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Abstract
Compared to their native range, non-native plants often experience reduced levels of herbivory in the introduced range. This 
may result in reduced pressure to produce chemical defences that act against herbivores. We measured the most abundant sec-
ondary metabolites found in Rumex spp., namely oxalates, phenols and tannins. To test this hypothesis, we compared native 
(UK) and introduced (NZ) provenances of three different Rumex species (R. obtusifolius, R. crispus and R. conglomeratus, 
Polygonaceae) to assess whether any significant differences existed in their levels of chemical defences in either leaves and roots. 
All three species have previously been shown to support a lower diversity of insect herbivores and experience less herbivory in 
the introduced range. We further examined leaf herbivory on plants from both provenances when grown together in a common 
garden experiment in New Zealand to test whether any differences in damage might be consistent with variation in the quantity 
of chemical defences. We found that two Rumex species (R. obtusifolius and R. crispus) showed no evidence for a reduction in 
chemical defences, while a third (R. conglomeratus) showed only limited evidence. The common garden experiment revealed 
that the leaves analysed had low levels of herbivory (~ 0.5%) with no differences in damage between provenances for any of the 
three study species. Roots tended to have a higher concentration of tannins than shoots, but again showed no difference between 
the provenances. As such, the findings of this study provide no evidence for lower plant investments in chemical defences, sug-
gesting that other factors explain the success of Rumex spp. in New Zealand.
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Introduction

In order to defend themselves against herbivory, plants 
produce secondary metabolites that function as chemical 
defences. Secondary metabolites can help with plant 

growth and development, but are not essential for survival 
(Gols 2014; Erb and Kliebenstein 2020). Non-native 
plants frequently escape herbivores from the native range 
and often experience reduced herbivory in the introduced 
range (Joshi and Vrieling 2005; Müller-Schärer et  al. 
2004; Costan et al. 2022). Secondary metabolites such as 
oxalates, phenols and tannins act against both invertebrate 
and vertebrate herbivores and occur in high concentrations 
(Poorter and Jong 1999; Peschiutta et al. 2020; Damestoy 
et al. 2019). Since herbivore pressure is often reduced in the 
introduced range, it is possible that plants could decrease 
their production of such chemical defences. This could result 
in saved resources which can be reallocated towards growth 
and reproduction, giving introduced plants a competitive 
advantage over local plant species (Müller-Schärer et al. 
2004). Most studies looking at plant chemical defences of 
non-native plant species do not compare chemical defences 
in above vs. belowground tissues (van Dam 2009), although 
both roots and shoots often contain defence phytochemicals 
(Rasmann and Agrawal 2008; Johnson et al. 2016).
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Rumex species in New Zealand represent a suitable test 
case to examine whether reduced herbivore pressure in 
the introduced range results in a reduction in secondary 
metabolites. In the native range, Rumex plants are associated 
with a range of invertebrate herbivores (Salt and Whittaker 
1998), including the specialist shoot herbivore Gastrophysa 
viridula (De Geer, 1775) and the root herbivore Pyropteron 
chrysidiforme (Esper, 1782). A comparative study of insect 
herbivores associated with three Rumex species in their 
native UK range and their introduced range in New Zealand 
found an absence of specialist herbivores in the latter region 
as well as a lower diversity of phytophagous insects (Costan 
et al. 2022). Furthermore, this study also demonstrated 
that Rumex plants (in particular R. crispus) experienced 
a sevenfold lower level of herbivore damage in New 
Zealand (Costan et al. 2022). Given this shift in herbivore 
pressure, Rumex species would appear good candidates for 
having evolved to redirect resources towards growth and 
reproduction instead of the production of chemical defences.

Rumex species are known for abundant chemical 
defences. The most abundant defensive compound in 
Rumex plants is the organic compound oxalate, a secondary 
metabolite comprising of up to 90% of the total ionic 
metabolites (Miyagi et  al. 2010). When oxalates are 
consumed by herbivores they form an insoluble salt, calcium 
oxalate, which can lead to the formation of renal crystals in 
both vertebrates and invertebrates (Reynolds et al. 2021). 
Phenolics may also function as defence against herbivores 
due to their protein-binding (Haslam 1988) and oxidative 
(Salminen et al. 2011) capacity. Among the wide array of 
chemical defences in Rumex, tannins are especially toxic 
(Demirezer et al. 2001). A subgroup of phenolics, tannins 
are commonly found in both the shoots and roots of plants 
and form insoluble complexes with dietary protein that 
reduce digestive capacity in herbivorous insects (Yuan et al. 
2020). However, for most insects (lepidopteran larvae with 
highly alkaline gut conditions in particular), the potential 
pro-oxidative activity of tannins (ellagitannins) has a higher 
biological importance than protein-precipitating effects 
(Appel 1993; Salminen and Karonen 2011).

In this study, we measured the levels of the most abundant 
chemical defences (i.e. oxalates, phenols and tannins) in 
three Rumex species (R. conglomeratus, R. crispus and 
R. obtusifolius) from both the above- (the entirety of the 
plant that wasn’t growing in the soil substrate) and below-
ground (the entire root system) parts of the plants. All three 
Rumex species are short-lived perennial herbaceous species 
native to Eurasia and occupy a wide range of natural and 
cultivated habitats (Kubát 1990). Since all three species 
were introduced to New Zealand over 150 years ago (Webb 
et al. 1988) and have experienced a reduction in herbivore 
pressure following their introduction to New Zealand 
(Costan et  al. 2022), there has been ample opportunity 

for rapid evolution (Maron et al. 2004). We tested for a 
reduction in herbivore defences in Rumex by conducting 
analyses of secondary metabolites in the above and below 
ground tissue of Rumex plants from native and introduced 
ranges grown under similar environmental conditions. 
Furthermore, we extended these laboratory analyses to 
examine herbivory on plants from the native and introduced 
provenances grown together in common garden experiments 
under natural conditions in the field in New Zealand. The 
common garden study aimed to test whether any differences 
in damage might be consistent with variation in the quantity 
of chemical defenses.

Methods

Plant Sample Preparation

The plant material used in the chemical analysis was 
collected from plants grown under similar environmental 
conditions in the greenhouses of Lincoln University, New 
Zealand. For each species, four plants were grown from 
seeds collected from each of four different regions in each 
provenance: east England, southwest England, southwest 
Scotland and southeast Scotland from the United Kingdom 
(UK, native range) and Canterbury, Westland, Otago and 
Southland from New Zealand (NZ, introduced range). Thus, a 
total of 32 plants for each study species were used. The plants 
were grown in individual pots under the same glasshouse 
environmental conditions in New Zealand and harvested 60 
days after transplant. The harvesting date was chosen because 
the early life stage of plants is crucial for competitive success 
(Weaver and Cavers 1979) and it ensured that plants would 
not become pot bound, which could have altered the levels of 
secondary metabolites in the plants (Baldwin 1988). Above 
and below ground parts of the plants were separated, washed, 
dried to a constant weight at 65 °C for 48 h and subsequently 
ground into a fine powder using an electric grinder and 
stored in sealed plastic containers. Drying plant material 
before analysis is consistent with other studies (Savage et al. 
2000), and has been shown to have minimal impacts on total 
phenol or tannin concentrations (Harbourne et al. 2009). 
Furthermore, since all plant samples were dried together, 
drying is unlikely to affect the comparison of secondary 
chemicals between provenances.

Oxalic Acid Analysis

Oxalic acid measurements used the protocol described by 
Savage et al. (2000). Both soluble and total oxalic acid were 
extracted from each plant. To extract oxalic acid, between 
0.400 and 0.405 g of the ground plant material was measured 
and mixed with 40 mL distilled water (soluble oxalic acid) 
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or 40 mL of 2 M HCl (total oxalic acid). The samples were 
then placed in a water bath at 80 °C for 20 min, cooled, 
and made up to a volume of 100 mL with distilled water 
for the soluble oxalic acid analysis (Barnstead Nanopure II) 
or 2MHCl for the total oxalic acid analysis. Extracts were 
centrifuged at 3000 rpm and 10 mL of the supernatant was 
filtered through a 0.45 mm cellulose acetate membrane 
(Satorius, Goettingen, Germany). From this, a sample of 5 
µL was analysed using a Waters Chromatography System, 
consisting of a Waters 717 Plus auto-sampler, a Waters 600-
MS Isocratic/Gradient Pump and a Waters UV/VIS detec-
tor set at 210 nm. Millennium (ver 2.15) chromatographic 
software was used to process the output. Chromatographic 
separation was conducted using an Aminex Ion exclusion 
HPX-87 H 300 × 7.8 mm analytical column attached to an 
Aminex Cation-H guard column, using an isocratic elution 
at 0.5 mL/min with 0.0125 M sulphuric acid (Analar, BDH, 
UK) as a mobile phase. Before use and between sample sets, 
the analytical column was held at room temperature and the 
columns were equilibrated at a flow rate of 0.1 mL/min. 
Prior to use, the mobile phase was filtered through a 0.45 μm 
membrane, followed by degassing using a vacuum. The total 
oxalic acid peak was identified by comparing the retention 
time to standard curves in the range of 1 to 20 mg/100 mL. 
The standard curves were prepared by diluting oxalic acid 
(Analar, BDH, UK) with distilled water (soluble oxalic acid) 
or 2.0 M HCl (total oxalic acid). Prior to analysis, all blank 
and standard solutions were filtered through a 0.45 μm cel-
lulose acetate membrane syringe filter.

Total Phenolics Determination

Total phenolics and oxidative capacity measurements were 
carried out using the protocol outlined by Salminen and 
Karonen (2011). For the assessment of total phenolics and 
oxidative capacity, 10 ± 0.5 mg of ground plant material 
was extracted three times over a period of 2 h with 800 µL 
of acetone/water (7/3, v/v) and vortexed for 5 min. After 
each extraction step, the supernatant of the solutions was 
separated by centrifugation in an Eppendorf centrifuge 
(10  min at 14.000  rpm) and decanted into a new 2 ml 
Eppendorf tube. The samples were then placed into an 
Eppendorf concentrator, and the acetone was evaporated. 
Aqueous samples were frozen at -20 °C and lyophilized. 
The freeze-dried phenolic extract was re-suspended in 500 
µL of milipure water, vortexed for 5 min and centrifuged 
for 10 min at 14.000 rpm. The supernatant was then filtered 
through a 0.45 mm cellulose acetate membrane (Satorius, 
Goettingen, Germany) and 20 µL of the solution was mixed 
with 280 µL of a buffer (9/5 v/v 10 pH carbonate buffer/0.6% 
formic acid) and vortexed for 5 min. Using a 96 well plate 
reader, 50 µL of this mixture was moved into a single 
plate reader well, to which 50 µL of 1 N Folin-Cicolteau 

reagent and 100 µl 20% sodium carbonate solution were 
added. The plate was incubated at 25 °C (shaken for 10 s 
every 10 min) for 60 min and the absorbance was read at 
730 nm. All samples were analysed in three replicates. Five 
samples from R. conglomeratus were outliers in their initial 
phenolic concentrations, so phenols were re-measured for 
these samples and the second, less extreme, value was used. 
In order to obtain a standard curve, the protocol described 
above was used with a series of gallic acid dilutions (0.1, 0.5, 
1.0, 1.5 and 2.0 mg/mL), which were made by dissolving the 
gallic acid in a volumetric flask with a few drops of ethanol 
and diluted with purified water.

Ellagitannins Determination

To determine the contribution of ellagitannins (easily 
oxidized tannins) to the total phenolic concentration we 
oxidized a sample of the extract used to test for total phenols. 
Samples were diluted or concentrated as needed until total 
phenolic concentration was 1.0 ± 10% to ensure comparable 
results. To oxidize the phenolics in the extract, 20 µL of 
extract was placed into a single well of a 96 well plate reader 
and 180 µL of 10 pH carbonate buffer was added. The plate 
was then incubated at 25 °C (shaken for 10 s every 10 min) 
for 90 min, after which 100 µL of 0.6% formic acid was 
added, changing the sample pH from 10 to 6 and stopping 
oxidation. From these oxidized mixtures 50 µL was placed 
into a new single well of a 96 well plate reader, on top of 
which 50 µL of 1 N Folin-Cicolteau reagent and 100 µl of 
20% sodium carbonate solution were added. The plate was 
incubated at 25 °C (shaken for 10 s every 10 min) for 60 min 
and the absorbance was read at 730 nm. Three replicates of 
each sample were analysed.

Total Tannins Determination

The total tannin measurements were carried out using the 
radial diffusion protocol described by Hagerman (1987). A 
1% (w/v) solution of agarose was prepared in a buffer (50 
mM acetic acid and 60 µM ascorbic acid, adjusted to a pH 
of 5.0) by heating the suspension of agarose to boiling while 
stirring. The solution was then allowed to cool down in a 
water bath set at 45 °C, after which 0.1% w/v BSA protein 
was slowly added, while gently stirring. After homogeni-
zation, the solution was dispersed in 9.5 ml aliquots into 
standard Petri dishes (8.5 cm diameter) set on a flat surface 
and allowed to cool. Once the agarose plates reached room 
temperature they were sealed with Parafilm and stored at 
4 °C to prevent bacterial growth.

To assess total tannins, 100 ± 0.5 mg of the ground plant 
material from each sample was vortexed for 5 min. The 
plant material was extracted at room temperature for half 
an hour, using 0.5 mL of 50% (v/v) aqueous methanol, after 



 Journal of Chemical Ecology

1 3

which it was centrifuged for 10 min at 14,000 rpm. The tan-
nin containing solutions were added to four equally spaced 
4.0 mm wells punched in each agarose plate. Six successive 
aliquots of 8 µL were added to each well, as the solution was 
absorbed by the agar gel. After placing the samples in the 
gel, the Petri dishes were covered, sealed with Parafilm and 
incubated at 30 °C for 120 h, after which the diameters of 
the rings were measured. For each ring two measurements at 
right angles to each other were taken and averaged, in order 
to minimize errors due to non-uniform ring development. In 
order to obtain a standard curve, the same protocol was used 
with a series of tannic acid dilutions (0.2, 0.4, 0.6, 0.8, 1.0, 
2.0, 3.0 and 4.0 mg/mL), which were made by dissolving 
tannic acid in purified 50% (v/v) aqueous methanol.

Herbivory in Common Gardens

For each Rumex species, seeds from six regions, three 
sampled in the UK and NZ each, were planted in two 
common field gardens using a randomized complete block 
design. The seeds used were sourced from a subset of the 
same regions, and often included the same parent plants, 
as those seeds used for the greenhouse experiment. Field 
gardens were established in the New Zealand regions of 
Westland and Southland (Bufford and Hulme 2021). These 
sites represent a very wet (Westland, 2,384 mm/year, 6.9 °C 
mean minimum) and a moderately dry, cold (Southland, 
1,156 mm/year, 5.3 °C mean minimum) environment. Plants 
were spaced at least 0.5 m apart and the experiments were 
surrounded by fencing to exclude large vertebrate herbivores. 
After approximately one year of growth, the largest leaf from 
each of approximately 90 plants per provenance (UK vs. NZ) 
was photographed in November (austral spring) to determine 
the percent of leaf area damaged by herbivores. The 
collected leaves were analysed using the image processing 
program BioLeaf, according to the protocols described by 
Machado et al. (2016) and Costan et al. (2022).

Statistical Analysis

Linear mixed effects models (LMMs) were used to examine 
variation between provenances in oxalic acid (mg/g dry 
matter), phenols (mg/100  g Gallic Acid Equivalents), 
ellagitannins (mg/100  g Gallic Acid Equivalents) and 
tannins (mg/g Tannic Acid Equivalents) for each Rumex 
species. Each model had provenance (UK or NZ) as a fixed 
effect. We treated provenance as a fixed effect because 
variables with < 5 levels tend to produce anomalous 
estimates when treated as random effects in a mixed effects 
model (Harrison et al. 2018). Region (n = 8) was treated 
as a random effect. In each model the data were collected 
from 32 individual plants from each provenance. We used 
residual plots to determine if transformations were needed. 

For the analysis of oxalic acid content, the data were log-
transformed; no transformation was needed for analyses 
of the other chemicals. The analysis of the percentage leaf 
damage in the common garden experiments used LMMs 
with provenance (UK or NZ) and site as fixed effects and 
with region and population as random effects. Leaf damage 
was calculated as an average across 30 leaves per provenance 
per species, and therefore the residuals indicated that no 
transformation was required. The analyses of each Rumex 
species were run separately.

We assessed the significance of the provenance effect 
with a Wald chi-squared test for all models. Residual plots 
and diagnostics were checked to ensure the validity of the 
model assumptions. All statistical analyses were performed 
in R (R Core Team, 2019). LMMs and GLMMs were run 
using the ‘lme4’ R package v.1.1–19 (Bates et al. 2015).

Results

In most comparisons of plant chemistry there was no statis-
tically significant difference between native and introduced 
provenances (Table 1). The most notable differences for 
chemicals were between species (Figs. 1, 2 and 3) rather 
than between provenances. Herbivory damage did not differ 
between provenances (Fig. 4).

Oxalic Acid

There were no statistically significant differences in soluble, 
total or the percentage of soluble oxalic acid between the 
leaves of Rumex plants from the native (UK) and introduced 
(NZ) provenances (Table 1). This was true for all three study 
species (Fig. 1). Oxalic acid in the roots was undetectable 
in all cases.

Phenols & Ellagitannins

Native provenance R. conglomeratus plants had a signifi-
cantly higher percentage of ellagitannins in their leaves 
than introduced provenance plants (p < 0.001), but no dif-
ferences between provenances were detected for R. crispus 
and R. obtusifolius (Table 1). The highest concentration of 
leaf phenols and ellagitannins was found for R. obtusifolius, 
followed by R. crispus and R. conglomeratus. All three spe-
cies showed a strong correlation between the concentration 
of total phenols and ellagitannins and had roughly the same 
percentage ellagitannins (Fig. 2).

There were no statistical differences between the native 
and introduced provenances in regards to the concentra-
tions of total phenols and ellagitannins in the roots of 
plants (Fig. 2b,d). The concentration of total phenols and 



Journal of Chemical Ecology 

1 3

ellagitannins was much greater in the roots of R. con-
glomeratus compared to the leaves, while for R. obtusi-
folius and R. crispus, total phenols and ellagitannins in 
the roots were very low. Both leaves and roots of all three 
Rumex study species had approximately 60% ellagitannins 
(Fig. 2e, f).

Tannins

No statistically significant differences between prove-
nances were observed for any of the three Rumex species 
in total leaf tannins (Table 1). Two species, R. conglom-
eratus and R. crispus had around 40 mg/g Tannic Acid 
Equivalents (TAE), but R. obtusifolius values were over 
120 mg/g TAE (Fig. 3). The total tannins in the roots 
was much higher than total tannins in leaves for all study 
species (Fig. 3a versus b), with R. conglomeratus having 
around 390 mg/g TAE, R. crispus around 100 mg/g TAE 

and R. obtusifolius 155 mg/g TAE. For R. conglomeratus, 
total tannins in the roots were eight times higher than in 
the leaves (Fig. 3).

Leaf Herbivory

There were no differences in leaf herbivore damage between 
plants from the native (UK) and introduced (NZ) prov-
enances when grown in common gardens in New Zealand. 
The leaf area damaged by herbivory was on average ~ 0.5% 
(Fig. 4; Table 1).

Discussion

Our work has shown that defensive chemicals in several 
species of Rumex are unchanged in their invasive range. 
This finding is surprising in view of the shifts in herbivore 
communities between their native and introduced range. For 
all three Rumex study species, the majority of the chemical 
defences analysed showed no significant differences between 
provenances. The one exception was that the percentage 
ellagitannins in the leaves of Rumex conglomeratus from 
the introduced provenance was significantly lower than 
that of their counterparts from the native provenance. Leaf 
herbivory in the common garden experiments was similar 
for plants from the native and introduced provenances for 
all three species.

Though it has long been thought that plants in introduced 
ranges will reduce their defences, our results corroborate 
other studies which found no clear decrease in secondary 
metabolites in a species’ introduced ranges (Dooduin and 
Vrieling 2011). For example, a recent study found that 
only one of three Acacia species (A. longifolia) from the 
introduced provenance showed evidence for a reduction in 
chemical defences, but there were no corresponding data 
on levels of herbivory (Manea et al. 2019). In our study, no 
consistent support was found for a decrease in secondary 
metabolites in New Zealand. Neither the chemical defences 
measured, nor the responses of herbivores to plants in 
field conditions indicated a change in effective defence, 
implying that both constitutive and induced defences, 
which would be active under field conditions, are the same 
between provenances. This is despite the fact that all three 
Rumex species experience less leaf and root damage in the 
introduced range  (Costan et al. 2022).

It is important to keep in mind the timescale of evolution 
(Bezemer et  al. 2014; Chun et  al. 2010; Harvey et  al. 
2010; Santangelo et  al. 2022). Previous work suggests 
that evolution in invasive plants can be surprisingly rapid, 
occurring within a hundred years for herbaceous species 
(Colautti and Barrett 2013, Maron et al. 2004; Sun and 
Roderick 2019). The Rumex species considered here set 
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content of Rumex spp. grown from seeds from the native (United 
Kingdom, UK) or introduced (New Zealand, NZ) ranges under green-
house conditions. For each species, 16 replicates per provenance (UK 
and NZ) were averaged. Error bars ± 1SE
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seed within one to two years, yielding an estimate of at 
least 70 generations since their first introduction to New 
Zealand 150 years ago (Webb et  al. 1988), with most 
seeds germinating with in the first year or two under good 
conditions (J Bufford, pers. obs.), providing abundant 
scope for evolution to occur. However, the strength of any 
enemy release is expected to decrease over time, as native 
or subsequently introduced herbivores and pathogens attack 
introduced plants. As a result, introduced plant species 
can have a response to herbivory similar to native plants in 
as little as 150 years (Hawkes 2007; Schultheis et al. 2015). 
Constitutive chemical defences may therefore be maintained 
in the introduced range because of pressure from generalist 
herbivores, because good growing conditions ameliorate any 

trade-offs, or because the secondary compounds involved 
are maintained for functions other than herbivore defence.

One explanation for the similarity in chemical profiles is 
that some guilds of herbivores exert a similar pressure in the 
native and introduced ranges for these Rumex species. For 
example, in New Zealand, Rumex has re-associated with two 
generalist phloem-feeding herbivores from their native range 
in the early 1900’s (Closterotomus norwegicus (Gmelin), 
Miridae/Hemiptera) and in the 1960’s (Philaenus spumarius 
(L), Aphrophoridae/Hemiptera) respectively (Archibald et al. 
1979; Myers and China 1928; Costan et al. 2022). The chemical 
defences tested in this study are effective against both chewing 
and sap-sucking insect herbivores including oxalates (Yoshihara 
et al. 1980; Yoshida et al. 1995), phenols (Leszczyǹski et al. 
1985; Larsson et al. 1986) and tannins, which have both toxic 

Fig. 2  Leaf and roof total phe-
nols (a & b), ellagitannins (c & 
d) and percentage of ellagitan-
nins (e & f) out of total phenols 
of Rumex spp. grown from 
seeds from the native (United 
Kingdom, UK) or introduced 
(New Zealand, NZ) ranges 
under controlled greenhouse 
conditions expressed in GAE 
(Gallic Acid Equivalent). For 
each species, 16 replicates per 
provenance (UK and NZ) were 
averaged. Error bars ± 1SE
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and digestibility-reducing effects (Felton and Summers 1995; 
Harborne 2000; Barbehenn and Constabel 2011; Salminen 
and Karonen 2011). A similar pathogen load between regions 
could also result in selective pressure for similar defence 
profiles. Furthermore, in both their native and introduced 
ranges, Rumex plants are exposed to mammalian herbivores 
including deer (Cavers and Harper 1964), goats (Böhm and 
Finze 2003), sheep (Wilman et al. 1997; Zaller 2006), rabbits 
and hares and, to a lesser extent, cattle (Courtney and Johnston 
1978), potentially causing greater damage than was observed by 
insect herbivores (Sakaoue et al. 1995; Costan et al. 2022). In 
temperate agricultural grasslands where Rumex plants typically 
grow, invertebrates, including introduced slugs (Wilson and 

Barker 2011), are often the dominant herbivores (Stein et al. 
2010) and have been shown to feed on Rumex plants (Everwand 
et al. 2013). Slugs may be particularly important at the seedling 
stage (Hulme 1994). Thus, while in a previous study (Costan 
et al. 2022) we observed leaf and root damage of adult plants in 
the field to be significantly less in New Zealand, it is possible that 
non-insect herbivores and/or seedling herbivory is similar in both 
ranges and maintains chemical defences in the introduced range.

One alternative explanation for the maintenance 
of secondary metabolites in Rumex species is that the 
quantity of secondary metabolites may be constrained 
because these chemicals serve other functions in addition 
to their defensive role against herbivores. Oxalate is a 
common cellular constituent involved in  Ca2+ regulation, 
ion balance, and metal detoxification (Morita et al. 2004; 
Brunner and Sperisen 2013). In New Zealand, many soils 
are acidic and have toxic levels of soluble aluminium, 
(Moir and Moot 2010; Whitley et al. 2018). The efflux of 
oxalate from the roots may act to chelate the  Al3+ ions in 
the rhizosphere, forming stable and non-toxic complexes 
(Brunner and Sperisen 2013) and promoting plant growth. 
The physiological importance of oxalate in Rumex might 
therefore swamp any selection against it due to reduced 
specialist herbivore pressure. Similarly, polyphenols, 
including tannins, serve multiple roles, including protection 
against UV radiation (Haslam 1988; ChaichiSemsari et al. 
2011; Hagerman and Buttler 1981; Hassanpour et al. 2011; 
Sis et al. 2011). High UV-B intensities can reduce seedling 
biomass, inhibit hypocotyl or root development and result 
in growth abnormalities (Dai and Upadhyaya 2002; Krizek 
1975; Tevini et al. 1981; Tosserams et al. 1997). This may 
be particularly important for introduced Rumex plants as 
UV-B levels are higher in New Zealand than in Europe 
(McKenzie et al. 2007; Hock et al. 2019).

Selective pressure for reduced chemical defence 
production is generally hypothesized to result because 
of trade-offs in energy and resources for growth against 
defence, either as a result of direct resource limitations, 
or more commonly from plant allocation strategies that 
maintain fitness across a variable environment. In conditions 
of high resource availability, however, plants can express 
high levels of both growth and defence (Züst and Agrawal 
2017). Given that the plants used in this experiment were 
grown under greenhouse conditions with ample water 
and nutrients and were not exposed to herbivores or high 
abiotic stresses, they might not have needed to reduce their 
investment in chemical defences. Furthermore, because 
plants sampled for chemical defences analysis were not 
exposed to herbivory, this study measured constitutive, not 
induced defences. However, our results were similar across 
both chemical analyses and the field assay, suggesting that 
induced defences also do not show a difference between 
provenances.
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It is intriguing to note that the difference between the 
native and introduced provenances  in the percentage of 
phenols that are easily oxidized tannins was significant for 
one of the three species (R. conglomeratus), as a result of 
greater decline in ellagitannins than in overall phenols. This 
suggests that a change in the herbivore community composi-
tion, or a shift in relative importance of different roles of the 
secondary metabolites resulted in a difference in the kinds 
of chemical defences produced. This could be because R. 
conglomeratus typically prefers wet environments, such as 
small streams, and therefore may be less exposed to mam-
malian herbivory than the other species, but given the small 
shift and lack of consistent results across species, this result, 
though significant, should be interpreted with caution.

Conclusion

The results of this study provide evidence against the 
redirection of resources from chemical defences towards 
growth and reproduction a following the introduction of  
three non-native Rumex spp. to New Zealand. Despite having 
previously shown that non-native Rumex plants experience 
less damage to leaf and root tissue (Costan et al. 2022), these 
same species did not respond by changing their defensive 
chemistry. This points to selection for these compounds 
by phloem feeders and/or molluscan seedling herbivores 
rather than chewing insects in the introduced range, limited 
flexibility in metabolic pathways as compounds play multiple 
functions and/or a lack of trade-offs between defence and 
growth. Whatever the cause of these patterns, they suggest 

that changes in plant chemistry linked to herbivore defence 
do not explain invasion success in Rumex.
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Table 1  Table of the 
significance of provenance in 
models of chemical defences 
and herbivore damage in Rumex 
conglomeratus, Rumex crispus 
and Rumex obtusifolius 

Coefficients show the difference in introduced provenance (New Zealand) plants compared to native prov-
enance (United Kingdom) plants. P-values are calculated from a Wald chi-squared test with one degree of 
freedom for the fixed effect of provenance. Statistically significant P-values are highlighted in bold.

R. conglomeratus R. crispus R. obtusifolius

Response variable Organ Coefficient 
estimate

P value Coefficient 
estimate

P value Coefficient 
estimate

P value

Soluble oxalic acid Leaf 1.23 0.1 0.37 0.70 -0.05 0.91
Total oxalic acid Leaf -0.15 0.89 1.55 0.64 0.27 0.75
Percentage soluble oxalic acid Leaf 8.25 0.34 3.44 0.50 -0.50 0.91
Total phenols Leaf 6.90 0.24 3.16 0.37 1.37 0.77

Root 7.74 0.12 0.34 0.73 4.68 0.20
Ellagitannins Leaf 6.60 0.14 3.24 0.15 1.62 0.59

Root 7.74 0.12 0.34 0.73 4.68 0.20
Percentage ellagitannins Leaf 10.50 0.01 3.13 0.12 2.50 0.24

Root 7.74 0.12 0.34 0.73 4.68 0.20
Total tannins Leaf -0.28 0.89 -2.18 0.11 0.052 0.98

Root -0.15 0.94 0.12 0.90 -0.32 0.92
Percentage leaf damage Leaf 0.22 0.68 -0.84 0.13 -0.03 0.93
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