
EPiC Series in Computing

Volume 85, 2022, Pages 36–47

Proceedings of 43rd Conference of the South African Insti-
tute of Computer Scientists and Information Technologists

Memory Requirements for the Detection of Impostor Nodes

in Wireless Sensor Networks∗

Stefan Gruner†, Dylan Krajnc‡, Johan Pieter van Rooyen§

Department of Computer Science
University of Pretoria

Republic of South Africa

Abstract

This paper shows how it is at least in principle possible to detect impostor nodes in
wireless sensor networks with a quite simplistic detection algorithm by purely statistical
means and merely from external observation without any knowledge of the impostor’s inter-
nal composition. This method, however, requires considerable volumes of internal memory
for any WSN node on which such detection algorithms are supposed to be implemented.

Keywords: Wireless Sensor Networks ·WSN Reliability ·WSN Integrity ·WSN Safety
and Security · WSN Trustworthiness · Node Replication Attacks · Intrusion Detection ·
Probabilistic Finite Automata · Randomised Detection Algorithm · Detection Accuracy ·
Memory Requirements

1 Introduction

Because wireless sensor networks (WSN) communicate by means of radio waves amongst their
member nodes, it is possible (at least in principle) for any hostile 3rd party to smuggle an
impostor node into such a WSN: such an event is called a node replication attack [13]. The
purpose of such a maliciously infiltrated impostor node could be the theft of valuable data from
the WSN, and/or the ‘feeding’ of the WSN with wrong, misleading, confusing or disturbing
pseudo information.

To remain undetected as long as possible, the impostor must act as similarly as possible
as all the other nodes of the WSN, though from time the impostor must also clandestinely
communicate with some hostile ‘kingpin’ (outside the WSN) in order to exfiltrate the stolen
data. Due to this additional clandestine activity of the impostor, there should be a tiny but
nonetheless observable statistical difference between the ‘behavioural pattern’ of the impostor
node in comparison against the ‘behavioural pattern’ of the WSN’s genuine nodes. Without

∗This paper is based on two preliminary (unpublished) academic project reports prepared by the two co-
authors under the guidance of the corresponding author. We dedicate our work to the memory of our late
colleague Patricia Lutu, †May 2022.

†Corresponding author: E-mail sg@cs.up.ac.za, OrcID 0000-0001-6008-6123
‡E-mail dylan.krajnc@tuks.co.za
§E-mail johan.vanrooyen@tuks.co.za

A. Gerber (ed.), SAICSIT 2022 (EPiC Series in Computing, vol. 85), pp. 36–47

sg@cs.up.ac.za
dylan.krajnc@tuks.co.za
johan.vanrooyen@tuks.co.za

Detection of Impostor Nodes in WSN Gruner, Krajnc and van Rooyen

any such difference the impostor would remain theoretically undetectable by the genuine nodes
of the WSN. However, because the observable difference between the behaviour of the impostor
and the behaviour of the genuine nodes is only tiny, the question arises for how long (how much
time) the impostor must be observed before the difference gets statistically significant enough
to arouse the ‘suspicion’ of the WSN’s genuine nodes. Because of the close correlation between
‘time’ and ‘space’ in matters of computation, the above-mentioned question can be transformed
into the question of how much memory (internal storage) a genuine WSN node needs in order
to be able to store a long-time observation ‘trace’ from which a ‘suspicion’ can arise with high
plausibility and reliability. This is the question with which we are dealing in this paper.

However because the externally observable behaviour of WSN nodes is in principle non-
deterministic any answer to such a question can merely be a statistical answer without any
absolute certainty — though hopefully still without too many false-positive α-errors (‘friend’
node wrongly suspected to be an impostor) as well as without too many false-negative β-errors
(impostor node wrongly accepted as ‘friend’).

The remainder of this paper motivates and explains the models and methods by means of
which we tentatively tackled the above-mentioned problem, presents and discusses the results
we obtained from the experiments which we designed on the basis of those considerations, and
points to various possibilities of further improving our models, methods, techniques and results
in ‘future work’. Some ‘related work’ is briefly recapitulated in the semi-final section before the
conclusions.

2 Method

2.1 The Casino Analogon

Due to the well-known law of the large numbers in stochastics [25], we know that any growing
sequence of random numbers approaches its ‘average’ expectation with certainty if those ran-
dom numbers belong to a random distribution for which a stochastic expectation value exists
at all. In a fair gambling casino, for example, in which dice games are played with dices of six
faces (that are showing the numbers 1 . . . 6),

• a fair dice must show each of its six faces with the same probability p = 1
6 ,

• and the theoretical expectation value of such a setting is 1+···+6
6 = 7

2 = 3, 5.

In such a context, the well-known law of the large numbers tells us that for a growing sequence of
fair dice rolls the actually observed average value of the sequence must approach the theoretical
expectation value (which indeed exists for the probability distribution of this example) with
certainty — in other words:

lim
n → ∞ [f1+···+fn

n]
!
= 3,5

where each fi ∈ {1 . . . 6} is a face of the dice (∀i ∈ {1 . . . n}). This law thus enables the
croupier of the casino to determine empirically and with ever growing confidence whether any
given unknown dice is fair, because for an unfair dice (for which ∃ux, uy ∈ {1 . . . 6} with ux ̸= uy

and p(ux) ̸= p(uy)) the croupier will detect necessarily that

lim
n → ∞ [u1+···+un

n] ̸= 3,5

37

Detection of Impostor Nodes in WSN Gruner, Krajnc and van Rooyen

although an epsilon-small ‘residue of uncertainty’ will always remain for any finite n < ∞.
To bridge the conceptual gap between this casino scenario with its fair versus unfair dices, we

show briefly how such a dice (with its observable faces) can be modelled as a probabilistic finite
automaton (PFA) or stochastic finite automaton (SFA) that has —in this casino example—
only one internal state (d, as the dice is a solid object without any internal mechanism) and six
transitions from that internal state to itself.1

In the subsequent sections of this paper we also model WSN nodes in the form of such SFA
— albeit with more than one internal state and different transitions between them. The formal
definition of such SFA is well-known [20], and it is also known that such stochastic ‘machines’
are to some extent identifiable or ‘learnable’ (albeit only with considerable computational dif-
ficulties) by means of Artificial Intelligence techniques on the basis of nothing more than the
external observation of the empirically observable ‘words’ which such SFA ‘emit’ to public vis-
ibility while they internally ‘hop’ probabilistically from internal state to internal state [20]. If
two different SFA, A′, A′′, correspond structurally to the same DFA [5], A, then their ‘pure’
languages are all the same: L(A′) = L(A′′) = L(A), though their individual words have different
probabilities in the cases of A′ versus A′′ (whereas the words of A do not have any probabilities
at all). Thus, ∃w ∈ L(A): pA′(w) ̸= pA′′(w), such that (due to the above-mentioned law of the
large numbers) the difference between A′ and A′′ will be empirically observable after a suffi-
ciently long duration of observation even if the internal structures of those machines remain
hidden and unknown.

In our motivating casino scenario, the fair dice corresponds obviously to the one-state SFA
with the following transition table (1),

Table 1

σ ∈ Σ current state transition probability successor state

‘1’ d p d
‘2’ d p d
‘3’ d p d
‘4’ d p d
‘5’ d p d
‘6’ d p d

with all p = 1
6 , whereas the transition table of the SFA of any unfair dice must have at least

two rows in which p′ ̸= p′′. As we are interested in observing visible output ‘streams’ (words)
of arbitrary length, it is irrelevant for the purposes of this paper whether any state s of a given
SFA is an ‘accepting’ state; (alternatively: every state is an ‘accepting’ state).

2.2 SFA Models of WSN Nodes

From the concrete WSN node example of [30] we have abstracted the formal structure of a
finite automaton the transition table of which is shown below (2). Thereby we followed the
method of abstraction described in [29]. On the basis of [30] our finite automaton of a ‘normal’

1The theory of probabilistic automata (with its many decidability or undecidability results) is well established
at least since the early 1960s [27]. Equally well known is the close theoretical relationship between such automata
and Markoff chains [14] via the concept of Markoff automata [18], such that already available stochastic and
statistical analysis techniques for Markoff chains [9][24](Ch. 2) can be made fruitful for the theoretical analysis
of probabilistic automata, too. The discussion of such statistical methods themselves, such as (for example) the
χ2 adaptation test that constructively establishes a notion of statistical ‘significance’ [10], cannot be included
into the scope of this paper.

38

Detection of Impostor Nodes in WSN Gruner, Krajnc and van Rooyen

WSN node has the following seven internal (un-observable) states: q0 start state ‘sleeping’, q1
‘announcing’, q2 ‘listening’, q3 ‘forwarding foreign message type <A>’, q4 ‘forwarding foreign
message type <C>’, q5 ‘processing’, and q6 ‘sending own message’. Thus: at each time-unit,
the node does something. This ‘doing’ is represented by a state transition in the SFA which
models the node. Moreover, each transition is associated with an observable output symbol.
Thus, a period of stochastic operation of a node is represented by a word produced by the SFA.
In other words, each random word is a description of the observable behaviour of a node over
a finite period of time.

For our automaton’s alphabet Σ, the symbols of which represent the node’s externally observ-
able communication events, we also consulted [6] in which the various types of distinguishable
messages (including their header parts, their body parts, their closure parts) are described. In
our alphabet we have the following six ‘visible’ symbols: ah ‘header of a message of type <A>’,
ab ‘body of a message of type <A>’, ac ‘closure of a message of type <A>’, ch ‘header of a
message of type <C>’, cb ‘body of a message of type <C>’, and cc ‘closure of a message of
type <C>’, whereby <A> represents some ‘announcement’ message and <C> represents some
message about some ‘sensor event’.

Moreover, in our model-design the special symbol ϵ ∈ Σ represents one time-unit of silence
during which the node is internally busy without emitting any message. Though the node
does not emit anything during that period of time, the phenomenon of its silence is externally
observable, too, which justifies our model-design of a specific symbol for this phenomenon. For
example: the string ‘ϵϵ’ represents the observable passing of two time-units of silence. For the
conceptual purposes and the research questions of this paper the actual ‘physical’ duration of
‘one unit of time’ is not relevant.

Table 2

σ ∈ Σ current state transition probability successor state

ϵ q0 0.9 q0
ah q0 0.1 q1
ab q1 0.9 q1
ac q1 0.1 q2
ϵ q2 0.6 q0
ϵ q2 0.1 q1
ϵ q2 0.1 q2
ah q2 0.1 q3
ch q2 0.05 q4
ϵ q2 0.05 q5
ac q3 0.1 q2
ab q3 0.9 q3
cc q4 0.1 q2
cb q4 0.9 q4
ϵ q5 0.1 q2
ϵ q5 0.8 q5
ch q5 0.1 q6
cc q6 0.1 q2
cb q6 0.9 q6

The probability values (0 ≤ pi ≤ 1) attached to the various transitions of our automaton could
not be retrieved from any of the above-mentioned papers [6][29][30]. At that point we had to

39

Detection of Impostor Nodes in WSN Gruner, Krajnc and van Rooyen

apply some ‘common sense’ intuitively in order to arrive at a reasonable and plausible formal
model.2 As far as the observable behavioural difference between a normal member node and
an impostor node in a WSN is concerned, we assumed that the impostor ‘wants’ to imitate the
observable behaviour of regular nodes as perfectly as possible whilst also having to communicate
confidentially with some ‘kingpin’ outside the WSN (on a different radio frequency for which
the regular WSN nodes do not have any sensor). Thus, from the perspective of a regular WSN
node, the impostor’s hidden communication with the ‘kingpin’ is quasi-‘observable’ only in the
form of some time-units of silence (ϵ). For these reasons, the formal models of the regular node
and the impostor node differ mainly in the transition probabilities of the ϵ transitions and only
little in the transition probabilities of the ‘visible’ communication events which the impostor
‘wants’ to imitate as best as possible. Structurally, the transition table of the impostor node
is the same as the transition table of the normal node; due to shortage of page space in this
paper we do not print this similar impostor table here.

This smallness of the differences between the automata models of the regular node and the
impostor node (which vary numerically in the various series of our experiments: see below) will
considerably challenge our following decider algorithm.

2.3 The Decider Algorithm

Because our decider algorithm makes a statistical comparison between an actually received in-
put word and a (pseudo)-randomly generated reference word, which is created from an output
stream that represents the series of a specific node’s most recent actions, the (pseudo)-random
number generator called by the decider algorithm must be of high ‘randomness’ quality; oth-
erwise the statistical comparison between the input word and the reference word would yield
unreliable decisions on the basis of spurious correlations resulting from ‘instrumental artefacts’.
After several preliminary tests, the Julia implementation of Xoroshiro128+, version 1.5.3,3 was
found good enough and was thus chosen for the subsequent experiments.

Algorithm A

PROC DetectImpostor(A: word_received)

{ n := length(A)

B := randomGenerateInternalWord(n)

positiveSignals := 0

FOR(k = 1...n)

{ subStrA := firstSymbols(A,k)

subStrB := firstSymbols(B,k)

tabA := generateFreqTable(subStrA)

tabB := generateFreqTable(subStrB)

signif := calcChiSquare(tabA,tabB)

IF(signif > criticalVal)

{ increment positiveSignals } }

IF(positiveSignals > n/2)

{ return true } // oracle: "impostor"

ELSE

2In the end, however, our actually chosen pi values are not even relevant for the purpose of demonstrating
the capability of our technique: it would be easy to re-run all of our experiments (see below) with differently
chosen pi values just as well.

3https://github.com/JuliaRandom/RandomNumbers.jl [7]

40

Detection of Impostor Nodes in WSN Gruner, Krajnc and van Rooyen

{ return false } // oracle: "friend" }

For the sake of rapid decision-making the design of our statistical decider algorithm A (see
above) is quite simplistic, although there is much reason to assume that more sophisticated
(but, hence, also slower) algorithms would lead to more accurate decisions; (see below: ‘Related
Work’ and ‘Future Work’). Simply stated, our algorithm is intended to:

• output ‘friend’ if there is a ‘statistically significant’ correlation between a random input
word that was externally produced from the normal node automaton and a random refer-
ence word that was internally produced (by the algorithm itself with help of Julia) from
the normal node automaton, too.

– The oracle is fallible (error type α: false positive)

• output ‘crook’ if there is no ‘statistically significant’ correlation between a random input
word that was externally produced from the impostor node automaton and a random
reference word that was internally produced (by the algorithm itself with help of Julia)
from the normal node automaton.

– The oracle is fallible (error type β: false negative)

In both oracles, ‘statistical significance’ is determined by the method of ‘χ2’.
For the sake of speed the algorithm does not consider the (exponentially large) set of all

possible sub-strings, but only a ‘linear’ sub-set thereof. Since the χ2 test is called repeatedly
in the body of the FOR-loop, the algorithm even in this simple form is already rather slow.

2.4 Design Considerations for the Experiments

Our randomised experiments are designed along the lines of the following considerations and
parameters:

• We do not only want to detect an impostor node, but also ‘confirm’ a friend node as such.
For this reasons we need

– several experimental series in which random ‘words’ from the impostor automaton
are compared against random ‘words’ from the normal automaton;

– several experimental series in which random ‘words’ from the normal automaton are
compared against other random ‘words’ from the normal automaton, too.

• Due to the law of the large numbers we may reasonably hypothesize that the identifica-
tion rate in any of the above-mentioned scenarios gets better when the ‘words’ that are
compared against each other get longer. For this reason we need

– several experimental series in which, for fixed probability values, the ‘words’ com-
pared against each other are rather short;

– several experimental series in which, for fixed probability values, the ‘words’ com-
pared against each other are rather long;

• For the detection of the impostor node (with its slightly different finite automaton) it
is also ‘reasonable’ to hypothesise that its detection gets easier when the probability
differences (compared against the transition probabilities in the normal automaton) get
larger. For this reason we also need

41

Detection of Impostor Nodes in WSN Gruner, Krajnc and van Rooyen

– several experimental series in which, for fixed word lengths, the probability differ-
ences between the two automata are rather ‘small’;

– several experimental series in which, for fixed word lengths, the probability differ-
ences between the two automata are rather ‘large’.

For all the above-mentioned combinations we conducted numerous experiments the results of
which are shown in the subsequent section.

To be able to measure our algorithm’s detection accuracy in percent (%), each experimental
‘run’ consisted of 100 ‘repetitions’ (each with its own different random input) in which the
numbers of α-errors (false-positive) and the numbers of β-errors (false-negative) were recorded.
The final aim of these experiments —in accordance with the title of this paper— was the
discovery of a positive correlation between memory requirements (proportionally represented
by the lengths of the ‘words’) and accuracy of detection, whereby it is (again) reasonable to
hypothesise that the highly accurate identification of the impostor or the friend will require
considerably amounts of memory.

3 Experimental Results

Because of the page space limitation in this paper, we cannot show the results of all experiments
which we have carried out. In this section we can only show a ‘representative selection’, whereby
our other results (which are not shown in this paper) are all quite similar to the ones which are
shown.

3.1 Identification of Friend Nodes

The following table (3) shows that the friend node can be identified as a ‘friend’ with high
reliability by our simple algorithm only after approximately 1000 symbols have been received
and processed (whereby for each word length ℓ we had 100 experimental ‘runs’ with different
words):

Table 3

ℓ Friend identified β-Error

9 17/100 83/100

99 73/100 27/100

199 81/100 19/100

299 83/100 17/100

399 87/100 13/100

499 89/100 11/100

599 93/100 7/100

699 94/100 6/100

799 92/100 8/100

899 96/100 4/100

999 92/100 8/100

The table also shows that, with the method implemented by our simple algorithm, the im-
provement in the accuracy of the identification grows considerably slower than ℓ — i.e.: for a
‘slightly’ more reliable identification of a friend node, the observation length (and, hence, the
memory requirements) must ‘strongly’ increase.

42

Detection of Impostor Nodes in WSN Gruner, Krajnc and van Rooyen

Table 4

ℓ Impostor detected α-Error

9 14/100 86/100

99 69/100 31/100

199 83/100 17/100

299 83/100 17/100

399 83/100 17/100

499 88/100 12/100

599 87/100 13/100

699 87/100 13/100

799 86/100 14/100

899 86/100 14/100

999 87/100 13/100

3.2 Detection of the Impostor Node

3.2.1 Probability Difference ‘large’ and fixed, Word Length growing

Similar to the previous table, also table (4) shows a rather slowly growing improvement of the
detection rate for longer and longer observations.

3.2.2 Word Length ‘large’ and fixed, Probability Difference growing

In the final table of this paper, ℓ = 1000 for all experimental ‘runs’. The differences D, which
appear as natural numbers in the following table (5), simply refer to the number ofmodifications
which were made in the transition table of the regular WSN node’s finite automaton (see above)
in order to obtain the finite automaton of a similar impostor node. As mentioned above, these
differences affect only the transition probabilities of the two automata — not their alphabets
nor their graphical structures.

Table 5

D Impostor detected α-Error

1 73/100 27/100

3 89/100 11/100

5 89/100 11/100

7 92/100 8/100

9 96/100 4/100

11 98/100 2/100

13 98/100 2/100

15 97/100 3/100

17 98/100 2/100

19 99/100 1/100

As expected, any ‘clumsy’ impostor, who cannot imitate the ‘statistical average behaviour’ of
a regular WSN node with a high level of similarity, can be identified by the purely statistical
methods of our simple detection algorithm with high reliability.

However, our detection rates did not reach acceptable levels of reliability for ℓ ≤ 1000.
According to our experiments, our simplistic algorithm can yield acceptably reliable results only

43

Detection of Impostor Nodes in WSN Gruner, Krajnc and van Rooyen

for observations of ℓ > 1000, which corresponds to a considerable volume of internal memory
for any WSN node on which such detection algorithms are supposed to be implemented.

4 Related Work

Surveys such as [2][3][6] about wireless sensor networks in general can be found in large quanti-
ties. The literature about particular case-specific WSN designs, deployments and applications
is already so vast that it cannot be concisely summarised any more. Recent application-oriented
surveys can be found in [1][21][28]. All in all, the formal modelling of WSN nodes and communi-
cation algorithms by means of stochastic automata is well known and widely accepted [23][31]:
for comparison see also [17]. More specific surveys about WSN protection and security (which
is the theme of our paper) are also known [8][11][12][15][16][33].

Somewhat related to our work is [26] in which the nodes of a WSN must make decisions
about whether a data measurement result communicated by some node to its adjacent nodes
is reliable or perhaps a negligible ‘outlier’ due to some technical ‘glitch’. Such a decision
problem would occur, for example, when most nodes in a region would measure a spring time
temperature of +22 Celsius whilst one node reports to have measured a winter temperature of
−17 Celsius. Whereas in [26] such a node is simply presumed to have ‘erred’, in the context of
our work such a node might possibly be a hostile ‘crook’ node attempting to confuse the WSN
deliberately.4 Also in [26] some type of finite automaton (NFA) is used to model a WSN node
formally.

In [13] the presence of a hostile impostor node in a WSN is explicitly presumed. In that
paper it was also noted that the detection of such a node by the other nodes is “memory de-
manding” [13]. Also in that paper (such as in ours) we found a random-number-based impostor
identification algorithm [13](Fig. 1) together with some experimentally obtained detection like-
lihood statistics [13](Fig. 7); however little was stated about the opposite dilemma of falsely
suspecting a friend node to be an impostor.

Also [32] was concerned specifically with the detection of node replication attacks, for the
purpose of which several highly sophisticated (i.e.: quite complicated —even including cryptog-
raphy) distributed algorithms (protocols) were defined and discussed. With such distributed
methods many WSN nodes are ‘helping together’ to identify an impostor, whereas with our
technique any WSN node can make such a detection attempt individually. According to [32]
the detection probability was on average very high (often up to 100%), whereas the memory
consumption of the detection protocol remained somewhat problematic, and little was stated
about the run-time efficiency (i.e.: time needed from the start of a distributed protocol to the
decision about the detection of an impostor) of those methods. By contrast, we have attempted
to tackle the given problem quite simplistically, by purely statistical means and without any
sophisticated cryptographic techniques, albeit with somewhat lower detection rates.

Moreover, our paper was also inspired by [22] in which, too, for some given probabilistic finite
automaton (PFA), a detection problem was ‘asymptotically’ solved “with increasing certainty
as more information is acquired from observing the behaviour of the given PFA”. However, the
detection problem in that paper differs slightly from our detection problem in the sense that the
observer in [22] tries to guess in which particular internal state the observed PFA currently is
(which requires ‘white box’ knowledge of its entire internal state space), whereas our work aims
merely at guessing whether the observed PFA as a whole belongs to a specific class (‘friend’ or

4As the algorithm presented in this paper cannot discern between malicious behavior and node’s behavior
which has simply ‘erred’, α-errors were taken into account during experimental runs.

44

Detection of Impostor Nodes in WSN Gruner, Krajnc and van Rooyen

‘impostor’) whereby the observed PFA’s internal state space remains hidden in a ‘black box’.5

In [22] the problem was solved by way of reduction to the comparability problem for convergent
Markoff chains.

Last but not least it is worth noting that, from a software engineering perspective, the given
problem (in its formal PFA or SFA representation) is also amenable to the well-known software
engineering techniques of mutation testing [19]. The problem in this context is the ingenious
‘discovery’ or creative ‘invention’ of suitable mutation operators [4] by the software engineer in
such a manner that the resulting test sequences can reliably distinguish an automaton A from a
mutant A′. However, after some suitable mutation operators have been found and defined, the
distinction (or equivalence) decision about A and A′ can be reached in polynomial time [19].

5 Conclusion

In this paper we have demonstrated that it is at least in principle possible to detect impostor
nodes in wireless sensor networks with quite simplistic detection algorithms by purely statistical
means and from mere observation without any knowledge of the impostor’s internal composition.

It is important to note that throughout this paper we have worked under the the assumption
of a so-called homogeneous WSN in which all member nodes are supposed to be of identical types,
whereby the ‘type’ of a node is defined by its abstract PFA (or SFA). By contrast, our method is
not directly applicable in so-called heterogeneous WSN which are deliberately and purposefully
composed of nodes of various different types: in such cases, multiple detector algorithms would
be needed for the multiple types of nodes that can be found in a heterogeneous WSN.

Anyway —and in accordance with other already published literature— our detection rates
did not reach acceptable levels of reliability for observations of length ℓ < 1000. This result
implies that considerable volumes of internal memory are needed for any WSN nodes on which
such detection algorithms are supposed to be implemented.

Last but not least we may remark that the ‘implantation’ of our algorithm into a ‘normal’
node n changes the observable run-time-behaviour of n itself as soon as the detector algorithm
gets invoked. For this reason it might seem recommendable to deploy our detection algorithm
only in special ‘passive’ (or ‘always-silent’) listener-nodes which do not normally communicate
with the ‘normal’ other nodes of the WSN into which they are placed.

5.1 Outlook to Possible Future Work

As both our formal models and our detection algorithm had been designed quite simplistically
for the exploratory purposes of this paper, more precise results might be obtained in ‘future
work’ by refining the formal models with more details as well as by augmenting the detection
algorithm with more sophisticated techniques of reasoning (Artificial Intelligence) — albeit at
the price of a longer time-to-detection. Moreover, as mentioned above, further adaptations and
improvements of our technique would also be needed for heterogeneous WSN of multiple types.

5.2 Acknowledgments

We first became aware of this paper’s topic of node replication attacks in July 2017 during a
seminar at LaBRI, Université Bordeaux 1, hosted by our colleague Mohamed Mosbah and his

5In fact the semantic identity of two regular languages, L(A′) = L(A′′), does not require any structural
(syntactic) identity (not even isomorphy) between the two finite automata, A′ and A′′, by which those languages
are generated.

45

Detection of Impostor Nodes in WSN Gruner, Krajnc and van Rooyen

research group. Many thanks to the anonymous reviewers for their valuable remarks about the
initially submitted draft.

References

[1] Ian F. Akyildiz, Tommaso Melodia, and Kaushik R. Chowdhury. A Survey on Wireless Multimedia
Sensor Networks. Computer Networks 51/4, 921–960, 2007.

[2] Ian F. Akyildiz, Weilian Su, Yogesh Sankarasubramaniam, and Erdal Cayirci. A Survey on Sensor
Networks. IEEE Communications Magazine 40/8, 102–114, 2002.

[3] I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. Wireless Sensor Networks: a
Survey. Computer Networks 38/4, 293–422, 2002.

[4] Paul Ammann and Jeff Offutt, Introduction to Software Testing. Cambridge University Press,
2008.

[5] James Anderson. Automata Theory with Modern Applications, Cambridge University Press, 2006.

[6] Paolo Baronti, Prashant Pillai, Vince Chook, Stefano Chessa, Alberto Gotta, and Y. Fun Hu.
Wireless Sensor Networks: a Survey on the State of the Art, and the 802.15.4 and ZigBee Stan-
dards. Computer Communications 30/7, 1655–1695, 2007.

[7] Jeff Bezanson, Alan Edelmann, Stefan Karpinski, and Viral B. Shah. Julia: a Fresh Approach to
Numerical Computing. SIAM Review 59/1, 65–98, 2017.

[8] Tapolina Bhattasali and Rituparna Chaki. A Survey of Recent Intrusion Detection Systems for
Wireless Sensor Networks. Proceedings International Conference on Network Security and Appli-
cations, 268–280, 2011.

[9] Patrick Billingsley, Statistical Methods in Markov Chains. The Annals of Mathematical Statistics
32/1, 12–40, 1961.

[10] Sorana D. Bolboacá, Lorentz Jäntschi, Adriana F. Sestras, Radu E. Sestra, and Doru C. Pamfil.
Pearson-Fisher Chi-Square Statistic revisited. Information 2/3, 528–545, 2011.

[11] Ismail Butun, Salvatore D. Morgera, and Ravi Shankar. A Survey of Intrusion Detection Systems
in Wireless Sensor Networks. IEEE Communications Surveys and Tutorials 16/1, 266–282, 2013.

[12] Okan Can and Ozgur Koray Sahingoz. A Survey of Intrusion Detection Systems in Wireless
Sensor Networks. Proceedings 6th International Conference on Modeling, Simulation, and Applied
Optimization, 1–6, IEEE 2015.

[13] Mauro Conti, Roberto di Pietro, Luigi V. Mancini, and Alessandro Mei. A Randomized, Effi-
cient, and Distributed Protocol for the Detection of Node Replication Attacks in Wireless Sensor
Networks. Proceedings 8th ACM International Symposium on Mobile Ad Hoc Networking and
Computing, 80–89, 2007.

[14] Randal Douc, Eric Moulines, Pierre Priouret, and Philippe Soulier. Markov Chains. Springer,
2018.

[15] Ashfaq Hussain Farooqi and Farrukh Aslam Khan. A Survey of Intrusion Detection Systems for
Wireless Sensor Networks. International Journal of Ad Hoc and Ubiquituous Computing 9/2,
69–83, 2012.

[16] Ashfaq Hussain Farooqi and Farrukh Aslam Khan. Intrusion Detection Systems for Wireless Sensor
Networks: a Survey. Proceedings International Conference on Future Generation Communication
and Networking, 234–241, 2009.

[17] Stefan Gruner, Towards a Generic Design for General-Purpose Sensor Network Nodes: Position
Paper. Proceedings 5th International Conference on Evaluation of Novel Approaches to Software
Engineering, 259–264, 2010.

[18] Hassan Hatefi and Holger Hermanns. Model Checking Algorithms for Markov Automata. Elec-
tronic Communications of the EASST 53 (Automated Verification of Critical Systems), paper #8,
2012.

46

Detection of Impostor Nodes in WSN Gruner, Krajnc and van Rooyen

[19] Robert M. Hierons and Mercedes G. Merayo. Mutation Testing from Probabilistic and Stochastic
Finite State Machines. Journal of Systems and Software 82/11, 1804–1818, 2009.

[20] Colin de la Higuera and Jose Oncina. Learning Stochastic Finite Automata, LNAI 3264, 175–186,
2004.

[21] Dionisis Kandris, Christos Nakas, Dimitrios Vomvas, and Grigorios Koulouras. Applications of
Wireless Sensor Networks: an Up-to-date Survey. Applied System Innovation 3/1, paper #14,
2020.

[22] Christoforos Keroglou and Christoforos N. Hadjicostis, Verification of Detectability in Probabilistic
Finite Automata. Automatica 86, 192–198, 2017.

[23] Sajjad A. Madani, Jawad Kazmi, and Stefan Mahlknecht. Wireless Sensor Networks: Modeling
and Simulation, ch. 1 in Aitor Goti (ed.), Discrete Event Simulations. InTech, 2010.

[24] Rudolf Mathar, Informationstheorie: Diskrete Modelle und Verfahren. Teubner, 1996.

[25] Rudolf Mathar and Dietmar Pfeifer, Stochastik für Informatiker. Teubner, 1990.

[26] Dylan McDonald, Stewart Sanchez, Sanjay Madria, and Fikret Ercal. A Communication-Efficient
Framework for Finding Outliers in Wireless Sensor Networks: Extended Abstract. Proceedings
11th International Conference on Mobile Data Management, 301–302, 2010.

[27] Michael O. Rabin, Probabilistic Automata. Information and Control 6/3, 230–245, 1963.

[28] S.R. Jino Ramson and D.J. Moni. Applications of Wireless Sensor Networks: a Survey. Proceedings
International Conference on Innovations in Electrical, Electronics, Instrumentation and Media
Technology, 325–329, IEEE 2017.

[29] Animesh R. Tayal, N.V. Choudhary, and Madhuri A. Tayal. Simulation of Sensor Nodes for
Energy Conception in Wireless Sensor Networks using Finite Automata. Proceedings International
Conference on Advances in Computing, Communication and Control, 685–688, 2009.

[30] Ikjune Yoon, Dong Kun Nooh, Dongeun Lee, Rony Teguh, Toshihisa Honma, and Heonshik Shin.
Reliable Wildfire Monitoring with Sparsely deployed Wireless Sensor Networks. Proceedings 26th
International Conference on Advanced Information Networking and Applications, 460–466, 2012.

[31] Fengling Zhang, Lei Bu, Linzhang Wang, Jianhua Zhao, Xin Chen, Tian Zhang, and Xuangdong
Li. Modeling and Evaluation of Wireless Sensor Network Protocols by Stochastic Timed Automata.
ENTCS 296, 261–277, 2013.

[32] Ming Zhang, Vishal Khanapure, Shigang Chen, and Xuelian Xiao. Memory-Efficient Protocols
for detecting Node Replication Attacks in Wireless Sensor Networks. Proceedings 17th IEEE
International Conference on Network Protocols, 284–293, 2009.

[33] Yun Zhou, Yuguang Fang, and Yanchao Zhang. Securing Wireless Sensor Networks: a Survey.
IEEE Communications Surveys and Tutorials 10/3, 6–28, 2008.

47

	Introduction
	Method
	The Casino Analogon
	SFA Models of WSN Nodes
	The Decider Algorithm
	Design Considerations for the Experiments

	Experimental Results
	Identification of Friend Nodes
	Detection of the Impostor Node
	Probability Difference `large' and fixed, Word Length growing
	Word Length `large' and fixed, Probability Difference growing

	Related Work
	Conclusion
	Outlook to Possible Future Work
	Acknowledgments

