Resilience of Partial k-tree Networks with Edge and Node Failures

Erick Mata-Montero

CIS-TR-89-15
October 20, 1989

Abstract

The resilience of a network is the expected number of pairs of nodes that can communicate. Computing the resilience of a network is a \#Pcomplete problem even for planar networks with fail-safe nodes. We generalize an $\mathcal{O}\left(n^{2}\right)$ time algorithm to compute the resilience of n-node k-tree networks with fail-safe nodes to obtain an $\mathcal{O}(n)$ time algorithm that computes the resilience of n-node partial k-tree networks with edge and node failures (given a fixed k and an embedding of the partial k-tree in a k-tree).

Resilience of Partial k-tree Networks with Edge and Node Failures

Erick Mata-Montero *
Department of Computer and Information Science
University of Oregon, Eugene, Oregon 97403, USA

October 31, 1989

Abstract

The resilience of a network is the expected number of pairs of nodes that can communicate. Computing the resilience of a network is a \#P-complete problem even for planar networks with fail-safe nodes. We generalize an $\mathcal{O}\left(n^{2}\right)$ time algorithm to compute the resilience of n-node k tree networks with fail-safe nodes to obtain an $\mathcal{O}(n)$ time algorithm that computes the resilience of n-node partial k-tree networks with edge and node failures (given a fixed k and an embedding of the partial k-tree in a k-tree).

1 Introduction

Reliability measures of communication networks are an important parameter in network design. We model a computer communication network as a probabilistic graph $G=(V, E)$ in which each node v in V represents a communication site and each edge e in E represents a bidirectional communication line between two sites. Furthermore, edges and nodes have an associated probability of operation. The probability of operation of a component (node or edge) c of G is a fixed precision real number p_{c} such that $0 \leq p_{c} \leq 1$. Components of the network are in either operational or failed state. Component failures are assumed to be statistically independent.

Traditionally, the reliability of a network G is defined as the probability that a given communication task T can be performed in G. For example, if the task T consists of exchanging information between k distinguished nodes of G, the reliability of G (k-terminal reliability) is defined as the probability that the graph contains paths between each pair of the k nodes. The n-terminal (allterminal) and the 2 -terminal reliability are two of the most widely used measures of the reliability of a network. In the former case we are interested in computing the probability that the network contains a spanning tree, in the latter we are concerned with the probability that there is a path connecting two distinguished nodes in G. Computing the all-terminal reliability of a network is a \#P-complete problem, even for networks with fail-safe nodes [15]. Furthermore, computing the 2 -terminal reliability of a network is also a \#P-complete problem, even when the network is planar, acyclic, with bounded degree nodes, with fail-safe nodes, and with all the edges having identical

[^0]probability of operation [14]. Colbourn [7] presents an excellent survey of the combinatorics of network reliability.

The resilience of a network is the expected number of pairs of distinct nodes that can communicate. This measure provides some additional, fine grain information about the reliability of a network. For example, Figure 1 presents two fail-safe networks that have the same all-terminal reliability but whose resilience is quite different. The all-terminal reliability of both G_{1} and G_{2} is 0 . However, the resilience of G_{1} is 5 and the resilience of G_{2} is 15 . In general, it has not been determined what relationships (if any) exist between all-terminal reliability and resilience [8].

Figure 1: Two graphs with the same 10 -terminal reliability but different resilience.
The resilience problem, RES, consists of computing the resilience of a network. This is also a \#P-complete problem, even when the network is planar and the nodes are fail-safe [8]. The apparent complexity of RES has lead to the development of efficient algorithms on restricted classes of networks, especially on the class of partial 2-tree networks ([8], [12], and [16]). The class of partial k-trees is an attractive subject of study not only because it contains several important classes of graphs (e.g., series-parallel graphs and outerplanar graphs [5],[11]), but also because many NPcomplete graph problems have polynomial, and even linear time solutions when restricted to the class of partial k-trees [4]. Table 1 describes the complexity of the polynomial algorithms so far obtained for the resilience problem on partial 2 -tree networks. Table 2 describes the complexity of the polynomial algorithms known for the class of partial k-tree networks (for a fixed $k>2$). Our main result consists of a linear time algorithm for all the classes of networks described in tables 1 and 2.

This paper is organized as follows. Section 2 introduces some basic terminology. Section 3 presents some background material about k-trees and partial k-trees. Section 4 describes a linear time algorithm to compute the resilience of partial k-tree networks given with a suitable embedding in a k-tree (for a fixed k).

2 Terminology

Except for a few explicitly defined concepts, we use the basic graph theoretic terminology as defined in [10]. Throughout this paper we assume that all graphs are probabilistic. Let $G=(V, E)$ be a graph with n nodes and m edges. A clique of G is a (not necessarily maximal) complete subgraph of G. A k-clique is a clique that has exactly k nodes. A graph $H=\left(V_{H}, E_{H}\right)$ is a partial graph of G if H is a spanning subgraph of G. We use $H \leq G$ to denote that H is a subgraph of G.

		Edge failures		
	$\forall e, p_{e}=1$	$\forall e, p_{e}=c_{1}$	$\forall e, 0 \leq p_{e} \leq 1$	
Node	$\forall v, p_{v}=1$	-	$\mathcal{O}(n)[1]$	$\mathcal{O}(n)[12]$
	$\forall v, p_{v}=c_{2}$	$\mathcal{O}(n)[1]$	open	open
	$\forall v, 0 \leq p_{v} \leq 1$	open	open	open

Table 1: Polynomial time algorithms for RES on partial 2-tree networks.

		Edge failures		
	$\forall e, p_{e}=1$	$\forall e, p_{e}=c_{1}$	$\forall e, 0 \leq p_{e} \leq 1$	
Nodefailures	$\forall v, p_{v}=1$	-	$\mathcal{O}\left(n^{2}\right)[12]$	$\mathcal{O}\left(n^{2}\right)[12]$
	$\forall v, p_{v}=c_{2}$	open	open	open
	$\forall v, 0 \leq p_{v} \leq 1$	open	open	open

Table 2: Polynomial time algorithms for RES on partial k-tree networks.
The state S of a network G is the set of nodes and edges of G that are operational. Nodes and edges are in one of two states: $u p$ (operational) or down (failed). Let p_{v} and p_{e} denote the probability that node v is up and edge e is up respectively. The probability that G is in state S is

$$
\prod_{v \in S} p_{v} \prod_{v \in V S}\left(1-p_{v}\right) \prod_{e \in S} p_{e} \prod_{e \in E \backslash S}\left(1-p_{e}\right)
$$

We use subgraphs of G to represent states of the network. Notice however that, unless G has no edges, there are more states than subgraphs of G. So, each subgraph $H=\left(V_{H}, E_{H}\right)$ of G represents a class of states of G, namely those states of G in which nodes in V_{H} are up, nodes in $V \backslash V_{H}$ are down, edges in E_{H} are up, and edges in $E_{H}^{\prime} \backslash E_{H}$ are down, where E_{H}^{\prime} is the set of edges of the subgraph of G induced by V_{H} (see Figure 2). The operational subgraph of G is the subgraph of G defined by the operational nodes and the operational edges that are incident on two operational nodes. $P_{G}[H]$ denotes the probability that H is the operational subgraph of G (equivalently, it

Figure 2: (a) Graph G. (b) Subgraph H. (c) States represented by H.
denotes the probability that the state of G is one of the states represented by H). Thus,

$$
P_{G}[H]=\prod_{v \in V_{H}} p_{v} \prod_{v \in V \backslash V_{H}}\left(1-p_{v}\right) \prod_{e \in E_{H}} p_{e} \prod_{e \in E_{H}^{\prime} \backslash E_{H}}\left(1-p_{e}\right)
$$

We extend the definition of P_{G} to the domain of sets of subgraphs of G in the natural way. Let A be a set of subgraphs of $G, P_{G}[A]$ denotes the probability that the operational subgraph of G is in A. Therefore $P_{G}[A]=\sum_{H \in A} P_{G}[H]$.

Let H be a subgraph of G and u, v be two nodes of H. We say that node u is connected to node v via $H(u \stackrel{H}{\sim} v)$ iff there is a path, consisting of zero or more edges of H, that connects node u to node v; when $H=G$ we prefer the notation $u \sim v$ over $u \stackrel{G}{\sim} v$. A node v is connected to a set of nodes C via a graph $H(v \stackrel{H}{\sim} C)$ if $v \stackrel{H}{\sim} w$, for all nodes $w \in C$.

The set of all connected components of a graph defines a partition of the set of vertices of the graph. A set π is a subpartition of the set of nodes V if π is a partition of a subset of nodes of V. We use V_{π} to denote the set of nodes of which π is a partition. Given a subpartition π of $V, P_{G}[\pi]$ denotes the probability that the operational subgraph of G has precisely the connected components defined by π^{1}.

The resilience of a network $G=(V, E)$ is the expected number of (unordered) pairs of nodes of G that can communicate. Pairs of the form $\{u, u\}$ are not counted. We use $\operatorname{Res}(G)$ to denote the resilience of G. We can formulate $\operatorname{Res}(G)$ as

$$
\operatorname{Res}(G)=\sum_{H \leq G} P_{G}[H] \operatorname{Pairs}(H)
$$

where $\operatorname{Pairs}(H)$ is the number of pairs $\{u, v\}$ of nodes in V such that $u \stackrel{H}{\sim} v$ and $u \neq v$. We can also formulate $\operatorname{Res}(G)$ in terms of certain information about the connected components of the subgraphs

[^1]of G. It is easy to verify that
\[

\operatorname{Res}(G)=\frac{1}{2}\left(\sum_{H \leq G} P_{G}[H] \sum_{$$
\begin{array}{c}
\text { CC connected } \tag{1}\\
\text { component of } H
\end{array}
$$}|V(C C)|^{2}-\sum_{v \in V} p_{v}\right)
\]

In the next ection we use equation 1 to devise an $\mathcal{O}(n)$ time algorithm to compute the resilience of partial k-tree networks given with an embedding in a k-tree.

3 Partial k-tree networks

Important classes of networks can be classified as partial k-trees (graphs with bounded tree-width) [5]. Let k be a fixed positive integer. A graph is a k-tree iff it satisfies either of the following conditions:
(i) It is the complete graph on k nodes, K_{k};
(ii) It has a-node v of degree k with completely connected neighbors, and the graph obtained by removing v and its incident edges is a k-tree.

A graph is a partial k-tree if it is a partial graph of a k-tree. We refer the reader to [3] or [2] for an overview of properties of k-trees and to $[5,11]$ for surveys of classes of graphs related to the class of (partial) k-trees.

3.1 The reduction paradigm

Arnborg and Proskurowski [4] have defined an algorithm design methodology, a reduction paradigm, for partial k-trees that leads to the development of efficient algorithms for a variety of NP-hard problems restricted to partial k-trees. The reduction paradigm assumes that k is a fixed positive integer and that the input partial k-tree is given with a suitable embedding in a k-tree. To simplify our presentation, we will discuss this reduction paradigm assuming that the input graph is a k-tree rather than a partial k-tree given with an embedding in a k-tree.

The reduction paradigm in [4] uses a dynamic programming approach to compute the solution to a problem X on a (partial) k-tree. First, we associate a state with each k-clique in the graph. The state of each k-clique contains some local information that will be combined with the information in other states to solve problem X. Once each k-clique has been assigned an initial state, we proceed to eliminate $n-k$ nodes of G in some convenient order v_{1}, \ldots, v_{n-k}. Each time we eliminate one node v we destroy a number of k-cliques whose states contain valuable information. So, before removing v we combine the states of these k-cliques and save the result as the state of a specific k-clique that is not destroyed by the removal of v. When the $n-k$ nodes have been removed from G we are left with a root R of $G . R$ is a k-clique whose state contains enough information to solve problem X on G. We need some notation to formalize these ideas.

A perfect elimination ordering (peo) of a graph G is an enumeration v_{1}, \ldots, v_{n} of the nodes of G such that for each $i(i=1, \ldots, n)$, the higher numbered neighbors of v_{i} form a clique. Clearly, we can always find a peo for a k-tree. Furthermore, we can guarantee that for any peo of a k-tree
the higher numbered neighbors of each of the first $n-k$ nodes induce a k-clique. A node whose neighborhood induces a k-clique is called a k-leaf.

Algorithm 1 presents the reduction paradigm in detail. Let us suppose that we want to solve problem X on a k-tree G. The first step of the algorithm, the initialization step, finds the first $n-k$ nodes of a peo and initializes the state of each k-clique in the graph G. The initial state of each k-clique K is computed by a function $e(K)$. Each reduction step removes one of the $n-k$ nodes in the queue $P E O$. Upon removal of a node v, the algorithm performs two sub-steps. First it "combines" the states of $k+1 k$-cliques. We use f to denote the function that computes such a combination of states. The result of applying f to the states of the $k k$-cliques that will be destroyed and to the state of the neighborhood of v is called the "state" of $K^{+}(v)^{2}$. The second sub-step combines the effect of the edges that connect v to its neighborhood $(K(v))$ and the state of $K^{+}(v)$. Algorithm 1 represents this second combination of information as the computation of $g\left(\right.$ state $\left.\left(K^{+}(v)\right), S(v)\right)$. The termination step extracts the solution to problem X from the state of the root R and the effect of the edges in R.

Algorithm 1 (reduction paradigm)

Input: $G=(V, E)$, a k-tree (for a fixed k).

1. Initialization step.
$P E O \leftarrow$ empty queue.
Do $n-k$ times:
Let v be a k-leaf of $G-P E O$.
Let $K(v)$ be the (k-clique) neighborhood of v in $G-P E O$.
Let $K^{+}(v)$ be the $(k+1)$-clique induced by $V(K(v)) \cup\{v\}$.
For all nodes u in $V(K(v))$ do:
Let $K^{u}(v)$ be the k-clique induced by $V\left(K^{+}(v)\right) \backslash\{u\}$.
$\operatorname{state}\left(K^{u}(v)\right) \leftarrow e\left(K^{u}(v)\right)$
Append v to PEO.
$\operatorname{state}(R) \leftarrow e(R)$.
2. Reduction steps.

For each node v in PEO, in order, do:
state $\left(K^{+}(v)\right) \leftarrow f\left(\left\{\operatorname{state}\left(K^{u}\right) \mid u \in V\left(K^{+}(v)\right)\right\}\right)$.
Let $S(v)$ be the star graph induced by the edges $\{v, u\}, \forall u \in V(K(v))$.
$\operatorname{state}(K(v)) \leftarrow g\left(\operatorname{state}\left(K^{+}(v)\right), S(v)\right)$.
Remove v from G.
3. Termination step.

Solution $\leftarrow h(\operatorname{state}(R)$, edges in $R)$.

[^2]

Figure 3: (a) A 3-tree. (b) Branches on K.

The state of each k-clique describes solutions to a problem (usually a generalization of the original problem) restricted to the subgraph induced by the nodes in the k-clique and by those removed nodes that the k-clique separates from all non-removed nodes excluding all edges between nodes in the k-clique. The specification of an algorithm that uses the reduction paradigm described above consists of five main parts. First we define the state of each k-clique. Then we specify how to compute e, f, g, and h in Algorithm 1.

We need to formalize some concepts before presenting our reduction algorithm to compute the resilience of partial k-tree networks. If K is a k-clique, $v \notin V(K)$ is a descendant of K in a peo iff each higher numbered neighbor of v is either a member of K or a descendant of K. The connected components of the subgraph induced by all descendants of K are branches on K. Figure 3 (a) depicts a 3 -tree in which K is the 3 -clique induced by the nodes x, y, and z. Figure 3 (b) presents the branches on K.

Suppose that we have a peo defining a reduction process. We associate two subgraphs, $B(K)$ and $B^{\prime}(K)$, with each k-clique K. These two subgraphs change as we execute the reduction process. We use $B(K)$ to denote the removed branches on K, i.e., the subgraph induced by the nodes in the (completely) removed branches on $K . B^{\prime}(K)$ denotes the subgraph induced by the nodes in $K \cup B(K)$ without the edges between nodes in K. We call $B^{\prime}(K)$ the shell of K. The state of a k-clique K describes solutions to problems restricted to the shell $B^{\prime}(K)$. Figure 4 illustrates these concepts; after v_{1}, v_{2}, v_{3}, and v_{4} have been removed from the graph in Figure 3, $B\left(K^{\prime}\right)$ becomes the graph in Figure 4 (a), and $B^{\prime}\left(K^{\prime}\right)$ becomes the graph in Figure 4 (b).

The following equations describe how $B(K)$ and $B^{\prime}\left(K^{\prime}\right)$ change during the exccution of Algorithm 1. Notice that these equations also define $B\left(K^{+}\right)$and $B^{\prime}\left(K^{+}\right)$.

Dynamic definition of $B\left(K^{\prime}\right)$ and $B^{\prime}(K)$ (annotations on Algorithm 1)
Initialization step.

$$
\begin{align*}
B(K) & =(\emptyset, \emptyset) \tag{2}\\
B^{\prime}(K) & =(V(K), \emptyset) \tag{3}
\end{align*}
$$

Reduction steps.

Let $K=K(v), K^{+}=K^{+}(v), K^{u}=K^{u}(v)$, and $S=S(v)$.

$$
\begin{align*}
B\left(K^{+}\right) & =\bigcup_{u \in V\left(K^{+}\right)} B\left(K^{u}\right) \tag{4}\\
B^{\prime}\left(K^{+}\right) & =\bigcup_{u \in V\left(K^{+}\right)} B^{\prime}\left(K^{u}\right) \tag{5}\\
B(K) & =\text { subgraph induced by } V\left(B\left(K^{+}\right)\right) \cup\{v\} \tag{6}\\
B^{\prime}(K) & =B^{\prime}\left(K^{+}\right) \cup S \tag{7}
\end{align*}
$$

Termination step.

$$
\begin{align*}
B(R) & =G-R \tag{8}\\
B^{\prime}(R) & =G \text { without the edges in } R \tag{9}
\end{align*}
$$

(a)

(b)

Figure 4: $B(K)$ and $B^{\prime}(K)$ after removing v_{1}, v_{2}, v_{3} and v_{4} from the graph in Figure 3.

4 Resilience problem on partial k-tree networks

4.1 Resilience of k-tree networks

Before defining the state of each k-clique we need to introduce some additional notation. Let $G=$ (V, E) be a graph and W be a set of nodes. The projection of the connected components of G onto $W(\operatorname{Proj}(G, W))$ is the subpartition of W defined by intersecting each connected component of G with W (if V and W have no common nodes $\operatorname{Proj}(G, W)=\emptyset$). Let us now consider $H=\left(V_{H}, E_{H}\right)$, a subgraph of G. We use $\Pi(H)$ and $\Pi\left(V_{H}\right)$ to denote the set of subpartitions of the nodes in V_{H}. For each subpartition π in $\Pi(H), S G(G, H, \pi)$ denotes the set of subgraphs G^{\prime} of G such that $\operatorname{Proj}\left(G^{\prime}, V_{H}\right)=\pi$. It is easy to verify that the set of subgraphs of G can be partitioned into equivalence classes, each of which is $S G(G, H, \pi)$, where π is a subpartition of the set of nodes of H. Figure 5 illustrates the partition of the set of subgraphs of a 2 -tree into five equivalence classes. Each equivalence class is induced by a subpartition of the set of nodes $\{a, b\}$; white nodes represent failed nodes.

(a)

Subpartition π	Graphs in $S G(H, \pi)$
$\{\{a, b\}\}$	0
$\{\{a\},\{b\}\}$	0
$\{\{a\}\}$	00
$\{\{b\}\}$	00
\emptyset	00

(b)

Figure 5: (a) A 2-tree G. (b) Equivalence classes induced by subpartitions of $V(H)$.
The idea of partitioning the set of subgraphs of a graph with respect to a fixed set of nodes is crucial in our algorithm to compute $\operatorname{Res}(G)$. Consider K, a k-clique of a partially reduced k-tree G. Let π_{1}, \ldots, π_{q} be an enumeration of all the subpartitions of the nodes in K^{3}. We can partition the set of subgraphs of the shell $B^{\prime}(K)$ into the following q equivalence classes: $S G\left(B^{\prime}(K), K, \pi_{1}\right), \ldots, S G\left(B^{\prime}(K), K, \pi_{q}\right)$. The state of K consists of statistical information about each equivalence class of subgraphs of the shell $B^{\prime}(K)$. The following values define the state of a k-clique or ($k+1$)-clique K :

- $s(\pi, K)$, for each subpartition π in $\Pi(K)$. We define $s(\pi, K)$ as the probability that a subgraph of the shell $B^{\prime}(K)$ belongs to the class $S G\left(B^{\prime}(K), K, \pi\right)$, given that $u p\left(V_{\pi}\right)$ (the nodes in V_{π} are up) and $d n\left(V(K) \backslash V_{\pi}\right)$ (the nodes in $V(K) \backslash V_{\pi}$ are down). If the probability that the nodes in $V(K) \backslash V_{\pi}$ are down is zero, $s(\pi, K)$ is defined as zero ${ }^{4}$. So

$$
\begin{align*}
s(\pi, K) & =P_{B^{\prime}(K)}\left[S G\left(B^{\prime}(K), K, \pi\right) \| u p\left(V_{\pi}\right) \wedge d n\left(V(K) \backslash V_{\pi}\right)\right] \\
& =\sum_{H \in S G\left(B^{\prime}(K), K, \pi\right)} P_{B^{\prime}(K)}\left[H \| u p\left(V_{\pi}\right) \wedge d n\left(V(K) \backslash V_{\pi}\right)\right] \tag{10}
\end{align*}
$$

[^3]where $P[A \| B]$ denotes $P[A \mid B]$ if $P[B]>0$, otherwise it is 0 .

- $E(\pi, K, C)$, for all non-empty subpartitions π in $\Pi(K)$, and $C \in \pi$. We define $E(\pi, K, C)$ as follows:

$$
\begin{equation*}
E(\pi, K, C)=\sum_{H \in S G\left(B^{\prime}(K), K, \pi\right)} P_{B^{\prime}(K)}\left[H \| u p\left(V_{\pi}\right) \wedge d n\left(V(K) \backslash V_{\pi}\right)\right] B N(K, H, C) \tag{11}
\end{equation*}
$$

where $B N(K, H, C)$ is the number of branch nodes (nodes in $B(K))$ connected to C via H. It is easy to verify that if $s(\pi, K)>0, E(\pi, K, C) / s(\pi, K)$ is a conditional expected value, namely the expected number of nodes in $B(K)$ that are connected to C, via H, given that H is a member of the class $S G\left(B^{\prime}(K), K, \pi\right)$.

- $E P\left(\pi, K, C_{1}, C_{2}\right)$, for all non-empty subpartitions π in $\Pi(K)$, and C_{1}, C_{2} blocks of π. We define $E P\left(\pi, K, C_{1}, C_{2}\right)$ as follows:

$$
\begin{gather*}
E P\left(\pi, K, C_{1}, C_{2}\right)=\sum_{\substack{H \text { in } \\
S G\left(B^{\prime}(K), K, \pi\right)}} P_{B^{\prime}(K)}\left[H \| u p\left(V_{\pi}\right) \wedge d n\left(V(K) \backslash V_{\pi}\right)\right] i B N\left(K, H, C_{1}\right) B N\left(K, H, C_{2}\right) \tag{12}\\
\hline
\end{gather*}
$$

Again, it is easy to verify that if $s(\pi, K) \neq 0, E\left(\pi, K, C_{1}, C_{2}\right) / s(\pi, K)$ is a conditional expected value, namely the expected number of pairs (s, t) of nodes in $B(K)$ such that $s \stackrel{H}{\sim} C_{1}$, and $t \stackrel{H}{\sim} C_{2}$, given that H, a subgraph of $B^{\prime}(K)$, is a member of $S G\left(B^{\prime}(K), K, \pi\right)$.

- $E I P(K)$. We use $E I P(K)$ to denote the expected number of pairs of nodes in $B(K)$ that can communicate but are separated (isolated) from K. Formally, we define

$$
\begin{equation*}
E I P(K)=\sum_{H \leq B^{\prime}(K)} P_{B^{\prime}(K)}[H] \sum_{\substack{\text { cCconnected } \\ \text { somponent of } H \\ V(C C) \cap V(K)=\emptyset}}|V(C C)|^{2} \tag{13}
\end{equation*}
$$

The next four lemmata define the initialization, reduction, and termination steps of our algorithm for the resilience problem. The initialization lemma follows from the definitions of $B(K)$, $B^{\prime}(K), s(\pi, K), E(\pi, K, C), E P\left(\pi, K, C_{1}, C_{2}\right)$, and $E I P(K)$ (equations 2, 3, 10, 11, 12, and 13, respectively).

Lemma 4.1 (initialization) Let G be a k-tree network. Then
(i) For all K and π such that K is a k-clique of G, and π is a subpartition in $\Pi(K)$

$$
s(\pi, K)= \begin{cases}1 & \text { if } \pi \text { consists of zero or more singletons and } \\ 0 & \prod_{v \in V(K) \backslash V_{\pi}}\left(1-p_{v}\right) \neq 0\end{cases}
$$

(ii) For all K, π, and C such that K is a k-clique of G, π is a non-empty subpartition in $\Pi(K)$, and $C \in \pi$

$$
E(\pi, K, C)=0
$$

(iii) For all K, π, C_{1}, and C_{2} such that K is a k-clique of G, π is a non-empty subpartition in $\Pi(K)$, and C_{1} and C_{2} are sets of nodes in π

$$
E P\left(\pi, K, C_{1}, C_{2}\right)=0
$$

(iv) For all K such that K is a k-clique of G

$$
E I P(K)=0
$$

Let us now consider the reduction step. Let G be a (partially reduced) k-tree, and v be a k-leaf of G with neighborhood K. Let K^{+}be the graph induced by $V(K) \cup\{v\}$, and u_{1}, \ldots, u_{k+1} be the nodes in K^{+}. Also, for all $i=1, \ldots, k+1$, let K^{i} denote the k-clique induced by the nodes in $V\left(K^{+}\right) \backslash\left\{u_{i}\right\}$. The reduction step consists of two parts. First we compute the state of K^{+}by combining the information in the states of K^{i} for all $i=1, \ldots, k+1$ (lemma 4.2). Then we update the state of K by considering the state of K^{+}and the effect of the edges that connect v to K (lemma 4.3).

We need some additional notation. Let π be a partition. Following [4], we use π / u to denote the partition obtained by removing u from its block in π and then removing the block if it became empty. Furthermore, the join of two partitions π_{1} and π_{2}, denoted $\pi_{1} \vee \pi_{2}$, is the partition obtained by taking the union of intersecting blocks until a partition of the union remains (e.g., $\{\{a, b\},\{c\},\{d\}\} \vee$ $\{\{a, d\},\{b, c, e\},\{f\}\}=\{\{a, b, c, d, e\}\{f\}\})$.

To compute the state of K^{+}we consider all possible ways of obtaining π^{+}, a subpartition in $\Pi\left(K^{+}\right)$, as the join of $\pi_{1}, \ldots, \pi_{k+1}$, where π_{i} is a partition of $V_{\pi^{+}} \backslash\left\{u_{i}\right\}(i=1, \ldots, k+1)$. We use $T\left(\pi^{+}, K^{+}\right)$to denote the set of $(k+1)$-tuples of subpartitions of nodes in K^{+}such that their join is π^{+}and the i-th subpartition is a partition of $V_{\pi^{+}} \backslash\left\{u_{i}\right\}(i=1, \ldots, k+1)$. Formally,

$$
T\left(\pi^{+}, K^{+}\right)=\left\{\left(\pi_{1}, \ldots, \pi_{k+1}\right) \mid \bigvee_{i=1}^{k+1} \pi_{i}=\pi^{+} \wedge \forall i=1, \ldots, k+1, \pi_{i} \text { is a partition of } V_{\pi^{+}} \backslash\left\{u_{i}\right\}\right\}
$$

We use $\vec{\pi}$ to denote a $(k+1)$-tuple in $T\left(\pi^{+}, K^{+}\right)$and $\vec{\pi}_{i}$ to denote the i-th entry of $\vec{\pi}$.
By definition, a subgraph H of the shell $B^{\prime}\left(K^{+}\right)$is the (graph) union of $k+1$ graphs H_{1}, \ldots, H_{k+1} such that each H_{i} is a subgraph of $B^{\prime}\left(K^{i}\right)$ and $i=1, \ldots, k+1$ (cf. equation 5). Furthermore, the subgraph H is in $S G\left(B\left(K^{+}\right), K^{+}, \pi^{+}\right)$if and only if each H_{i} is in $S G\left(B\left(K^{i}\right), K^{i}, \pi_{i}\right)$ for subpartitions π_{i} such that $\left(\pi_{1}, \ldots, \pi_{k+1}\right)$ is an element of $T\left(\pi^{+}, K^{+}\right)$. Formally, we make the following observation.

Observation 4.1 There is a bijection ϕ from $S G\left(B^{\prime}\left(K^{+}\right), K^{+}, \pi^{+}\right)$to

$$
\bigcup_{\substack{\left(\pi_{1}, \ldots, \pi_{k+1}\right) \\ \text { in } T\left(\pi^{+}, K^{+}\right)}} S G\left(B^{\prime}\left(K^{1}\right), K^{1}, \pi_{1}\right) \times \ldots \times S G\left(B^{\prime}\left(K^{k+1}\right), K^{k+1}, \pi_{k+1}\right)
$$

such that $\phi(H)=\left(H_{1}, \ldots, H_{k+1}\right)$ iff $\bigcup_{i=1}^{k+1} H_{i}=H$.
The following observation is useful in proving lemma 4.2.

Observation 4.2 Given m finite sets X_{1}, \ldots, X_{m} and m real functions f_{1}, \ldots, f_{m} with domain X_{1}, \ldots, X_{m} respectively,

$$
\prod_{i=1}^{m} \sum_{x \in X_{i}} f_{i}(x)=\sum_{\substack{\left(x_{1}, \ldots, x_{m}\right) \\ \text { in } X_{1} \times \ldots \times X_{m}}} \prod_{i=1}^{m} f_{i}\left(x_{i}\right)
$$

We can now prove the following lemma.
Lemma 4.2 Let G be a k-tree network that has been partially reduced using some perfect elimination ordering and the general reduction paradigm. Let v be the next k-leaf to be removed. Let K be the neighborhood of v, and K^{+}be the subgraph of G induced by $V(K) \cup\{v\}$. Then
(i) For all π^{+}such that π^{+}is a subpartition in $\Pi\left(K^{+}\right)$

$$
s\left(\pi^{+}, K^{+}\right)=\sum_{\vec{\pi} \in T\left(\pi^{+}, K^{+}\right)} \prod_{i=1}^{k+1} s\left(\vec{\pi}_{i}, K^{i}\right)
$$

(ii) For all π^{+}and C such that π^{+}is a non-empty subpartition in $\Pi\left(K^{+}\right)$, and $C \in \pi^{+}$

$$
E\left(\pi^{+}, K^{+}, C\right)=\sum_{\vec{\pi} \in T\left(\pi^{+}, K^{+}\right)} \sum_{i=1}^{k+1} \prod_{\substack{j=1 \\ j \neq i}}^{k+1} s\left(\vec{\pi}_{j}, K^{j}\right) \sum_{\substack{D \in \vec{\pi}_{i} \\ D \subseteq C}} E\left(\vec{\pi}_{i}, K^{i}, D\right)
$$

(iii) For all π^{+}, C_{1}, and C_{2} such that π^{+}is a non-empty subpartition in $\Pi\left(K^{+}\right)$, and $C_{1}, C_{2} \in \pi^{+}$
where

$$
F\left(i, j, D_{1}, D_{2}\right)= \begin{cases}\prod_{\substack{l=1 \\ l \neq i}}^{k+1} s\left(\vec{\pi}_{l}, K^{l}\right) E P\left(\vec{\pi}_{i}, K^{i}, D_{1}, D_{2}\right) & \text { if } i=j \\ \prod_{\substack{l=1 \\ k+1} i \wedge l \neq j} s\left(\vec{\pi}_{l}, K^{l}\right) E\left(\vec{\pi}_{i}, K^{i}, D_{1}\right) E\left(\vec{\pi}_{j}, K^{j}, D_{2}\right) & \text { otherwise }\end{cases}
$$

(iv) $\operatorname{EIP}\left(K^{+}\right)=\sum_{i=1}^{k+1} E I P\left(K^{i}\right)$

Proof: Let us use Y to denote the condition $u p\left(V_{\pi^{+}}\right) \wedge d n\left(V(K) \backslash V_{\pi^{+}}\right)$. Also, let us use Y_{i} to denote the condition $u p\left(V_{\vec{\pi}_{i}}\right) \wedge d n\left(V\left(K^{i}\right) \backslash V_{\vec{\pi}_{i}}\right)$.
(i) Using the definition of $s\left(\pi^{+}, K^{+}\right)$(equation 10) and observation 4.1 we get

$$
\begin{aligned}
s\left(\pi^{+}, K^{+}\right) & =\sum_{S G\left(B^{\prime}\left(K^{+}\right), K^{+}, \pi^{+}\right)} P_{B^{\prime}\left(K^{+}\right)}[H \| Y] \\
& =\sum_{\vec{\pi} \in T\left(\pi^{+}, K^{+}\right)} \sum_{\substack{\left(H_{1}, \ldots, H_{k+1}\right) \text { in } \\
X_{1} \times \ldots \times X_{k+1}}} P_{B^{\prime}\left(K^{+}\right)}\left[H_{1} \cup \ldots \cup H_{k+1} \| Y\right]
\end{aligned}
$$

where $X_{i}=S G\left(B^{\prime}\left(K^{i}\right), K^{i}, \vec{\pi}_{i}\right), 1 \leq i \leq k+1$.
Notice that the graphs H_{1}, \ldots, H_{k+1} are edge-disjoint. Besides, component failures are statistically independent. So,

$$
s\left(\pi^{+}, K^{+}\right)=\sum_{\vec{\pi} \in T\left(\pi^{+}, K^{+}\right)} \sum_{\substack{\left(H_{1}, \ldots, H_{k+1}\right) \text { in } \\ X_{1} \times \ldots \times X_{k+1}}} \prod_{i=1}^{k+1} P_{B^{\prime}\left(K^{i}\right)}\left[H_{i} \| Y_{i}\right]
$$

The result follows by observation 4.2
(ii) Analogously, we can use the definition of $E\left(\pi^{+}, K^{+}, C\right)$ (equation 11), observation 4.1, and the statistical independence of component failures to obtain

$$
E\left(\pi^{+}, K^{+}, C\right)=\sum_{\substack{\pi \in T\left(\pi^{+}, K^{+}\right)\\}} \sum_{\substack{\left(H_{1}, \ldots, H_{k+1}\right) \\ X_{1} \times \ldots \times X_{k+1}}} \prod_{i=1}^{k+1} P_{B^{\prime}\left(K^{i}\right)}\left[H_{i} \| Y_{i}\right] B N\left(K^{+}, H_{1} \cup \ldots \cup H_{k+1}, C\right)
$$

But

$$
\begin{equation*}
B N\left(K^{+}, H_{1} \cup \ldots \cup H_{k+1}, C\right)=\sum_{j=1}^{k+1} \sum_{\substack{D \subseteq C \\ D \in \tilde{\pi}_{j}}} B N\left(K^{j}, H_{j}, D\right) \tag{14}
\end{equation*}
$$

So, simple algebraic manipulation and observation 4.2 yield the desired result.
(iii) Similarly, we use the definition of $E P\left(\pi^{+}, K^{+}, C_{1}, C_{2}\right)$ (equation 12), and the arguments employed in (ii) above to get that $E P\left(\pi^{+}, K^{+}, C_{1}, C_{2}\right)$ is

$$
\sum_{\substack{* i n \\ T\left(\pi^{+}, K^{+}\right)}} \sum_{\substack{\left(H_{1}, \ldots, H_{k+1}\right) \text { in } \\ X_{1} \times \ldots \times X_{k+1}}} \prod_{i=1}^{k+1} P_{B^{\prime}\left(K^{i}\right)}\left[H_{i} \| Y_{i}\right] B N\left(K^{i}, H_{1} \cup \ldots \cup H_{k+1}, C_{1}\right) B N\left(K^{i}, H_{1} \cup \ldots \cup H_{k+1}, C_{2}\right)
$$

Equation 14 and additional algebraic manipulation suffice to prove (iii).
(iv) By similar arguments we obtain that

$$
\begin{aligned}
\operatorname{EIP}\left(K^{+}\right)= & \sum_{\begin{array}{c}
H \leq B^{\prime}\left(K^{+}\right)
\end{array}} P_{B^{\prime}\left(K^{+}\right)}[H] \sum_{\begin{array}{c}
\text { cCconnected } \\
\text { componetof } \\
\text { V(CC)nV(of } H
\end{array}}|V(C C)|^{2} \\
= & \sum_{\substack{\left(H_{1}, \ldots, H_{k+1}\right) \text { in } \\
B^{\prime}\left(K^{1}\right) \times \ldots \times B^{\prime}\left(K^{k+1}\right)}} \prod_{j=1}^{k+1} P_{B^{\prime}\left(K^{j}\right)}\left[H_{j}\right] \sum_{i=1}^{k+1} \sum_{\begin{array}{c}
\text { CCconnected } \\
\text { componentof } H_{i} \\
V(C C) N\left(K^{i}\right)=\emptyset
\end{array}}|V(C C)|^{2}
\end{aligned}
$$

The proof follows by observation 4.2
We now show how to update the state of K given the state of K^{+}. Let S be the star network consisting of the k edges that link v to K. Let $\Pi^{\prime}(S)$ denote the set of subpartitions of nodes in S that consist of singletons only possibly with exception of the set containing node v. The set $\Pi^{\prime}(S)$ models the set of operational subgraphs of S. Edges of S that are operational may cause two or more connected components of the operational subgraph of $B^{\prime}(K)$ to become connected. So we update the state of K by considering all possible ways of obtaining each subpartiton π in $\Pi(K)$ as the join of pairs (π_{1}, π_{2}) of subpartitions in $\Pi\left(K^{+}\right)$and $\Pi^{\prime}(S)$, respectively. The following set defines formally the pairs of subpartitions that we want to consider:

$$
P S(\pi, K)=\left\{\left(\pi_{1}, \pi_{2}\right) \mid \pi_{1} \in \Pi\left(K^{+}\right), \pi_{2} \in \Pi^{\prime}(S), V_{\pi_{1}}=V_{\pi_{2}}, \text { and }\left(\pi_{1} \vee \pi_{2}\right) / v=\pi\right\}
$$

The following observation is useful in proving lemma 4.3.
Observation 4.3 There is a bijection ψ such that

$$
\psi: S G\left(B^{\prime}(K), K, \pi\right) \mapsto \bigcup_{\substack{\left(\begin{array}{r}
\left(\pi_{1}, \pi_{2}\right) \\
i n \\
P S(\pi, K) \\
\hline
\end{array}\right.}} S G\left(B^{\prime}\left(K^{+}\right), K^{+}, \pi_{1}\right) \times S G\left(S, S, \pi_{2}\right)
$$

and $\psi(H)=\left(H_{1}, H_{2}\right)$ iff $H=H_{1} \cup H_{2}{ }^{5}$.
We can now establish how to update the state of K from the state of K^{+}and the star graph S.
Lemma 4.3 Let G be a k-tree network that has been partially reduced using some perfect elimination ordering and the general reduction paradigm. Let v be the next k-leaf to be removed. Let K be the neighborhood of v, and K^{+}be the subgraph of G induced by $V(K) \cup\{v\}$. In addition, let S be the star graph consisting of the k edges that link v to K. Then
(i) For all π such that π is a subpartition in $\Pi(K)$,

$$
s(\pi, K)=\sum_{\substack{\left(\begin{array}{c}
\left(\pi_{1}, \pi_{2}\right) \\
\text { in } P S(\pi, K) \\
\hline
\end{array}\right.}} s\left(\pi_{1}, K^{+}\right) P_{S}\left[\pi_{2} \| u p\left(V_{\pi}\right) \wedge d n\left(V(K) \backslash V_{\pi}\right)\right]
$$

[^4](ii) For all π, C, such that π is a non-empty subpartition in $\Pi(K)$ and $C \in \pi$,
$$
E(\pi, K, C)=\sum_{\substack{\left(\pi_{1}, \pi_{2}\right) \\ i n \\ P S(\pi, K)}} P_{S}\left[\pi_{2} \| u p\left(V_{\pi}\right) \wedge d n\left(V(K) \backslash V_{\pi}\right)\right]\left(\sum_{\substack{D \in \pi_{1} \\ D\{v\} \subseteq C}} E\left(\pi_{1}, K^{+}, D\right)+r\left(v, \pi_{1}\right)\right)
$$

where $r\left(v, \pi_{1}\right)= \begin{cases}s\left(\pi_{1}, K^{+}\right) & \text {if } \exists D \in \pi_{1} \text { such that } v \in D \text { and } D \backslash\{v\} \subseteq C \\ 0 & \text { otherwise }\end{cases}$
(iii) For all π, C_{1}, and C_{2} such that π is a non-empty subpartition in $\Pi(K)$, and C_{1} and C_{2} are blocks of the subpartition π,

$$
\left.\begin{array}{rl}
E P\left(K, \pi, C_{1}, C_{2}\right)= & \sum_{\substack{\left(\pi_{1}, \pi_{2}\right) \\
\text { in } \\
P S(\pi, K)}} P_{S}\left[\pi_{2} \| u p\left(V_{\pi}\right) \wedge d n\left(V(K) \backslash V_{\pi}\right)\right] \\
& \sum_{\substack{D_{1} \in \pi_{1} \\
D_{1} \backslash\{v\} \subseteq C_{1}}}\left(E P\left(\pi_{1}, K^{+}, D_{1}, D_{2}\right)+R\left(v, D_{1}, D_{2}\right)\right) \\
\left.D_{2} \backslash v\right\} \subseteq \pi_{1} \leq C_{2}
\end{array}\right)
$$

where

$$
R\left(v, D_{1}, D_{2}\right)= \begin{cases}2 E\left(\pi_{1}, K^{+}, D_{1}\right)+s\left(\pi_{1}, K^{+}\right) & \text {if } v \in D_{1} \wedge v \in D_{2} \\ E\left(\pi_{1}, K^{+}, D_{1}\right) & \text { if } v \notin D_{1} \wedge v \in D_{2} \\ E\left(\pi_{1}, K^{+}, D_{2}\right) & \text { if } v \in D_{1} \wedge v \notin D_{2} \\ 0 & \text { otherwise }\end{cases}
$$

(iv) Let $\Pi\left(v, K^{+}, S\right)$ be the set of pairs $\left(\pi_{1}, \pi_{2}\right)$ of subpartitions in $\Pi\left(K^{+}\right)$such that $V_{\pi_{1}}=V_{\pi_{2}}$, $\pi_{2} \in \Pi^{\prime}(S),\{v\} \in \pi_{1}$, and $\{v\} \in \pi_{2}$. Then
$E I P(K)=E I P\left(K^{+}\right)+$
$\sum_{\substack{\left(\pi_{1}, \pi_{2}\right) \\ \text { in } \Pi\left(v, K^{+}, S\right)}}\left(E P\left(\pi_{1}, K^{+},\{v\},\{v\}\right)+2 E\left(\pi_{1}, K^{+},\{v\}\right)+s\left(\pi_{1}, K^{+}\right)\right) \quad P_{S}\left[\pi_{2} \| u p\left(V_{\pi}\right) \wedge d n\left(V(K) \backslash V_{\pi}\right)\right]$
Proof: The proof follows by applying observation 4.3 to the definition of $s(\pi, K), E(\pi, K, C)$, $E P\left(\pi, K, C_{1}, C_{2}\right)$, and $E I P(K)$, and then performing basic algebraic manipulations. Let us use Y to denote the condition $u p\left(V_{\pi}\right) \wedge d n\left(V(K) \backslash V_{\pi}\right)$. In addition, let Y_{1} denote the condition $u p\left(V_{\pi_{1}}\right) \wedge$ $\operatorname{dn}\left(V\left(K^{+}\right) \backslash V_{\pi_{1}}\right)$.
(i) By definition (equation 10) and observation 4.3

$$
\begin{aligned}
s(\pi, K) & =\sum_{H \in S G\left(B^{\prime}(K), K, \pi\right)} P_{B^{\prime}(K)}[H \| Y] \\
& =\sum_{\substack{\left(\pi_{1}, \pi_{2}\right) \\
i n \\
P S(\pi, K)}} \sum_{\substack{H_{1} \text { in } \\
S G\left(B^{\prime}\left(K^{+}\right), K^{+}, \pi_{1}\right) \\
S G\left(S, S, \pi_{2}\right)}} P_{B^{\prime}(K)}\left[H_{1} \cup H_{2} \| Y\right]
\end{aligned}
$$

But

$$
\begin{equation*}
P_{B^{\prime}(K)}\left[H_{1} \cup H_{2} \| Y\right]=P_{B^{\prime}\left(K^{+}\right)}\left[H_{1} \| Y_{1}\right] P_{S}\left[H_{2} \| Y\right] \tag{15}
\end{equation*}
$$

Therefore

$$
s(\pi, K)=\sum_{\substack{\left(\pi_{1}, \pi_{2}\right) \\ \text { in } P S(\pi, K)}} s\left(\pi_{1}, K^{+}\right) \sum_{\substack{H_{2} \text { in } \\ S G\left(S, S, \pi_{2}\right)}} P_{S}\left[H_{2} \| Y\right]
$$

which is the desired result ${ }^{6}$.
(ii) Analogously, we can use the definition of $E(\pi, K, C)$ (equation 11) and observation 4.3 to obtain

$$
\begin{equation*}
E(\pi, K, C)=\sum_{\substack{\left(\pi_{1}, \pi_{2}\right) \\ \text { in } P S(\pi, K)}} \sum_{H_{1} \in X_{1}} \sum_{H_{2} \in X_{2}} P_{B^{\prime}(K)}\left[H_{1} \cup H_{2} \| Y\right] B N\left(K, H_{1} \cup H_{2}, C\right) \tag{16}
\end{equation*}
$$

where $X_{1}=S G\left(B^{\prime}\left(K^{+}\right), K^{+}, \pi_{1}\right)$ and $X_{2}=S G\left(S, S, \pi_{2}\right)$.
Notice that a block C in $\left(\pi_{1} \vee \pi_{2}\right) \backslash\{v\}$ is obtained by taking $\bigcup_{\substack{D \in \pi_{1} \\ D \backslash\{v\} \subseteq C}} D \backslash\{v\}$. Thus,

$$
\begin{equation*}
B N\left(K, H_{1} \cup H_{2}, C\right)=\sum_{\substack{D \in \pi_{1} \\ D \backslash\{v\} \subseteq C}} B N\left(K^{+}, H_{1}, D\right)+\delta\left(v, \pi_{1}, C\right) \tag{17}
\end{equation*}
$$

where $\delta\left(v, \pi_{1}, C\right)= \begin{cases}1 & \text { if } \exists D \in \pi_{1} \text { such that } v \in D \text { and } D \backslash\{v\} \subseteq C \\ 0 & \text { otherwise }\end{cases}$
So, combining equations 15,16 , annd 17

$$
\begin{aligned}
& E(\pi, K, C)= \\
& \sum_{\substack{\left(\pi_{1}, \pi_{2}\right) \\
\text { in } P S(\pi, K)}}\left(\sum_{\substack{H_{1} \in X_{1}}} P_{B^{\prime}\left(K^{+}\right)}\left[H_{1} \| Y_{1}\right]\left(\sum_{\substack{D \in \pi_{1} \\
D \backslash\{v\} \subseteq C}} B N\left(K^{+}, H_{1}, D\right)+\delta\left(v, \pi_{1}, C\right)\right)\right) \sum_{H_{2} \in X_{2}} P_{S}\left[H_{2} \| Y\right]
\end{aligned}
$$

Simple algebraic manipulation completes the proof.
(iii) By definition (equation 12) and observation 4.3

$$
\sum_{\substack{\left(\pi_{1}, \pi_{2}\right) \\ \mathrm{in} S(\pi, K)}}^{E P\left(\pi, K, C_{1}, C_{2}\right)=} \sum_{H_{1} \in X_{1}} \sum_{H_{2} \in X_{2}} P_{B^{\prime}(K)}\left[H_{1} \cup H_{2} \| Y\right] B N\left(K, H_{1} \cup H_{2}, C_{1}\right) B N\left(K, H_{1} \cup H_{2}, C_{2}\right)
$$

where X_{1} and X_{2} are defined as in (ii) above.

[^5]Besides, by equation 17, the product $B N\left(K, H_{1} \cup H_{2}, C_{1}\right) B N\left(K, H_{1} \cup H_{2}, C_{2}\right)$ is one of the following values:

$$
\left(\sum_{\substack{D_{1} \in \pi_{1} \\ D_{1} \backslash\{v\} \subseteq C_{1}}} B N\left(K^{+}, H_{1}, D_{1}\right)+1\right)\left(\sum_{\substack{D_{2} \in \pi_{1} \\ D_{2} \backslash\{v\} \subseteq C_{2}}} B N\left(K^{+}, H_{1}, D_{2}\right)+1\right)
$$

if $\delta\left(v, \pi_{1}, C_{1}\right) \delta\left(v, \pi_{1}, C_{2}\right)=1$, or

$$
\left(\sum_{\substack{\left.D_{1} \in \pi_{1} \\ D_{1} \backslash v\right\} \subseteq \subseteq C_{1}}} B N\left(K^{+}, H_{1}, D_{1}\right)+1\right) \sum_{\substack{D_{2} \in \pi_{1} \\ D_{2} \backslash\{v\} \subseteq C_{2}}} B N\left(K^{+}, H_{1}, D_{2}\right)
$$

if $\delta\left(v, \pi_{1}, C_{1}\right)=1$ but $\delta\left(v, \pi_{1}, C_{2}\right)=0$, or

$$
\sum_{\substack{D_{1} \in \pi_{1} \\ D_{1} \backslash\{v\} \subseteq C_{1}}} B N\left(K^{+}, H_{1}, D_{1}\right)\left(\sum_{\substack{D_{2} \in \pi_{1} \\ D_{2} \backslash\{v\} \subseteq C_{2}}} B N\left(K^{+}, H_{1}, D_{2}\right)+1\right)
$$

if $\delta\left(v, \pi_{1}, C_{1}\right)=0$ but $\delta\left(v, \pi_{1}, C_{2}\right)=1$, or

$$
\sum_{\substack{D_{1} \in \pi_{1} \\ D_{1} \backslash\{v\} \subseteq C_{1}}} B N\left(K^{+}, H_{1}, D_{1}\right) \sum_{\substack{D_{2} \in \pi_{1} \\ D_{2} \backslash\{v\} \subseteq C_{2}}} B N\left(K^{+}, H_{1}, D_{2}\right)
$$

otherwise.
The result follows by considering each of the four cases above and simplifying equation 18 accordingly.
(iv) By definition (equation 13) and observation 4.3

$$
E I P(K)=\sum H_{1} \subseteq B^{\prime}\left(K^{+}\right) \sum_{H_{2} \subseteq S} P_{B^{\prime}(K)}\left[H_{1} \cup H_{2} \| Y\right] \sum_{\substack{\text { CC connected } \\ \text { component of } H_{1} \cup H_{2} \\ V(C C) \cap(K)=\emptyset}}|V(C C)|^{2}
$$

Notice that

$$
\sum_{\substack{C C \text { connected } \\ \text { component of } H_{1} U H_{2} \\ V(C C) \cap V(K)=\emptyset}}|V(C C)|^{2}=\sum_{\substack{C_{1} \text { connected } \\ \text { componet of } H_{1} \\ V\left(C_{1}\right) \cap V(K)=\emptyset}}\left|V\left(C_{1}\right)\right|^{2}+\left|V\left(C_{v}\right)\right|^{2}
$$

where C_{v} is the connected component of H_{1} that contains the removed node v if H_{2} has no edges, otherwise C_{v} is the empty graph.
Notice also that $\left|V\left(C_{v}\right)\right|=\left|B N\left(K^{+}, H_{1},\{v\}\right)\right|+1$. Thus,

$$
\begin{aligned}
E I P(K)= & \sum_{\substack{H_{1} \subseteq B^{\prime}\left(K^{+}\right)}} \sum_{H_{2} \subseteq S} P_{B^{\prime}(K)}\left[H_{1} \| Y_{1}\right] \sum_{\begin{array}{c}
c_{1} \text { connected } \\
\text { aomponentof } \\
V\left(H_{1}\right) \cap\left(K_{1}+\right)=\emptyset
\end{array}} P_{S}\left[H_{2} \| Y\right]\left|V\left(C_{1}\right)\right|^{2}+ \\
& \sum_{\substack{\left(\pi_{1}, \pi_{2}\right) \\
\text { in } \Pi\left(v, K^{+}, S\right)}} \sum_{H_{1} \in X_{1}} \sum_{H_{2} \in X_{2}} P_{B^{\prime}(K)\left[H_{1} \cup H_{2} \| Y\right]\left(\left|B N\left(K^{+}, H_{1},\{v\}\right)\right|+1\right)^{2}}
\end{aligned}
$$

Simple algebraic manipulation of the expression above concludes the proof.

We can use lemmata $4.1,4.2$, and 4.3 to reduce any k-tree G to a k-clique R. We compute $\operatorname{Res}(G)$ by combining the information in the state of the k-clique R with the effect of the edges between nodes in R. Before computing $\operatorname{Res}(G)$ we extend the values in the state of R (statistics about $B^{\prime}(R)$) to values about the graph G itself. Some additional notation is in order. Let $R e s^{\prime}(G)$ denote the expected number of ordered pairs of nodes in G that can communicate (including pairs of the form (u, u)). So

$$
\operatorname{Res}^{\prime}(G)=\sum_{H \leq G} P_{G}[H] \sum_{\begin{array}{c}
\text { cC connected } \\
\text { component of } H
\end{array}}|V(C C)|^{2}
$$

Notice that by equation 1 in section 2

$$
\operatorname{Res}(G)=\frac{1}{2}\left(\operatorname{Res}^{\prime}(G)-\sum_{v \in V} p_{v}\right)
$$

Therefore we only need to prove that $\operatorname{Res}^{\prime}(G)$ can be computed from the state of the root R and the effect of the edges between nodes in R.

To account for the effect of the edges between nodes in R we define the following functions. Let π be any non-empty subpartition of the nodes in the root R, and $C \in \pi$, define

$$
E P^{\prime}(\pi, R, C)=\sum_{H \in S G(G, R, \pi)} P_{G}[H] N(H, C)^{2}
$$

where $N(H, C)=|\{y \in G \mid y \stackrel{H}{\sim} C\}|$. Finally, let $E I P^{\prime}(R)$ denote the expected number of ordered pairs (u, v) of nodes in G that can communicate such that $u \nsim R$ and $v \nsim R$. So

$$
E I P^{\prime}(R)=\sum_{H \leq G} P_{G}[H] \sum_{\substack{\text { Co connected } \\ \text { component of } \\ V(C C) \cap V(R)=\emptyset}}|V(C C)|^{2}
$$

The following lemma states how to compute $\operatorname{Res}^{\prime}(G)$ from the state of the root R.
Lemma 4.4 (termination) Let $G=(V, E)$ be a k-tree network and R be a root of G obtained by applying the reduction paradigm and lemmata 4.1-4.3 to G. Then
(i) For all π, C, such that π is a non-empty subpartition in $\Pi(V)$, and C is a block of π

$$
E P^{\prime}(\pi, R, C)=\sum_{\substack{\left(\pi_{1}, \pi_{2}\right) \\ \pi_{1} \wedge \pi_{2} \text { part. of } v_{\pi} \\ \pi_{1} \vee \pi_{2}=\pi}} P_{R}\left[\pi_{2}\right]\left(s\left(\pi_{1}, R\right)|C|^{2}+\sum_{\substack{D \in \pi_{1} \\ D \subseteq C}}\left(2|C| E\left(\pi_{1}, R, D\right)+E P\left(\pi_{1}, R, D, D\right)\right)\right)
$$

(ii) $E I P^{\prime}(R)=E I P(R)$
(iii) $R e s^{\prime}(G)=E I P^{\prime}(R)+\sum_{\pi \in \Pi(R)} \sum_{C \in \pi} E P^{\prime}(\pi, R, C)$

Proof: The proofs follow easily by algebraic manipulation of the definitions of $E P^{\prime}(\pi, R, C)$, $E I P^{\prime}(R)$, and $\operatorname{Res}^{\prime}(G)$. We present some details of the proof for (i) only. Let Y denote the condition $u p\left(V_{\pi_{1}}\right) \wedge d n\left(V(R) \backslash V_{\pi_{1}}\right)$. Clearly,

$$
\begin{aligned}
E P^{\prime}(\pi, R, C) & =\sum_{H \in S G(G, R, \pi)} P_{G}[H] N(H, C) \\
& =\sum_{\substack{\left(\pi_{1}, \pi_{2}\right) \\
\pi_{1} \wedge \pi_{2} \text { part.of } \\
\pi_{1} V_{2}=\pi}} \sum_{\substack{H_{1} \text { in } \\
S G\left(B^{\prime}(R), R, \pi_{1}\right)}} \sum_{\substack{H_{2} \text { in } \\
S G\left(R, R, \pi_{2}\right)}} P_{B^{\prime}(R)}\left[H_{1} \| Y\right] P_{R}\left[H_{2}\right] N\left(H_{1} \cup H_{2}, C\right)^{2}
\end{aligned}
$$

and the result follows because

$$
N\left(H_{1} \cup H_{2}, C\right)^{2}=|C|^{2}+2|C| \sum_{\substack{D \in \pi_{1} \\ D \subseteq C}} B N\left(H_{1}, D\right)+\left(\sum_{\substack{D \in \pi_{1} \\ D \subseteq C}} B N\left(H_{1}, D\right)\right)^{2}
$$

Therefore, lemmata 4.1-4.4 and the general reduction paradigm (Algorithm 1 in section 2) give us the following theorem.

Theorem 4.1 The resilience of a k-tree network G can be computed in $\mathcal{O}(n)$ time.
Proof: Correctness follows from lemmata 4.1-4.4. Timing follows from lemmata 4.1-4.4 and an implementation of Algorithm 1 in section 2 that keeps a stack of k-leaves and uses an adjacency list representation of the the graph (see [12] for an example of such an implementation).

Although our algorithm runs in $\mathcal{O}(n)$ time, the constants involved are exponential in k. This seems unavoidable as any graph on n nodes is a partial n-tree and the resilience problem is NP-hard in general. Thus our algorithm is of practical interest for small values of k only.

Even though we are interested in the asymptotic time complexity of the resilience algorithm, we include a table that gives some idea of the magnitude of the constants involved (see Table 3). The second column of Table 3 presents the number of subpartitions of a set of k elements, i.e., $\sum_{i=1}^{k+1}\left\{\begin{array}{c}k+1 \\ i\end{array}\right\}$, where $\left\{\begin{array}{c}n \\ m\end{array}\right\}$ is the number of ways to partition a set of n elements into m non-empty disjoint subsets (a Stirling number of the second kind). The third column of Table 3 shows the number of values that constitute the state of a k-clique (the size of state (K)). A naive implementation of our algorithm makes $k=4$ already impractical (consider the number of join operations performed in the reduction step). A careful implementation of the reduction step may make our algorithm practical for $k=4$.

4.2 Complexity of the resilience problem on partial k-tree networks

We can compute the resilience of a partial k-tree network G by finding an embedding in a k-tree G^{\prime}, assigning probability zero to the added edges, and then applying the resilience algorithm for k-trees to G^{\prime}. In [2], Arnborg, Corneil and Proskurowski give an $\mathcal{O}\left(n^{k+2}\right)$ time algorithm to find an embedding of a partial k-tree, for a fixed k. However, for $k=2$ and $k=3$ the embedding of a

k	$\|\Pi(K)\|$	size of state (K)
1	2	5
2	5	17
3	15	69
4	49	293

Table 3: Number of subpartitions of a k-clique and number of values in state(K).
partial k-tree in a k-tree can be found in $\mathcal{O}(n)$ time ([17], [13]). When $k=1$ we simply find the resilience of each 1 -tree in the forrest G. Therefore, we can state the following corollary of theorem 4.1

Corollary 4.1 Let G be a partial k-tree network that has n nodes. The resilience of G can be computed in $\mathcal{O}\left(n^{k+2}\right)$ time. If an embedding of G in a k-tree is given, or $k \leq 3, \operatorname{Res}(G)$ can be computed in $\mathcal{O}(n)$ time.

We can also use theorem 4.1 to devise an NC algorithm that computes the resilience of a partial k-tree network. Consider A, a sequential algorithm obtained using the reduction paradigm. Let us assume that A runs in linear time on partial k-trees given with an embedding in a k-tree. Bodlaender [6] has proved that if the initialization step, each reduction step, and the termination step of A can each be solved in NC, then there is an NC algorithm to solve the same problem (e.g., the resilience problem) on partial k-trees (assuming only that k is fixed). From the identities used in lemmata $4.1,4.2,4.3$, and 4.4 we clearly see that Bodlaender's result is applicable. So, we obtain the following corollary.

Corollary 4.2 Let G be a partial k-tree network given with an embedding in a k-tree. There is an NC algorithm that computes the resilience of G.

Corollary 4.2 is mainly of theoretical interest as the number of processors, although polynomial in the number of nodes of the graph, is very large [6].

5 Conclusions

The reduction paradigm introduced in [4] is a powerful tool to solve reliability problems on partial k-tree networks. We have developed an $\mathcal{O}(n)$ time algorithm to compute the resilience of partial k-tree networks given with an embedding in a k-tree (for a fixed value of k). This algorithm was obtained by generalizing and speeding up an $\mathcal{O}\left(n^{2}\right)$ time algorithm for the same problem on failsafe k-tree networks [12]. The speed up was achieved by keeping more information in the state of each k-clique, namely, the values $E P\left(\pi, K, C_{1}, C_{2}\right)$ and $E I P(K)$. The generalization was attained by modeling the state of a network using subgraphs instead of partial graphs and by computing conditional probabilities (e.g., $s(\pi, K)$ is now a conditional probability). We can use this same generalization technique to define an $\mathcal{O}(n)$ time algorithm to compute the l-terminal reliability
(for a fixed value l) of partial k-tree networks given with an embedding in a k-tree (we generalize the algorithm given in [4], which assumes that nodes are fail-safe). An NC algorithm can also be derived from our sequential algorithm and results in [6].

It is easy (but tedious) to verify that a previously known linear time algorithm to compute the resilience of partial 2 -tree networks with fail-safe nodes [12] is a special case of the algorithm presented in section 4 . We need only substitute $k=2, p_{v}=1$ for all nodes v in the network, and make a few ad-hoc simplifications (e.g., eliminate redundant information and change slightly the definition of $B^{\prime}(K)$).

Because of the large constants involved in our algorithm, the result is of practical interest for small values of k only ($k \leq 4$). However, as partial 4 -trees include several important classes of graphs (e.g., series-parallel, outerplanar, Halin, $\Delta-\mathrm{Y}$ reducible, and Cube-free graphs [9]), the domain of application of the algorithm is still considerable.

References

[1] A. T. Amin, K. T. Siegrist, and P. J. Slater. On the expected number of pairs of connected vertices: pair connected reliability. In Proceddings of the Second New Mexico Conf. on Applications of Graph Theory to Computer Networks, 1986.
[2] S. Arnborg, D. G. Corneil, and A. Proskurowski. Complexity of finding embeddings in a k-tree. SIAM J. Alg. Disc. Meth., 8:277-284, 1987.
[3] S. Arnborg and A. Proskurowski. Characterization and recognition of partial 3-trees. SIAM J. Alg. Discr. Meth., 7:305-314, 1986.
[4] S. Arnborg and A. Proskurowski. Linear time algorithms for NP-Hard problems restricted to partial k-trees. Discrete Appl. Math., 23:11-24, 1988.
[5] H. L. Bodlaender. Classes of graphs with bounded tree-width. Technical Report RUU-CS-8622, Dept. of Computer Science, University of Utrecht, Utrecht, 1986.
[6] H. L. Bodlaender. NC-algorithms for graphs with small treewidth. Technical report, Department of Computer Science, University of Utrecht, 1988.
[7] C. J. Colbourn. The Combinatorics of Network Reliability. Oxford University Press, New York, 1987.
[8] C. J. Colbourn. Network resilience. Networks, 8:404-409, 1987.
[9] E. L. El-Mallah and C. J. Colbourn. Partial k-tree algorithms. In Proceedings of the 250th Anniversary Conference on Graph Theory, March 13-15 1986.
[10] F. Harary. Graph Theory. Addison-Wesley, Reading, Mass., 1969.
[11] D. S. Johnson. The NP-completeness column: An ongoing guide. J. of Algorithms, 6:434-451, 1985.
[12] E. Mata-Montero. Resilience of partial k-tree networks. Technical Report CIS-TR-89-09, Department of Computer and Information Science, University of Oregon, 1989.
[13] J. Matousek and R. Thomas. Algorithms finding tree-decompositions of graphs. Submitted for publication, 1988.
[14] J. S. Provan. The complexity of reliability computations in planar and acyclical graphs. SIAM Journal on Computing, 15:694-702, 1986.
[15] J. S. Provan and M. O. Bell. The complexity of counting cuts and of computing that a graph is connected. SIAM Journal on Computing, 12:777-788, 1983.
[16] P. J. Slater. A summary of results on pair-connected reliability. Technical Report 556, Department of Mathematical Sciences, Clemson University, 1987.
[17] J. A. Wald and C. J. Colbourn. Steiner trees, partial 2-trees, and minimal IFI networks. Networks, 1983:159-167, 1983.

[^0]: *Research supported in part by the Office of Naval Research Contract N00014-86-K-0419.

[^1]: ${ }^{1}$ Notice that π may be the empty set.

[^2]: ${ }^{2}$ The "state" of $K^{+}(v)$ is ephemeral; we compute it once and immediately use it to update the state of $K(v)$. Once the state of $K(v)$ has been updated, we destroy $K^{+}(v)$ by removing the node v. So, state $\left(K^{+}(v)\right)$ is simply an intermediate value that we calculate to update the state of $K(v)$. We believe that the metaphor of having a state for $K^{+}(v)$ is useful in understanding and devising the functions f and g for specific problems.

[^3]: ${ }^{3}$ Notice that, for a fixed value of k, q is constant (although exponential in k).
 ${ }^{4}$ For the sake of simplicity we assume that the probability of operation of each node v in G is positive. If some p_{v} is zero we can either modify the formulas in this section or remove v and apply the algorithm to the resulting partial k-tree.

[^4]: ${ }^{5}$ At this point, $B\left(K^{\prime}\right)$ denotes the set of removed branches of K after v has been removed, i.e., it includes $v ; K^{+}$ and $B^{\prime}\left(K^{+}\right)$were computed before v was removed.

[^5]: ${ }^{6}$ Recall from section 2 that $P_{S}\left[\pi_{2}\right]$ is the probability that the connected components of of S are those defined by π_{2}.

