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A B S T R A C T

This paper proposes the implementation of metaheuristic algorithm namely, teaching–learning-
based optimization (TLBO) algorithm to solve optimal power flow (OPF) problem. TLBO is
inspired by philosophy of teaching and learning in the classroom. OPF on the other hand,
is one of the most complex problems in power system operation, where in this paper, two
objective functions aimed to be minimized by TLBO namely cost minimization and combined
cost and emission (CEE) minimization. The effectiveness of proposed TLBO in solving the OPF
is tested on modified IEEE-57 bus system that integrated with stochastic wind and solar power
generations. To show the effectiveness of the proposed TLBO, several recent algorithms that
have been proposed in literature will be utilized and compared. The simulations demonstrate
the superiority of TLBO as an effective alternative solution for the OPF problems, where for the
cost minimization, TLBO able to obtained 0.16% cost saving per hour compared to the second
best algorithm; and for the CEE minimization, TLBO outperformed the second best algorithm
by 0.12% cost saving per hour.

1. Introduction

Optimization problems can be seen in various fields from engineering design, business planning, internet routing until holiday
lanning, which represent from simple tasks to complex problems. The aims for optimization can be anything, to minimize the
nergy consumption and costs, to maximize the profit, output, performance, and efficiency [1]. The importance of optimization
heory has led to the presence of many optimization methods, specifically based on nature inspired or sometimes is referred as
etaheuristic algorithms.

Basically, the nature inspired algorithms can be classified into four clusters namely evolutionary-based, swarm-based, physics-
ased, and human-based algorithms. In evolutionary based, the introduction of Genetic Algorithm (GA) [2,3] and its variants have
een proposed in literature in various applications such as in complex nonlinear system in glycerol metabolism [4], mechanical
haracterization of biosamples using a MEMS microgripper [5], calculation of soil electrical conductivity [6] and many more. Other
lgorithms that fall into evolutionary based are Genetic Programming (GP) [7] and Differential Evolution (DE) [8]. The application
f GP into selection of functional parameter of the 𝜓-Caputo fractional derivative has been proposed in [9] and energy management
ystem that emphasize on residential energy flows has been discussed in [10], while for DE, there are numerous optimization
pplications have been solved by DE and its variants such as in population interaction networks [11], unmanned aerial vehicle
ultitasking [12], and many others.
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Nomenclature

Abbreviations

ACO Ant Colony Optimization
AGV Airport Automated Guided Vehicles
ANN Artificial Neural Network
BB–BC Big Bang–Big Crunch
CDE Chaotic local search-based Differential Evolution
CEE Cost and Emission
CMA-ES Covariance Matrix Adaptation Evolution Strategy
DE Differential Evolution
DTBO Driving Training-Based Optimization
FACTS Flexible AC transmission System
GA Genetic Algorithm
GP Genetic Programming
GSA Gravitational Search Algorithm
HEBO Heteroscedastic Evolutionary Bayesian Optimization
MFO Moth Flame Optimization
NFL [No Free Lunch]
OPF Optimal Power Flow
PDF Probability Density Function
PSO Particle Swarm Optimization
PV Photovoltaic
SHADE Success History Based Adaptive DE
SPMGTLO Single Phase Multi-Group Teaching–Learning Algorithm
TLBO Teaching–Learning-Based Optimization
UPFC Unified Power Flow Controller
WEDM Wire-Electrical-Discharge-Machining
WOA Whale Optimization Algorithm

Symbols

𝑃𝑇𝐺 total power output from thermal generators
𝑐𝑡𝑎𝑥 carbon tax
𝑃𝐺𝑖 real power generation at bus i
𝑄𝐺𝑖 reactive power generation at bus i
𝑃𝐷𝑖 real power demand at bus i
𝑄𝐷𝑖 reactive power demand at bus i
𝑉𝐺𝑖 voltage magnitude at generation bus i
𝑉𝐿𝑚 voltage magnitude at load bus m
𝑄𝐶𝑘 injected MVAR (capacitance) at bus k
𝑇𝑛 transformers tap setting at line n
𝑆𝑙𝑞 line capacity at line p-q

Swarm-based optimization algorithms is started from the introduction of Particle Swarm Optimization (PSO) in 1995 by Eberhart
nd Kennedy [13], followed by various algorithms such as Ant Colony Optimization (ACO) [14], Moth Flame Optimization
MFO) [15], Artificial Bee Colony (ABC) [16], Whale Optimization Algorithm (WOA) [17] and others which can be obtained in
iterature. These outstanding swarm-based algorithms have been used as an optimizer tool for solving various fields of optimization
roblems such as PSO for gravity dam analysis [18], ACO for Airport Automated Guided Vehicles (AGV) path optimization [19], MFO
or optimal operation of multiple effect evaporator of paper mills [20], ABC for optimizing the fractional order PID controller for DC
rushless motor [21] and WOA for a two-degree-of-freedom fractional order proportional–integral–derivative (2FOPID) controller
n automatic drug delivery control scheme during chemotherapy [22].

The third cluster of nature inspired optimization is called physic-based, where the algorithm is motivated from the universe
henomena such as Gravitational Search Algorithm (GSA) [23], Big Bang–Big Crunch optimization (BB–BC) [24], and Space
ravitational Algorithm (SGA) [25]. Finally, the fourth cluster is known as human-based optimization algorithms that mimic the
2
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human behavior and interaction such as Teaching–Learning Based Optimization (TLBO) [26,27], which is based on teaching and
learning process in classroom and Driving Training-Based Optimization (DTBO) [28], which is the recent optimizer that categorized
in this cluster based on the human activity of driving training.

In order to enhance the performance of the algorithms in solving real optimization problems, numerous hybrid algorithms have
een proposed such as hybrid Artificial Neural Network (ANN) with DE in solving Traffic Sign Images [29], hybrid PSO-GA for
yrolysis kinetics of biomass determination [30], hybrid GA–GSA algorithm for tuning damping controller parameters for a unified
ower flow controller (UPFC) [31] and hybrid TLBO and Tabu Search for integrated selection and scheduling of projects [32].
t is also worth to mention that several improved versions of the mentioned algorithms have been proposed in literature by
sing the Bayesian inference, chaotic based and covariance matrix adaptation. These improvements normally used to improve
he weakness of the premature convergence of original version of nature inspired algorithms such as Heteroscedastic Evolutionary
ayesian Optimization (HEBO) [33], Chaotic local search-based Differential Evolution (CDE) [34] and Covariance Matrix Adaptation
volution Strategy (CMA-ES) [35] where the later algorithm is implemented for reducing the number of generations required for
onvergence to the optimum and belong to evolutionary-based cluster.

From the extensive literature reviews, it can be observed that the usage of nature inspired algorithms into solving real application
f optimization problems are increasing from year to year. Thus, in this paper, the application of TLBO into solving complex
ptimization problem in power system is proposed. Power system is one of the complex networks in the world that consists of
eneration, transmission, distribution, and auxiliary components to supply the electricity to the various loads. It is expected that
he power system to operate at optimal condition so that the maximum security and reliability can be achieved. One of the research
opics that received attention from researchers all over the world is to solve the Optimal power flow (OPF) problem. This is due to the
PF solution involving the non-convex, large scale and non-linear constrained optimization problems. It is aimed to find the optimal
ontrol variables of power systems’ components such as real power generations, generator’s voltages, transformers setting, reactive
ompensation elements etc. hence, the minimization of objective functions can be obtained. During the optimization process, the
ower flow balanced, generators and transmission capabilities as well as voltage profile constraints must be satisfied [36].

To date, there are various metaheuristic algorithms that have been proposed in literature to solve OPF. The application of
ifferential evolution (DE) into OPF solution has been presented in [37] followed by its variants namely success-history based
E (SHADE) [38] and improved adaptive DE [39], which considering the effect of the renewable energy into cost of generation

n OPF solution. The employment of differential-based harmony search algorithm has been proposed in [40] for determining the
ptimal control variables of OPF solution. Ref. [41] proposes the improvement of Jaya algorithm to be applied in OPF problem
amely adaptive multiple teams perturbation-guiding Jaya (AMTPG-Jaya).

Even though numerous algorithms have been proposed to solve the OPF problems, most of the solutions are trying to solve the
PF without the presence of renewable energy sources. It is worth to highlight that the similar work has been proposed in [42]
here the TLBO has been applied in solving for IEEE 30 and IEE 118-bus systems and the implementation of TLBO for OPF of HVDC
lso has been proposed in [43]. Due to the no free lunch (NFL) theorem, the implementation of TLBO into different setting and type
f the problems provide a significant difference as well as performances. The contributions of this paper can be listed as follow:

• The implementation of TLBO into OPF solution on the well-known IEEE 57-bus system with considering the integration of
stochastic wind and solar power generators, which is different with the case studies and scenarios that have presented in [42].

• Conducting comparative studies among TLBO and existing metaheuristic algorithms reported in the OPF solution field.
• Two cases of single objective of OPF solution by TLBO: cost minimization and cost with emission effect minimization.

The rest of the paper is organized as follows: Section 2 discusses the OPF formulation followed by the brief description of TLBO in
ection 3. The implementation of TLBO in solving OPF is presented in Section 4 and followed by the simulation studies in Section 5.
inally, Section 6 states the conclusion of this paper.

. Optimal power flow problem formulation

The main purpose of OPF is to find the optimal setting of control variables in power system components to minimize the selected
bjective functions while satisfying all the equality and inequality constraints. In this paper, two objectives are identified to solve
PF for the system that consists of thermal and stochastic wind-solar power generations: (1) cost of generation minimization and

2) cost with emission effect minimization.
Cost of generation minimization
The first objective function is the cost of generation minimization, 𝐹1, which represented as follows:

𝐹1 = min(𝐶𝑜𝑠𝑡) (1)

where Cost is the total cost for generating power from thermal and renewable sources. For thermal generating units, the total cost
that include the valve loading effects, 𝐶𝑇 (𝑃𝑇𝐺) is expressed as follows:

𝐶𝑇
(

𝑃𝑇𝐺
)

=
𝑁𝑇𝐺
∑

𝑖=1
𝑎𝑖 + 𝑏𝑖𝑃𝑇𝐺𝑖 + 𝑐𝑖𝑃 2

𝑇𝐺𝑖 +
|

|

|

𝑑𝑖 ⋅ sin
[

𝑒𝑖 ⋅
(

𝑃𝑚𝑖𝑛𝑇𝐺𝑖 − 𝑃𝑇𝐺𝑖
)]

|

|

|

(2)

here 𝑃𝑇𝐺 is the total power output from thermal generators, 𝑎𝑖, 𝑏𝑖, 𝑐𝑖, 𝑑𝑖 and 𝑒𝑖 denote the cost coefficients of respected generator
𝑇𝐺𝑖 with valve loading effect consideration, 𝑃𝑚𝑖𝑛𝑇 𝑔𝑖 is the minimum setting of power of 𝑖th generator and 𝑁𝑇𝐺 is the number of
hermal generators in the system.
3
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Table 1
Coefficients for thermal generators for modified IEEE 57-bus system.

Generator Bus a b c d e 𝛼 𝛽 𝛾 𝜔 𝜇

𝑃𝑇𝐺1 1 0 2.00 0.00375 18 0.037 4.091 −5.554 6.49 2E−04 2.860
𝑃𝑇𝐺2 2 0 1.75 0.0175 16 0.038 2.543 −6.047 5.638 5E−04 3.333
𝑃𝑇𝐺3 3 0 3.00 0.0250 13 0.041 6.131 −5.555 5.151 1E−05 6.670
𝑃𝑇𝐺4 6 0 2.00 0.00375 18 0.037 3.491 −5.754 6.390 3E−04 2.660
𝑃𝑇𝐺5 8 0 1.00 0.0650 14 0.040 4.258 −5.094 4.586 1E−06 8.000

For the renewable sources, the cost of wind and solar generators are divided into several conditions namely direct cost, reserve
ost and penalty cost, where the detail to obtain these costs can be obtained in [38].
Generation and emission cost minimization
The second objective function is to consider the minimization of generation and emission costs by imposing the carbon tax to

educe the greenhouse gases emission which can be defined as follows:

𝐹2 = 𝐹1 + 𝑐𝑡𝑎𝑥 ⋅ 𝐸 (3)

where 𝑐𝑡𝑎𝑥 represents the carbon tax, which is set to 20 ($/h) and E is the emission in tonnes per hour (t/h) which is calculated as
follows [38]:

𝐸 =
𝑁𝑇𝐺
∑

𝑖=1

[

𝛼𝑖 + 𝛽𝑖𝑃𝑇𝐺𝑖 + 𝛾𝑖𝑃 2
𝑇𝐺𝑖

]

× 0.01 + 𝜔𝑖𝑒(𝜇𝑖𝑃𝑇𝐺𝑖) (4)

where 𝛼𝑖, 𝛽𝑖, 𝛾𝑖, 𝜔𝑖 and 𝜇𝑖 are all emission coefficients corresponding to the 𝑖th thermal generator which is shown in Table 1.
Constraints
In solving the OPF problem, all the feasible solutions need to fulfill all the equality and inequality constraints. For equality

onstraint, the power balance equation for real and reactive power must be satisfied and expressed as follow:

𝑃𝐺𝑖 − 𝑃𝐷𝑖 − 𝑉𝑖
𝑛𝐵
∑

𝑗=1
𝑉𝑗

[

𝐺𝑖𝑗𝑐𝑜𝑠
(

𝛿𝑖𝑗
)

+ 𝐵𝑖𝑗𝑠𝑖𝑛
(

𝛿𝑖𝑗
)]

= 0 ∀𝑖 ∈ 𝑛𝐵 (5)

𝑄𝐺𝑖 −𝑄𝐷𝑖 − 𝑉𝑖
𝑛𝐵
∑

𝑗=1
𝑉𝑗

[

𝐺𝑖𝑗𝑠𝑖𝑛
(

𝛿𝑖𝑗
)

− 𝐵𝑖𝑗𝑐𝑜𝑠
(

𝛿𝑖𝑗
)]

= 0 ∀𝑖 ∈ 𝑛𝐵 (6)

here 𝛿𝑖𝑗 is the difference of voltage angles between bus i and bus j, 𝑃𝐺𝑖 and 𝑄𝐺𝑖 are the real and reactive power generation at bus
including wind and solar power), 𝑃𝐷𝑖 and 𝑄𝐷𝑖 are the real and reactive load at bus i and nB is the total number of buses in the
ystem.

The inequality constraint on the other hand, are the operating limits of the power system components which can represented as
ollow:

𝑃𝑚𝑖𝑛𝑇𝐺𝑖 ≤ 𝑃𝑇𝐺𝑖 ≤ 𝑃𝑚𝑎𝑥𝑇𝐺𝑖 𝐼 =1,…, 𝑁𝑇𝐺 (7)

𝑄𝑚𝑖𝑛𝑇𝐺𝑖 ≤ 𝑄𝑇𝐺𝑖 ≤ 𝑄𝑚𝑎𝑥𝑇𝐺𝑖𝐼 =1,…, 𝑁𝑇𝐺 (8)

𝑉 𝑚𝑖𝑛
𝐺𝑖 ≤ 𝑉𝐺𝑖 ≤ 𝑉 𝑚𝑎𝑥

𝐺𝑖 𝐼 =1,…, 𝑁𝐺 (9)

𝑉 𝑚𝑖𝑛
𝐿𝑚 ≤ 𝑉𝐿𝑚 ≤ 𝑉 𝑚𝑎𝑥

𝐿𝑚 𝑚 =1,…, 𝑁𝐿 (10)

𝑄𝑚𝑖𝑛𝑐𝑘 ≤ 𝑄𝑐𝑘 ≤ 𝑄𝑚𝑎𝑥𝑐𝑘 𝑘 =1,…, 𝑁𝑄𝑐 (11)

𝑇 𝑚𝑖𝑛𝑛 ≤ 𝑇𝑛 ≤ 𝑇 𝑚𝑎𝑥𝑛 𝑛 =1,…, 𝑁𝑇 (12)

𝑆𝑙𝑞 ≤ 𝑆𝑚𝑎𝑥𝑙𝑞 𝑞 =1,…, 𝑁𝑙𝑖𝑛𝑒 (13)

here Eqs. (7) and (8) represent the real and reactive power generation limits for thermal power, respectively. Constraints on
oltage of generator buses is shown in (9), while Eq. (10) is the constraints inflicted for load buses. The limitation of injected
VAR and transformer tap setting are expressed in (11) and (12), respectively, while Eq. (13) is the line capacity constraints. 𝑁𝐺,

𝑁𝐿, 𝑁𝑄𝑐 , 𝑁𝑇 and 𝑁𝑙𝑖𝑛𝑒 are the total number of generator, total number of load, total number of injected reactive elements, total
umber of transformer and total number of transmission line in the system, respectively. It is worth to highlight that the inequality
onstraints for renewable energy sources can be obtained in [38] and all these constraints are satisfied by using the power flow

rogram (MATPOWER) [44] to ensure the accurate results can be obtained.

4



M.H. Sulaiman, Z. Mustaffa and M.I. Mohd Rashid Results in Control and Optimization 10 (2023) 100187

r
a
T

o
‘
s

i
m
c
w
t
m
n
O
p

4

5

s
m
a
s
C
5
t

3. Teaching–Learning Based Optimization (TLBO)

A TLBO is inspired by the teaching and learning process in the classroom invented by [26,27] which later arouse numerous debate
egarding the discrepancies such as the terms, flowchart, pseudo code and the program code as mentioned in [45,46]. Nevertheless,
s far as NFL theorem is concerned, the different types of setting and problems also can give different results and interpretations.
hus, this work is using the program that has been developed by [47] which has catered all the issues raised by [45].

Similar with other metaheuristic algorithms, TLBO uses population-based solution where the population is treated as a group
r a class of learners, the design variables are analogues to subjects offered to learners and the learners’ result is analogues to the

fitness’. The process of acquiring knowledge is divided into teacher and learner phases and the teacher is considered as the best
olution so far [42]. Pseudo code of TLBO algorithm can be obtained in [45].

TLBO has been proposed in 2011, and up until now the applications of TLBO into various optimization problems are keep
ncreasing. This can be seen with encouraging works such as in reliability assessment of a floating offshore wind turbine
ooring system [48], performance characteristics of aero-engine in Wire-electrical-discharge-machining (WEDM) [49] and energy

onsumption optimization of WEDM [50], abrupt motion tracking [51], optimum design of reinforced concrete counterfort retaining
alls with minimum cost [52] and many more. TLBO becomes one of the choices as optimizer since there is no parameter needs

o be tuned apart of population number and maximum iterations. This becomes the main advantage of TLBO compared to other
etaheuristic algorithms in solving the optimization problems. Nevertheless, it depends on the problems to be solved since it may
ot perform well in other optimization problems subject to NFL theorem. It is also worth to highlight that the extension works of
PF with the presence of Flexible AC transmission System (FACTS) using TLBO with other six metaheuristic algorithms has been
resented in [53], where TLBO is outperformed to all selected algorithms.

. TLBO for OPF solution

In general, OPF solution can be defined as follows:

Minimize 𝐹 (𝑥, 𝑢)
𝑠.𝑡 𝑔(𝑥, 𝑢) = 0

ℎ(𝑥, 𝑢) ≤ 0
(14)

where F (x, u) is the objective function, g(x, u) is the equality constraints and h(x, u) is the inequality constraints. X and u are
the control and state variables respectively since in power system, to obtain the optimality, not only the control variable; the state
variables also play a vital role for the security of the power system operation. The set of control and state variables in OPF solution
can be expressed as follow:

𝑢𝑇 =
[

𝑃𝐺2 ⋯𝑃𝐺𝑁𝐺 , 𝑉𝐺1 ⋯𝑉𝐺𝑁𝐺 , 𝑇1 ⋯ 𝑇𝑁𝑇 , 𝑄1 ⋯𝑄𝑐𝑘
]

(15)

𝑥𝑇 =
[

𝑃𝐺1
, 𝑄𝐺1

⋯𝑄𝐺𝑁𝐺 , 𝑉𝐿1
⋯𝑉𝐿𝑚

]

(16)

where 𝑃𝐺1 and 𝑄𝐺1 are the real and reactive power at the slack bus generation.
The application of the proposed TLBO in solving OPF problem is to find the optimal values of control variables to minimize all

the objective functions that have been discussed in previous section while fulfilling all the constraints. Initially, number of search
agents or population and the maximum iteration are set. Then, all the function details such as boundary of searching areas and
the function evaluation (minimization of objective functions) are determined followed by plotting the lognormal PDF and Weibull
fitting for solar PV and wind farm power evaluation, respectively. Each set of solution are mapped into the load flow data and load
flow MATPOWER program is executed to obtain the selected objective (Cases 1 and 2). It is worth to highlight that the penalty
function is enforced for the violation of inequality constraints of real power at slack bus, voltage magnitude at load buses, reactive
power generations as well as line flow limits, which can be expressed as follows:

𝑝𝑒𝑛𝑎𝑙𝑡𝑦 = 𝜆𝑃
(

𝑃𝐺1 − 𝑃 𝑙𝑖𝑚𝐺1
)2 + 𝜆𝑉

𝑁𝐿
∑

𝑖−1

(

𝑉𝐿𝑖 − 𝑉 𝑙𝑖𝑚
𝐿𝑖

)2 + 𝜆𝑄
𝑁𝐺
∑

𝑖−1

(

𝑄𝐺𝑖 −𝑄𝑙𝑖𝑚𝐿𝑖
)2 + 𝜆𝑆

𝑁𝑙
∑

𝑞=1

(

𝑆𝑙𝑞 − 𝑆𝑙𝑖𝑚𝑙𝑞
)2

(17)

where 𝜆𝑃 , 𝜆𝑉 , 𝜆𝑄 and 𝜆𝑆 are the penalty factors. General flow of TLBO application into OPF problem is depicted in Fig. 1.

. Results and discussion

Case 1: Generation cost minimization
Simulations for solving OPF are executed using MATLAB and the modified IEEE 57-bus system is used for all cases. IEEE 57-bus

ystem can be considered as medium-scale problem that consists of 57 buses, 7 generators, 17 transformers and 42 loads. The
odification is to include a single solar PV generator and wind farm at buses 9 and 12 respectively, as shown in Fig. 2. Tables 1

nd 2 show the coefficients of thermal generators with valve-loading effects and PDF/ Weibull parameters with coefficients for
tochastic model of solar PV plant and wind farm, respectively. The stochastic model is developed based on running of 8000 Monte-
arlo scenarios which can be obtained in detail in [38]. The population of TLBO is set to 30 and the maximum iteration is set to
00. For all simulations, 33 control variables need to be optimized that consist of real power generation, voltage at generator buses,
ransformers tap setting and reactive compensation elements while the number of state variables are 58 viz. real power generation at
5
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Fig. 1. Flow of TLBO for solving OPF problem.

slack bus, reactive power generation and voltage at load buses. In this case, the objective is to minimize the cost of power generation
including the stochastic wind and solar PV power generators that have been presented in Section 2. All these setting have been used
for all cases to obtain fair results for all simulations.
6
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Table 2
PDF parameters and coefficients for solar PV plant at bus 9 and wind farm at bus 12.

Rated power Lognormal/ Weibull
PDF parameters

Direct cost
coefficient ($/MW)

Reserve cost
coefficient ($/MW)

Penalty cost
coefficient ($/MW)

200 MW 𝜇 = 6, 𝜎 = 0.6 𝑔𝑆𝐺 = 1.6 𝐾𝑅𝑆 = 3 𝐾𝑃𝑆 = 1.5
210 MW 𝛼 = 9, 𝛽 = 2 𝑔𝑊𝐺 = 1.6 𝐾𝑅𝑊 = 3 𝐾𝑃𝑊 = 1.5

Fig. 2. Modified IEEE 57-bus system.

Table 3 shows the detail results of the control variables with slack generator at bus 1 obtained by TLBO together with the selected
metaheuristic algorithms viz. variant of TLBO namely, Single Phase Multi-Group Teaching–Learning Algorithm (SPMGTLO) that has
been proposed by [54,55], PSO, MFO and Jaya algorithm. These results are obtained from 10 free run of simulations. From this
table, it can be seen that TLBO outperformed other compared algorithms which is highlighted in boldface. Cost of thermal, solar
and wind power generators also included in this table. TLBO achieved the minimum cost of generation, 5099.5670 $/h and the
second-best result is obtained by Jaya algorithm which produces 5107.9015 $/h. The difference results obtained between TLBO
with the Jaya algorithm is 8.3345 $/h which is about $8.3345/h 0.16% cost saving per hour. The worst result is obtained by PSO
where the significant cost saving from TLBO compared to PSO is 31.5149 $/h. This shows the effectiveness of TLBO compared to
other algorithms.
7
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Table 3
Detail results for different algorithms on Case 1.

Components Min limit Max limit TLBO* TLBO SPMGTLO PSO MFO JAYA

𝑃𝐺1 0 575.88 575.8522 553.7501 555.8995 533.0303 558.1888 558.7459
𝑃𝐺2 0 100 99.9948 100 99.9452 100 100 98.5073
𝑃𝐺3 0 140 79.1035 76.6221 76.4172 98.1212 76.587 76.1663
𝑃𝐺6 0 100 100 100 99.9955 100 100 100
𝑃𝐺8 0 550 65.7673 50.3601 50.5518 57.8741 51.0499 48.8577
𝑃𝐺9 0 200 164.3404 199.9998 199.9836 200 200 200
𝑃𝐺12 0 210 209.9780 210 210 210 210 210
𝑉𝐺1 0.95 1.1 1.0783 1.0946 1.1 1.1 1.0723 1.0917
𝑉𝐺2 0.95 1.1 1.0993 1.0956 1.0854 1.1 1.0396 0.95
𝑉𝐺3 0.95 1.1 1.0748 1.0564 0.95 0.95 1.1 1.0926
𝑉𝐺6 0.95 1.1 1.1000 0.9618 0.9974 0.95 1.0521 1.0766
𝑉𝐺8 0.95 1.1 1.0286 1.0299 0.981 1.1 1.0819 1.031
𝑉𝐺9 0.95 1.1 1.0998 0.969 0.9797 1.1 1.1 1.0673
𝑉𝐺12 0.95 1.1 1.0879 1.0199 0.9947 1.056 1.0571 1.0182
𝑇19(4−18) 0.9 1.1 0.9795 1.0113 0.9957 0.9 1.06 1.1
𝑇20(4−18) 0.9 1.1 1.0702 0.9535 0.9073 1.1 1.074 0.9502
𝑇31(21−20) 0.9 1.1 0.9380 0.9977 0.9967 0.9152 0.9613 1.0132
𝑇35(24−25) 0.9 1.1 0.9979 0.9018 0.9325 0.9 0.9911 0.9262
𝑇36(24−25) 0.9 1.1 0.9035 0.9463 0.9316 1.1 0.9169 1.0092
𝑇37(24−26) 0.9 1.1 1.0323 0.9717 0.9782 1.1 1.0636 0.9916
𝑇41(7−29) 0.9 1.1 0.9911 0.9569 0.9185 0.9125 0.9895 1.0053
𝑇46(34−32) 0.9 1.1 0.9068 0.9123 0.9 0.9 0.9611 0.9215
𝑇54(11−41) 0.9 1.1 0.9186 0.9 0.9 0.9 0.9002 0.9547
𝑇58(15−45) 0.9 1.1 0.9944 0.9825 0.9598 0.9 0.9 0.9807
𝑇59(14−46) 0.9 1.1 0.9688 0.9656 0.9435 1.1 1.0262 0.9776
𝑇65(10−51) 0.9 1.1 0.9309 0.9744 0.9417 1.0581 1.0108 0.9506
𝑇66(13−49) 0.9 1.1 0.9106 0.9354 0.9 1.1 0.9786 0.9169
𝑇71(11−43) 0.9 1.1 0.9712 0.9543 0.9165 0.9 1.0203 0.9552
𝑇73(40−56) 0.9 1.1 0.9462 0.9819 1.0417 1.1 1.1 1.0783
𝑇76(39−57) 0.9 1.1 1.0224 0.9483 0.9573 1.1 0.9549 0.9
𝑇80(9−55) 0.9 1.1 0.9692 0.9602 0.9261 1.1 1.1 0.979
𝑄𝐶18 0 5 4.4952 4.999 4.4454 5 1.6959 2.9977
𝑄𝐶25 0 5 3.7605 4.9998 4.9991 5 5 4.5789
𝑄𝐶53 0 5 0.1627 5 4.998 0 0.2571 4.6656
𝐹𝐶𝑜𝑠𝑡(𝑃𝑇 𝐺) 5618.0362 3480.3368 3493.1646 3575.1155 3511.9508 3488.7704
𝐹𝐶𝑜𝑠𝑡(PW ) – 877.563 877.563 877.563 877.563 877.563
𝐹𝐶𝑜𝑠𝑡(PS) – 741.5671 741.4935 741.5681 741.5681 741.5681
𝑭𝑪𝒐𝒔𝒕 ($/h) 5618.0362 5099.467 5112.2211 5194.2466 5131.0819 5107.9015

Table 4
Statistical results for different algorithms on Case 1.

Performance TLBO SPMTLO PSO MFO JAYA

Best 5099.47 5112.22 5194.25 5131.08 5107.90
Worst 5163.48 5275.27 6870.77 5778.91 5706.38
Average 5112.11 5171.97 5651.54 5336.54 5337.05
Std Dev. 19.84 45.68 493.36 199.39 236.39

From this table, the results of TLBO without the presence of renewable energy sources also have been included, which is marked
ith TLBO*. It can be seen that the total cost obtained is the worst compared to the algorithms that consider the renewable energy

ources. This is due to the burden of the power generation at bus 9 has been transferred to the slack generator which is boosting the
otal cost of the power generation. It also can be noted from the table that all algorithms gave the optimal results within the specified
imits that have been set for the simulation. In order to show the effectiveness of TLBO compared to other identified algorithms, the
tatistical analysis in terms of the best, worst, average and standard deviation results are presented in Table 4. It can be noted that
LBO outperformed all algorithms for all performances. These results are further visualized in boxplot which is shown in Fig. 3.
hese results are based on the 10 running of simulations on the similar platform for fair comparison. The convergence curve for all
lgorithms in solving this case is depicted in Fig. 4. It can be concluded that all algorithms are converged within 400 iterations.
Case 2: Generation cost and emission minimization
In this case, the generation cost that including the emission effect is considered as the objective function to be minimized.

able 5 shows the best of detail results obtained for all algorithms in 10 runs of simulation. Again, it can be seen that TLBO
utperformed other compared algorithms in terms of obtaining the minimum cost of generation productions with the effect of carbon
ax which is highlighted in boldface. TLBO achieved the minimum cost of generation viz. 5 137.1759 $/h followed by SPMGTLO
hat produces 5 143.7169 $/h and the worst result is obtained by PSO which produces 5 327.4771 $/h. It is about 0.12% cost
aving per hour obtained by TLBO compared to SPMGTLO. This shows the significant cost saving obtained by the TLBO compared
o other algorithms. Again, the results of TLBO without the presence of renewable energy sources also have been included, which is
8
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Fig. 3. Boxplot for Case 1.

Fig. 4. Convergence curve for all algorithms of Case 1.

marked with TLBO*. It can be seen that the total cost and emission obtained is the worst compared to the algorithms that consider
the renewable energy sources. Even though the power output from the slack generator is close to the results obtained by PSO,
nonetheless the total cost is much higher from PSO, which is more than $ 300 per hour. This shows that the impact of renewable
energy sources is significant in this case study.
9
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Table 5
Detail results for different algorithms on Case 2.

Components TLBO* TLBO SPMGTLO PSO MFO JAYA

𝑃𝐺1 575.8531 551.3482 552.7697 573.187 553.1109 556.3354
𝑃𝐺2 99.9948 99.9998 99.9895 90.2279 100 100
𝑃𝐺3 79.1035 76.6263 76.5963 83.5045 76.5811 78.1542
𝑃𝐺6 100 100 99.9889 100 100 100
𝑃𝐺8 65.7673 52.3202 51.9601 72.877 52.3119 50.6847
𝑃𝐺9 164.3404 199.9995 199.9974 175.2296 200 199.9077
𝑃𝐺12 209.9780 209.9993 209.998 210 209.9974 210
𝑉𝐺1 1.0783 1.0894 1.0921 1.0496 1.1 1.1
𝑉𝐺2 1.0993 1.0987 0.95 1.1 1.1 1.0835
𝑉𝐺3 1.0748 1.0602 1.0514 1.1 1.0513 0.9562
𝑉𝐺6 1.1 1.0842 0.95 0.95 1.0557 0.95
𝑉𝐺8 1.0286 1.0285 1.0286 1.1 1.0584 0.9837
𝑉𝐺9 1.0998 0.95 1.0921 1.1 1.0959 0.9707
𝑉𝐺12 1.0879 1.0288 1.0243 1.1 1.0384 0.9651
𝑇19(4−18) 0.9795 1.0117 0.9935 1.1 1.0307 0.9237
𝑇20(4−18) 1.0702 0.9933 0.9623 0.9817 1.1 0.9
𝑇31(21−20) 0.9380 1.0387 0.9857 0.9598 0.9 1.0596
𝑇35(24−25) 0.9979 0.9518 0.951 1.0427 0.9819 0.9051
𝑇36(24−25) 0.9035 0.9047 0.9 0.9 0.9 0.9028
𝑇37(24−26) 1.0323 0.9796 0.9763 1.1 0.9961 0.9886
𝑇41(7−29) 0.9911 0.9633 0.9632 0.9 1.0006 0.9202
𝑇46(34−32) 0.9068 0.9148 0.9131 0.9456 0.9118 0.9348
𝑇54(11−41) 0.9186 0.9 0.9 1.1 0.9 0.9149
𝑇58(15−45) 0.9944 0.9873 0.982 1.0631 0.9 0.9283
𝑇59(14−46) 0.9688 0.9656 0.98 0.9 0.9661 0.9004
𝑇65(10−51) 0.9309 0.9716 0.9784 0.9962 0.9947 0.9213
𝑇66(13−49) 0.9106 0.9321 0.9 1.1 0.9726 0.9058
𝑇71(11−43) 0.9712 0.9573 0.9538 0.9 1.0244 0.9287
𝑇73(40−56) 0.9462 0.9867 1.0041 0.9 1.1 1.0611
𝑇76(39−57) 1.0224 0.9547 0.9519 1.1 0.9 0.9287
𝑇80(9−55) 0.9692 0.9623 0.9621 1.1 0.9842 0.9467
𝑄𝐶18 4.4952 4.3293 4.9499 5 1.5475 0.4121
𝑄𝐶25 3.7605 4.9998 4.9581 0 4.9986 3.3599
𝑄𝐶53 0.1627 5 4.9831 5 5 5

𝐹𝐶𝑜𝑠𝑡(𝑃𝑇 𝐺) 5618.0362 3479.6743 3485.5033 3779.6057 3490.141 3509.735
𝐹𝐶𝑜𝑠𝑡(PW ) – 877.5599 877.5538 877.563 877.5511 877.563
𝐹𝐶𝑜𝑠𝑡(PS) – 742.9475 742.9378 630.3961 742.9496 742.5293
𝐹𝐶𝑜𝑠𝑡 ($/h) 5618.0362 5100.1817 5105.9949 5287.5648 5110.6417 5129.8273
𝑭𝑪𝑬 ($/h) 5662.4504 5137.1759 5143.1769 5327.4771 5147.8689 5167.492

Table 6
Statistical results for different algorithms on Case 2.

Performance TLBO SPMTLO PSO MFO JAYA

Best 5137.18 5143.18 5327.48 5148.20 5167.49
Worst 5303.42 5516.42 6227.51 5462.69 5348.69
Average 5172.72 5254.48 5692.03 5287.62 5253.90
Std Dev. 57.66 119.44 249.48 102.20 77.85

The statistical results for this case for all algorithms are tabulated in Table 6. Again, the performances of TLBO are the best
ompared to others. The boxplot for this case is exhibited in Fig. 5. From this figure, it can be seen that TLBO exhibits superior
ccuracy performance compared to other algorithms. The worst performance is obtained by PSO while MFO and JAYA gave quite
lose results. The second best performance is obtained by the SPMGTLO except for the worst results that are greater compared to
FO and JAYA. The convergence curve for all algorithms in solving this case is depicted in Fig. 6.

The performance of TLBO in solving both cases are further evaluated by performing the non-parametric Wilcoxon statistical test.
he null hypothesis is accepted when the p-value is larger than the significance level (0.05), and vice versa. The performance is

evaluated between TLBO with all compared algorithms, where a pairwise comparison is done between TLBO/SPMGTLO, TLBO/PSO,
TLBO/MFO and TLBO/JAYA for both cases. The results of p-values are reported as metrics of significance as tabulated in Table 7.
Based on this table, it can be observed that the proposed TLBO is significant over compared algorithms at p-value less than 0.05.
n this case, the null hypothesis was rejected because TLBO is statistically significant for both cases of study.

. Conclusion

In this paper, a metaheuristic algorithm namely TLBO has been proposed to solve OPF problem. To assess the performance
LBO in solving OPF problem, it has been applied into two different OPF objective functions: minimizations of generation cost
10
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Fig. 5. Boxplot for Case 2.

Fig. 6. Convergence curve for all algorithms of Case 2.

and generation cost that include emission effect on modified IEEE 57-bus system that consists of thermal, stochastic solar and
wind power generators. Comparative analysis shows that TLBO produces very competitive performance and outperformed other
selected algorithms for all cases. Even though the applications of TLBO into OPF problems have been done previously, the different
11
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Table 7
P-values of the Wilcoxon rank sum test over cases.

Cases SPMTLO PSO MFO JAYA

Cost minimization (F1) 0.001706 0.000183 0.000440 0.000769
CE minimization (F2) 0.037635 0.000183 0.005795 0.004586

setting and testing problems may produce different significant performance and exhibit the superiority of TLBO. Therefore, it can
be an effective alternative for solving the OPF problems. The implementation of TLBO into multi-objectives problems of OPF is
still in progress and will be proposed in the near future. Even though the results obtained by TLBO outperformed all other selected
algorithms, there is one issue or drawback of TLBO can be noticed. In TLBO, there is no parameter to be tuned apart of population
number and maximum iteration. This can be treated as advantage as well as disadvantage which is depending on the problem to
be solved. Since we deal with the NFL, where there is no optimization algorithm can solve all optimization problems. Thus, there
is necessity to have at least one tuning parameter so that the TLBO can be performed well for solving more complex optimization
problems, which also can be proposed in the future.
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