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ABSTRACT Here, we present a 7.62-Mbp genome sequence of Paenibacillus sp. nov.
strain J5C2022, a Gram-positive facultatively anaerobic bacterium that was isolated
from 4-month-old fruit pickle brine and sequenced using the Illumina platform.

Gram-positive Paenibacillus spp., in the phylum Firmicutes, are endospore-forming
bacteria that can switch between metabolically active or dormant states in

response to stress or favorable conditions (1). They are facultatively anaerobic bacteria
that grow optimally at temperatures between 28°C and 40°C under neutral pH condi-
tions (2, 3). Strain J5C2022 was isolated from an overnight culture (on nutrient agar) of
4-month-old fruit pickle brine collected from a manufacturer in Penang, Malaysia.
Briefly, 500 mL of brine was centrifuged at high speed, and the supernatant was dis-
carded. The concentrated brine (100 mL) was spread onto a nutrient agar plate at 33°C
for overnight cultivation. A single colony was picked randomly and identified using
Sanger sequencing. Upon screening, strain J5C2022 was transferred to nutrient broth
at 33°C for overnight cultivation to obtain a pure culture. Genomic DNA was extracted
from the strain using the GenElute bacterial genomic DNA kit (Sigma-Aldrich Co., St.
Louis, USA) as previously described (4). For the library preparation, 100 ng of DNA was
measured and fragmented to 350 bp using a Bioruptor sonicator, which is compatible
with the NEBNext Ultra II DNA library prep kit for Illumina (New England BioLabs Inc.,
Ipswich, USA). The sequencing was performed on the NovaSeq 6000 sequencing sys-
tem (Illumina Inc., San Diego, USA) and produced 789,064,800 bp of paired-end reads
(2 � 150 bp). The raw Illumina paired-end reads were trimmed using fastp v0.21 (5) to
remove low-quality bases and Illumina adapter sequences. The trimmed reads were
subsequently used for de novo assembly using Unicycler v0.4.8 (6). Contigs smaller
than 500 bp, representing mostly sequencing artefacts, were removed, and the filtered
assembly was used for subsequent analysis. Genome assembly statistics were gener-
ated using QUAST (7). The corresponding rRNA genes (5S, 16S, and 23S rRNA) were
extracted using Barrnap (https://github.com/tseemann/barrnap) into a single FASTA
file that was subjected to a BLAST search of the GTDB 16S rRNA database. The com-
pleteness of the genome was then analyzed using BUSCO v5 (https://gitlab.com/ezlab/
busco), based on the Bacillales_odb10 lineage database (8). Unless otherwise noted,
default parameters were used for all software tools. Strain J5C2022 has a total length
of 7,616,378 bp, an N50 length of 137,040 bp, an average GC content of 51.6%, and
200� genome coverage. Genome annotation was carried out using the Rapid
Annotations using Subsystems Technology (RAST) server (9) and the NCBI Prokaryotic
Genome Annotation Pipeline (PGAP) with the GeneMarkS2 v1.14_1.25 method (10),
resulting in 138 contigs with 6,340 coding sequences and 70 RNAs. A total of 856
genes were screened to be potentially involved in carbohydrate metabolism, covering
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the xylose and L-rhamnose utilization pathways. In addition to this strain’s ability to form
endospores and its resistance to high salt and sugar conditions, its potential for use as a
next-generation probiotic for application in the food industry is worth exploring.

Data availability. The complete genome sequence of Paenibacillus sp. nov. strain
J5C2022 is available at NCBI under SRA accession number SRR19238564 and BioProject
accession number PRJNA83215. The BioSample accession number is SAMN28409047.
The GenBank accession number is JAOQJC000000000.1, with assembly accession num-
ber GCF_025567625.1.
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