistant bacteria [72]. In addition, some Rubrobacter have
mechanisms which aid in the resistance of water deficits in soils, such as the increased
production of enzymatic systems that counteract the production of reactive oxygen species
(ROS) under drought [73].
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Interestingly, several OTUs (e.g. OTU-02 belonging to the genus Adhaeribacter, phylum
Bacteriodota) were composed of many ecotypes (ASVs). Different ecotypes of a species
(OTUs) seem to be adapted to different values of environmental factors such as available
water, carbon and phosphorus concentrations, and the presence of ecotypes within a
species (microdiversity) has been proposed as a mechanism to promote functional stability
under changing environmental conditions [73]. This is important for desert ecosystems, as
they are extremely sensitive to global climate change.

Soil Functional Profile

Overall, the functional profile of these soils is consistent with reports from other studies
carried out in hot deserts [74, 75]. Expectedly, the core functional profile included a
relatively high abundance of protein families linked to general housekeeping functions (i.e.
DNA repair, cellular regulation), which play important roles in maintaining the basic
metabolism of bacterial cells for survival. Core protein families responsible for nutrient and
energy metabolism were also reported, suggesting that these communities have a higher
degree of metabolic flexibility, which could result in communities that are more resilient
[76]. Unexpectedly, genes relating to dormancy and sporulation in these soils were in very
low abundance. This is in contrast to other studies that detected a high abundance of gene
categories relating to dormancy and sporulation due to the ecological selection of moisture
stress and frequent drying and rewetting cycles typical to desert environments [8, 77]. A
possible explanation for this observation is that those taxa associated with functions relating
to dormancy and sporulation may be present in low abundance.

In hot desert soils, microbial community members are exposed to high levels of irradiation,
low levels of water, wide temperature fluctuations and desiccation [1, 3], which results in
high levels of biotic stress. Stress forces microbes to shift resource allocation, which can
alter the C and N flows imposing considerable influences on ecosystem functioning [78].
Indeed, several core protein families relating to stress response and subsystems (SEED level
2) involved in coping with stress (i.e. oxidative, osmotic, heat and cold shock stress) were
found in the soil metagenomes of the two zones and in the same proportion. This suggests
that the microbes from the two zones have probably developed similar adaptation
mechanisms to thrive in these stressful environments [79], for instance, cold shock proteins
which are usually produced in response to a rapid decrease in temperature can also
contribute to osmotic and oxidative stress tolerance [80].

One of the most noticeable differences between the microbial communities of the high-
rainfall and mid-rainfall zones was the differential abundance of genes involved in
‘resistance to antibiotics and toxic compounds’ (SEED level 2). These genes were more
abundant in the high-rainfall zone compared with the mid-rainfall zone. This pattern might
reflect increased competition in the high-rainfall zone as this zone presents higher moisture
and nutrient levels, which might result in a more benign environment. Competition is
hypothesized to be more intense in more benign environments, compared with more
stressful environments in which cooperation should be more common [81, 82].

Several microbial classes that showed more positive correlations with functional categories
(e.g. Entotheonella and Nitrospira) were found in very low abundance. Microorganisms that
occur in very low abundance are referred to as the ‘rare biosphere’ [83]. Members of the

14



rare biosphere can become abundant under the appropriate conditions and some have
been shown to drive key processes in biogeochemical cycles [84]. In this study several rare
taxa seem to have the potential to perform many functions. This suggests that the
functional redundancy provided by rare taxa might contribute to ecosystem resilience in a
scenario of global change.

Coupling Between Taxonomy and Functional Potential

The relationship between microbial community composition and functional potential is
largely unknown [85]. One of the first comparative metagenomics studies of soil microbial
communities [8] showed that functional profiles were highly correlated with taxonomic
profiles; that is, that taxonomy and function were coupled. In contrast, other studies [86,
87] point out to a decoupling between these two components of microbial diversity, due to
high functional redundancy (the coexistence of multiple distinct taxa capable of performing
the same biochemical function) in soil microbial communities. Adaptive gene loss,
convergent evolution and lateral gene transfer can result in the wide distribution,
phylogenetically speaking, of many traits [88].

In this study, a significant correlation (coupling) between microbial and functional potential
diversity was observed, at both alpha and beta diversity levels. Therefore, in this system the
microbial functional potential appears to be largely determined by microbial community
composition. Although individual functions may not necessarily be correlated with
community structure (e.g. due to horizontal gene transfer), these results indicate that the
overall functional profiles of these microbial communities seem to be predictable, at least to
a certain extent, from the taxonomic community profiles.

Conclusion

The main objective of this study was to investigate whether precipitation regime affected
microbial communities in terms of diversity, composition and function. Precipitation regime
had no effect on microbial taxonomic alpha-diversity which rejects the initial hypothesis
that microbial diversities would increase from the mid-rainfall zone to the high-rainfall zone.
However, the composition (e.g. significant increase of Acidobacteriota in the high-rainfall
zone) and function (e.g. increase in ‘resistance to antibiotics and toxic compounds) of
microbial communities differed between the two zones in response to precipitation regime
(and likely other environmental factors), confirming the second hypothesis. Additionally, the
decrease in beta diversity in the mid-rainfall zone could be due to biotic homogenization in
response to the harsher environmental conditions (i.e. lower rainfall and nutrients).

Furthermore, the changes in microbial community and function were governed by a narrow
range of taxa including several that were rare, pointing out to an important role of the rare
biosphere in ecosystem resilience. Overall, this study demonstrates that microbial functional
potential appears to be largely determined by microbial community composition, and that
the taxonomic and functional profiles of desert soil microbial communities are strongly
influenced by precipitation. This is important in the context of climate change, which is
expected to alter precipitation patterns (precipitation events are predicted to become more
extreme but less frequent). This, in turn, will likely affect the biogeochemical processes
linked to desert soil microbial communities.
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