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Abstract 

The resilience of a network is the expected number of pairs of nodes that can communicate. 
Computing the resilience of a network is a #P-complete problem even for planar networks with 
fail-safe nodes. We generalize an O(n2 ) time algorithm to compute the resilience of n-node k
tree networks with fail-safe nodes to obtain an O(n) time algorithm that computes the resilience 
of -n-node partial k-tree networks with edge and node failures (given a fixed k and an embedding 
of the partial k-tree in a k-tree). 

1 Introduction 

Reliability measures of communication networks are an important parameter in network design. We 
model a computer communication network as a probabilistic graph G = (V, E) in which each node v 
in V represents a communication site and each edge e in E represents a bidirectional communication 
line between two sites. Furthermore, edges and nodes have an associated probability of operation. 
The probability of operation of a component (node or edge) c of G is a fixed precision real number 
Pc such that O ~ Pc ~ l. Components of the network are in either operational or failed state. 
Component failures are assumed to be statistically independent. 

Traditionally, the reliability of a network G is defined as the probability that a given communi
cation task T can be performed in G. For example, if the task T consists of exchanging information 
between k distinguished nodes of G, the reliability of G (k-terminal reliability) is defined as the 
probability that the graph contains paths between each pair of the k nodes. The n-terminal ( all
terminal) and the 2-terminal reliability are two of the most widely used measures of the reliability 
of a network. In the former case we are interested in computing the probability that the network 
contains a spanning tree, in the latter we are concerned with the probability that there is a path 
connecting two distinguished nodes in G. Computing the all-terminal reliability of a network is 
a #P-complete problem, even for networks with fail-safe nodes [15). Furthermore, computing the 
2-terminal reliability of a network is also a #P-complete problem, even when the network is planar, 
acyclic, with bounded degree nodes, with fail-safe nodes, and with all the edges having identical 

•Research supported in part by the Office of Naval Research Contract N00014-86-K-0419. 
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probability of operation [14]. Colbourn [7] presents an excellent survey of the combinatorics of 
network reliability. 

The resilience of a network is the expected number of pairs of distinct nodes that can com
municate. This measure provides some additional, fine grain information about the reliability of 
a network. For example, Figure 1 presents two fail-safe networks that have the same all-terminal 
reliability but whose resilience is quite different. The all-terminal reliability of both G1 and G2 is 
O. However, the resilience of G1 is 5 and the resilience of G2 is 15. In general, it has not been 
determined what relationships (if any) exist between all-terminal reliability and resilience [8]. 

GI: 1 0 1 0 1 0 1 0 1 • • • • • • • • • • 
G2: 1 1 1 1 1 0 0 0 0 • • • • • • • • • • 

Figure 1: Two graphs with the same 10-terminal reliability but different resilience. 

The resilience problem, RES, consists of computing the resilience of a network. This is also 
a #P-complete problem, even when the network is planar and the nodes are fail-safe [8] . The 
apparent complexity of RES has lead to the development of efficient algorithms on restricted classes 
of networks, especially on the class of partial 2-tree networks ([8], [12] , and [16]). The class of partial 
/;;-trees is an attractive subject of study not only because it contains several important classes of 
graphs ( e.g., series-parallel graphs and outerplanar graphs [5],[11]) , but also because many NP
complete graph problems have polynomial, and even linear time solutions when restricted to the 
class of partial k-trees [4]. Table 1 describes the complexity of the polynomial algorithms so far 
obtained for the resilience problem on partial 2-tree networks. Table 2 describes the complexity of 
the polynomial algorithms known for the class of partial k-tree net,\·orks (for a fixed k > 2). Our 
main result consists of a linear time algorithm for all the classes of networks described in tables 1 
and 2. 

This paper is organized as follows. Section 2 introduces some basic terminology. Section 3 
presents some background material about k-trees and partial k-trees. Section 4 describes a linear 
time algorithm to compute the resilience of partial k-tree networks gi,·en with a suitable embedding 
in a k-tree (for a fixed k). 

2 Terminology 

Except for a few explicitly defined concepts, we use the basic graph theoretic terminology as defined 
in [10]. Throughout this paper we assume that all graphs are probabilistic. Let G = (V, E) be a 
graph with n nodes and m edges. A clique of G is a (not necessarily ma...ximal) complete subgraph 
of G. A k-clique is a clique that has exactly k nodes. A graph JI = (FH, EH ) is a partial graph of 
G if JI is a spanning subgraph of G. ·we use JI :=; G to denote that JI is a subgraph of G. 
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Edge failures 

Ve, Pe= 1 Ve,pe = C1 Ve, 0 ::; Pe ::; 1 

Node Vv, Pv = l - O(n) [1] O(n) [12) 

failures Vv, Pv = C2 0( n) [1] open open 

V V, 0 ~ Pv ::;; 1 open open open 

Table 1: Polynomial time algorithms for RES on partial 2-tree networks. 

Edge failures 

Ve, Pe= 1 Ve, Pe= c1 Ve, 0 ::; Pe ::; 1 

Node , Vv, Pv = l - O(n2 ) [12) 0( n2
) [12) 

failures Vv, Pv = C2 open open open 

V V, 0 ::;; Pv ::;; 1 open open open 

Table 2: Polynomial time algorithms for RES on partial k-tree networks. 

The state S of a network G is the set of nodes and edges of G that are operational. Nodes 
and edges are in one of two states: up (operational) or down (failed). Let Pv and Pe denote the 
probability that node vis up and edge e is up respectively. The probability that Gisin state S is 

II Pv II (1 - Pv) II Pe II (1 - Pe) 
eES eEE\5 

We use subgraphs of G to represent states of the network. Notice however that, unless G has no 
edges, there are more states than subgraphs of G. So, each subgraph H = (VH, EH) of G represents 
a class of states of G, namely those states of Gin which nodes in Vll are up, nodes in V\ VH are 
down, edges in EH are up, and edges in En\ EH are down, where En is the set of edges of the 
subgraph of G induced by VH (see Figure 2). The operational subgraph of G is the subgraph of G 
defined by the operational nodes and the operational edges that are incident on two operational 
nodes. Pa[H] denotes the probability that H is the operational subgraph of G ( equivalently, it 
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failed edge 

O failed node 

• V' V 
(a) (b) (c) 

Figure 2: (a) Graph G. (b) Subgraph H. (c) States represented by H. 

denotes the probability that the state of G is one of the states represented by H). Thus, 

Pa[H] = II Pv II (1 - Pv) II Pe IT (1 - Pe) 

We extend the definition of Pa to the domain of sets of subgraphs of G in the natural way. Let 
A be a set of subgraphs of G, Po[A] denotes the probability that the operational subgraph of G is 
in A. Therefore Pa[A] = LHEA Pa[H]. 

Let H be a subgraph of G and u, v be two nodes of H. We say that node u is connected to 
node v via H ( u ~ v) iff there is a path, consisting of zero or more edges of H, that connects node 

u to node v; when H = G we prefer the notation u f"V v over u £ v . A node v is connected to a set 

of nodes C via a graph H ( v ~ C) if v ~ w, for all nodes w EC. 
The set of all connected components of a graph defines a partition of the set of vertices of the 

graph. A set 7i is a subpartition of the set of nodes V if 7i is a partition of a subset of nodes of V. 
\Ve use V1r to denote the set of nodes of which 7i is a partition. Given a subpartition 7i of V, Pa[1r] 
denotes the probability that the operational subgraph of G has precisely the connected components 
defined by 7i 

1 . 

The resilience of a network G = (V, E) is the expected number of (unordered) pairs of nodes of 
G that can communicate. Pairs of the form { u, u} a.re not counted. We use Res( G) to denote the 
resilience of G. We can formulate Res( G) as 

Res(G) = L Pa[H] Pairs(H) 
H5p 

where Pairs(H) is the number of pairs { u, v} of nodes in V such that u ~ v and u =/= v. We can also 
formulate Res(G) in terms of certain information about the connected components of the subgraphs 

1 Notice that ,r may be the empty set. 

4 



of G. It is easy to verify that 

1 
Res(G) = - ( L Pa[H] 

2 
H~G 

L IV(CC)l2 
CC connected 

component of H 

LPv) (1) 
vEV 

In the next ection we use equation 1 to devise an 0( n) time algorithm to compute the resilience 
of partial k-tree networks given with an embedding in a k-tree. 

3 Partial k-tree networks 

Important classes of networks can be classified as partial k-trees (graphs with bounded tree-width) 
[5). Let k be a fixed positive integer. A graph is a k-tree iff it satisfies either of the following 
conditions: 

(i) It is the complete graph on k nodes , Kk; 

(ii) It has a ~n~de v of degree k with completely connected neighbors , and the graph obtained by 
removing v and its incident edges is a k-tree. 

A graph is a partial k-tree if it is a partial graph of a k-tree. We refer the reader to [3) or [2) 
for an overview of properties of k-trees and to (5 , 11] for surveys of classes of graphs related to the 
class of (partial) k-trees. 

3.1 The reduction paradigm 

Arnborg and Proskurowski [4) have defined an algorithm design methodology, a reduction paradigm, 
for partial k-trees that leads to the development of efficient algorithms for a variety of NP-hard 
problems restricted to partial k-trees. The reduction paradigm assumes that k is a fixed positive 
integer and that the input partial k-tree is given with a suitable embedding in a k-tree. To simplify 
our presentation, we will discuss this reduction paradigm assuming that the input graph is a k-tree 
rather than a partial k-tree given with an embedding in a k-tree. 

The reduction paradigm in [4) uses a dynamic programming approach to compute the solution 
to a problem X on a (partial) k-tree. First , we associate a state with each k-clique in the graph. The 
state of each k-clique contains some local information that will be combined with the information in 
other states to solve problem X. Once each k-clique has been assigned an initial state, we proceed 
to eliminate n - k nodes of G in some convenient order v1 , .. . , Vn-k· Each time we eliminate one 
node v we destroy a number of k-cliques whose states contain valuable information. So, before 
removing v we combine the states of these k-cliques and save the result as the state of a specific 
le-clique that is not destroyed by the removal of v. When the n - k nodes have been removed from 
G we are left with a root R of G. R is a k-clique whose state contains enough information to solve 
problem X on G. We need some notation to formalize these ideas. 

A perfect elimination ordering (peo) of a graph G is an enumeration v1 , . .. , Vn of the nodes of 
G such that for each i ( i = 1, ... , n ), the higher numbered neighbors of Vi form a clique. Clearly, 
we can always find a peo for a k-tree. Furthermore, we can guarantee that for any peo of a k-tree 
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the higher numbered neighbors of each of the first n - k nodes induce a k-clique. A node whose 
neighborhood induces a k-clique is called a k-leaf. 

Algorithm 1 presents the reduction paradigm in detail. Let us suppose that we want to solve 
problem X on a k-tree G. The first step of the algorithm, the initialization step, finds the first 
n - k nodes of a peo and initializes the state of each k-clique in the graph G. The initial state of 
each k-clique J( is computed by a function e(K). Each reduction step removes one of the n - k 
nodes in the queue PED. Upon removal of a node v, the algorithm performs two sub-steps. First 
it "combines" the states of k + l k-cliques. We use f to denote the function that computes such 
a combination of states. The result of applying f to the states of the k k-cliques that will be 
destroyed and to the state of the neighborhood of v is called the "state" of ](+ ( v) 2 • The second 
sub-step combines the effect of the edges that connect v to its neighborhood (K( v)) and the state 
of ](+ ( v ). Algorithm 1 represents this second combination of information as the computation of 
g(state(K+(v)),S(v)). The termination step extracts the solution to problem X from the state of 
the root R and the effect of the edges in R. 

Algorithm 1 (reduction paradigm) 

Input: G = (V, E), a k-tree (for a fixed k). 

1. Initialization step. 
PED ~ empty queue. 
Do n - k times: 

Let v beak-leaf of G - PED. 
Let K( v) be the (k-clique) neighborhood of v in G - PED. 
Let J(+(v) be the (k+l)-clique induced by V(K(v)) U {v}. 
For all nodes u in V(K(v)) do: 

Let Ku( v) be the k-clique induced by V(I(+ ( v)) \ { u}. 
state(J(u(v)) ~ e(J(u(v)) 

Append v to PED . 
state(R) ~ e(R). 

2. Reduction steps. 
For each node v in PED, in order, do: 

state(!(+( v )) ~ f( { state(Ku) I u E V(K+( v ))} ). 
Let S(v) be the star graph induced by the edges {v,u}, Vu E V(K(v)). 
state(K( v)) ~ g( state(](+( v) ), S( v )). 
Remove v from G. 

3. Termination step. 
Solution ~ h( state(R), edges in R). 

2The "state" of K+ ( v) is ephemeral; we compute it once and immediately use it to update the state of K( v ). 
Once the state of K(v) has been updated, we destroy J(+(v) by removing the node v. So, state(K+(v)) is simply an 
intermediate value that we calculate to update the state of K( v ). We believe that the metaphor of having a state for 
](+ ( v) is useful in understanding and devising the functions f and g for specific problems. 
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z 

(a) 

Figure 3: (a) A 3-tree. (b) Branches on K. 

The state of each k-clique describes solutions to a problem ( usually a generalization of the 
original problem) restricted to the subgraph induced by the nodes in the k-clique and by those 
removed nodes that the k-clique separates from all non-removed nodes excluding all edges between 
nodes in the k-clique. The specification of an algorithm that uses the reduction paradigm described 
above consists of five main parts. First we define the state of each k-clique. Then we specify how 
to compute e, J, g, and h in Algorithm 1. 

·vve need to formalize some concepts before presenting our reduction algorithm to compute the 
resilience of partial k-tree networks. If J( is a k-clique, v (/. V(]() is a descendant of]( in a peo iff 
each higher numbered neighbor of vis either a member of]( or a descendant of](_ The connected 
components of the subgraph induced by all descendants of]( are branches on ](. Figure 3 (a) 
depicts a 3-tree in which ]( is the 3-clique induced by the nodes x, y, and z. Figure 3 (b) presents 
the branches on ](. 

Suppose that we have a peo defining a reduction process. \Ve associate two subgraphs, B(K) 
and B'(K), with each k-clique K. These two subgraphs change as we execute the reduction process. 
\Ve use B(]() to denot~ the removed branches on ](, i.e., the subgraph induced by the nodes in 
the (completely) remoYed branches on K. B'(]() denotes the subgraph induced by the nodes in 
](UB(]() without the edges between nodes in K. We call B'(K) the shell of](. The state of a 
k-clique I( describes solutions to problems restricted to the shell B'(K). Figure 4 illustrates these 
concepts; after v1 , v2, v3, and v4 have been removed from the graph in Figure 3, B(I() becomes 
the graph in Figure 4 (a), and B'(]() becomes the graph in Figure 4 (b). 

The following equations describe how B(]() and B'(K) change during the execution of Algo
rithm 1. Notice that these equations also define B( ](+) and B' (I(+). 

Dynamic definition of B(]() and B'(K) (annotations on Algorithm 1) 

Initialization step. 

B(]() (0, 0) 

B'(K) = (V(K), 0) 

Reduction steps. 
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Let](= K(v), ](+ = J(+(v), ](u = Ku(v), and S = S(v). 

B(K+) = u B(Ku) 
uEV(K+) 

B'(J(+) = u B'(J(u) 
uEV(K+) 

B(J() = subgraph induced by V(B(J(+)) U { v} 

B'(K) = B'(J(+) u S 

Termination step. 

B(R) = G- R 

B'(R) G without the edges in R 

z 

(a) (b) 

Figure 4: B(K) and B'(K) after removing v1 , v2, V3 and v 4 from the graph in Figure 3. 

4 Resilience problem on partial k-tree networks 

4.1 Resilience of k-tree networks 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

Defore defining the state of each k-clique we need to introduce some additional notation. Let G = 
(V, E) be a graph and TV be a set of nodes. The projection of the connected components of G onto 
W (Proj(G, TV)) is the subpartition of W defined by intersecting each connected component of G 
with TV (if V and TV have no common nodes Proj(G, W) = 0). Let us now consider H = (VH, EH), 
a subgraph of G. We use TI(H) and IT(VH) to denote the set of subpartitions of the nodes in VH. 
For each subpartition 1r in TI(H), SG(G, H, 1r) denotes the set of subgraphs G' of G such that 
P7'0j( G', VH) = 1r. It is easy to verify that the set of subgraphs of G can be partitioned into 
equivalence classes, each of which is SG(G, H, 1r), where 1r is a subpartition of the set of nodes of 
H. Figure 5 illustrates the partition of the set of subgraphs of a 2-tree into five equivalence classes. 
Each equivalence class is induced by a subpartition of the set of nodes { a, b }; white nodes represent 
failed nodes. 
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H 

(a) 

Subpartition re Graphs in SG( H,rc) 

{ {a,b)) I 0 ! - I'- l---- I>- :>-
' ' ' ' ' - - ---- -{ {a) , {b)) 0 - .,,,,,. - - -' ' ' - ~ -{{a)) 0 -0 0 0 

' ' 
0 . 0 0 

{ {b)) 0 - _,.,,-- -' ' 
c:. 0 

0 -: ¢ 0 0 

' 

(b) 

Figure 5: (a) A 2-tree G. (b) Equivalence classes induced by subpartitions of V(H). 

The idea of partitioning the set of subgraphs of a graph with respect to a fixed set of nodes 
is crucial in our algorithm to compute Res{G). Consider K, a k-clique of a partially reduced 
k-tree G. Let ri1 , ... , 7r q be an enumeration of all the su bparti tions of the nodes in J( 3 . We 
can partition the set of subgraphs of the shell B'(K) into the following q equivalence classes: 
SG(B'(J(),J(,1ri), ... ,SG(B'(I(),J(,1rq). The state of]( consists of statistical information about 
each equivalence class of subgraphs of the shell B'(J(). The following values define the state of a 
k-clique or (k+l)-clique K: 

• s( Ti, K) , for each subpartition 1r in II(I{). We defines( 1r, K) as the probability that a subgraph 
of the shell B'(K) belongs to the class SG(B'(J(),1(, ri), given that up(V1r) (the nodes in V1r 
are up) and dn(V(I()\ V1r) (the nodes in 11(1()\ Vr. are down). If the probability that the nodes 
in V(I() \ V1r are down is zero, s( 1r, K) is defined as zero 4

• So 

s(ri,K ) PB'(I<)[SG(B'(K), K, ri) II up(111r) /\ dn(V(K)\ V1r )] 

L PB'(!{) [JI II up(V1r) /\ dn(V(J() \ 111r )] (10) 
HE SG(B'(I(),I<,1r) 

3 Notice that, for a fixed value of k, q is constant (although exponential ink). 
4 For the sake of simplicity we assume that the probability of operation of each node v in G is positive. If some Pv 

is zero we can either modify the formulas in this section or remove v and apply the algorithm to the resulting partial 
k-tree. 
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where P[A II B] denotes P[A I B] if P[B] > O, otherwise it is 0. 

• E('rr,K,C), for all non-empty subpartitions 1r in II(K), and CE 1r. We define E(1r,K,C) as 
follows: 

E(1r,K,C) = L PB'(K)[H II up(V1r) I\ dn(V(K)\ V1r)] BN(I(,H,C) (11) 
HE SG(B 1(K),K,1r) 

where BN(K, H, C) is the number of branch nodes (nodes in B(K)) connected to C via H. 
It is easy to verify that if s( 1r, K) > O, E( 1r, K, C) / s( 1r, K) is a conditional expected value, 
namely the expected number of nodes in B( K) that are connected to C, via H, given that H 
is a member of the class SG(B'(K), K, 1r). 

• EP(1r,K,C1,C2), for all non-empty subpartitions 1r in II(K), and C1,C2 blocks of 1r. We 
define EP(1r,K,C1,C2) as follows: 

Hin 
SG(B'(K),K,1r) 

(12) 

Again, it is easy to verify that if s(1r,K) -f 0, E(1r,K,C1,C2)/s(1r,K) is a conditional ex

pected value, namely the expected number of pairs (s, t) of nodes in B(K) such thats~ C1 , 

and t !! C2, given that H, a subgraph of B'(K), is a member of SG(B'(I(),K,1r). 

• EIP(K). We use EIP(K) to denote the expected number of pairs of nodes in B(K) that can 
communicate but are separated (isolated) from K. Formally, we define 

EIP(K) = L PB'(I()[H] 
H5:B 1(K) 

L IV(CC)l 2 

CC connected 
component of H 

V(CC)nV(I()=0 

(13) 

The next four lemmata define the initialization, reduction, and termination steps of our algo
rithm for the resilience problem. The initialization lemma follows from the definitions of B(K), 
B'(K), s(1r,K), E(1r,K,C), EP(1r,K,C1,C2), and EIP(K) (equations 2, 3, 10, 11, 12, and 13, 
respectively). 

Lemma 4.1 (initialization) Let G be a k-tree network. Then 

(i) For all I( and 1r such that 1( is a k-clique of G, and 1r is a subpartition in II( K) 

s(ir, K) = { ; 
if 1r consists of zero or more singletons and IT (l - Pv) -f 0, 

vEV(K)\V1r 

otherwise. 
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(ii) For all I(, 1r, and C such that I( is a k-clique of G, 1r is a non-empty subpartition in II(K), 
and CE 1r 

E(1r,K,C)=0 

(iii) For all I(, 1r, C1, and C2 such that I( is a k-clique of G, 1r is a non-empty subpartition in 
IT(K), and C1 and C2 are sets of nodes in 7r 

(iv) For all 1( such that 1( is a k-clique of G 

EIP(K) = 0 

Let us now consider the reduction step. Let G be a (partially reduced) k-tree, and v beak-leaf 
of G with neighborhood I(. Let J(+ be the graph induced by V( K) U { v}, and u1, . .. , Uk+i be 
the nodes in J(+. Also, for all i = 1, ... , k + 1, let J(i denote the k-clique induced by the nodes 
in V(J(+) \ { ui}. The reduction step consists of two parts. First we compute the state of J(+ by 
combining the~ information in the states of J(i for all i = 1, ... , k + 1 (lemma 4.2). Then we update 
the state of J( by considering the state of J(+ and the effect of the edges that connect v to J( 

(lemma 4.3). 
We need some additional notation. Let 1r be a partition. Following (4], we use 1r/u to denote the 

partition obtained by removing u from its block in 1r and then removing the block if it became empty. 
Furthermore, the join of two partitions 1r1 and 1r2 , denoted 1r1 V 1r2, is the partition obtained by 
taking the union of intersecting blocks until a partition of the union remains (e.g., { { a, b}, { c}, { d}} V 

{{a,d},{b,c,e},{f}} = {{a,b,c,d,e}{f}}). 
To compute the state of J(+ we consider all possible ways of obtaining 7r+, a subpartition in 

II(J(+), as the join of1r1, ... ,1rkt-1, where 'lri is a partition ofV1r+\{ui} (i = l, ... ,k+l). We use 
T(1r+,J(+) to denote the .set of (k+l)-tuples of subpartitions of nodes in J(+ such that their join 
is 1r+ and the i-th subpartition is a partition of V1r+ \ { ui} ( i = 1, ... , k + 1). Formally, 

k+l 
T(1r+, K+) = {(1r1, ... , 7rk+i) I V 7ri = 1r+ /\ Vi= 1, ... , k + l, 7ri is a partition of V1r+ \ { ui}} 

i=l 

We use i to denote a (k+l)-tuple in T(1r+,J(+) and ii to denote the i-th entry of i. 
By definition, a subgraph Hof the shell B'(K+) is the (graph) union of k+l graphs H1, ... , Hkt-1 

such that each Hi is a subgraph of B'(Ki) and i = 1, ... , k+ 1 ( cf. equation 5). Furthermore, the 
subgraph H is in SG(B(J(+), J(+, 1r+) if and only if each Hi is in SG(B(J(i), Ki, 1ri) for subpar
titions 7ri such that (1r1, ... ,1rkt-1) is an element of T(1r+,J(+). Formally, we make the following 
observation. 

Observation 4.1 There is a bijection¢ from SG(B'(J(+),J(+,1r+) to 

u SG(B'(J(1 
), K 1 , 1r1) X ... X SG(B'(J(k+l ), J(k+l, 7rk+1) 

(1r1,••·,1rk+1) 
in T(1r+ ,K+) 
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The following observation is useful in proving lemma 4.2. 

Observation 4.2 Given m finite sets X1, ... , Xm and m real functions Ji, ... , fm with domain 
X1, ... , Xm respectively, 

m 

\Ve can now prove the following lemma. 

(x1 , .. ,,xm) i=l 
in X1x ... XXm 

Lemma 4. 2 Let G be a k-tree network that has been partially reduced using some perfect elimina
tion ordering and the general reduction paradigm. Let v be the next k-leaf to be removed. Let ]( be 
the neighborhood of v, and](+ be the subgraph of G induced by V(K) U { v}. Then 

{i) For all ri+ such that ri+ is a subpartition in IT(](+) 

k+l 
s(ri+,J(+)= L ITs(ifi,Ki ) 

-ffET(1r+ ,K+) i=l 

{ii) For all ri+ and C such that ri+ is a non-empty subpartition in IT(K+), and C E ri+ 

k+lk+l 
E(ri+,J(+,c)= L I:IIs(ifj,Kj) L E(ifi,Ki,D) 

nET( .,,..+ ,K+) i=l j=l DO; 
jf:.i D<;p 

(iii) For all ri+, C1, and C2 such that ri+ is a non-empty subpartition in IT(](+), and C1, C2 E 1r+ 

k+lk+l 

EP(ri+,K+,c1,C2) = I: I: I: I: I: F(i,j,D1,D2) 

where 

k+l 

(iv) EIP(J(+) = L EIP(J(i) 
i=l 

k+l 

-ffET(1r+ ,K+) i=l j=l D1 E?f; D2E?fj 

Di ~C1 D2~C2 

II s(ifz,K1) EP(ifi,J(i,D1,D2) 
l=l 
l:f;i 

k+l 

if i = j 

II s(ifz,K1) E(ifi,J(i,D1) E(ifj,KJ,D2) otherwise 
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Proof: Let us use Y to denote the condition up(V1r+) /\ dn(V(K) \ V1r+ ). Also, let us use ~ to 
denote -the condition up(V-rri) /\ dn(V(Ki) \Vi\). 

(i) ·using the definition of s(1r+,](+) (equation 10) and observation 4.1 we get 

Hin 
SG(B'(K+ ),K+ ,1r+) 

= L L PB'(K+)[H1u . . . uHk+i II Y] 
-itET(1r+,K+) (H1 ,··· ,Hk+ 1 )in 

X1 x ... xXk+1 

where Xi = SG(B'(Ki), Ki, ii), 1 ~ i ~ k + l. 
Notice that the graphs H1 , ... , Hk+l are edge-disjoint. Besides, component failures are sta
tistically independent. So, 

k+I 

II PB'(Ki)[Hi 11 ~] 

1'ET(1r+,K+) (H1, ••· ,Hk+1)in i=l 
X1 x ... xXk+1 

The result follows by observation 4.2. 

(ii) Analogously, we can use the definition of E(1r+,J(+,c) (equation 11), observation 4.1, and 
the statistical independence of component failures to obtain 

k+l 

E(1r+,K+,c) = L L II PB'(J<i)[Hi II "Yi] BN(I(+,H1u .. . uHk+1,C) 

But 

-irE T(1r+ ,I<+) (H1 , ... ,Hk+l) in i=l 
X1 x ... xXk+1 

k+l 
BN(J(+,H1U ... UHk+1,C) = L L BN(Ki,Jlj,D) 

j=l D~C 
DEirj 

So, simple algebraic manipulation and observation 4.2 yield the desired result . 

(14) 

(iii) Similarly, we use the definition of EP( 1r+, ](+, C1 , C2) ( equation 12), and the arguments 
employed in (ii) above to get that EP( 1r+, ](+, C1 , C2 ) is 

k+l 

L L II PB'(Ki)[Hi 11 ~] BN(K\H1U .. . UHk+1,C1) BN(K\Il1U .. . UHk+1,C2) 
if in (H1 , .. . ,Hk+l) in i=l 

T(1r+ ,K+) X1 x ... xXk+1 

Equation 14 and additional algebraic manipulation suffice to prove (iii). 
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(iv) By similar arguments we obtain that 

L PB'(K+)[H] 
H5_B'(K+) 

L IV(CC)l2 
CC connected 

component of H 
V(CC)nV(K+ )=0 

kt-I kt-I 

L IT PB'(I<i)[Hj] L 
(H1 , .. . ,Hk+l) in j=I i=l 

B'(K1) x ... xB'(Kk+1) 

The proof follows by observation 4.2. 

CC connected 
component of Hj 

V(CC)nV(Ki)=0 

IV(CC)l2 

I 

We now show how to update the state of ]( given the state of J(+. Let S be the star network 
consisting of the k edges that link v to ](. Let IT'( S) denote the set of subpartitions of nodes in S 
that consist of singletons only possibly with exception of the set containing node v. The set IT'( S) 
models the set of operational subgraphs of S. Edges of S that are operational may cause two or 
more connected components of the operational subgraph of B'(K) to become connected. So we 
update the state of l( by considering all possible ways of obtaining each subpartiton 1C in IT(K) 
as the join of pairs (1CI, 1C2 ) of subpartitions in IT(K+) and IT'(S), respectively. The following set 
defines formally the pairs of subpartitions that we want to consider: 

The following observation is useful in proving lemma 4.3. 

Observation 4.3 There is a bijection 1/; such that 

7/;: SG(B'(K),K,1C) f-+ u 
( 71'1 , 71'2) 

in PS(1r,K) 

We can now establish how to update the state of I( from the state of](+ and the star graph S. 

Lemma 4.3 Let G be a k-tree network that has been partially reduced using some perfect elimina
tion ordering and the general reduction paradigm. Let v be the next k-leaf to be removed. Let I( be 
the neighborhood of v, and ](+ be the subgraph of G induced by V( K) U { v}. In addition, let S be 
the star graph consisting of the k edges that link v to I(. Then 

(i) For all 1C such that 1C is a subpartition in IT(K), 

( 71'1 ,71'2) 
in PS(1r,K) 

5 At this point, B(K) denotes the set of removed branches of]( after v has been removed, i.e. , it includes v ; ]{+ 

and B'(K+) were computed before v was removed. 
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(ii) For all 1r, C, such that 1r is a non-empty subpartition in II( K) and C E 1r, 

( 71"1, 1r2) 
in PS(1r,K) 

if 3 D E 1r1 such that v E D and D \ { v} ~ C 
otherwise 

(iii) For all 1r, C1, and C2 such that 1r is a non-empty subpartition in II(K), and C1 and C2 are 
blocks of the subpartition 1r, 

where 

L Ps[1r2 II up(V1r) /\ dn(V(K) \ V1r )] 
( 71°1 ,1r2) 

in PS(1r,K) 

L L (EP(1r1,K+,D1,D2) + R(v,D1,D2)) 
D1E1r1 D2E1r1 

D1\{v}~C1 D2\{v}~C2 

if V E D1 /\ V E D2 
if V (/. D1 /\ V E D2 
if V E D1 /\ V (/. D2 
otherwise 

(iv) Let II( v ,](+, S) be the set of pairs ( 1r1, 1r2) of subpartitions in II( J(+) such that V1r1 = V1r2 , 

1r2 E II'(S), {v} E 1r1, and {v} E 1r2. Then 

EIP(K) = EIP(K+) + 

L (EP(1r1,K+,{v},{v})+2 E(1r1,K+,{v})+s(1r1,K+)) Ps[1r2 II up(V1r)/\ dn(V(K)\V1r)] 
( 71"1 ,1r2) 

in TI( v,K+ ,S) 

Proof: The proof follows by applying observation 4.3 to the definition of s(1r,K), E(1r,K,C), 
EP(1r,K,C1,C2), and EIP(K), and then performing basic algebraic manipulations. Let us use Y 
to denote the condition up(V1r) /\ dn(V(K) \ V1r ). In addition, let Y1 denote the condition up(V1r1 ) /\ 

dn(V(K+) \ V1ri), 

(i) By definition ( equation 10) and observation 4.3 

s( 1r, K) = L PB'(K) [H II Y) 
HE SG(B 1(K),K,1r) 

L L L PB'(K)[ll1UH2 II Y] 
(1r1 ,1r2 ) H1 in H2 in 

in PS(1r,K) SG(B'(IU) ,K+ ,1ri) SG(S,S,1r2) 

15 



But 

(15) 

Therefore 
s(1r, K) = 

( 71"1 ,11"2) 
in PS(1r,K) 

which is the desired result 6 • 

(ii) Analogously, we can use the definition of E( 1r, ](, C) ( equation 11) and observation 4.3 to 
obtain 

E(1r,K,C) 
(11"1 ,11"2 ) H1 EX1 H2EX2 

in PS(1r,K) 

where X1 = SG(B'(J(+), J(+, 1r1 ) and X2 = SG(S, S, 1r2). 

Notice that a block C in (1r1 V 1r2 ) \ {v} is obtained by taking LJ De71"1 D \ {v}. Thus, 
D\{v}~C 

BN(I(,H1UH2,C) = L BN(J(+,H1,D) + 8(v,1r1,C) 
DE7r1 

D\{v}~C 

where 8( v, xi, C) = { 
0
1 if 3D E 1r1 such that v E D and D \ { v} ~ C 

otherwise 

So, combining equations 15, 16, annd 17 

E(x,K, C) = 

(16) 

(17) 

L ( L PB'(I<+)[H1 II Y1]( L BN(J(+, Hi, D ) + o(v, 7r1, C))) L Ps[H2 II Y] 
( 11"1,11"2 ) H1EX1 DE71"1 H2EX2 

in PS(1r,K) D\{v}~C 

Simple algebraic manipulation completes the proof. 

(iii) By definition ( equation 12) and observation 4.3 

EP(1r,K,C1,C2) = 
L L L PB'(K)[H1 UH2 II Y]BN(K, H1 UH2, C1)BN(J(, H1 Ulh, C2) (18) 

(11"1,11"2 ) H1EX1H2EX2 
in PS(1r,K) 

where X 1 and X 2 are defined as in (ii) above. 

6 Recall from section 2 that Ps[1r2] is the probability that the connected components of of S are those defined by 
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Besides, by equation 17, the product BN(K,H1UH2,C1) BN(K,H1UH2,C2) is one of the 
following values: 

( I: BN(K+,H1,D1) + 1) ( L BN(I(+,H1,D2) + 1) 

if 8(v,1r1,C1)8(v,1r1,C2) = 1, or 

( I: BN(K+,H1,D1) + 1) L BN(K+,H1,D2) 
D1 E1r1 D2E1r1 

D1 \{v}~C1 D2\{v}~C2 

if 8(v,1r1,C1) = 1 but 8(v,1r1,C2) = O, or 

I: BN(J(+,H1,D1)( I: BN(K+,H1,D2) + 1) 
D1 E1r1 D2 E1r1 

D1 \{v}~C1 D2\{v}~C2 

if 8(v,1r1,C1) = 0 but 8(v,1r1,C2) = 1, or 

I: BN(J(+,H1,D1) I: BN(K+,H1,D2) 
D1 E1r1 D2E1r1 

D1\{v}~C1 D2\{v}~C2 

otherwise. 

The result follows by considering each of the four cases above and simplifying equation 18 
accordingly. 

(iv) By definition ( equation 13) and observation 4.3 

EIP(K) = I:H1 ~ B'(K+) I: PB'(K)[H1UH2 II Y] 
H2~S 

Notice that 

CC connected 
component of H1UH2 

V(CC)nV(K)=0 

IV(CC)l2 = 
C1 connected 

component of H1 

V(C1)nV(K)=0 

CC connected 
component of H1UH2 

V(CC)nV(K)=0 

IV(CC)l2 

where Cv is the connected component of H1 that contains the removed node v if H 2 has no 
edges, otherwise Cv is the empty graph. 

Notice also that IV(Cv)I = IBN(K+,H1,{v})I + 1. Thus, 

EIP(K) = I: L PB'(K)[H1 II Y1) L Ps[H2 II Y) IV(C1)12 + 
H1 ~B'(K+) H2~S C1 connected 

component of H1 

V(C1 )nV(K+ )=0 

L L L PB'(K)[H1UH2 II Y] (IBN(K+,JJ1,{v})I + 1)2 

(1r1 ,1r2) H1 EX1 H2EX2 
in II(v,K+,S) 

Simple algebraic manipulation of the expression above concludes the proof. I 
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We can use lemmata 4.1, 4.2, and 4.3 to reduce any k-tree G to a k-clique R. We compute 
Res(G} by combining the information in the state of the k-clique R with the effect of the edges 
between nodes in R. Before computing Res(G} we extend the values in the state of R (statistics 
about B'(R)) to values about the graph G itself. Some additional notation is in order. Let Res'(G) 
denote the expected number of ordered pairs of nodes in G that can communicate (including pairs 
of the form ( u, u)). So 

Res'( G) = L Pa[H] 
H5;G 

Notice that by equation 1 in section 2 

L IV(CC)l2 

CC connected 
component of H 

1 
Res( G) = 2 (Res'( G) - L Pv) 

vEV 

Therefore we only need to prove that Res'( G) can be computed from the state of the root R 
and the effect of the edges between nodes in R. 

To account for the effect of the edges between nodes in R we define the following functions. Let 
1r be any non-empty subpartition of the nodes in the root R, and C E 7i, define 

EP'('1r,R,C) = Pa[H] N(H, C)2 

HESG(G,R,1r) 

where N(H, C) = l{Y E G I y ~ C}j. Finally, let EIP'(R) denote the expected number of ordered 
pairs ( u, v) of nodes in G that can communicate such that u rf R and v rf R. So 

EIP'(R) = L Pa[H] L IV(CC)l 2 

H 5;G CC connected 
component of H 

V(CC)nV(R)=0 

The following lemma states how to compute Res'( G) from the state of the root R. 

Lemma 4.4 (termination) Let G = (V, E) be a k-tree network and R be a root of G obtained by 
applying the reduction paradigm and lemmata 4.1-4.3 to G. Then 

(i) For all 1r, C, such that 1r is a non-empty subpartition in II(V), and C is a block of" 

EP'(1r,R,C) = 
( 1r1 ,1r2) 

""I /\1r2 part. of V,r 
1r1 V1r2=1r 

(ii) EIP'(R) = EIP(R) 

(iii) Res'(G) = EIP'(R) + L L EP'(1r,R,C) 
1rEI1( R) C E1r 
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Proof: The proofs follow easily by algebraic manipulation of the definitions of EP'(1r, R, C), 
EIP'(R), and Res'(G). We present some details of the proof for (i) only. Let Y denote the 
condition up(V11J I\ dn(V(R) \ V1rJ• Clearly, 

E P' ( 1r, R, C) = Pa[H] N(H, C) 
HESG(G,R,1r) 

(,r1 ,,,-2 ) H1 in H 2 in 
,,.1 ",,.2 part. of v,,. SG(B 1(R) ,R,1ri) SG(R,R,1r2) 

1r1 V1r2=1r 

and the result follows because 

I 

Therefore, lemmata 4.1-4.4 and the general reduction paradigm (Algorithm 1 in section 2) give 
us the following theorem. 

Theorem 4.1 The resilience of a k-tree network G can be computed in 0( n) time. 

Proof: Correctness follows from lemmata 4.1-4.4. Timing follows from lemmata 4.1-4.4 and an 
implementation of Algorithm 1 in section 2 that keeps a stack of k-leaves and uses an adjacency 
list representation of the the graph (see (12] for an example of such an implementation). I 

Although our algorithm runs in 0( n) time, the constants involved are exponential in k. This 
seems unavoidable as any graph on n nodes is a partial n-tree and the resilience problem is NP-hard 
in general. Thus our algorithm is of practical interest for small values of k only. 

Even though we are interested in the asymptotic time complexity of the resilience algorithm, 
we include a table that gives some idea of the magnitude of the constants involved (see Table 3). 
The second column of Table 3 presents the number of subpartitions of a set of k elements, i.e., 
I:7~} { ktl}, where C~J is the number of ways to partition a set of n elements into m non-empty 
disjoint subsets ( a Stirling number of the second kind). The third column of Table 3 shows the 
number of values that constitute the state of a k-clique (the size of state(]()). A naive implemen
tation ~f our algorithm makes k = 4 already impractical ( consider the number of join operations 
performed in the reduction step). A careful implementation of the reduction step may make our 
algorithm practical for k = 4. 

4.2 Complexity of the resilience problem on partial k-tree networks 

We can compute the resilience of a partial k-tree network G by finding an embedding in a k-tree 
G', assigning probability zero to the added edges, and then applying the resilience algorithm for 
k-trees to G'. In [2] , Arnborg, Corneil and Proskurowski give an 0( nk+2

) time algorithm to find 
an embedding of a partial k-tree, .for a fixed k. However, for k = 2 and k = 3 the embedding of a 
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k III(K)I size of state(]() 

1 2 5 
2 5 17 
3 15 69 
4 49 293 

Table 3: Number of subpartitions of a k-clique and number of values in state(!(). 

partial k-tree in a k-tree can be found in O(n) time ( [17), [13)). When k = 1 we simply find the 
resilience of each 1-tree in the forrest G. Therefore, we can state the following corollary of theorem 
4.1 

Corollary 4.1 Let G be a partial k-tree network that has n nodes. The resilience of G can be 
computed in 0( nk+2 ) time. If an embedding of G in a k-tree is given, or k ~ 3, Res(G) can be 
computed in 0( n) time. 

We can also use theorem 4.1 to devise an NC algorithm that computes the resilience of a partial 
k-tree network. Consider A, a sequential algorithm obtained using the reduction paradigm. Let us 
assume that A runs in linear time on partial k-trees given with an embedding in a k-tree. Bod
laender [6] has proved that if the initialization step, each reduction step, and the termination step 
of A can each be solved in NC, then there is an NC algorithm to solve the same problem (e.g., the 
resilience problem) on partial k-trees (assuming only that k is fixed). From the identities used in 
lemmata 4.1, 4.2, 4.3, and 4.4 we clearly see that Bodlaender's result is applicable. So, we obtain 
the following corollary. 

Corollary 4.2 Let G be a partial k-tree network given with an embedding in a k-tree. There is 
an NC algorithm that computes the resilience of G. 

Corollary 4.2 is mainly of theoretical interest as the number of processors, although polynomial 
in the number of nodes of the graph, is very large [6). 

5 Conclusions 

The reduction paradigm introduced in [4] is a powerful tool to solve reliability problems on partial 
k-tree networks. We have developed an 0( n) time algorithm to compute the resilience of partial 
k-tree networks given with an embedding in a k-tree (for a fixed value of k ). This algorithm was 
obtained by generalizing and speeding up an 0( n2

) time algorithm for the same problem on fail
safe k-tree networks [12]. The speed up was achieved by keeping more information in the state of 
each k-clique, namely, the values EP('rr,K,C1 ,C2 ) and EIP(K). The generalization was attained 
by modeling the state of a network using subgraphs instead of partial graphs and by computing 
conditional probabilities (e.g., s('rr,K) is now a conditional probability). We can use this same 
generalization technique to define an 0( n) time algorithm to compute the /-terminal reliability 
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(for a fixed value l) of partial k-tree networks given with ari embedding in a k-tree (we generalize 
the algorithm given in [4], which assumes that nodes are fail-safe). An NC algorithm can also be 
derived from our sequential algorithm and results in [6]. 

It is easy (but tedious) to verify that a previously known linear time algorithm to compute 
the resilience of partial 2-tree networks with fail-safe nodes [12] is a special case of the algorithm 
presented in section 4. We ne~d only substitute k = 2, Pv = 1 for all nodes v in the network, and 
make a few., ad-hoc simplifications (e.g., eliminate redundant information and change slightly the 
definition of B'( K) ). 

Because of the large constants involved in our algorithm, the result is of practical interest 
for small values of k only (k ::; 4). However, as partial 4-trees include several important classes 
of graphs ( e.g., series-parallel, outerplanar, Halin, A-Y reducible, and Cube-free graphs [9]), the 
domain of application of the algorithm is still considerable. 
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