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In a recent paper, Liu et al. (2007) formulate an expression for

how surface gravity waves modify the Ekman layer energy budget.

They then diagnose the effect in the world oceans using available

data. This comment addresses the formulation of the energy equa-

tion that is fundamental to their study.

1 Introduction

Stokes drift Us is a Lagrangian velocity associated with linear surface grav-

ity waves (Stokes, 1847) that are averaged over a period much greater than
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the wave orbital period. Stokes drift is a small correction (second order in

waveslope) to the Eulerian velocity and is the result of nonlinear advection

of momentum by wave orbital velocities (Phillips, 1977). For a frame of ref-

erence that is rotating it has long been known that Stokes drift can exert a

force on a flow (Hasselmann, 1970). Defining the upward unit vector ẑ, Cori-

olis parameter f , and f = f ẑ, then this wave averaged force f ×Us, referred

to as the Hasselmann force or the Stokes-Coriolis force, can be incorporated

into a simple steady Ekman layer model for mean horizontal flow. Though

this force does not affect the net transport of fluid, it does redistribute the

momentum throughout the depth of the Ekman layer (see for example Polton

et al., 2005, and references therein).

Incorporating the Stokes-Coriolis force into an energy balance for the

Ekman layer should be done with caution. Liu et al. (2007) formulate an

expression for energy by taking the scalar product of wave-averaged mo-

mentum with wave-averaged velocity. This however neglects the fact that

velocity and the non linear momentum term, which when wave averaged re-

sults in f × Us, have correlating wave varying parts. When wave averaged

these correlated terms give rise to an additional contribution to the energy

budget, which is a function of Stokes drift and neglected in the Liu et al.

(2007) study. In addition to being more complete, the modified energy term

presented here could in principle be entirely calculated from remotely sensed

observational data, dispensing with uncertainties in modelling the vertical

structure of momentum in the Ekman layer.
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To make this subtlety in wave averaging clear, the process is demon-

strated first for momentum, giving the familiar Coriolis-Stokes force, and

then repeated for energy.

2 Wave averaging the momentum budget

For clarity a simplified ocean scenario is considered and the effects of rotation

on a steady monochromatic surface gravity wave in the deep water limit is

investigated. Without loss of generality the wave displacement of the air-sea

interface is given the form

η̃ = a cos(kx − σt) (1)

with amplitude a, wavenumber k and frequency σ. For constant density ρ,

the governing equations for the wave velocity ũ = (ũ, ṽ, w̃) are

∂ũ

∂t
+ f × ũ = −

1

ρ
∇p̃ − gẑ (2)

∇ · ũ = 0 (3)

subject to the boundary conditions

w̃ → 0 as z → −∞ (4)

p̃ = 0 at z = η̃ (5)
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Following Weber (1990) and Xu and Bowen (1994) an exact expression

for the inviscid plane wave solution is given by

ũ = aσeλz

(λ

k
cos(kx − σt),

f

σ

λ

k
sin(kx − σt), sin(kx − σt)

)

(6)

and

p̃ = ρgaeλz cos (kx − σt) − ρgz (7)

where λ = k/
√

1 − (f/σ)2.

Hence the wave stress < ũw̃ >= 0, where angle brackets denote aver-

aging over many wave periods. However, planetary rotation gives rise to

a horizontal component of wave orbital velocity at right angles to the wave

propagation direction such that < ṽw̃ > 6= 0. In particular, for surface gravity

waves f/σ ≪ 1,

∂

∂z
< ṽw̃ >= fa2kσe2kz ≡ fUs. (8)

Thus, an incompressible Eulerian flow, u, that can be decomposed into

a steady horizontally homogeneous part, U(z), and a wave component, ũ,

such that

u = U(z) + ũ, (9)

will have a non zero wave contribution in the wave averaged momentum

budget. This contribution arises from the advection of momentum:

< u · ∇u >=< ũ · ∇ũ >= f × Us. (10)
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Hence, for some stress τ and pressure p the momentum budget,

ρ
∂u

∂t
+ ρu · ∇u + ρf × u = −∇p +

∂τ

∂z
− gρẑ, (11)

results in the wave averaged Ekman layer momentum equations (Liu et al.,

2007, see for example equation 1):

ρ
∂U

∂t
+ ρf × (U + Us) =

∂τ

∂z
. (12)

3 Wave averaging the energy budget

Similarly an Ekman layer wave-averaged energy equation can be obtained

from (11). It is essential that the energy equation is first obtained before

wave averaging is applied. This gives:

ρ
∂

∂t

< u2 >

2
+ ρ < u · ∇

u2

2
>= − < u · ∇p > + <

∂τ

∂z
· u > . (13)

For a steady wave field

∂

∂t

< u2 >

2
=

∂

∂t

U 2

2
. (14)

In the absence of external pressure gradients, p = p̃, the wave averaged

pressure work term reduces to zero. If, also following Liu et al. (2007), the

stress can be parameterised by the mean velocity shear and a coefficient of
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eddy viscosity K, such that

τ (z) = K
∂

∂z
U(z), (15)

then the stress term in (13) reduces to ∂

∂z
< τ · U > −ρ < K|∂U

∂z
|2 >.

In the following, depth integrated quantities are computed. Of particular

interest is the depth integrated Stokes-Coriolis term (8) and its manifestation

in the energy budget. However, this term is complicated at depths between

the wave peaks and wave troughs since the wave averaging in (8) is defined for

a single phase fluid only. To avoid this problem we integrate only up to the

base of the troughs, and for convenience relabel the depth to be z = 0 there.

If we assume that near the surface the mean velocity field varies sufficiently

slowly with depth, relative to the wave velocity, then relabelling the zero

depth location makes a negligible difference to terms involving the mean flow.

Similarly the Stokes drift terms can be trivially rescaled to accommodate this

change in z and the derivation for the energy budget can proceed in a way

that is as close as possible to that of Liu et al.. For small amplitude waves

this Stokes drift rescaling factor, e−2ka ≈ 1, can be neglected. Since < . >

and ∂/∂z are now commutative for z < 0 the term for advection of energy

can be rearranged to give
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< u · ∇
u2

2
> = <

∂

∂z
(w̃

u · u

2
) >, (16)

=
∂

∂z
(< w̃ũ > ·U), (17)

=
∂

∂z
[f × Ts · U ] (18)

where Ts(z) is the Stokes transport, given by,

Ts(z) =

∫

z

−∞

Us(z) dz. (19)

Assuming that the stress τ (z → −∞) = 0 then the depth integrated,

wave averaged energy equation is

∂E

∂t
= Ew + Es − D, (20)

where

E =

∫

0

−∞

ρ

2
U 2dz, (21)

Ew = τ (0) · U(0), (22)

Es = −ρf × Ts(0) · U(0), (23)

D =

∫

0

−∞

ρK
∣

∣

∣

∂U

∂z

∣

∣

∣

2

dz. (24)

This can be compared with the Liu et al. (2007, equation (6)) expression for
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’total energy’ in the Ekman layer. The difference is in the Stokes drift con-

tribution, Es, and is accounted for by the order in which the wave averaging

and the scalar product are taken. Expanding the advection of energy term

(18) and integrating over depth gives

f × Ts(0) · U (0) =

∫

0

−∞

f × Us · Udz +

∫

0

−∞

f × Ts ·
∂U

∂z
dz. (25)

The first term on the right hand side is the scalar product contribution from

wave-averaged momentum and wave-averaged velocity and hence gives the

Liu et al. expression for Es. The second term on the right hand side arises

from correlations between the wave varying components of the same terms.

Computing the total Stokes drift contribution to the depth integrated

energy budget (23) offers considerably advantages over evaluating a portion of

the total. Besides the obvious advantage in having a complete expression for

the contribution to the energy budget from Stokes drift, the total contribution

is a function of surface values only whereas the component terms require a

knowledge of the depth varying Ekman velocity. Modelling the vertical profile

of Ekman velocities with any degree of accuracy is notoriously difficult largely

because of a lack of corroborating observational data to determine the eddy

viscosity profile (Huang, 1979; Price and Sundermeyer, 1999; Briscoe and

Weller, 1984; Price et al., 1987; Chereskin, 1995; Lenn and Chereskin, 2008).

Consequently this approach is worth avoiding.

It is hard to foresee how this reformulation of the energy budget will affect
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the findings reported in Liu et al. (2007) since the difference includes a non

trivial function of the vertical variation of velocity with depth. However, the

modifications to their energy budget are given in the appendix.

As a final note is should be borne in mind that a number of key as-

sumptions have been made in order to construct this model. None of these

assumptions present critical flaws in modelling the real ocean, though it is

of value to make these limitations explicit: Only the energy budget below

the troughs is considered; it is assumed that there are no horizontal pres-

sure gradients that are not attributed to the waves, and that the density is

constant; it is assumed that, despite any energy that the waves may impart

to the mean flow, the waves are maintained in a statistically steady state.

Finally it is assumed that the waves are inviscid and interactions between

the waves and turbulence can be neglected.

Appendix

Accepting the above assumptions then, following Liu et al. (2007), the surface

velocity U(0) can be solved for as the solution to the steady Ekman problem,

with constant eddy viscosity. Adopting their notation and expressions for F1

and F2, Ekman depth scale de. and ratio of Ekman depth to Stokes depth

scales c = de.2k, the Stokes drift contribution to the energy budget (shown
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here only for the northern hemisphere) can be written as

Es =
1

c

[

τ (0) · Us(0) + τ (0) × Us(0) · ẑ + ρfde|Us(0)|2F2(c)
]

. (26)

The total change in energy from the combined effects of wind and waves, Etot

is given by

Etot = Ew + Es (27)

=
|τ (0)|2

ρdef
+ ρfde|Us(0)|2F2(c) (28)

+ τ (0) · Us(0)(1/c − F1(c)) (29)

+ τ (0) × Us(0) · ẑ(1/c + F2(c)). (30)

where

F1(x) =
x + 2

(x + 1)2 + 1
, (31)

F2(x) =
x

(x + 1)2 + 1
. (32)
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