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Abstract: Terrain classification provides valuable information for both control and navigation algo-

rithms of wheeled mobile robots. In this paper, a novel online outdoor terrain classification algo-

rithm is proposed for wheeled mobile robots. The algorithm is based on only time-domain features 

with both low computational and low memory requirements, which are extracted from the inertial 

and magnetic sensor signals. Multilayer perceptron (MLP) neural networks are applied as classifi-

ers. The algorithm is tested on a measurement database collected using a prototype measurement 

system for various outdoor terrain types. Different datasets were constructed based on various set-

ups of processing window sizes, used sensor types, and robot speeds. To examine the possibilities 

of the three applied sensor types in the application, the features extracted from the measurement 

data of the different sensors were tested alone, in pairs and fused together. The algorithm is suitable 

to operate online on the embedded system of the mobile robot. The achieved results show that using 

the applied time-domain feature set the highest classification efficiencies on unknown data can be 

above 98%. It is also shown that the gyroscope provides higher classification rates than the widely 

used accelerometer. The magnetic sensor alone cannot be effectively used but fusing the data of this 

sensor with the data of the inertial sensors can improve the performance. 

Keywords: terrain classification; wheeled mobile robots; accelerometer; gyroscope; magnetometer; 

time-domain analysis; feature extraction 

 

1. Introduction 

Terrain classification plays an important role in reliable mobile robot navigation 

problems [1,2], since the parasitic accelerations generated by different terrains inherently 

influence the state estimation performance as well as the path planner and control algo-

rithms that rely on these results. As an example, a flat surface generates much less para-

sitic accelerations, thus the pose estimation is executed on reliable external acceleration 

integrations. On the other hand, bumpy terrains generate significant vibrations, which 

superimpose on the measurements of the accelerometer. In these cases, the separation of 

reference and observation vectors is difficult to execute reliably, thus the pose estimation 
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becomes uncertain. The output of a terrain classification algorithm can help in character-

izing the measurements with proper certainty measures, which contribute to both effec-

tive and reliable state estimation. This enables the establishment of algorithms that adap-

tively vary their parameters based on the identified environment of the robot. 

Terrain classification systems apply onboard sensors. Various technologies were ap-

plied in relevant studies to identify the terrain type using mobile robots. Methods based 

on LiDAR [3] and camera [4–8] data are widely used, but these systems require embedded 

systems with high computational capacity, and they also have high costs. Beside the large 

amount of data which have to be processed, complex classification algorithms must be 

used, such as convolutional neural networks [8]. RGB-D [9] and sound-based [10,11] sys-

tems were also proposed by researchers. 

Accelerometers, which measure linear acceleration in one or more axes, offer a low-

cost alternative for terrain classification in the case of mobile robots, and were widely used 

in such applications [12–22]. 

The fusion of various technologies was also reported in relevant works, e.g., LiDAR 

and camera [23,24], sound and vibration [25], sound and camera [26–28], vibration and 

camera [29,30], camera, spectroscopy and nine degree-of-freedom (9DOF) inertial meas-

urement unit (IMU) [31]. 9DOF IMUs consist of three tri-axial sensors, an accelerometer, 

a gyroscope, and a magnetometer. 

Gyroscopes, which measure angular velocity around one or more axes, are widely 

used in pattern recognition applications, such as human movement or activity recognition 

[32,33]. In terrain classification tasks, these sensors were mainly tested together with ac-

celerometers [31,34–38]. In a previous study, the authors of this paper showed that gyro-

scopes can provide significantly higher classification efficiencies than accelerometers us-

ing a frequency domain-based feature set [39]. 

Magnetometers are passive sensors that measure magnetic fields. Vector magnetom-

eters measure the flux density value in a specific direction in three-dimensional space [40]. 

These devices are mainly used as compasses, since they can estimate the heading direction 

based on the Earth’s magnetic field. Magnetic sensors were also applied in pattern recog-

nition-based applications, such as movement classification [32,33,41] and vehicle classifi-

cation [42,43], which utilize the sensor measurements in a different way. In movement or 

activity classification systems, the methods utilize the changes in the orientation of the 

geomagnetic field vector compared to the sensor frame and are usually used together with 

inertial sensors. In vehicle detection/classification systems stationary sensors are applied 

and the distortions in the magnetic field are utilized, which are caused by metallic parts 

of the vehicles. Although, most outdoor mobile robots are equipped with magnetometers, 

due to their ability to serve as a compass, to the best knowledge of the authors, the raw 

measurements of these sensors were not utilized earlier in terrain classification methods. 

Inertial sensor-based terrain classification methods most often rely on features ex-

tracted using the sensor signals, which are then forwarded to an appropriate classifier to 

determine the class. The base of the feature extraction is to extract information about the 

changes in the signals, which occur due to the movement of the sensors. Other solutions 

also exist, e.g., Reina et al. developed a model-based observer that estimates terrain pa-

rameters for vehicles based on two acceleration signals using a Kalman filter [12]. In [13], 

recurrent neural networks were applied using a three-axis sensor without extracting fea-

tures on a dataset consisting of 14 terrain classes. In [34], acceleration, angular rate, and 

roll-pitch-yaw (RPY) data, which were provided by the 9DOF IMU sensor, were applied to 

form the feature vector. An ensemble classifier was applied to classify measurements into five 

classes: brick, concrete, grass, sand, and rock. In [31], angular acceleration, linear acceleration, 

and linear jerk were extracted using the signals of a 9DOF IMU. The IMU, the camera, and the 

spectroscopy-based classifiers were fused to classify terrains into 11 types. 

Various feature extraction techniques were tested in related studies. Oliveira et al. 

utilized only the Z-axis of the accelerometer, which points to the ground, and the root 

mean square feature was used to classify 5 pavement types [14]. In [15], also only the Z-
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axis was used, and a Laplacian support vector machine (SVM) was applied with various 

time-domain features (TDFs) and frequency-domain features (FDFs) to classify six out-

door terrain types: natural grass, asphalt road, cobble path, artificial grass, sand beach, 

and plastic track. Weiss et al. applied signals of all three sensor axes and evaluated their 

applicability in the given task [16]. The components of the amplitude spectrum, which 

were computed using the fast Fourier transform (FFT), were utilized as features. An SVM-

based classifier was applied in two experiments, i.e., a 3-class and a 7-class experiments. 

Magnitudes computed using the FFT from vibration signals were also the base of the 

method proposed in [17], where terrains were classified into clay, grass, sand, and gravel. 

In [18], 523 power spectrum density (PSD)-based features and 11 different statistical fea-

tures were used to classify 4 indoor surface types. In [19], features were extracted in time, 

frequency, and time-frequency domains to classify the terrain into four types (hard 

ground, grass, small gravel, and large gravel). Bai et al. defined five outdoor terrain clas-

ses, concrete, grass, sand, gravel, and grass&stone, and applied spectral features from ac-

celeration data to classify samples using artificial neural networks (ANN) [20]. In [21], Bai 

et al. proposed a deep neural network-based solution using a similar feature extraction 

concept. Mei et al. composed three feature sets using TDFs, FDFs, and PSD-based features, 

and made a comparative study using different classifiers to differentiate 8 outdoor terrain 

types: asphalt, cobble, concrete, artificial grass, natural grass, gravel, plastic, and tile [22]. 

DuPont et al. used magnitudes computed using the FFT for the acceleration in the Z-axis 

and the angular velocity around the X and Y axes [35]. The terrains were classified using 

probabilistic neural networks into six classes: asphalt, packed gravel, loose gravel, tall 

grass, sparse grass, and sand. In [36], more than 800 features were extracted from the in-

ertial sensor signals for indoor terrain classification with a linear Bayes normal classifier. 

Hasan et al. applied altogether 60 different temporal, statistical and spectral features using 

accelerometer and gyroscope data together to classify 9 indoor surface types [37]. In [38], 

the components of the amplitude spectrum computed for the six channels of the IMU sen-

sor were used together as inputs of the ANN to classify terrains into five classes, i.e., in-

door floor, asphalt, grass, soil, and loose gravel. 

This study deals with outdoor terrain classification using inertial and magnetic sen-

sors in the case of wheeled mobile robots. The contributions of this work, which is the exten-

sion of an initial investigation presented by the authors in [44], can be summarized as follows: 

1. A novel online terrain classification algorithm is proposed, which applies only TDFs 

extracted from the raw accelerometer, gyroscope, and magnetometer signals. The 

chosen feature set has both low computational and low memory costs, which enables 

easy implementability. Classification is realized using multilayer perceptron (MLP) 

neural networks. The proposed algorithm is suitable to run online in real-time on the 

embedded system of the mobile robot or it can be used on a separate intelligent sen-

sor that provides the classification results to the main control unit of the robot. 

2. The proposed algorithm is validated using a measurement database collected using a 

prototype measurement system. Tests are performed utilizing different processing win-

dow sizes and multiple robot speeds to examine their effect on recognition efficiency. 

3. Due to the previous considerations, it was reasonable to test the applicability of raw 

magnetometer data and the impact of the three sensor types in such an application. 

Thus, the features extracted using signals of the three sensor types are tested alone, 

in pairs, and together using the proposed algorithm.  

4. In the evaluation process, achieved results using different setups are compared with 

results obtained using a set of spectral features and with results obtained using the 

two feature sets together. 

The rest of the paper is organized as follows. Section 2 presents the proposed terrain 

classification algorithm, while Section 3 describes the used measurement database. The 

experimental results achieved using different setups are discussed in Section 4, while Sec-

tion 5 summarizes the results of the paper and gives potential future work directives. 
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2. Classification Algorithm 

The proposed classification algorithm, which can be seen in Figure 1, consists of two 

main parts. In the first part, windowing and feature extraction are performed on raw sen-

sor signals. The extracted features are then forwarded to the second part, where an MLP-

based classifier is utilized to determine the class. 

The classifier needs to be trained offline using training data, after which the trained 

MLP can be implemented and used online. 

 

Figure 1. Parts of the proposed classification algorithm. 

2.1. Windowing and Feature Extraction 

Feature extraction is performed in fixed-size processing windows, which are shifted 

with also constant sizes. The shift size determines the overlap between windows and the 

frequency with which the algorithm updates the terrain class. It does not have any effect 

on the amount of data in the window. 

One of the advantages of the applied features is that these do not require the transfor-

mation from time-domain to frequency-domain, which beside performing fast Fourier trans-

form (FFT) requires the storage of the measurement values in the processing window. 

Many popular TDFs require the storage of the measurement vector in the processing 

window, and can be calculated only before the classification process. E.g., in the case of 

features such as standard deviation, skewness, and kurtosis, the mean value must be sub-

tracted from each of the measurement values in the processing window. The mean value 

can only be computed at the end of the processing window, so all measurements in the 

window must be stored. In the proposed algorithm, all selected feature types can be up-

dated after every measurement, and they do not need the storage of the measurement 

vector in the processing window. At most two previous measurement values are required 

to update the features. This enables easier implementation, and real-time online operation 

on the embedded system of the robot. 

The selected TDFs are discussed as follows: 

• Mean absolute value (MAV): 

MAV =
1

𝑁
∑ |𝑥𝑖|
𝑁
𝑖=1 , (1) 

where 𝑥𝑖 is the ith measurement value, and N is the number measurements in the pro-

cessing window. 

• Number of zero crossings (NZC): 



Electronics 2023, 12, 3238 5 of 17 
 

 

NZC = ∑ [sgn(𝑥𝑖 ∙ 𝑥𝑖+1) ∩ |𝑥𝑖 − 𝑥𝑖+1| ≥ 𝑡ℎ]𝑁−1
𝑖=1 , sgn(𝑥) = {

1, if(𝑥 ≥ 0)
0, otherwise

, (2) 

where th is the threshold, which is defined using the peak-to-peak noise level. 

• Number of slope sign changes (NSSC): 

NSSC = ∑ [𝑓[(𝑥𝑖 − 𝑥𝑖−1) ∙ (𝑥𝑖 − 𝑥𝑖+1)]]
𝑁−1
𝑖=2 , 𝑓(𝑥) = {

1, if(𝑥 ≥ 𝑡ℎ)
0, otherwise

, (3) 

• Root mean square (RMS): 

RMS = √
1

𝑁
∑ 𝑥𝑖

2𝑁
𝑖=1 , (4) 

• Waveform length (WL): 

WL = ∑ |𝑥𝑖+1 − 𝑥𝑖|
𝑁−1
𝑖=1 , (5) 

• Willison amplitude (WAMP): 

WAMP = ∑ [𝑓(𝑥𝑖 − 𝑥𝑖+1)]
𝑁−1
𝑖=1 , 𝑓(𝑥) = {

1, if(𝑥 ≥ 𝑡ℎ)
0, otherwise

, (6) 

• Maximal value (MAX): 

MAX = max(𝑥𝑖), (7) 

• Minimal value (MIN): 

MIN = min(𝑥𝑖), (8) 

• Peak-to-peak (PTP): 

PTP = MAX − MIN. (9) 

Some features were not applied for all three sensor types. Raw accelerometer meas-

urements suffer from the gravitational acceleration, which can be neglected using complex 

pose estimation methods, which require additional computation. Due to this effect, the 

MAV, RMS, MAX, and MIN features would largely differ if the robot would move parallel 

with the Earth’s surface or uphill. Based on the previous considerations, these features 

were not utilized in the case of the accelerometer. In the case of the magnetometer, the 

changes in the orientation of the magnetic field vector are utilized in the classification 

process. Since the components of the vector act as an unknown bias in the measurements, 

the same features, i.e., the MAV, RMS, MAX, and MIN, were also not utilized with this 

sensor type. 

2.2. Classifier 

A three-layer Multi-Layer Perceptron (MLP) neural network was chosen as the clas-

sifier in the proposed algorithm, since it proved to be an optimal solution for similar online 

pattern recognition tasks based on classification efficiency and implementability [32]. 

MLPs are feedforward neural networks, where neurons are organized into an input, 

an output, and one or more hidden layers. All layers are fully connected to the following 

one through weighted connections. A neuron has an activation function that maps the 

sum of its weighted inputs to the output. These ANNs are usually trained using the back-

propagation algorithm. 

In the proposed algorithm, a three-layer neural network is used with one hidden 

layer. A feature vector is composed of the TDFs computed in the feature extraction stage 

of the algorithm. The feature values are computed separately for the three axes of the 
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applied different sensor types. In setups utilizing multiple sensors, the data of the differ-

ent sensors are fused by using the extracted features together in the feature vector. The 

computed feature vector forms the input of the MLP, thus, the number of inputs is equal to 

the number features in the given setup. In the output layer a neuron is assigned to each class. 

In the hidden layer, the hyperbolic tangent sigmoid activation function is applied, while the 

linear transfer function is utilized in the output layer. The neuron with the highest output 

value in the output layer is declared as the class for the given input vector. The optimal number 

of neurons in the hidden layer must be found by testing different configurations. 

3. Applied Measurement Data 

3.1. Prototype Measurement System 

To obtain measurement data on which the proposed terrain classification algorithm 

can be tested, a mobile robot was constructed with appropriate sensors. The constructed 

wheeled mobile robot can be seen in Figure 2. The size of the robot was 158 × 255 × 45 mm, 

while its mass was 0.595 kg. The robot had two driven and two additional wheels. The 

wheelbase was 116 mm, the track width was 132 mm, and the wheel radius was 65 mm. 

 

Figure 2. The constructed wheeled mobile robot used as the prototype measurement system for data 

acquisition. 

A 9DOF sensor board was also installed on the constructed robot, which consists of 

a tri-axial magnetometer, a tri-axial accelerometer, and a tri-axial gyroscope. The main 

characteristics of the sensors can be seen in Table 1. 

Table 1. Main characteristics of the applied sensors. 

Characteristic Accelerometer Gyroscope Magnetometer 

type ADXL345 ITG3200 HMC5883L 

technology 
microelectromechanical system 

(MEMS) 
MEMS 

anisotropic magnetoresistive 

(AMR) 

measurement range ±16 g ±2000 deg/s ±810 µT 

resolution 13-bit 16-bit 12-bit 

highest sampling frequency 3.2 kHz 8 kHz 160 Hz 

A microcontroller-based ESP32 unit, which was manufactured by Espressif Systems, 

Shanghai, China, was used for motor control via H-bridges, which vary the speed of the 

motors based on the pulse width modulation (PWM) duty cycle. The ESP32 was also re-

sponsible for reading measurements from the inertial sensors and storing the data. 
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3.2. Data Acquisition 

Measurement data acquisition was done for six different outdoor terrain types, which 

can be seen in Figure 3. These terrain classes are the following: 

1. Concrete 

2. Grass 

3. Pebbles 

4. Sand 

5. Paving stone 

6. Synthetic running track 

   

(a) (b) (c) 

   

(d) (e) (f) 

Figure 3. The tested outdoor terrain types: (a) concrete; (b) grass; (c) pebbles; (d) sand; (e) paving 

stone; (f) synthetic running track. 

Measurements were collected in sessions, which were 4.5 s long, and the applied 

sampling rate was 400 Hz for both inertial sensors and 100 Hz in the case of the magne-

tometer. For all six classes data were recorded in seven sessions, which resulted in 31.5 s 

measurement data for each terrain type. The seven sessions within a class were chosen to 

be at different locations with as most diverse terrains as possible. All measurements were 

performed with two different motor speeds, which were set using the PWM, to explore its 

effect on the algorithm. The PWM duty cycles were constant during the measurements 

since the goal of the algorithm is to provide information to a sensor fusion framework, 
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which can estimate the true speed of the mobile robot. The speed was not measured dur-

ing data acquisition, and it was probably varying due to slips of the mobile robot. The 

algorithm should provide reliable data without knowledge of the PWM duty cycle or the 

encoder measurements, it only relies on raw inertial and magnetic sensor data. The two 

used PWM duty cycles were 86% and 100%. 

Figure 4 shows parts of the signals for the three sensor types from the measurement 

data collected for two classes, i.e., grass and paving stone. 

  

(a) (b) 

  

(c) (d) 
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(e) (f) 

Figure 4. Parts of the signals measured using the accelerometer, gyroscope, and magnetometer for 

grass (a,c,e) and paving stone (b,d,f), respectively. 

4. Experimental Results 

4.1. Datasets and Test Setups 

Altogether 63 different datasets were tested and evaluated with the proposed algo-

rithm based on different setups. 

Three processing window sizes were tested: 0.32 s, 0.64 s, and 1.28 s. The applied 

window shift size was 0.05 s for all three segment sizes. The reason for setting a small shift 

size was to generate as many training samples as possible from the available data. The 

applied shift size in a real application should be set based on the requirements.  

Different datasets were constructed based on the used sensor configurations. The 

three sensor types were tested alone, in pairs, and together, to examine their possibilities 

in the application. The applied feature types were extracted for all sensor axes separately. 

To explore the effect of different speeds on the proposed algorithm, the measurement 

data using the applied two speeds were tested separately and together. 

In the case of all setups, the training datasets were formed using measurements from 

four of seven sessions, while the remaining three sessions formed the validation datasets. 

Validation datasets were not applied during the training of the MLPs and were used as 

unknown inputs to test the performance of the trained classifiers. 

The hyperparameters of the MLP training process can be found in Table 2. During 

the training of the MLPs, 70% of the training data were used as training inputs, and the 

remaining 30% as validation inputs. The training was tested with 1–40 hidden layer neu-

rons for all setups, and all configurations were tested 4 times, since the achievable perfor-

mance of the ANNs largely depends on the initial random weights. During performance 

evaluation, the results of the configuration which achieved the highest recognition effi-

ciencies on validation data were used. The tested neuron numbers in the hidden layer 

proved to be sufficient, since convergence could be noticed in the recognition rate on un-

known samples for all setups. 

Table 2. Hyperparameters of the MLP training process. 

Hyperparameter Value 

training function scaled conjugate gradient backpropagation 

performance function mean squared error (MSE) 

maximum number of epochs to train 4000 
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performance goal 0 

maximum validation failures 20 

minimum performance gradient 10−7 

maximum time to train in seconds inf 

Classification efficiencies (E) were used as the performance metric, which can be cal-

culated using the following equation: 

𝐸(%) =
𝑁𝐶

𝑁𝑆
∙ 100, (10) 

where NC is the number of correctly classified samples and NS is the number of all samples. 

In the evaluation process, achieved results using the TDFs were compared with 

recognition efficiencies provided by FDFs for all setups. The applied spectral feature set 

was the same as in [39], which consists of the following features: spectral energy, median fre-

quency, mean frequency, mean power, peak magnitude, peak frequency, and variance of the 

central frequency. To explore if the FDFs carry any further information compared to the pro-

posed time domain-based feature set, the two feature sets were also tested together. 

4.2. Performance Evaluation 

The achieved highest classification efficiencies on training and validation data using 

the proposed algorithm can be seen in Table 3. The results are given based on different 

used sensor and speed combinations for the three processing window sizes. The used ab-

breviations are the following: L—lower speed, H—higher speed. 

Table 3. Achieved classification efficiencies (%) on training and validation data based on different 

sensor and speed combinations for the three processing window sizes. 

Sensor Speed 

Processing Window Size and Data Type 

0.32 s 0.64 s 1.28 s 

Training Validation Training Validation Training Validation 

Accelerometer 

L 89.26 81.59 94.81 87.66 100.00 92.45 

H 94.43 82.26 99.51 86.72 99.94 91.49 

L and H 86.44 76.51 95.13 82.14 98.96 90.41 

Gyroscope 

L 97.99 94.24 99.62 96.25 100.00 99.22 

H 96.59 87.55 99.51 91.63 100.00 97.66 

L and H 94.60 90.16 97.40 94.99 100.00 97.05 

Magnetometer 

L 66.87 53.95 75.92 60.02 88.02 66.58 

H 58.94 58.90 75.54 63.28 75.13 63.72 

L and H 59.24 55.02 68.91 59.09 84.41 62.85 

Accelerometer, 

gyroscope 

L 99.30 94.18 99.89 96.32 100.00 99.83 

H 99.35 91.43 100.00 92.71 100.00 96.70 

L and H 97.42 91.73 100.00 95.85 100.00 98.18 

Accelerometer, 

magnetometer 

L 93.17 86.01 97.08 91.49 99.87 94.79 

H 97.14 86.08 99.89 89.11 100.00 93.58 

L and H 91.27 80.42 98.38 85.46 100.00 90.80 

Gyroscope, mag-

netometer 

L 97.79 93.91 100.00 97.62 100.00 99.74 

H 98.24 92.30 100.00 96.18 100.00 98.52 

L and H 96.34 92.24 100.00 96.28 100.00 98.87 

Accelerometer, 

gyroscope, mag-

netometer 

L 98.59 92.64 100.00 98.05 100.00 99.65 

H 98.85 92.70 100.00 95.96 100.00 97.31 

L and H 98.27 91.03 100.00 96.43 100.00 97.79 
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Analyzing the achieved classification efficiencies with the proposed TDF-based algo-

rithm using different processing window widths, it can be seen that the recognition rate 

on both training and unknown data rises by increasing the size of the segment. On vali-

dation data, above 94% efficiency can be achieved even using the smallest window size, 

which is 0.32 s. The highest classification efficiencies for the two larger segment sizes were 

above 98%. In the case of training data, the classification efficiencies were above 95% for 

most of the setups even with the smallest window size, thus, the increases were smaller. 

The largest effect of the increase in the processing window size can be noticed for the 

setups where the accelerometer and the magnetometer data were utilized alone. In the 

case of the accelerometer, the increase was around 5% for both jumps in the segment size. 

Using the data of the magnetic sensor even above 10% increases were noticed, especially 

in the case of the training data.  

Based on the obtained results using different robot speeds, difference can be noticed 

in some setups between the lower and the higher speed. The gyroscope results in higher 

recognition rates with the lower speed on unknown data, where the difference can be 

above 5% with the two smaller segment sizes. This can be noticed also in the setups where 

the gyroscope data were fused with other sensors, but with smaller differences. By com-

bining the two speeds in the datasets, in most setups the classification efficiency decreases 

compared to the results achieved using single speeds. For other datasets the recognition 

rates are between the results obtained using the two speeds separately. It can be noticed 

that the use of multiple speeds together has a larger effect on setups where accelerometer 

data is applied, since in these cases the decrease in efficiency is larger. 

The results based on different sensor combinations where the two speeds were used 

together show that the highest recognition rates were achieved using the setups where the 

gyroscope data were present. The highest obtained classification efficiencies were above 

91%, 96% and 98% for the three tested segment sizes, respectively. Utilizing data of only 

a single sensor type, significantly higher results were obtained using gyroscope data than 

with accelerometer data, which is widely used in terrain classification applications. The 

difference can be even more than 10% depending on the window size. Using the smallest 

window size, the accelerometer and the gyroscope-based results were 76.51% and 90.16%, 

respectively. With the largest segment size, the recognition rates increase to 90.41% and 

97.05%, respectively. The magnetometer data alone cannot provide acceptable classifica-

tion efficiencies, since even with the largest processing window size the results were 

62.85%. Fusing the data of this sensor with the inertial sensors can improve the recognition 

rates, especially in the case of smaller window sizes. E.g., using the accelerometer and the 

magnetic sensor data together 80.42% was obtained, which was almost a 4% improvement 

compared to the accelerometer-based result. 

Table 4 presents the misclassification rates on validation data when the data of the 

three sensors for both speeds were utilized together and the features were extracted in the 

smallest processing window. The overall classification efficiency for this setup was 

91.03%. It can be observed from the results that above 10% miss rate can be noticed for 

three classes, i.e., concrete, grass, and paving stone. Grass was recognized with the lowest 

efficiency since the misclassification rate for this class was 21.49%. Within this class 16.47% 

of the samples were classified as sand. Higher, above 7%, misclassification rates can be 

noticed between concrete and paving stone. 

Table 4. Misclassification rates (%) on validation data when the data of the three sensors for both 

speeds were utilized together and the features were extracted in the smallest processing window. 

 
Output Class 

Sum 
1 2 3 4 5 6 

Target class 

1   3.41  7.23  10.64 

2   3.82 16.47  1.20 21.49 

3  3.61    0.20 3.81 
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4  2.61     2.61 

5 7.63  1.61   3.41 12.65 

6 1.41  0.20  1.00  2.61 

To explore the performance of the proposed TDF-based feature set, the results were 

compared with results obtained using an FDF-based feature set [39] and the two feature 

sets together. The obtained classification efficiencies on validation data using the different fea-

ture extraction techniques are summarized in Figure 5. Recognition rates are given based on 

different sensor combinations using data collected for both speeds together. The used abbre-

viations are the following: A—accelerometer, G—gyroscope, M—magnetometer. 

 

Figure 5. Achieved classification efficiencies on validation data using different feature extraction 

techniques for different sensor combinations. 

It can be observed from the obtained results that the proposed feature set outper-

forms the FDF-based feature set in most setups, except where accelerometer and magne-

tometer data were utilized alone. Significant, more than 10%, difference can be only no-

ticed using the magnetometer data, where almost 75% efficiency can be obtained using 

the FDFs. In case of the accelerometer, the differences are smaller, around 2–3%. In other 

setups, the proposed TDF set provides mostly 3–5% better performance compared to the 

FDF-based set, but it can reach even above 10% for some datasets. Using the two feature 

sets together, but not considering the setups where the FDFs provide higher efficiencies 

than the TDFs, can increase the classification efficiencies. The difference is not significant, 

mainly 1–2%, which shows that the FDF does not carry much further information com-

pared to the information extracted using the proposed feature set. 

It is also very important to explore the performance that can be achieved when the 

classifiers are trained and tested using measurements recorded with different speeds. To 

evaluate the results in this perspective, the trained MLPs using the L speed measurements 

were tested with the features extracted using the H speed measurements, and vice versa. 

Tables 5–7 show the obtained results for the three tested processing window sizes, i.e., 

0.32 s, 0.64 s, and 1.28 s, respectively. The classification efficiencies in the tables are given 

for validation and test data. Validation datasets were formed from data not used during 

training, but from the sessions of the same speed as used for training, while test datasets 
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were formed using data of the other speed. The FDF-based results are also included in the 

tables for comparison. It can be observed from the obtained results that such classifiers 

must be trained using a wide range of speeds since the classification efficiencies signifi-

cantly decrease by using different speeds for training and testing. Comparing different 

sensor combinations, the gyroscope data showed to be more universal for different speeds 

than the accelerometer data. The magnetometer data-based recognition rates drastically 

decrease when the speed is different, especially with FDFs, where the classification effi-

ciencies were below 30%. It can be also noticed from the results that the proposed TDF-

based feature set provides significantly better results than the FDF-based when data of 

multiple sensors are used together. 

Table 5. Achieved classification efficiencies (%) on training and test data using the 0.32 s processing 

window size when the MLPs were trained and tested using measurement recorded with different 

speeds. 

Sensor 
Used Speed Data for 

Training and Validation 

Used Speed Data 

for Testing 

TDF FDF 

Validation Test Validation Test 

Accelerometer 
L H 81.59 56.00 84.61 65.00 

H L 82.26 53.61 88.15 63.02 

Gyroscope 
L H 94.24 73.26 90.96 76.85 

H L 87.55 75.42 86.21 72.63 

Magnetometer 
L H 53.95 47.73 85.54 21.00 

H L 58.90 41.25 71.62 16.50 

Accelerometer, gyroscope 
L H 94.18 74.30 91.90 74.27 

H L 91.43 73.58 89.83 73.95 

Accelerometer, magnetometer 
L H 86.01 62.28 91.10 44.23 

H L 86.08 58.49 82.33 43.72 

Gyroscope, magnetometer 
L H 93.91 68.42 90.70 50.43 

H L 92.30 71.00 84.34 61.65 

Accelerometer, gyroscope, 

magnetometer 

L H 92.64 77.42 94.11 45.12 

H L 92.70 72.09 86.21 64.57 

Table 6. Achieved classification efficiencies (%) on training and test data using the 0.64 s processing 

window size when the MLPs were trained and tested using measurement recorded with different 

speeds. 

Sensor 
Used Speed Data for 

Training and Validation 

Used Speed 

Data for Testing 

TDF FDF 

Validation Test Validation Test 

Accelerometer 
L H 87.66 63.88 89.61 65.62 

H L 86.72 57.05 90.77 62.93 

Gyroscope 
L H 96.25 69.88 94.16 78.70 

H L 91.63 70.63 91.99 76.72 

Magnetometer 
L H 60.02 51.39 82.40 24.00 

H L 63.28 42.58 76.98 20.66 

Accelerometer, gyroscope 
L H 96.32 77.06 96.75 74.21 

H L 92.71 77.55 93.72 75.97 

Accelerometer, magnetometer 
L H 91.49 66.45 92.79 43.51 

H L 89.11 50.16 83.91 41.28 

Gyroscope, magnetometer 
L H 97.62 71.09 98.34 49.54 

H L 96.18 73.75 86.44 51.52 

Accelerometer, gyroscope, magne-

tometer 

L H 98.05 80.09 97.84 53.46 

H L 95.96 69.88 86.58 64.35 
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Table 7. Achieved classification efficiencies (%) on training and test data using the 1.28 s processing 

window size when the MLPs were trained and tested using measurement recorded with different 

speeds. 

Sensor 
Used Speed Data for 

Training and Validation 

Used Speed Data 

for Testing 

TDF FDF 

Validation Test Training Validation 

Accelerometer 
L H 92.45 66.07 92.97 63.65 

H L 91.49 53.35 94.79 66.67 

Gyroscope 
L H 99.22 78.57 98.61 79.02 

H L 97.66 64.36 96.35 76.30 

Magnetometer 
L H 66.58 50.41 79.25 25.93 

H L 63.72 47.47 77.95 18.71 

Accelerometer, gyroscope 
L H 99.83 80.17 98.87 77.72 

H L 96.70 74.37 96.53 78.94 

Accelerometer, magnetometer 
L H 94.79 65.37 97.05 42.45 

H L 93.58 63.73 92.27 47.92 

Gyroscope, magnetometer 
L H 99.74 66.22 99.74 54.43 

H L 98.52 74.89 89.67 68.82 

Accelerometer, gyroscope, 

magnetometer 

L H 99.65 74.55 99.83 53.61 

H L 97.31 64.51 98.18 75.41 

4.3. Implementation 

The implementation of the proposed method requires multiple steps. Different clas-

sifiers should be developed for different types of mobile robots since many features of the 

mobile robot (such as size, mass, wheelbase, track width, etc.) affect the classification al-

gorithm. The first step is to collect a measurement database for the defined terrain classes 

using the applied robot in a wide range of speeds. The feature extraction and the training 

of the MLP classifiers must be performed offline. Many options must be considered to find 

the optimal setup. Both the required memory for the implementation and the processing 

time of the MLP depend on the number of inputs and the number of hidden layer neurons 

so it is important to minimize both besides maximizing the classification efficiency [32]. 

The number of inputs is defined by the number of used features, which depend on the 

number of used sensors. Based on the achieved results in this study, it is reasonable to test 

various sensor combinations with the required processing window size. The optimal MLP 

that should be implemented on the embedded system should be chosen based on the 

hardware limitations defined by the used embedded system and the achievable classifica-

tion efficiencies of different setups. The size of the window shift, which defines the period 

with which the algorithm updates the terrain class, should be chosen based on the require-

ments of the application in which the method is used. 

The proposed method uses the highest output value of the MLP as the predicted 

class. This assumes that all possible terrain types are known in advance. This can lead to 

uncertain predictions in applications where the mobile robot can encounter unknown terrain 

types. To handle these situations, possible solutions can be to add an “unknown” class to the 

outputs of the MLP or to use a probability threshold to reject such uncertain predictions. 

5. Conclusions 

In this paper, a novel terrain classification algorithm was proposed, which can run 

on the embedded system of a mobile robot with low requirements in both memory and 

computation. The algorithm applies only time-domain analysis in the feature extraction 

process and the MLP is used as classifier. 

The algorithm was tested using measurements collected for six different outdoor ter-

rain types with a prototype measurement system. Various setups were tested based on 

used sensor data, different processing window sizes, and robot speeds. The achieved 
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results were compared with results obtained using a previously proposed feature set, 

which consists of only FDFs, and the two feature sets together. 

The achieved classification efficiencies show significant results, since above 98% can 

be reached in some setups. It was also shown that the gyroscope is well usable in terrain 

classification systems and provides much higher recognition rates than the accelerometer. 

The magnetometer data alone cannot be effectively used in the given application, but it 

can improve the performance of the inertial sensors. The proposed algorithm also outper-

forms the FDF-based algorithm in most setups. 

The main goal in the future is to implement the proposed terrain classification 

method into a novel sensor fusion framework, which can utilize the provided information 

to improve the pose estimation of the mobile robot. Other future plans include testing the 

algorithm on measurements recorded in a wider range of speeds for various motion types, 

such as cornering. Selecting the features with the highest effect on recognition accuracy 

using an appropriate feature selection method would be also reasonable, because this 

would further decrease the required computation. A pose estimator could be also imple-

mented to neglect the effect of gravitational acceleration, since this could enable the usage 

of further features in the case of the accelerometer. 
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