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Abstract—Bug fixing is one of the most time-consuming and
resource-intensive tasks in the software development life cycle.
Automated Program Repair (APR) might be able to help in
this process, but it still has to overcome many obstacles. Deep
learning models have shown promise for automated program
repair in recent years, but their effectiveness can depend on the
representation of the source code used as input. In this paper, we
conduct an experimental study to compare the performance of
deep learning models on two popular programming languages,
Java and JavaScript, using three different code representations:
raw text, command sequences, and abstract syntax trees (ASTs).
We also experiment with varying models, including T5, CodeT5,
(for solving sequence-to-sequence tasks) RoBERTa, and GPTNeo
(to encode/decode AST graph information). We evaluate the
models on a set of real-world defects from open-source projects
and compare the performance, and the repair patches generated
by the models. Our results show that training on command
sequence representation outperforms most other configurations.
We achieve a best of 19.88% accuracy on the java-small dataset,
and 11.87% on java-medium, using text representation. Using
command sequence representation, we achieve 30.64% on java-
small and 18.53% on the medium dataset. However, when
representing the source with ast+text information, our models
significantly underperform compared to other representations,
achieving results below one percent. Our findings contribute
to a better understanding of the strengths and limitations of
deep learning models for automated program repair and provide
practical guidance for their use in practice.

Index Terms—Automated Program Repair, Transformers, T5,
BERT, Deep Learning, Machine learning

I. INTRODUCTION

Automated Program Repair (APR) is a field that aims to
automatically fix software bugs without human intervention.
While the idea of automatically repairing software bugs is
attractive, this problem has proven to be a significant challenge
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for researchers. In the past, APR approaches have relied on an
"oracle function", usually a test suite, to generate patches and
validate them. One example of this is GenProg, which uses
a genetic algorithm to generate patches and test them against
the test suite [1]. However, there are no guarantees that the
patches generated by these approaches are actually correct,
and there has been a lot of research focused on addressing this
issue [2], [3], [4], [5]. Despite these efforts, patch correctness
remains an open question in the APR community [6]. Instead
of solely focusing on generating high numbers of plausible
patches, the APR community should also prioritize human
studies and ways to improve the explanation and presentation
of patches.

Data-driven repair approaches form a separate area of
research within the field of Automated Program Repair [7].
These techniques typically involve creating a large database
of train, test, and validation data and evaluating the APR tool
on this dataset. The criteria for accepting a patch as correct
are more stringent in these approaches, as the patch must be
exactly the same as the one created by the developer who fixed
the bug [5]. This approach has the advantage of eliminating
two issues: the question of dataset bias, as it is a rigorous task
to create patchable programs with a test suite, and the patch
correctness issue, as it is assumed that the developer’s patch is
correct. Recently, this research direction has made significant
progress with promising results reported in various studies [8],
[9].

One recent development in APR is the use of transformer
models, which are a type of neural network architecture that
has been successful in various natural language processing
tasks [10]. There have been several studies that have demon-
strated the effectiveness of these models in the domain of
Automated Program Repair. For example, a study by Phan et
al. showed that a transformer-based APR system was able to
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fix a large number of real-world errors in Java programs with
high accuracy [11]. Another study by Svyatkovskiy et al. used
transformer models to address the problem of synthesizing
missing code in programs and found that their approach was
able to generate high-quality repair patches for a variety of
code faults [12]. Overall, the use of transformer models for
automated program repair has shown promise as an approach
for addressing errors and bugs in software.

The motivation of this paper is to find out which program
representation fits better for the APR task and whether these
representations behave similarly with different Transformer
architectures. To do so, we created different model configura-
tions and fed 3 source code representations to them. The mod-
els are trained on 2 datasets of different languages: Java and
JavaScript. This work’s contribution is to provide a broader
vision of the importance of how we choose to represent the
data, the model will be training on. Our setup, data, and
methods used are also available in a GitHub repository 1.
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Fig. 1. High-level approach overview of this paper

II. METHOD

In Figure 1 we depicted the high-level approach of this
paper. First, we created a "model pool" consisting of differ-
ent Transformer model architectures including T5, CodeT5,
RoBERTa, and GPTNeo. Once a model is selected, it is trained
with a matching code representation on each of the observed
datasets (Java and JavaScript). After training the models are
evaluated using the standard evaluation procedure in learning-
based APR approaches: the generated patch should be exactly
the same as the one in the dataset (which is essentially the
developer fix). In the following sections, we are going to
introduce the used models and program representations in
detail.

1https://github.com/AAI-USZ/APR23-representations

A. Deep-learning models

In this paper we experiment with different models, including
T5 [10], CodeT5 [13], RoBERTa [14], CodeBERT [15], and
GPTNeo [16]. T5-base and CodeT5-base are used mostly dur-
ing our experimentation as pre-trained models for fine-tuning.
When not using pre-trained models, we simply use the same
configurations as T5-base or CodeT5-base, without initializing
the model weights. However, as these models are designed to
solve sequence-to-sequence tasks, when experimenting with
ASTs, to handle graph and source code information, we use
RoBERTa for encoding the graph part, and CodeBERT for
encoding the source code part. These parts are concatenated,
and then we use this embedding as the encoder state in
GPTNeo, which acts as the decoder. When using these models,
they are also initialized with pre-trained weights. Namely, for
the program-encoder, we use codebert-base, and for GPTNeo
we use gpt-neo-125M. Graph-encoder is initialized with empty
weights since it has a custom vocabulary. In the following
sections, we are going to present these models briefly.

1) T5 and CodeT5: T5, or Text-to-Text Transfer Trans-
former, is a Transformer based architecture that uses a text-to-
text approach. It was first introduced by Raffel et. al. It was
trained on a variety of natural language text scraped from the
web, introducing the dataset "Colossal Clean Crawled Corpus"
(C4) [10], a data set consisting of hundreds of gigabytes of
clean English text. Every task – including translation, question
answering, and classification – is cast as feeding the model text
as input and training it to generate some target text. This allows
for the use of the same model, loss function, hyperparameters,
etc. across a diverse set of tasks. Compared to BERT, T5
adds a causal decoder to the bidirectional architecture and
replaces the fill-in-the-blank cloze task with a mix of alter-
native pretraining tasks. CodeT5 has the same architecture,
as the previously mentioned T5, and has been trained on
CodeSearchNet [17]. It was further trained on a large number
of public GitHub repositories written in C/C#. Transformer
models have proven to excel in many Natural Language
Processing (NLP) tasks, and while processing source code is
different, they share many similarities.

2) CodeBERT, RoBERTa and GPTNeo: RoBERTa (Ro-
bustly Optimized BERT Approach), and CodeBERT has very
similar architecture as BERT, as it is derived from the same
base model. Basically, it is an encoder part of a Transformer
model and has been proven to be a powerful tool for encoding.
One key difference between RoBERTa and BERT is that
RoBERTa was trained on a dataset of 160GB of text, which is
more than 10 times larger than the dataset used to train BERT.
Additionally, RoBERTa uses a dynamic masking technique
during training that helps the model learn more robust and
generalizable representations of words. To encode source code,
as a pre-trained model, we chose codebert-base, which is
an improved version of RoBERTa for encoding source code
information [15]. To encode graph information we used a
customized RoBERTa model, with a different vocabulary size
that fits the number of tokens represented by graph nodes and
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node-to-edge connections. Aside from this change, the model
is the same as that used for text encoding. For the decoder, we
use GPT-Neo [18], which is an open-source implementation of
GPT-3 (Generative Pre-trained Transformer). It’s architecture
is based on the Transformer, which is an attention model - it
learns to focus attention on the previous words that are the
most relevant to the task at hand: predicting the next word
in the sentence. GPT models proven to be highly efficient in
generative tasks [18]. These models are combined to encode
text and AST information from the source code and generate
the fixed or improved version of it, using gpt-neo-125M as the
decoder.

B. Program representation

Source code representation plays a crucial role in the
effectiveness and efficiency of repair algorithms. One common
approach is to represent source code as a variant of abstract
syntax trees (ASTs), which capture the syntactic structure
of the code and can be manipulated and transformed to
generate repair patches. Other approaches have used lexical
representations, such as token sequences or n-grams, or have
employed more advanced techniques such as graph-based
representations or neural network models [19]. Researchers
have also explored the use of program slicing, which involves
creating a reduced version of the program that focuses on the
relevant portion of the code for the repair task [20]. These
different representations can be used alone or in combination,
and their choice can depend on the specific repair task,
the programming language, and the available resources and
constraints [21]. There are three program representations used
in this paper, we summarized these in Table I. In the following
sections, we describe the used representations in detail.

1) Text: One is used as the baseline representation, and
it is also the most common one. Simply representing the
source code as text is a straightforward, yet powerful enough
representation. In text representation, the source and target
code are simple series of tokens, where the model needs to
learn how to transform the entire input, to its fixed version.
However it is usually the case, that fixed versions of source
code are pretty similar to the buggy version [22]. For us this
means, that the decoder part of the model has to generate much
of the redundant parts of the code.

2) Command sequence: It is also possible, to have the
model generate only the code patches, where changes are
required in the given source code [23]. This representation will
be referred to as command sequence (cmdseq). As input it
still contains the same information as in text representation, so
the task for the encoder part of the models remains the same.
However, when decoding, the model needs only to predict
the necessary changes to be made to the source, to make it
identical to the target. For this purpose, there are 3 special
tokens added to the dictionary, [DELETE], [INSERT], and
[LOCATION] tokens. Aside from this, the dictionary is the
same as in text representation. For example, if a code segment
needs to be cut from the source to generate the target, then
upon learning, the model needs to predict something like:

[DELETE] [LOCATION] [LOCATION]. The code patch to be
deleted from the source. Location tokens need to be processed
and filled with true positions, by another mechanism, e.g.
pointer networks [23]. However, in this paper we only use
the raw location tokens to see, if the decoder has an easier job
figuring out targets represented by cmdseq only.

3) Abstract Syntax Tree + text: The third and last code
representation we were experimenting with is to encode more
information in the source. Namely, we try to encode AST
information, along with the same text information as in text
representation, referred to as AST+text. To represent the AST
we use a representation of flattened nodes and edges, with
added type information like whether the examined token is
the root of the program, a node, an edge, or a terminal (leaf)
node. We also include the child count of every node, as part of
the AST information, which can be thought of as a special kind
of positional embedding. The models used in this paper can
handle such an encoding task with a minimal configuration,
however, there exist other kinds of techniques for working
with tree- or graph-like structures [24] [25]. The task of the
decoder remains the same as in text representation. We need to
predict the whole target sequence from the source. However
the encoder, in theory, can have more representative power,
since it has information about the AST representation of the
program, too. This way the encoder consists of two main parts,
one for encoding the AST information, which in our case a
flattened graph, with some additional information, and two for
encoding textual information given by the source code.

III. DATASETS

A. Java

For Java, we used the dataset released by Tufano et al.
in [26]. Later it became part of the popular CodeXGLUE
benchmark [27], and can be found under the code-refinement
task. The dataset contains Java source codes mined from
GitHub. The programs have been normalized in a way, that
they do not contain variable, method, or function names,
but they have been abstracted away. For example, if a code
contains a variable named myVar, then it will be referred to
as VARIABLE_1. This preprocessing step is done file by file,
resetting the variable index to 0, thus reducing the dictionary
size. However, the dataset defines some idioms - common
identifiers in the observed projects - which they see as "part
of the language". These idioms occur frequently in all of the
source codes, so they are part of the vocabulary, along with
the language-specific keywords, or reserved words.

B. JavaScript

As for the JavaScript experiments, we used FixJS [28],
which contains bug-fixing information for GitHub commits.
Similarly to the Java dataset, FixJS also uses abstraction for
the variable names to reduce the vocabulary size, although it
includes the raw commit information as well, thus the original
names can be obtained. Worth noting that while duplicated
samples can occur in the Java dataset, the authors of FixJS
filtered their data, so there is a strong guarantee that samples
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TABLE I
EXAMPLES OF PROGRAM REPRESENTATIONS

Source
Rep.

Target
Rep. Description Example

text text
Code is represented as is.
Simple sequential text input,
and output.

private static native void METHOD_1 ( long set ) ;

=>
private static void METHOD_1 ( long set ) { }

text cmdseq-token

Input code is represented as
text, target is represented as a
sequence consisting of DELETE
and INSERT commands

public void METHOD_1 ( final boolean VAR_1 ) { VAR_2 . METHOD_1 ( VAR_1 ) ; }

=>
</[INS]/></[LOC]/> this .

ast+text text

Input represented as chains
of AST and textual info.
The output is a text rep.
of the fixed source code.

boolean METHOD_1 ( ) { }

program-(:)-program program-(:)-local_variable_declaration

local_variable_declaration-(:)-local_variable_declaration local_variable_declaration-(:)-boolean_type

boolean_type-(:)-boolean_type local_variable_declaration-(:)-variable_declarator

variable_declarator-(:)-variable_declarator variable_declarator-(:)-identifier identifier-(:)-identifier

identifier-(:)-; ;-(:)-; formal_parameters-(:)-formal_parameters formal_parameters-(:)-( (-(:)-(

formal_parameters-(:)-) )-(:)-) program-(:)-block block-(:)-block block-(:)-{ {-(:)-{ block-(:)-} }-(:)-}

R E N E T E N E T E T N E T E T E N E T E T

3 0 3 0 0 0 1 0 0 0 0 2 0 0 0 0 0 2 0 0 0 0

=>
boolean METHOD_1 ( ) ;

with different input/same output or same input/out pair cannot
occur.

IV. EXPERIMENTAL SETUP

When optimizing the models we chose a learning rate of
5e−5 [27], using an Adam optimizer, leaving the epsilon as its
default value 1e−8. For the small datasets we used a maximum
sequence length of 256 and a batch size of 16, and as for the
medium dataset we used a sequence length of 384 and batch
size of 8. This configuration is used throughout the conducted
experiments, aside from ast+text representation, where the
model was proven to be too large to use batches of this size
on one GPU. To train the models we used an RTX 3090 GPU.
The base models working with text, and command sequence
representations are of size 222M parameters. The model used
on ast+text representation needs more encoding power, and
it has additional layers for encoding AST information. For
this reason, this model is considerably bigger, with 346M
parameters.

All of the models in this work come from transformers
library [29]. For the environment, we used Python 3.8, and
PyTorch library along with PyTorch-Lightning. We trained for
a maximum of 50 epochs, and used early stopping with a
minimum delta of 0.05 on validation loss, with patience set
to 8. This means that if a model could not reduce its loss by
0.05 in 8 epochs, then we assume that the model converged,
and stop the training, and load the best model so far for
testing. The loss function used throughout the experiments
is the torch implementation of cross-entropy loss. On Java
dataset [26] training time per epoch mostly took about half
an hour on small, and one hour on the medium dataset, on
text and cmdseq-token representation. Training on text+ast
representation took about 1 hour and 40 minutes on small,
and 2 hours on medium dataset on average. Training time on
FixJS dataset [28] was significantly lower, due to the size of

the dataset. It only took about 5 and 13 minutes per epoch to
train the model on small, and medium sequences on text and
cmdseq-token representation. Also, it only took 20 minutes to
train on text+ast representation in both cases. All in all, the
models took from 1 hour to about 1 day to train, varying highly
with the size of the model, the dataset, and the representation
used.

V. RESULTS

In this section, we are examining the results presented in
Table II. At first glance, it is obvious that there can be huge
differences, based on which dataset we train our models on.
Firstly, we can deduce that it is considerably harder to train
on FixJS [28], compared to the Java dataset [26]. Models
evaluated on the Java dataset outperform evaluation metrics
of models on FixJS by a significant margin. This may be,
due to the fact that FixJS consists of 9662 data samples on
small and 11410 samples on medium dataset, compared to
Java dataset, which contains 58350 and 65455 data samples on
small and medium length program codes, respectively. Also,
FixJS is processed in a way, that every non-unique abstracted
sample is filtered out, keeping only unique data. Even samples
having the same target with different source representations
are filtered out, which can lead to a considerable decrease in
data samples, while also reducing redundancy in the database,
making it harder to train on. To the best of our knowledge,
the Java dataset [26] does not apply such filters to the data.

We can see that representing the target as a sequence of
command tokens [23] can give a performance boost in some
cases. On the Java dataset, this representation outperforms
all the other representations, by at least 6%. However, this
is not the case with the FixJS dataset, where using text
representation performs a little better on average. Comparison
between representations and datasets can be seen in Table III.

Although we only conducted one experiment training only
the language model (LM) head in a pre-trained model (T5-
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TABLE II
RESULTS ON TRAINING DIFFERENT MODELS ON VARIOUS DATA REPRESENTATIONS.

Model Repr. Pretrained Dataset Accuracy 100%
accuracy Epochs

T5-base, LM text Yes Java small 0.9104 0.0000 42
T5-base, LM text Yes Java medium 0.8577 0.0000 25
T5-base, empty text No Java small 0.9371 0.0524 27
T5-base, empty text No Java middle 0.9795 0.0652 31
T5-base text Yes Java small 0.9756 0.1491 9
T5-base text Yes Java middle 0.9864 0.0588 9
CodeT5-base text Yes Java small 0.9684 0.1988 9
CodeT5-base text Yes Java middle 0.9817 0.1187 9
T5-base, empty cmdseq-token No Java small 0.7884 0.2598 12
T5-base, empty cmdseq-token No Java middle 0.7476 0.1488 15
T5-base cmdseq-token Yes Java small 0.8201 0.2946 16
T5-base cmdseq-token Yes Java middle 0.8107 0.1733 18
CodeT5-base cmdseq-token Yes Java small 0.8371 0.3064 12
CodeT5-base cmdseq-token Yes Java middle 0.8051 0.1853 10
RoBERTa-base, CodeBERT-base, gpt-neo-125M text + ast Yes Java small 0.3862 0.0077 18
RoBERTa-base, CodeBERT-base, gpt-neo-125M text + ast Yes Java middle 0.2783 0.0000 13
T5-base, empty text No FixJS sm all 0.8264 0.0030 24
T5-base, emtpy text No FixJS middle 0.8107 0.0000 18
T5-base text Yes FixJS small 0.9245 0.0496 1
T5-base text Yes FixJS middle 0.9369 0.0262 16
CodeT5-base text Yes FixJS small 0.9078 0.0754 9
CodeT5-base text Yes FixJS middle 0.9207 0.0464 9
T5-base, empty cmdseq-token No FixJS small 0.6917 0.0714 21
T5-base, empty cmdseq-token No FixJS middle 0.6924 0.0149 21
T5-base cmdseq-token Yes FixJS small 0.6502 0.0000 17
T5-base cmdseq-token Yes FixJS middle 0.7265 0.0184 30
CodeT5-base cmdseq-token Yes FixJS small 0.6190 0.0000 13
CodeT5-base cmdseq-token Yes FixJS middle 0.7045 0.0639 16
RoBERTa-base, CodeBERT-base, gpt-neo-125M text + ast Yes FixJS small 0.2073 0.0010 24
RoBERTa-base, CodeBERT-base, gpt-neo-125M text + ast Yes FixJS middle 0.1504 0.0000 19

Models trained on Java [26], and FixJS [28] database. T5-base, LM is a pre-trained model, initialized from t5-base, with a language model on top. During training, only the

LM-head has been optimized. Similarly, T5-base and CodeT5-base means the same model, initialized from t5-base [10] and codet5-base [13] respectively, however, here the

whole model is fine-tuned. Models with the empty tag, are not pre-trained. RoBERTa-base, CodeBERT-base, gpt-neo-125M is a composite model, trained on text+ast data

representation, and all of them are initialized using the same pre-trained weights from roberta-base [14], codebert-base [15] and gpt-neo-125M [16] respectively.

base, LM), it is apparent that training only the LM head is
not enough as it performed poorly even after training for 42
and 25 epochs on small and medium Java dataset. In the
case of the flattened graph model consisting of roberta [14],
codebert-base [13] and gpt-neo-125M [16], we did not achieve
good results. However, to say more on the matter, further
experiments would be needed. Representing the source code
as AST and text, concatenating the results, may have more
representative power in theory, however decoding it, may fail
due to insufficient model size. Batch sizes also needed to be
halved during training to fit inside the GPU.

Seeing Table III, only in a quarter of the examined cases
benefit from learning on simple text representation, namely
T5-base on small and medium, and CodeT5-base on small
models trained on FixJS. In other cases, we can say that
learning on command sequence representation is easier for
most of the models, suggesting that choosing a good repre-
sentation for the given dataset may be crucial. However, not
all datasets benefit the same way from the same representation.
It is also apparent, that given the same methods, results can
highly vary based on the dataset used. Some examples on
generated patches using the java dataset [26] can be seen in

the following listings.
Empirical evaluation: in the following paragraphs, we are

going to present some examples we generated throughout our
experimentations (listings: 1, 3, 5, 7). In the listings below, the
first line is the input (the prompt for the model), the second
line is the expected output and the last line is the output of
the model. Every second listing (2, 4, 6, 8) contains the non-
abstracted version of the same bugs, and the developer fixes
too, for readability. However, it is important to note that, the
models here, have not been trained on such representations.
They are only here to present the nature of the bug to be
fixed, in a more readable form.

public void METHOD_1 ( ) { VAR_1 . METHOD_2 ( VAR_2 ) ; VAR_2 = null ; }
</[INS]/></[LOC]/> ) { if ( ( VAR_2 ) != null</[INS]/></[LOC]/> }
</[INS]/></[LOC]/> ) { if ( ( VAR_2 ) != null</[INS]/></[LOC]/> }

Listing 1. Correctly patched program, using cmdseq-token representation.

public void unregisterNSDService() {
mNsdManager.unregisterService(networkRegistrationListener);
networkRegistrationListener = null;

}
public void unregisterNSDService() {
if ((networkRegistrationListener) != null) {
mNsdManager.unregisterService(networkRegistrationListener);
networkRegistrationListener = null;
}

}

Listing 2. Non-abstracted bug, and developer fix of the example above.
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TABLE III
COMPARING RESULTS ON JAVA AND FIXJS DATASET ON TEXT AND COMMAND SEQUENCE TOKEN REPRESENTATION.

Model Dataset Size Text Command Sequence Tokens Text vs. Cmd. Text Cmd.

Java 100% FixJS 100% Java 100% FixJS 100% Java FixJS Java vs. FixJS

T5-base, empty Small 0.0524 0.0030 0.2598 0.0714 0.2074 0.0684 0.0494 0.1884
T5-base, empty Medium 0.0652 0.0000 0.1488 0.0149 0.0836 0.0149 0.0652 0.1339
T5-base Small 0.1491 0.0496 0.2946 0.0000 0.1455 -0.0496 0.0995 0.2946
T5-base Medium 0.0588 0.0262 0.1733 0.0184 0.1145 -0.0078 0.0326 0.1549
CodeT5-base Small 0.1988 0.0754 0.3064 0.0000 0.1076 -0.0754 0.1234 0.3064
CodeT5-base Medium 0.1187 0.0464 0.1853 0.0639 0.0666 0.0175 0.0723 0.1214

Average 0.1072 0.0334 0.2280 0.0281 0.1209 -0.0053 0.0737 0.1999
Min. 0.0524 0.0000 0.1488 0.0000 0.0666 0.0078 0.0326 0.1214
Max. 0.1988 0.0754 0.3064 0.0714 0.2074 0.0754 0.1234 0.3064

Columns under Text vs. Cmd. and Java vs. FixJS show the differences between model performance on different data representations, and datasets, respectively. In the Text vs.

Cmd. column results are positive (+) if cmdseq representation performed better than text representation and negative (-) otherwise. Consequently, columns found under Java vs.

FixJS are positive (+) if a model performed better on Java dataset, and negative (-) otherwise. Java 100% and FixJS 100% means that the whole predicted sequence matches the

target.

In the example above, we can see that in the first insertion
command, the network can correctly guess, that the program
needs to be extended with a null check. The second insertion
command with the curly bracket is also a part of the previous
null-check, closing the if statement. We can see that using
command sequence representation it is possible to learn multi-
line modification of the program using a few instructions, that
only concern those parts of the code, which need modification,
leaving the other parts of the code unchanged.

private void METHOD_1 ( TYPE_1 VAR_1 ) { VAR_1. METHOD_2 ( new TYPE_2 ( ) {
public void METHOD_3 ( TYPE_3 VAR_2 ) { METHOD_4 ( ) ; } } ) ; }

</[INS]/></[LOC]/> < java.lang.String >
</[DEL]/></[LOC]/></[LOC]/>

Listing 3. Incorrectly patched program, using cmdseq-token representation.

private void addNotifyListener(javax.swing.JComboBox combo) {
combo.addActionListener(new java.awt.event.ActionListener() {
public void actionPerformed(java.awt.event.ActionEvent e) {
notifyChange();

}
});

}
private void addNotifyListener(javax.swing.JComboBox<java.lang.String> combo)

{
combo.addActionListener(new java.awt.event.ActionListener() {
public void actionPerformed(java.awt.event.ActionEvent e) {
notifyChange();

}
});

}

Listing 4. Non-abstracted bug, and developer fix of the example above.

This example shows that the program should be patched
by inserting a generic type parameter. However, according
to the model, a deletion is needed. Much of the programs
found in java-dataset need only a single delete command to be
fixed, so it is safe to assume, that the model is biased towards
guessing single deletion commands if it feels uncertain about
the changes to be made.

public TYPE_1 append ( int value ) { VAR_1. METHOD_1 ( VAR_2, value ) ; }
public TYPE_1 append ( int value ) { VAR_1. METHOD_1 ( VAR_2, value ) ; return

this ; }
public TYPE_1 append ( int value ) { VAR_1. METHOD_1 ( VAR_2, value ) ; return

this ; }

Listing 5. Correctly patched program, using text representation.

public cz.lidinsky.tools.ToStringBuilder append(int value) {
style.appendValue(sb, value);

}
public cz.lidinsky.tools.ToStringBuilder append(int value) {
style.appendValue(sb, value);
return this;

}

Listing 6. Non-abstracted bug, and developer fix of the example above.

This patch made on text representation correctly identifies
a missing return statement. The method signature shows us
that some type of value needs to be returned from the append
function, however, the model likely encountered very similar
examples during training, where a single return this statement
was missing, as it can guess it correctly with seemingly no
context suggesting this prediction.

public int METHOD_1 ( java.lang.Object VAR_1 ) { return list. METHOD_1 ( VAR_1
) ; }

public int METHOD_1 ( java.lang.Object VAR_1 ) { return 1 ; }

Listing 7. Incorrectly patched program, using text representation.

public int indexOf(java.lang.Object o) {
return 0;

}
public int indexOf(java.lang.Object o) {
return list.indexOf(o);

}

Listing 8. Non-abstracted bug, and developer fix of the example above.

Lastly, we can examine a wrongly predicted patch on text
representation. While the model correctly guessed, that the
return statement needs to be changed, and even the type is
identified correctly, this case too shows symptoms of over-
fitting. Simple patches like this can be found throughout the
dataset, where a simple return 1 statement is good enough.
However, the generalization of more complex statements like
this seems to fail.

Even though if we only consider the Java dataset it is clear
that the CodeT5-base is superior on the command-sequence
representation compared to others. On the other hand, the
same setting does not seem to fit on the FixJS dataset. As
we describe previously this might be the consequence that the
learning problem is harder in the latter case (i.e. the nature of
the programming language makes it hard to predict), or of the
few training samples. Either way worth noting that we used
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the same model size for each dataset, which is fair to compare,
but not optimal from the data point of view. Optimizing the
size of the model is out of the scope of this paper, but we
consider it an important future research direction.

VI. RELATED WORK

In this paper, we focused on the Transformer architecture,
like most of today’s modern tools that use deep-learning for
specific code-related tasks. For example, in [6] authors fine-
tune a T5 model for several tasks including fixing bugs, inject-
ing code mutants, generating assert statements, and generating
code comments. Their results show that the performance of the
model is comparable to the state-of-the-art tools in each down-
stream task. In another recent work [30] Chen et al. address
the problem of automatic repair of software vulnerabilities
by training a Transformer on a large bug-fixing corpus and
then tuning on a vulnerability fix dataset. They concluded that
transfer learning works well for repairing security vulnerabil-
ities in C compared to learning on a small dataset. Variants of
the Transformer model are also used for code-related tasks,
like in [31] where authors propose a grammar-based rule-
to-rule model which leverages two encoders modeling both
the original token sequence and the grammar rules, enhanced
with a new tree-based self-attention. Their proposed approach
outperformed the state-of-the-art baselines in terms of gener-
ated code accuracy. Another seminal work is DeepDebug [5],
where the authors used pre-trained Transformers to fix bugs
automatically. Here Drain et al. use the standard transformer
architecture with copy-attention. They conducted several ex-
periments including training from scratch, pretraining on ei-
ther Java or English, and using different embeddings. They
achieved their best results when the model was pre-trained
on both English and Java with an additional syntax token
prediction. This model is evaluated on the dataset by Tufano
et al. [32], which was later included in the CodeXGLUE
(General Language Understanding Evaluation benchmark for
CODE) benchmark [33].

CodeXGLUE includes a collection of code intelligence
tasks and a platform for model evaluation and comparison and
refers to the data-driven repair approach as Code Refinement
(Code-Code). The team operates a leaderboard of the best-
performing tools, where an approach called NSEdit [23] comes
first at the time of writing this paper. NSEdit is a model
that predicts the editing sequence given only the source code.
They use both the encoder and decoder of the Transformer,
where the encoder processes the buggy code, and the decoder
predicts the editing sequence. As a grammar, the decoder
uses a domain-specific regular language to write scripts that
can transform source to target when executed. The grammar
consists of two actions, delete and insert, which are added
to the vocabulary of the language model as new tokens. They
achieve a state-of-the-art result of 24.04% accuracy (100%) on
small and 13.87% on medium dataset. Other approaches be-
hind NSEdit on the leaderboard also usually use a transformer-
based model for the code refinement task.

The question of how to present a buggy program to a DL
model is of great importance. The use of Abstract Syntax
Trees (ASTs) seems obvious, although this information does
not help the learning process in some cases. In [34] Kim et
al. examined the code prediction (next token prediction) task
used in autocomplete systems. They showed that by making
the Transformer architecture aware of the syntactic structure of
code (the AST), it outperformed previous systems. In another
work [19], authors introduce a tool named Hoppity, which
predicts the changes to be made to the AST of JavaScript
commits with a graph-based neural network. Hoppity was
trained on a huge dataset consisting of 290,715 code change
commits, however, neither their implementation nor the used
dataset is available for further studies.

A few studies have attempted to understand the effect of
changing program representation or code embedding in the
APR domain. Navamar et al. in [35] trained 21 different
generative models that suggest fixes for name-based bugs,
including 14 different homogeneous code representations, 4
mixed representations for the buggy and fixed code, and three
different embeddings. However their work focuses on code
representations, it is limited to the study of abstraction levels
of token/AST representations. Our work also differs in the
incorporated DL model, since they used an NMT model,
compared to this we used a Transformer. Other SE fields also
study different code representations [4].

VII. CONCLUSIONS

In this paper, we experimented with 3 different program rep-
resentations that are being fed to 8 deep-learning model config-
urations trained and evaluated on 2 datasets built for Java and
JavaScript Automated Program Repair. Our results show that
choosing the right representation for a given dataset can give
a huge performance boost in some cases. Using a sequence
of command tokens can reduce redundancy between source
and target, by focusing on edits needed in the source code,
while in some cases this method under-performs compared to
simple text-to-text representation. From our experiments we
can conclude (1) that each deep-learning setting requires its
own data representation, thus (2) no representation fits for
every dataset and every model. Future studies may benefit
from examining the effects of using different representations
of source code, either when encoding, decoding, or both, as
this may lead to better model performance, using the same
data.
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