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Abstract
Retention behaviour of twenty-one chalcones synthesized in our laboratory was tested in three thin-layer chromatography
(RP-TLC) systems (acetonitrile–water, ethanol–water and acetone–water) and chromatography parameters R0

M , S and C0 were
calculated. The most suitable RP-TLC system (acetonitrile–water) and chromatography parameter (C0) for lipophilicity predic-
tion of tested compounds were selected on the basis of the highest correlations with calculated logP values. In selected system,
compound 12 had the highest, whereas 47 had the lowestC0 value. QSRR analysis was performed and three models representing
relationships between C0 and selected molecular descriptors were created—MLR(C0), PLS(C0) and SVM(C0). Interpretation of
molecular descriptors which form statistically the most reliable SVM(C0) model identified the most important structural and
physico-chemical properties that influence retention behaviour of tested compounds. In addition, descriptors with the highest

influence on R0
M as well as on C0 calculated in the remaining two RP-TLC systems were identified and interpreted.
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1 Introduction

Lipophilicity is recognized as one of the most important
physico-chemical properties, due to its influence on biological
activity and pharmacokinetics (absorption, distribution, me-
tabolism and excretion) of drug molecules. It is expressed by
the octanol/water partition coefficient (P), but virtually the
logarithm of P is used to describe it (logP). The traditional
approach to determine logP is the shake-flask method, but it is
time-consuming, requires large amounts of tested substances
and cannot provide very reliable values when logP > 3.
Reversed-phase thin-layer chromatography (RP-TLC) can be
used as an alternative method and can yield quantitatively
comparable and precise data [1–4].

Chalcones (1,3-diphenyl-2-propen-1-ones) are precursors
for biosynthesis of flavonoids and isoflavonoids, with wide-
range of biological activities, such as antiproliferative, cyto-
toxic, anti-inflammatory, antiviral, antimalarial, antibacterial,
etc. Additionally, two chalcone derivatives have been ap-
proved for clinical treatments, metochalcone as a choleretic
drug, and sofalcone as anti-ulcer drug. The general structure
of chalcones consists of two aromatic rings (A and B) spaced
by three-carbon α, β-unsaturated carbonyl bridge, preferably
with E isomerism [5–7]. Chalcones have a simple chemistry
that enables to synthesize largely variable analogues. The
most common method is Claisen–Schmidt condensation, in
which the starting materials are benzaldehyde and
acetophenone derivatives. The reaction is usually carried out
in the presence of alkaline or acid catalysts, and the required
temperature of the reaction can be achieved by both classical
and microwave-assisted heating [7].

Chalcones tested in this study (Fig. 1) showed satisfactory
antimicrobial activity against clinical isolates of dermato-
phytes, redox activity as well as anti-HIV-1 protease activity.
Compounds 18, 22 and 52 showed similar anti-HIV-1 prote-
ase activity in comparison with lopinavir [8].

The aim of this study was evaluation of the lipophilicity of
a series of chalcone derivatives, synthesized in our laboratory,
by use of RP-TLC and computational methods as well as
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identification of major structural and physico-chemical prop-
erties that influence their retention in selected RP-TLC
system.

2 Experimental

2.1 Materials and reagents

Chalcones tested in this study were 12 ((E)-3-(2,6-
dichlorophenyl)-1-(5-fluoro-2-hydroxyphenyl)prop-2-en-1-
o n e ) , 1 3 ( ( E ) - 3 - ( 2 , 4 - d i c h l o r o p h e n y l ) - 1 - ( 2 -
hydroxyphenyl)prop-2-en-1-one), 14 ((E)-3-(2,4-
dichlorophenyl)-1-(5-fluoro-2-hydroxyphenyl)prop-2-en-1-
one) , 16 ( (E) -3- (2-chlorophenyl) -1- (5- f luoro-2-
hydroxyphenyl)prop-2-en-1-one), 17 ((E)-1-(5-fluoro-2-
hydroxyphenyl)-3-(2-fluorophenyl)prop-2-en-1-one), 18 ((E)-
1-(5-fluoro-2-hydroxyphenyl)-3-(3-fluorophenyl)prop-2-en-1-
one), 19 ((E)-1-(5-fluoro-2-hydroxyphenyl)-3-(4-
fluorophenyl)prop-2-en-1-one), 20 ((E)-1-(5-fluoro-2-
hydroxyphenyl)-3-(2-(trifluoromethyl)phenyl)prop-2-en-1-
one), 21 ((E)-3-(2-fluorophenyl)-1-(2-hydroxy-4-

methylphenyl)prop-2-en-1-one), 22 ((E)-3-(4-fluorophenyl)-
1-(2-hydroxy-4-methylphenyl)prop-2-en-1-one), 23 ((E)-1-(2-
hydroxy-4-methylphenyl)-3-(2-(trifluoromethyl)phenyl)prop-
2-en-1-one), 46 ((E)-3-(2,6-dichlorophenyl)-1-(2-
hydroxypheny l )prop-2-en-1-one) , 47 ( (E) -1- (2-
hydroxyphenyl)-3-phenylprop-2-en-1-one), 48 ((E)-1-(2-
hydroxyphenyl)-3-(4-(trifluoromethyl)phenyl)prop-2-en-1-
one), 51 ((E)-1-(2-hydroxyphenyl)-3-(o-tolyl)prop-2-en-1-
one) , 52 ( (E)-3-(4-f luoro-2-methylphenyl )-1-(2-
hydroxyphenyl)prop-2-en-1-one), 54 ((E)-3-(4-fluoro-2-
methylphenyl)-1-(2-hydroxy-4-methylphenyl)prop-2-en-1-
one), 62 ((E)-1-(2-hydroxyphenyl)-3-(m-tolyl)prop-2-en-1-
one), 63 ((E)-1-(2-hydroxyphenyl)-3-(2-methoxyphenyl)prop-
2 - en -1 -one ) , 65 ( (E ) -3 - ( 4 - f l uo ropheny l ) - 1 - ( 2 -
hydroxyphenyl)prop-2-en-1-one), and 66 ((E)-1-(2-
hydroxyphenyl)-3-(p-tolyl)prop-2-en-1-one) (Fig. 1).

The following solvents were used for the mobile phase
preparation: acetonitrile (LC/MS grade, Fisher Scientific,
Loughborough, UK), ethanol (HPLC grade, Fisher
Scientific, Loughborough, UK), acetone (Avantor
Performance Materials, Gliwice, Poland) and distilled water
(TKA water purification system, Niederelbert, Germany).

Fig. 1 Chemical structures of the tested compounds
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Dimethyl sulfoxide (Fisher Scientific, Loughborough, UK)
and methanol (Fisher Scientific, Loughborough, UK) were
used for the preparation of solutions of tested compounds.

2.2 Chromatography analysis

Thin-layer chromatography analysis was performed using
10 × 10 cm reversed-phase silica 60 RP-18 F254s plates
(Merck, Darmstadt, Germany). Chalcones were dissolved in
DMSO (2 mg mL−1) and diluted with methanol to obtain final
solutions (0.1 mgmL−1). The plates were spotted with 5 μL of
each solution, and three binary combinations of organic sol-
vent and water were used as mobile phases (Table 1). The
developed chromatograms were observed under UV light
(λ = 254 nm). Finally, Rf and RM values were calculated for
each tested compound.

The relation between RM and organic modifier percentage
(φ) is expressed by Soczewinski–Wachtmeister eq. (1) [9].

RM ¼ R0
M þ Sφ ð1Þ

R0
M is determined by extrapolation technique and repre-

sents RM value in the hypothetical system that contains 0%
of organic modifier. Parameter S is the slope of the regression
curve (eq. (1)), whereas C0 is calculated by dividing R0

M by S
(eq. (2)).

C0 ¼ −
R0
M

S
ð2Þ

2.3 Calculation of logP

For the calculation of logP values of tested compounds,
ChemDraw 8 [10] and MarvinSketch [11] were used. Four
logP values were calculated in ChemDraw 8—Viswanadhan
logP, Brotto logP, Crippen logP and CLogP [12–14].

2.4 Calculation of molecular descriptors

ChemoPy molecular descriptors (1135 1D, 2D and 3Dmolec-
ular descriptors) were calculated using freely available web-
based platform ChemDes, which utilizes MOPAC software

for the molecular geometry optimization [15]. After the elim-
ination of those without variance, 873 descriptors were
retained for further QSRR modelling.

2.5 QSRR analysis

Statistica 13 software [16] was used for molecular descriptor
selection, multiple linear regression (MLR), partial least
squares (PLS) and support vector machine (SVM) modelling.

The quantitative structure-retention relationships (QSRR)
studies were performed to investigate the relationships be-
tween C0 (dependent variable) of the tested compounds and
their calculated molecular descriptors (independent variables).
For MLR(C0), PLS(C0) and SVM (C0), test set consisted of 5
compounds (13, 18, 20, 23 and 63), while other compounds
were used as training set. Test set was formed so C0 of these
compounds were homogenously distributed in the whole
range of C0 values.

2.5.1 Descriptor selection

Prior to QSRR modelling, molecular descriptor selection has
to be performed. For this purpose, several methodologies have
been applied, such as genetic algorithm [17], principal com-
ponent analysis [18] and stepwiseMLR [19, 20]. In this study,
Statistica’s algorithm feature selection and variable screening
(FSVS) was applied. FSVS can be applied on extremely large
sets of descriptors and enables evaluation of both linear and
nonlinear relationships between dependent variable and de-
scriptors. The range of values of each descriptor is separated
into k intervals. If k = 2, only monotonous relationships be-
tween descriptors and dependent variable are investigated. In
this study, k was set to 5 and for MLR and SVM modelling
following descriptors were selected: bcutp8, ATSp4 and
kappam2. For PLS modelling, 30 most significant descriptors
were selected using the same criterion (k = 5).

2.5.2 QSPR and QSRR model building

MLR was applied to assess linear relationship between calcu-
lated molecular descriptors andC0. In this study, theMLR(C0)
model was created using “all effects” method, which means
that all descriptors are simultaneously added into the model.

PLS modelling is useful when analysing data with collin-
ear, noisy and numerous descriptors. Optimal number of PLS
components was determined on the basis of each component’s

Table 1 RP-TLC systems applied
in this study RP-TLC system Mobile phase composition

I Acetonitrile–water (50:50, 60:40, 70:30 and 80:20, v/v)

II Ethanol–water (50:50, 60:40, 70:30 and 80:20, v/v)

III Acetone–water (50:50, 60:40, 70:30 and 80:20, v/v)
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R2(Y) value and cumulative R2(Y) value. The influence of
descriptors on created model was evaluated on the basis of
their scaled regression coefficient values. In this study, opti-
mal PLS(C0) model consisted of three components.

Although SVM was initially developed as a binary classi-
fication tool [21], it can also be used for the development of
nonlinear QSAR and QSRR models [22, 23]. In this study,
SVM(C0) model was created using radial basis function
(RBF) Kernel type and regression type 1, while optimal gam-
ma value was 0.333. Subsequently, capacity (C) and epsilon
(Ɛ) values were automatically optimized by the software and
optimal values were C = 59 and Ɛ = 0.3. Finally, the SVM(C0)
model consisted of 4 supported vectors (0 bounded).

Evaluation of the reliability of created QSRR models was
performed on the basis of following statistical parameters:
RMSEE (root mean squared error of estimation), RMSEP
(root mean squared error of prediction), the F ratio, the p
value, r, Q2 (eq. (3)) and R2pred (eq. (4)).

Q2 ¼ 1−
PRESS

∑ Yobs trainingð Þ−Y training

� �2 ð3Þ

R2
pred ¼ 1−

PRESS

∑ Yobs testð Þ−Y training

� �2 ð4Þ

PRESS ¼ ∑n
i−1e

2
ið Þ ð5Þ

RMSEE value was calculated for training, whereas
RMSEP was calculated for test set and these values represent
errors of prediction for training and test set compounds. Q2 is
an internal validation parameter used to assess predictive po-
tential of a model for compounds similar to training set. This
parameter was calculated according to the leave-one-out
(LOO) procedure. Briefly, each training set compound was
deleted once while the remaining compounds were used to
create a model. The model thus created was used to predict
the C0 value of the deleted compound. The procedure was
applied for all training set compounds and finally Q2 was

calculated (eq. (3)) [24, 25]. In this equation, Y training is aver-
age value, whereas Yobs(training) is an observed C0 value of the
training set compounds. PRESS was calculated according to
the eq. (5) after the LOO procedure (e(i) represents difference
between observed and predicted C0 values). R

2
pred (eq. (4)) is

an external validation parameter used to assess predictive po-
tential of a model for compounds that are structurally different
than those from the training set [26]. In this equation, Yobs(test)
is an observed value of C0 of a test set compound, while Y -
training is meanC0 value of the training set compounds. PRESS
value was calculated for the test set according to the eq. (5).
High predictive potential is expected for models with Q2 and
R2

pred higher than 0.5 [24, 27, 28].

The F test evaluates significance of the model and it is
based on the ratio MS Regression/MS Residual. The p value
indicates probability level where a model with this F value
may be the result of just chance. A model is considered sta-
tistically significant if p value is lower than 0.05 [28].

3 Results and discussion

3.1 RP-TLC analysis and calculated logP values

Chromatography parameters (R0
M , S and C0) in acetonitrile–

water, acetone–water and ethanol–water RP-TLC systems as
well as calculated logP values of all tested compounds are
presented in Table 2. There is a high degree of concordance
between calculated logP values since correlation coefficients
between pairs of these values were from 0.96 to 1.00.

Parameter S is related to the specific hydrophobic surface

area [29]. High correlation coefficients between R0
M and S

indicate that the tested compounds form congeneric set and
similar mechanisms influence their retention behaviour. Lack
of correlation between these parameters can be observed with
chemically versatile compounds and also in case of the pres-
ence of ionizable groups, which modify the interactions with
stationary and mobile phases [30, 31]. In all chromatography
systems tested in this study, high correlation between R0

M and
S was observed (r = 0.87–0.97), which is due to the high de-
gree of structural similarity among tested compounds, and it
can be expected that in each applied system similar mecha-
nisms are responsible for the interactions of compounds with
stationary and mobile phases.

All chromatography parameters (R0
M , S andC0) can be used

as lipophilicity descriptors in QSPR, QSRR and QSAR stud-
ies as well as for the estimation of lipophilicity and pharma-
cokinetic properties [29, 32–36]. However, in some cases, low
correlations between lipophilicity and chromatography pa-
rameters were observed [37], which indicates the importance
of careful evaluation of potential of RP-TLC as alternative
method for lipophilicity estimations of different sets of
compounds.

The correlation coefficients between calculated logP and
chromatography parameters were 0.80–0.84 (logP vs C0, ace-
tonitrile–water), 0.23–0.29 (logP vs C0, acetone–water),
0.47–0.56 (logP vs C0, ethanol–water), 0.39–0.44 (logP vs

R0
M , acetonitrile–water), 0.26–0.29 (logP vs R0

M , acetone–

water), 0.53–0.61 (logP vs R0
M , ethanol–water), below 0.05

(logP vs S, acetonitrile–water), 0.29–0.36 (logP vs S, acetone–
water) and 0.38–0.43 (logP vs S, ethanol–water). Due to the
highest correlation coefficients between C0 determined in
acetonitrile–water RP-TLC system and calculated logP values
(from 0.80 to 0.84), this RP-TLC system and corresponding
C0 parameter were selected as the most suitable for
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lipophilicity prediction. In this system, compound 12 had the
highest, whereas 47 had the lowest C0 value.

3.2 QSRR analysis

Three QSRR models were created using C0 determined in
acetonitrile–water RP-TLC system as dependent variable
and selected molecular descriptors as independent variables.
Statistical parameters were calculated and presented in
Table 3.

According to the presented statistical parameters, the most
reliable QSRR model is SVM(C0) due to the lowest values
and lowest difference between RMSEE and RMSEP as well
as due to the highest values of other statistical parameters.
This model has good predictive potential because both Q2

and R2
pred are higher than 0.5.

Descriptors which form SVM(C0) model are bcutp8,
ATSp4 and kappam2.

bcutp8 belongs to Burden descriptors based on polarizabil-
ity. bcut descriptors are the eigenvalues of a connectivity ma-
trix which takes into account both connectivity and atomic
properties of a molecule, such as atomic weight, partial charge
and polarizability. The descriptor is based on a weighted ver-
sion of the Burden matrix [38, 39]. The weights are a variety
of atom properties placed along the diagonal of the Burden

matrix. The following three weighting schemes are employed:
atomic weight, partial charge (Gasteiger–Marsili) and polariz-
ability [40].

Relation between C0 and bcutp8 is presented in Fig. 2.
All compounds could be sorted into two groups: com-
pounds with bcutp8 between 1.90 and 2.00 (first group)
and compounds with bcutp8 between 2.10 and 2.45 (second
group). Compounds from the second group have median
values of C0 (from 84 to 90), whereas in the first group
(lowest bcutp8) those with highest and lowest values of
C0 can be found.

ATSp4 is a 2D topological descriptor and belongs to
Moreau–Broto autocorrelation descriptors based on atomic
polarizability (Broto–Moreau autocorrelation of a topological
structure − lag 4 / weighted by atomic polarizabilities). It is
related to the polarity of a molecule [41]. In 2D autocorrela-
tion descriptors, atoms represent a set of discrete points in
space and the atomic property and function are evaluated at
those points. The symbol for each of the autocorrelation de-
scriptors is followed by two indices d and w (d stands for the
lag and w stands for the weight). The lag is defined as the
topological distance d between pairs of atoms. The weight
can be m (relative atomic mass), p (polarizability), e
(Sanderson electronegativity) and v (Van der Waals volume)
[42].

Relation between C0 and ATSp4 is presented in Fig. 3. The
highest values of this descriptor possess compounds with high
C0 and high calculated logP values (e.g. 12 and 46), whereas
the lowest values possess compounds with low C0 and low
calculated logP values (e.g., 47 and 65), indicating the pres-
ence of relation between lipophilicity and retention properties
of tested compounds.

kappam2 belongs to kappa descriptors and represents
Molecular shape Kappa index for 2 bonded fragments. The

Table 3 Calculated statistical parameters

QSRR model RMSEE Q2 RMSEP r R2
pred

MLR(C0) 1.20 0.64 2.87 0.43 0.79

PLS(C0) 1.11 0.63 2.36 0.56 0.86

SVM(C0) 1.14 0.68 1.57 0.83 0.94

Fig. 2 C0 (var2) vs bcutp8
(var245) plot
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kappa indexes could be defined as shape parameters based on
the degree of branching of the molecular graph [43].

Relation between C0 and kappam2 is presented in Fig. 4.
The highest values of this descriptor possess compounds with
high C0 (e.g. 12, 13 and 46), whereas the lowest values pos-
sess compounds with low C0 (e.g., 47 and 65). Compounds
12, 13 and 46 possess higher number of substituents on ben-
zene rings (3 and 4 substituents) and therefore higher degree
of branching in comparison to 47 and 65 (1 and 2
substituents).

In order to investigate the relationships between other chro-
matography parameters and calculated descriptors, the FSVS
variable selection procedure was performed for following de-
pendent variables: C0 calculated in acetone–water and

ethanol–water RP-TLC systems as well as for R0
M calculated

in acetonitrile–water RP-TLC system. The relationships were
investigated using SVM. Descriptors with the highest influ-
ence on C0 in ethanol–water system were MR, logP2 and

bcutp7. Descriptors with the highest influence on R0
M calcu-

lated in acetonitrile–water RP-TLC system were ATSp7 and
bcutv10. However, there were no statistically significant rela-
tionships between calculated descriptors and C0 in acetone–
water RP-TLC system. bcutp7 and bcutv10 belong to Burden
descriptors based on atomic polarizability and volumes, re-
spectively. MR is molar refractivity and logP2 is square of
logP value based on the Crippen method [12]. ATSp7 belongs
to Moreau–Broto autocorrelation descriptors based on atomic
polarizability (Broto–Moreau autocorrelation of a topological
structure − lag 7 / weighted by atomic polarizabilities) and it is
related to the polarity of a molecule [41].

Fig. 3 C0 (var2) vs ATSp4
(var54) plot

Fig. 4 C0 (var2) vs kappam2
(var257) plot
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4 Conclusion

RP-TLC with three binary combinations of water and organic
solvents as the mobile phase (acetonitrile–water, ethanol–water
and acetone–water) was used for the testing of retention behav-
iour of twenty-one chalcones synthesized in our laboratory. The
most suitable RP-TLC system (acetonitrile–water) and chroma-
tography parameter (C0) for lipophilicity prediction were select-
ed according to the highest correlations with calculated logP
values. In this system, compound 12 had the highest, whereas
47 had the lowest C0 value. QSRR analysis of obtained results
resulted in creation of three models (MLR(C0), PLS(C0) and
SVM(C0)), and on the basis of calculated statistical parameters,
SVM(C0) was selected as the most reliable. Interpretation of
descriptors that form this model identified the most important
structural and physico-chemical properties that influence reten-
tion behaviour of tested compounds in the selected RP-TLC
system. In addition, descriptors with the highest influence on

R0
M as well as on C0 calculated in the remaining two RP-TLC

systems, were identified and interpreted.
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