
•

•

Algorithms For Static Task
Assignment And Symmetric
Contraction In Distributed

Computing Systems
Virginia M. Lo

lo@cs.uoregon.edu

CIS-TR-88-06
May 5, 1988

DEPARTMENT OF COMPUTER AND INFORMATION SCIENCE

UNIVERSITY OF OREGON

C,

•

"

Abstract

In this paper, we look at the mapping problem, which was posed within the domain of parallel
processing, and we redefine that problem for use in distributed computing systems whose underly­
ing communication medium is a broadcast medium such as ethernet. We describe an efficient algo­
rithm which can be utilized to find optimal assignments of tasks to processors for a wide variety of
distributed algorithms when symmetric contraction of the algorithm is necessary . 'Ne also describe
a heuristic algorithm for use in finding suboptimal assignments of tasks to processors for arbitrary
distributed computations. Both algorithms model the mapping problem as the Graph Partitioning
Problem. Our algorithms utilize an efficient algorithm for finding maximum weight matchings to
find an assignment of tasks to processors which minimizes the total interprocessor communication
cost while meeting a constraint on the number of tasks assigned to each processor. '

•

...

1. Introduction

Researchers in the area of distributed computing are actively seeking ways to take advantage
of the potential of these systems for parallel computing. The last few years have seen
intensification of efforts in the design of large-grained, loosely coupled parallel algorithms and in
the design of systems software {operating systems, compilers) which support parallel computation .
One problem that occurs in both distributed and parallel systems is the problem of assigning tasks
in a distributed (parallel) computation to the processors in a distributed (parallel) system. This
problem has been referred to as the static task assignment problem and also as the mapping
problem, with the former appellation more commonly used in the distributed computing com­
munity and the latter terminology more commonly used in the parallel processing community. For
bo,h types of systems, the goals of task assignment include reducing interprocessor communication,
load balancing, and parallelism; indeed, many approaches to the solution of this problem can be
applied successfully to either type of system. However, there are differences in the architectures of
distributed systems and parallel processors that affect the design of task assignment algorithms.

In this paper, we look at the mapping problem, which was posed within the domain of paral­
lel processing, and we define an analogous problem for distributed computing systems whose under­
lying communication medium is a broadcast medium such as ethernet. We demonstrate that in
such a system, an appropriate goal for task assignment algorithms is minimization of the total
interprocessor communication costs while meeting a constraint on the number of tasks assigned to
each processor. We describe an efficient algorithm which can be utilized to find optimal assign­
ments of tasks to processors for a wide variety of distributed algorithms when symmetric contrac­
t£on of the algorithm is necessary. We also describe a heuristic algorithm for use in finding subop­
timal assignments of tasks to processors for arbitrary distributed computations. Both algorithms
model the task assignment problem as the Graph Partitioning Problem. Our algorithms utilize an
efficient algorithm for finding maximum weight matchings to find an assignment of tasks to pro­
cessors .

We consider only distributed systems which consist of a collection of homogeneous multiple
computers, each with local CPU, memory, and other hardware resources, and which communicate
through an ethernet bus. A distributed computation or task force consists of a set of communicat­
ing tasks to be assigned to processors in the distributed system. We utilize the graph theoretic
model [16] for these computations in which each task is modeled as a node in the graph and com­
municating tasks are connected by an edge whose weight equals the communication cost incurred if
the tasks are assigned to different processors. We assume that communication between tasks
assigned to the same processor is negligible.

In section 2 we describe the problem in more detail and discuss its relation to the contraction
problem from parallel processing. In section 3 we present our algorithms as well as simulation
results for the heuristic Algorithm H. The last section contains conclusions and a discussion of
further work in this area.

- 1 -

2. Static Task Assignment and Contraction in Ethernet-based Distri­
buted Systems

The general problem we wish to address is the assignment of tasks to processors in order to
minimize interprocessor communication while meeting constraints on the number of tasks assigned
to each processor. This statement of the task assignment problem 1 is useful in two slightly
different contexts: (1) for initial assignment of tasks to processors (static task assignment) and (2)
for assignment of tasks to fewer processors than the distributed algorithm was initially designed
for , either at the time of initial assignment or dynamically at execution time due to node failure,
node withdrawal, or phase transitions in the distributed computation. Node withdrawal occurs in
distributed systems comprised of a network of personal workstations. At any time, one of the
workstations may become unavailable to the distributed computation, either because the 'owner'
withdraws it from the pool or because the load on that workstation becomes heavy .

These problems are similar to the mapping problem posed by [2] for parallel processoring sys­
tems. In parallel processors, the point-to-point nature of the communication network offers a mul­
tiplicity of interconnection options - hypercube, meshes, shuflle-exchange networks, cube-connected
cycles, trees, etc . and the potential for parallel (non-interfering) communication on disjoint paths
through the network . As a result , the mapping problem involves two phases, contraction and lay­
out. Contraction involves reducing the graph G which represents the parallel algorithm to a
smaller graph G 1 in the same family , causing several task nodes in G to become associated with
one node in the reduced graph G' . (Thus, if G is a tree, it must be contracted to a smaller tree
G' .) In the layout phase, the reduced graph is then mapped to the interconnection hardware , with
at most one task node per processor, taking into account the mapping of edges in the computation
graph to edges in the processor network [2]. At execution time, the tasks assigned to a given pro­
cessor are multiplexed on that processor. In an ethernet-based system, there is only one communi­
cation pathway, and all interprocessor communication competes for the same resource. As a result,
the layout phase is not relevant for distributed systems (i.e., it is not necessary to map computa­
tion edges to network edges) nor is it necessary to maintain any specific interconnection structure
in the contracted graph.

In addition, the criteria evaluating contractions in a distributed system is different than that
proposed for parallel •processing systems. In the latter systems, evaluation of contraction algo­
rithms utilizes one or more of the following metrics: 2

the average number of tasks and edges from G absorbed into one node of G' ,

the maximum number of tasks and edges from G absorbed into one node of G',

the average number of edges of G mapped to an edge in G' ,

the ma.."<imum number of edges of G mapped to an edge in G'.

These objective functions , particularly the latter two objective functions, are useful when more
than one communication link exists and communication can occur independently and in parallel on
these links. In ethernet systems, a more appropriate metric with respect to communication is the
total sum of interprocessor communication costs incurred by an assignment. By minimizing this
quantity, the overall overhead of IPC and also the contention for ethernet is minimized thereby
improving the response time of the distributed computation. However, it is a well-known fact that

1 Several different optimality criteria have been studied in the graph theoretic approach to static task assignment in­
cluding minimizat ion of the total sum of execution and communication costs [11, 13, 15, 161, minimization of IPC followed
by load leveling 151, and sum-bottleneck optimization [15].

2 These performance metrics are based on the assumption that Ci; = 1 for all i ,j; these metrics can be extended
in a natural way for arbitrary Cij .

- 2 -

•

•

•

..

•

•

•

minimization of IPC conflicts with the goals of load balancing and parallelism. We compensate for
these needs by constraining the number of tasks assignable to each processor. When many tasks
are assigned to one processor they contend for the resources of that processor and incur overhead
due to process switching, management of shared buffers, etc. Bounding the number of tasks per
processor contributes to load balancing by limiting contention of this nature .

Thus, in an ethernet-based distributed system, task assignment requires contraction of the
computation task graph to a reduced graph in order to minimize the total interprocessor communi­
cation costs while maintaining a bound on the number of tasks assigned to each processor. Hen­
ceforth, we restrict our discussion to the context of ethernet-based distributed systems and we will
use the terms task assignment, mapping, and contraction interchangeably.

Because we seek different goals for contraction in distributed systems, contraction techniques
devised by parallel processing researchers may not be appropriate for our problem. For example,
Berman's technique of truncatfon for complete binary trees yields an assignment with total IPC
cost of 12 whereas an optimal assignment according to our criteria has cost equal to 3 (see Figure 1
below).

Finally, we introduce the notion of symmetrfr contraction for distributed and parallel algo­
rithms which are regular in structure. These algorithms consist of a number of identical tasks
that operate on data that has been partitioned among the tasks. When contraction is performed,
it is necessary to merge tasks in a symmetric fashion in order to preserve parallelism. More
specifically, if a distributed algorithm consisting of k identical tasks is to be contracted for assign­
ment to fewer than k processors, it is necessary to contract an equal number of tasks to each pro­
cessor. Because the tasks on a given processor are multiplexed, an unequal contraction is undesir­
able because it constrains all processors to the speed of the slowest processor in the system. This
necessity for symmetric contraction has been noted in (14] and in our own survey of distributed
and parallel algorithms. We shall see that this fact provides compelling motivation for the use of
Algorithm M (described below) to find optimal contractions of distributed computations .

3. Description of the Algorithms

We have developed two algorithms for the assignment of tasks to processors whose goals is
minimization of total IPC under a common constraint on the number of tasks per processors.
Algorithm M finds optimal assignments in polynomial time for a restricted group of distributed
computations. Algorithm M is ideally suited for contraction of computations with the regular
structure described above and for the assignment of "small" computations in a "big" distributed
system. We illustrate its application to a distributed algorithm for the simplex method of linear
programming. Algorithm H is an efficient heuristic which finds possibly suboptimal assignments
for arbitrary distributed computations. Simulation results show the performance of this algorithm
to be good, yielding an optimal assignment in 81.1 % of the cases simulated.

3.1. Equivalence to the Graph Partitioning Problem

We restrict our attention to homogeneous systems with n identical processors. Let
P = {p 1, p 2, ... , p,i} be the set of n processors, T = { t 1, t2, . .. , tk} be a set of k communicating
tasks (i.e., a distributed computation) to be assigned to the processors. Let ci; be the cost of com­
munication between tasks ti and t; if they are assigned to different processors. Interprocess com­
munication cost is assumed to be negligible when communicating tasks are assigned to the same

k
processor. Let B, f-1 ~ B ~ k, be a common bound on the maximum number of tasks allowed

n

- 3 -

(a) Contraction with IPC = 3

{b) Berman-Snyder Contraction - IPC = 12

Fz'gure 1: Contraction to Minimize IPC versus Berman-Snyder Contraction
(For simplicity, all edges are assumed to have cii = 1)

•

•

•

•

•

..

•

on each processor. We define an optimal assignment as one which minimizes the total interpro­
cessor communication costs incurred under the constraint that kq < B for all processors
Pq, l <q <n , where kq is the number of tasks assigned to processor Pq .

The task-processor system described above can be modeled as a graph G = (V ,E) in which
each task is represented as a vertex in V. An edge is constructed for each pair of communicating
tasks and given a weight equal to the communication cost cij. The problem of finding an assign­
ment of tasks to processors which minimizes IPC under a constraint on the number of tasks per
processors is equivalent to the Graph Partitioning Problem with all node weights equal to one.

Graph Partitioning Problem: Given Graph G = (V,E), weights w(v) for each v EV and
/ (e) for each e E E , and positive integers B and J , find a partition of V into disjoint sets
V1, V 2, · · · Vn such that I: w(v) < B for l<i<n and such that if E' contained in Eis

vtV,
the set of edges that have their two endpoints in two different sets Vi, then I: / (e) < J.

etE1

The Graph Partitioning Problem and the Graph Partitioning Problem with all vertex
weights equal to one have been shown to be NP-complete [8]. Thus, our task assignment problem
is also NP-complete. ·

3.2. Algorithm M, An Optimal Algorithm for Task Assignment

Algorithm M can be used to find optimal assignments in polynomial time when the number
of tasks is less than or equal to twice the number of processors and when each processor may be
assigned at most two tasks. These constraints may sound rather limiting at first , but we show that
there exist many distributed computations for which these constraints hold . Algorithm M utilizes
a polynomial time algorithm for finding a max£mum weight match£ng in graphs. An algorithm of
complexity O (ke logk) where e is the number of edges and k the number of nodes in the network
is described in [7] .

We first prove that for systems in which the number of tasks is less than or equal to twice
the number of processors and in which each processor may be assigned at most two tasks, an
optimal solution can be found in polynomial time. This proof involves two parts: (a) construction
of a maximal matching in a graph corresponding to the task assignment problem, and (b) proof
that a maximal matching yields an assignment which minimizes IPC while meeting the constraint
of at most two tasks per processor.

Theorem 1: Consider a system with n identical processors and with the number of tasks k < 2n .
Let B = 2 be the maximum number of tasks allowed on each processor. Then an assignment
which minimizes total interprocessor communication costs under the constraint of at most 2 tasks
per processor can be found in polynomial time.

Proof:

(a): Construct a graph G with a node representing each task and an edge between each pair of
task nodes ti and tj with weight Cij . We note from graph theory (9] that a match£ng in such a
graph is a set of edges in which no two edges have a node in common and the weight of the match­
£ng is the sum of the weights of those edges that are in the matching. Furthermore, a maximum
weight match£ng for G is one whose weight is maximum among all matchings for G .

A matching can be used to define an assignment of tasks to processors with at most two
tasks per processor as follows:

- 4 -

(1) Let each pair of tasks ti and t j connected by an edge e in the matching be assigned to a dis­
tinct processor p q •

If there exist tasks not connected by an edge in the matching, arbitrarily arrange them in
pairs and assign these pairs to distinct processors p q such that no other tasks are assigned to

Pq ·
(3) If a single task remains unassigned , assign it to any processor Pq such that no other tasks are

assigned to Pq .

Since the number of tasks k < 2n, there will be a sufficient number of processors to perform the
above assignment. Because oft.he way the assignment is made, no processor will be assigned more
than two tasks.

(b): We now prove that a maximum weight matching corresponds to an assignment which minim­
izes the total interprocessor communication costs under the constraint that no processor is assigned
more than two tasks. Let f be an assignment of tasks to processors and let

c, - ~ C·· and iJ
f(t.-)-;,af(t1)

c, - ~ C·· iJ
I (t.)-1 (t1)

In other words, C1 is the total IPC incurred by assignment J , and Cf is·the sum of communica­
tion costs between tasks assigned to the same processor. Then

CToT = ~ cii = c, + c,
l~i ,j~k

Since C TOT (the grand total of all communication costs on all e~es in the graph) is fixed over all
assignments, an assignment which minimizes C1 also maximizes C1 .

Now consider a maximum weight matching for G and construct an assignment / from the
matching as described above. We will show that the weight of the maximum weight matching is
precisely equal to C1 , the sum of the communication costs on edges between tasks assigned to the
same proces~r. Each edge in the maximum weight matching has a weight Cij which contributes
to the sum C1 since the two tasks t; and tj are assigned to the same processor by step (1). Each
pair of tasks selected by step (2) above has a weight cij which equals 0. (If not, that edge could
be added to the maximum weight matching to produce another matching with greater weight.)
Thus Ci is precisely equal to the weight of the matching:.... It follows then that an assignment
defined by a maximum weight matching for G maximizes Ci and thus minimizes Cf, the com­
munication costs incurred by assignment J . As discussed above, an assignment which minimizes
C1 is optimal.

As stated above, maximum weight matchings and thus optimal assignments can be found in
polynomial t ime. Q.E.D.

Algorithm M:

• Construct a matching in G using a polynomial time algorithm for finding maximum weight
matchings.

• Construct an assignment according to the steps described in part (a) of Theorem 1.

Algorithm M is well-suited for the problem of dynamic contraction in ethernet-based distri­
buted systems for regular distributed computations. As discussed earlier, parallelism is maintained
in regular distributed computations by contracting an equal number of tasks to each processor.
For many distributed algorithms, contraction which assigns two tasks per processor is acceptable

- 5 -

•

•

•

•

•

•

•

and even desirable. In these cases, the number of tasks is precisely equal to twice the number of
processors, and Algorithm M can be used to find an optimal contraction by setting B = 2 . Figure
2 illustrates the contraction of a regular distributed algorithm for the simplex method of linear
programming. This algorithm was developed by [6) for execution on the Charlotte Distributed
Operatinf System which consists of 20 Vax 11 / 750. Other regular algorithms for which contrac-

tion to - processors is useful include Jacobi iterative method for solving LaPlace equations on a
2

rectangle, successive over-relaxation iterative method for solution of linear systems of equations,
Nelson's version of Horowitz and Zorat's matrix multiplcation algorithm. These algorithms all
appear in [14) .

We also note that many existing distributed systems, such as those in use at academic and
research institutions, consist of 40-50 nodes. Algorithm M can thus be used for the optimal
assignment of distributed computations consisting of up to twice that many tasks. We claim (but
do not substantiate now) that there are a significant number of distributed algorthms that are
within these size constraints . In addition , for many distributed algorithms, such as the simplex
algorithm , the number of tasks is a user option and can therefore be specified to be in the range
necessary for Algorithm M .

3.3. Algorithm H, a Heuristic Algorithm for Task Assignment

Theorem 1 suggests the following heuristic, polynomial-time algorithm for task systems with
k

an arbitrary number of tasks, n identical processors, and bound B , f-1 ~ B ~ k, on the max-
n

imum number of tasks per processor.

Algorithm H: This aiorithm reduces the original task graph to one containing < 2n nodes, each

with no more than f 2 1 tasks per node. Algorithm M can then be used to produce an optimal

assignment for the reduced graph, but this assignment may be suboptimal for the original graph.

• Construct a graph G with a node for each task ti and an edge between each pair of nodes ti

and tj with weigh£ cij.

• If k < 2n, then Theorem 1 applies and Algorithm M can be invoked to obtain an optimal
assignment.

• If k > 2n , then tasks are grouped into clusters utilizing the Sort Greedy Algorithm

(described below) with a limit f : 1 on the maxim um size of a cluster, where f : 1 ~ B ~ k .

Sort Greedy continues to form clusters until the number of clusters is less than or equal to
2n .

• A new graph G I is constructed with a node corresponding to each cluster and an edge
between the pair of clusters r 1 and r 2 with weight

W12 = I; Cij
ti €r1
t1 Er 2

- 6 -

Symmetric Contraction of A Distributed Algorithm
for the Simplex Method *

The system to be solved is represented by a matrix M . and a solution is obtained through repeat­
ed iterations on M. At each iteration, it is necessary to (1) select a pivot column from M, (2) select
a pivot row from M, and (3) perform operations on each row in Musing the values of the elements
in the pivot row.

Given m rows in lvf, we distribute the work to p processes by assigning each calculator process
m/ p contiguous rows. The selection of the pivot column can be done locally by each calculator
process. However, the selection of the pivot row involves choosing the " best" row of the m rows in
M. One alternative for achieving the distributed voting to select the pivot row utilizes latin
squares.

Latin squares voting: Each calculator process has an ordered list of all the other calculator
processes such that no two lists contain the same process in the same ordinal position in the list.
During each round, a given calculator sends its best row (either its own best, in round 0, or the
best seen so far , in later rounds) to the next calculator on its list . During that round, it also re­
ceives a message from some other calculator. The lists can be arranged so that after log p rounds
(base 2), each calculator knows the best row (assuming the number of processes pis a power of 2).

A task graph representing the distributed simplex algorithm designed for 8 tasks is shown below.
The communication edges are defined by the latin squares configuration also shown in the figure .
Because of the regular nature of the distributed algorithm, cif = C for all i ,j. If contraction of
this algorithm is necessary , contraction to 4 processors preserves the parallelism in the algorithm
because of the identical nature of the tasks. Thus Algorithm M can be invoked with B=2, k=8,
and n=4. to find an optimal assignment with total IPC of 20* C units.

Lists for the Calculator Processes

1 2 3 4 5 6 7 8

Round 0 2 3 4 5 6 7 8 1
Round 1 3 4 5 6 7 8 1 2
Round 2 5 6 7 8 1 2 3 4

{ a) before con traction
(b) optimal con traction

Figure 2: Contraction of a Distributed Algorithm for the Simplex Method

* Only t he bare bones of the algorithm are presented here. The full algorithm can be found in [6].

•

•

•

•

•

•

I

• Since the number of nodes in this new graph G' is less .than or equal to 2n , Algorithm M
can be used to produce an assignment of clusters to processors which minimizes the total
inter-cluster communication costs while keeping the number of tasks on each processor less
than or equal to the bound B .

Subroutine Sort Greedy: This subroutine is a greedy algorithm which groups tasks into clusters

of size < f!!...l such that the total number of clusters is < 2n.
- 2 -

• Initially , each task in G is in a task group by itself.

• Construct a list L which contains the edges of G sorted in non-increasing order.

• While there are unmarked edges remaining

• • Find the next unmarked edge e = (ti tj) in the list L . Mark it.
Gi is the task group containing ti. '
Gj is the task group containing tj .

• • • Merge the two groups:
Gnew = Gi LJ Gj

• • • Mark all the edges between tasks in
Gi and tasks in Gj

• • Else do not merge Gi and Gj .

Algorithm H is a polynomial time algorithm. The complexity of Subroutine Sort Greedy is
0(e loge) where e is the number of edges in the computation graph. The maximal matching is
found using Algorith~ M in polynomial time as discussed earlier.

3.4. Simulation Results

In order to evaluate the performance of Algorithm H in finding suboptimal task assignments,
simulation runs were performed on a variety of typical task forces. Altogether, 90 task forces were
simulated with the number of tasks ranging from 4 to 35 and the number of processors ranging
from 2 to 5. Optimal assignments were computed using a branch and bound backtracking algo­
rithm.

The data used in the simulations are organized into four categories. Dataset 1 (Clustered)
consists of randomly generated task-processor systems in which tasks form clusters. Communica­
tion costs between tasks within the same cluster are on the average larger than communication
costs between tasks in different clusters. Datase_t 2 (Sparse) consists of randomly generated task­
processor configurations in which the communication matrix is sparse. In particular, the communi-

cation costs are nonzero for only _!_ of the (!) possible pairs of tasks. Dataset 3 (Actual) consists
. 6 ~

of data representing actual task forces derived from numerical and matrix algorithms, operating
systems programs, and general applications programs. In this dataset, specific information about
the number of tasks and/ or about which pairs of tasks communicate with each other was available

- 7 -

in the literature. Estimates of execution and communication costs were made from information
such as the number and type of messages passed between tasks, from the function of the tasks, and
from raw data on these costs . Dataset 4 (Structured) consists of task forces whose task graphs
have the structure of a ring, a pipe, a tree, or a lattice. Details about these datasets can be found
in [11).

Algorithm H performed extremely well , finding an optimal assignment in 81.1 % of cases.
T

Table 1 below shows the ratio _!!_ where TH is the cost of an assignment found by Algorithm H,
To

while To is the cost of an optimal assignment.

Table 1: Distribution of Ratio Tu I T n bv Dataset

Total No. of
Percent of Simulations

Dataset (Optimal) Simulations
- 1 nn ::; 1.10 ::;1.20 ::;1 .30 ::; 1.40 ::; 1.50

All Data 90 81.1 91.1 95.5 96.6 98.8 100.0
(1) Clustered 19 47.4 79.0 94.8 100.0 100.0 100.0
(2) S1Jarse 16 87.5 87.5 87.5 87.5 93.8 100.0
(3) Actual 22 90.9 100.0 100.0 100.0 100.0 100.0
(4) Structured 33 90.9 93.9 96.9 96.9 100.0 100.0

4. Conclusion

This work represents a contribution to the current research effort to utilize the potential of
distributed computing systems for parallel computation. To summarize, we have presented two
algorithms for the assignment of tasks to processors in order to minimize interprocessor communi­
cation costs under the constraint of a bound on the number of tasks assigned to each processor.
Algorithm M finds optimal assignments for systems in which the number of tasks is < twice the
number of processors. Algorithm H is a heuristic for arbitrary task-processor configurations . This
model of the task assignment problem and the use of Algorithms M and H are suitable for assign­
ment of tasks and for contraction of tasks in distributed systems which have ethernet as the under­
lying communication medium.

We are looking at a number of extensions to the work described in this paper. First, because
Algorithm H utilizes a greedy type algorithm to reduce the task graph, it is clear that poor assign­
ments may result when the task graph has uniform communication costs. For example, in the
binary tree task graphs of Figure 1, an optimal assignment has cost 3 while Algorithm H could
yield a poor assignment with cost 8. (Algorithm H could also find the optimal assignment but is
not guaranteed to .) Thus, we are interested in refining Algorithm H to handle the case of uniform
communication costs. We are also interested in finding algorithms tailored to regular graph struc­
tures such as trees, rings, lattices; for these restricted graphs, it may be possible to find optimal
algorithms. In the longer run, we are interested multiphase contraction as described in [14] and
decentralized dynamic contraction. Many distributed algorithms involve multiple execution phases
with a distinct communication pattern associated with each phase. Decentralized dynamic contrac­
tion involves local detection of the need for contraction at execution time and achievement of con­
traction through negotiation among processors rather than through a centralized controller. Both
of these problems are related to our interest in process migration in distributed computing systems;

- 8 -

'

•

j

I

I

I

I

in fact, dynamic contraction is essentially carefully-orchestrated process migration. \Ve are
currently engaged in a study of parallel and distributed algorithms to determine the role that
characteristics of these algorithms can take in guiding process migration in distributed systems.

- g -

[1]

[2]

(3]

[4]

[5]

(6]

[7]

[8]

[9]

[10]

References

Y. Artsy, H.Y. Chang, and R. Finkel, "Processes Migrate in Charlotte", University of
Wisconsin Dept. of Computer Science Technical Report No. 655, August 1986.

F . Berman and L. Snyder, "On Mapping Parallel Algorithms into Parallel Architectures" ,
Journal of Parallel and Distributed Computing ", Vol. 4 No. 5, Oct. 1987, pp. 549-458.

S.H. Bokhari, ' 'Partitioning Problems in Parallel, Pipelined and Distributed Computing",
IEEE Transactions on Comput£ng, can't find which issue now, but will find it , 1987.

W . W . Chu, L. J. Holloway, M. T . Lan, and Kemal Efe, "Task Allocation in Distributed
Data Processing," IEEE Computer, Nov. 1980, pp. 57-69.

K. Efe, "Heuristic Models of Task Assignment Scheduling in Distributed Systems," IEEE
Computer, June 1982, pp . 50-56.

R . A. Finkel, "Large-grain Parallelism - Three Case Studies", in The Characteristics of
Parallel Algorithms, edited by L.H. Jamieson, D.B. Gannon, and R .J. Douglas, MIT Press,
1987, pp. 21-64.

Z. Galil, S. Micali, and H. Gabow, "Priority Queues with Variable Priority and an
O(EVlog V) Algorithm for Finding a Maximal Weighted Matching in General Graphs",
29rd Annual Symposium on Foundations of Computer Science, Nov. 1982, pp . 255-261.

L. Hyafil and R.L. Rivest , "Graph Partitioning and Constructing Optimal Decision Trees are
Polynomial Complete Problems" , Report No. 33, ffilA-Laboria, Rocquencourt, France, 1973.

E. Lawler, Comb£natorial Optimzation, Networks and Matroids, Holt, Rinehart, and Winston,
1976.

V. M. Lo and J. W . S. Liu, " Task Assignment i~ Distributed Multiprocessor Systems"
Proceedings of the 1981 IEEE International Conference on Parallel Processi'ng, 1981, pp .
358-360.

[11] V. M. Lo, "Task Assignment in Distributed Systems,", Dept. of Computer Science, Univer­
sity of Illinois, Ph .D. Thesis, October 1983.

[12] V. M. Lo, "Task Assignment to Minimize Completion Time", IEEE 5th International
Conference on Distributed Comput£ng Systems, May 1985.

(13] V. M. Lo, " Heuristics for Static Ta.sk Assignment in Distributed Systems", in press for IEEE
Transactions on Computers. (Also University of Oregon Technical Report CIS-TR-86-13.)

[14] P . A. Nelson , "Parallel Programming Paradigms" , University of Washington Computer Sci­
ence Technical Report No. 87-07-02, July 1987.

[15] H. S. Stone and S. H. Bokhari, " Control of Distributed Processes," IEEE Computer, July
1978, pp . 97-106 .

[16] H. S. Stone, "Multiprocessor Scheduling with the Aid of Network Flow Algorithms," IEEE
Trans. on Software Engineering, Vol. SE-3 , No. 1, Jan. 1977, pp. 85-93.

- 10 -

,

i

