
Weighted Mutation of Connections To Mitigate Search Space
Limitations in Cartesian Genetic Programming

Henning Cui

henning.cui@uni-a.de

University of Augsburg

Augsburg, Germany

David Pätzel

University of Augsburg

Augsburg, Germany

Andreas Margraf

Fraunhofer Institute for Casting, Composite and

Processing Technology IGCV

Augsburg, Germany

Jörg Hähner

University of Augsburg

Augsburg, Germany

ABSTRACT

This work presents and evaluates a novel modification to existing

mutation operators for Cartesian Genetic Programming (CGP). We

discuss and highlight a so far unresearched limitation of how CGP

explores its search space which is caused by certain nodes being

inactive for long periods of time. Our new mutation operator is

intended to avoid this by associating each node with a dynamically

changing weight. When mutating a connection between nodes,

those weights are then used to bias the probability distribution in

favour of inactive nodes. This way, inactive nodes have a higher

probability of becoming active again. We include our mutation op-

erator into two variants of CGP and benchmark both versions on

four Boolean learning tasks. We analyse the average numbers of

iterations a node is inactive and show that our modification has

the intended effect on node activity. The influence of our modifi-

cation on the number of iterations until a solution is reached is

ambiguous if the same number of nodes is used as in the baseline

without our modification. However, our results show that our new

mutation operator leads to fewer nodes being required for the same

performance; this saves CPU time in each iteration.

CCS CONCEPTS

• Computing methodologies→ Genetic programming.

KEYWORDS

Cartesian Genetic Programming, CGP, Genetic Programming, Evo-

lutionary Algorithm, Mutation

ACM Reference Format:

HenningCui, David Pätzel, AndreasMargraf, and JörgHähner. 2023.Weighted

Mutation of Connections To Mitigate Search Space Limitations in Carte-

sian Genetic Programming. In Proceedings of the 17th ACM/SIGEVO Confer-
ence on Foundations of Genetic Algorithms (FOGA ’23), August 30-September

This is the author's version of the work. It is posted here for your personal
use. Not for redistribution. The definitive Version of Record was published in
FOGA ’23, August 30-September 1, 2023, Potsdam, Germany
© 2023 Copyright held by the owner/author(s). Publication rights licensed to
ACM.
ACM ISBN 979-8-4007-0202-0
https://doi.org/10.1145/3594805.3607130

1, 2023, Potsdam, Germany. ACM, New York, NY, USA, 11 pages. https:

//doi.org/10.1145/3594805.3607130

1 INTRODUCTION

Cartesian Genetic Programming (CGP) is a form of Genetic Program-
ming (GP) that is not based on trees but instead on directed acyclic
graphs whose nodes are arranged in two-dimensional grids. One

of the first applications of this method was the development of

electronic circuits [17] but CGP has also been used in other do-

mains such as for the evaluation of sensor data [1] or for image

processing [15].

Other than traditional GP, which typically performs selection,
mutation and crossover, CGP rarely utilizes crossover as that typi-

cally deteriorates CGP’s performance [9, 16]
1
. Therefore, efficient

mutation and selection operators are all the more important.

However, the mutation operators commonly used in CGP lead

to some nodes spending many training iterations being unused.

We conjecture that this leads to the search space being explored

inefficiently, which, in turn, increases the iterations needed for

training. To mitigate this problem, we introduce a novel mutation

operator for CGP based on associating each graph edge with a

weight which influences mutation probability.

We provide a quick overview of the core principles of CGP in

Section 2. Afterwards, Section 3 gives an overview of related work.

In Section 4, we discuss the aforementioned limitation of CGP’s

exploration more in-depth. Our novel mutation operator meant to

remedy said limitation is introduced in Section 5 and its perfor-

mance is analysed using several Boolean benchmark problems in

Section 6. Section 7 summarizes our findings and discusses future

research directions.

2 CARTESIAN GENETIC PROGRAMMING

In this section, we briefly reintroduce the core principles of the

supervised learning algorithm called Cartesian Genetic Program-
ming (CGP). In addition, the extension developed by Goldman and

Punch [5] is presented.

2.1 Representation

A CGP model is commonly represented as a directed acyclic graph.

This graph consists of nodes which are arranged in an 𝑐 × 𝑟 grid,
1
Note that there are some exceptions that do suggest to use crossover such as [11, 30].

https://orcid.org/0000-0001-5483-5079
https://orcid.org/0000-0002-8238-8461
https://orcid.org/0000-0002-2144-0262
https://orcid.org/0000-0003-0107-264X
https://doi.org/10.1145/3594805.3607130
https://doi.org/10.1145/3594805.3607130
https://doi.org/10.1145/3594805.3607130

FOGA ’23, August 30-September 1, 2023, Potsdam, Germany Henning Cui, David Pätzel, Andreas Margraf, and Jörg Hähner

𝑛0 :

INPUT

𝑛1 :

INPUT

𝑛2 :

ADD

𝑛3 :

SUB

𝑛4 :

ADD

𝑛5 :

OUTPUT

Figure 1: Graph defined by a CGP genotype. The dashed node

and connections are inactive due to not contributing to the

output.

with 𝑐 and 𝑟 defining the number of columns and rows in the grid,

respectively
2
. Given an input, the CGP model produces an output

by feeding it forward through partially connected nodes until an

output node is reached.

The set of nodes in a CGPmodel can be divided into input, output

and computational nodes. Input nodes are the ones that directly

receive the program input. Computational nodes are represented
by three genes in the genotype: a function gene and two connection
genes. The function gene addresses the encoded computational

function of the node. A connection gene defines a path between

a previous and the current node. Via this path, data is transferred

which can be either a program input or the computational output

of another arbitrary previous node. At last, the output node defines

where the program output is taken from. They are represented by

a single connection gene.

Furthermore, computational nodes are categorized into two

groups: active and inactive nodes. Nodes of the first group con-

tribute to a program output, while inactive nodes do not because

there is no path leading to an output node. In this manner, the set

of active nodes define a model’s phenotype while the genotype

defines both active and inactive nodes.

An illustrative example of a graph defined by a CGP genotype

can be seen in Figure 1. It shows a graph with 𝑐 = 6 and 𝑟 = 1,

which is supposed to solve a task consisting of two inputs and

one output. Here, the first two nodes 𝑛0 and 𝑛1 are input nodes

and provide two different program inputs. The following nodes,

𝑛2 to 𝑛4, are computational nodes and the output is provided by

𝑛5. In this example, the program inputs are subtracted. Afterwards,

this intermediate result is added to itself and taken as the program

output. Thus, every node drawn with a solid line is an active node;

these nodes contribute to the program output. On the other hand,

𝑛2 is an inactive node (marked by dashed lines) since it does not

contribute to the output.

In the following sections, this standard CGP variant will be called

Normal to improve readability.

2.2 Evolutionary algorithm used by CGP

Many CGP algorithms use the standard (𝜇 + 𝜆) evolution strategy

with 𝜇 = 1 and 𝜆 = 4. Here, elitism combined with neutral search

is performed to improve its performance and speed in which a

solution is found [25, 26, 31]. This means that, when an offspring

and the current parent have the same fitness value, the offspring is

always chosen as the next parent. By preferring the child, neutral
drift is allowed to occur. Hence, the search algorithm is exploring

various possible solutions given by different genotypes [19].

2
Please take note of today’s standard with 𝑟 = 1 [18].

𝑛0 :

INPUT

𝑛1 :

INPUT

𝑛2 :

ADD

𝑛3 :

SUB

𝑛4 :

ADD

𝑛5 :

OUTPUT

Figure 2: Graph defined by a CGP genotype with the DAG

extension. Nodes can create connections to arbitrary nodes

if it does not lead to a cycle.

Concerning mutation operators, two types are often found. The

original mutation operator simply iterates over all genes, mutating

each with a probability defined by the user [18]. This, however

introduces fitness plateaus since it is possible that neither of the

active nodes is mutated within one iteration which in turn leads

to the outputs not changing. In order to work around that, Gold-

man and Punch [6] proposed an alternative that they term Single
mutation. It works by repeatedly mutating random genes until a

gene associated with an active node has been changed. This makes

changes in the phenotype (and thus the associated fitness value)

more likely and eliminates the mutation rate hyperparameter. Fur-

thermore, by mutating inactive genes earlier, neutral drift is able to

occur. This is the reason why Goldman and Punch claim that Single
is preferred when the optimal mutation rate is not known.

2.3 Extension: DAG

While the way that CGP restricts its search space leads to some

advantages over less constrained GP methods (e. g., CGP does not

need to actively control bloat [18]), there are additional implications.

In practice, search space is actually even more limited than the

grid alone might suggest: Goldman and Punch [5] found that the

probability of a node being active is not uniform. On the contrary,

nodes closer to the input nodes are more likely to be active than

nodes further away from the input nodes. This can be explained

visually with the help of Figure 1: Upon mutating a connection

between nodes, the standard mutation operator assigns to each

possible starting node the same probability to be chosen while the

endpoint of the connection is kept fixed. Nodes at the beginning

(the left side of the grid) have more options for successor nodes

(remember that directed edges are only allowed to go from left to

right) than nodes closer to the end (the right side of the grid). In

this example, 𝑛1’s possible successors are 𝑛2, 𝑛3, 𝑛4 or 𝑛5 whereas

𝑛4’s possible successor is just 𝑛5. Since a node is only active if one

of its outgoing edges is connected to another active node, this leads

to nodes at the beginning to be more likely to be active compared

to nodes at the end, as there are more, possibly active, nodes that a

connection could be evolved to.

This leads to some drawbacks, as this limitation makes it diffi-

cult or impossible to solve certain problems [5, 20]. As a remedy,

Goldman and Punch [5] proposed two new variants of CGP: One

of those is Dag, which removes the constraint of only allowing

connections that go from left to right in the grid. Instead, Dag is

able to mutate connections to every node in the genome as long

as the new connection does not create a cycle. To visualize this

concept, Figure 2 shows an example graph defined by Dag.

Weighted-CGP to Mitigate Search Space Limitations FOGA ’23, August 30-September 1, 2023, Potsdam, Germany

The second variant, called Reorder, proposed by Goldman and

Punch [5] reorders the genotype. It takes all active nodes and rear-

ranges them uniformly along the grid. By conserving the order of

nodes as well as their processing sequences, the phenotype—and

in turn the programs output—will stay the same. However, as we

do not build upon it, we will not discuss Reorder in further detail.

3 RELATEDWORK

Previously, other works have been investigating different search

space limitations in CGP or explored new mutation operators,

which layed out the foundation for this work. Our work focuses on

improving the mutation operator, too. It is motivated by the possibil-

ity of a yet undiscussed limitation in CGPs search space. However,

we include weights to influence the mutation of connections which

separates us from previous works.

One of those is done by Goldman and Punch in [5] and [7].

Furthermore, some of their work has already been mentioned in

Section 2.3. They hypothesize that the search space limitation leads

to a decrease in performance and introduce two extensions to CGP

to mitigate this problem.

The effects of neutral genetic drift, that is, the importance and

influence of inactive nodes and thus the effect of genetic redun-

dancy, have been considered by several groups. Yu and Miller [32]

are one of the first to investigate neutrality in the context of CGP

and showed empirically that neutral genetic drift improves the ex-

ploration and fitness of CGP, or at least does not impair it. On the

other hand, Yu and Miller [31] later try to measure the impact of

neutrality by comparing different genotypes and report a positive

relationship between neutrality and efficient evolution of solutions.

Finally, Turner and Miller [25] evaluate neutral genetic drift empir-

ically and show that allowing it improves CGP’s achieved fitness

values.

However, the impact of neutral genetic drift is challenged by

Goldman and Punch [5]. By experimenting with different exten-

sions to the CGP formula, they present various other limitations

and biases in CGP. Nonetheless, this leads them to believe that the

current research on neutrality is incomplete, as they doubt that a

great amount of inactive nodes lead to better neutral genetic drift.

Furthermore, Collins [3] thinks along similar lines. The author re-

fute the works of Yu and Miller [32] by showing empirically that

the findings are worse than random search and introduce a CGP

version without any inactive nodes.

It often depends on the use case, how the underlying search

space can be transformed for a more efficient exploration. For ex-

ample, Suganuma et al. [23] explore a highly specific function set

for neural architecture search with the goal of reducing the size

of the search space. Torabi et al. [24] on the other hand evaluate

utilizing a specific crossover operator to improve the search space.

This differs from our work in that we do not include specific do-

main knowledge from a single use case but try to make universal

statements.

Other research directions focus on improving the mutation oper-

ator. Kalkreuth [10] introduces a newmutation operator specifically

aimed at CGP’s phenotype by duplicating and permuting active

nodes. Another work by Cui et al. [4] extends existing mutation

operators by adding a second mutation rate parameter. One defines

a rate for inactive nodes while the other mutation rate defines a

probability for active nodes.

4 LIMITED SEARCH SPACE EXPLORATION

CGP’s limitation in exploring its search space is discussed at great

length [3, 5, 7]. Nonetheless, in the context of Dag, nodes may

be inactive during many iterations in the training process or only

inactive for a very small number of training iterations. This could be

another problem which has—to our knowledge—not been discussed

as of yet.

4.1 Frequent node inactivity during training

As is mentioned in Section 2.3, there is the problem of limited

search space exploration at hand. The authors Goldman and Punch

[7] found a positional bias in Normal and conducted an extensive

investigation to examine this problem in the context of Normal

and Dag. With Normal, nodes at the beginning of a genome have

a higher chance of becoming active than nodes at the end of a

genome. In their studies, they found that a high percentage of

nodes in Normal are never active. This is not desirable, as it can

negatively affect CGP because those nodes are seldom used or their

usefulness observed. This problem does not occur in Dag anymore

as most nodes are active during training at least once.

However, in the analysis of Dag done by Goldman and Punch

[7], their results are averaged over 50 runs. When individual runs

are evaluated, we found similar (but less severe) problems regarding

the limited search space exploration. While most nodes are indeed

active at least once, it takes many iterations until inactive nodes

become active. For example, given the boolean 4-16-bit Decode

benchmark problem [6], nodes stay inactive for an average of 1,100

out of 22,000 iterations in our implementation.

Furthermore, we could see the trend of some nodes being ac-

tive during most of the training steps, while other ones are seldom

active. This can be visualized in Figure 3, which shows the active

node distribution of training the boolean 16-4-bit Encode bench-

mark problem. It is trained with 100 nodes and the Single mutation

operator. Here, each column corresponds to one node in the geno-

type and one row declares a single training step. If a node is active

during one training step, it is visualized with a dot. Nodes which

are more active during training have a darker colour in their re-

spective column. The other way around, brighter colours indicate

nodes which are less active during training. There are some dark

columns, indicating that those nodes are almost always active dur-

ing the training process. On the other hand, there are also some

light columns with gaps. They reveal some periods during the train-

ing process where the node is not active. Similar trends can also be

seen across multiple runs and on different datasets.

4.2 Periods of inactivity in the context of

neutral drift

The vertical gaps in Figure 3 may not be desirable in particular.

We hypothesize that they lead to—in the context of Dag—CGP’s

search space not being explored properly. As a consequence, more

mutation steps could be necessary to solve a given problem. Some

previous works claim that CGP benefits from neutral drift [25, 31]
which is the effect of genotypic changes that do not change the

FOGA ’23, August 30-September 1, 2023, Potsdam, Germany Henning Cui, David Pätzel, Andreas Margraf, and Jörg Hähner

Figure 3: The active node distribution of one training processes of Dag on the Boolean 16-4-bit Encode benchmark problem.

Each column corresponds to a node in the CGP graph with the 𝑥-axis defining its position. The 𝑦-axis corresponds to a specific

iteration during its training. Each dot represents a specific node being active at a specific iteration. For each row, the darker the

colour, the more iterations the node in this row has been active. Please note, the CGP graph contains 100 computational nodes,

16 input and 4 output nodes.

phenotype propagating to the next generations. In the context of

CGP this means that genes of inactive nodes are mutated (without

the nodes becoming active) and the containing individual is part

of the next generation. However, we conjecture that if nodes are

inactive too long periods of time, the benefits of neutral drift may

decrease due to fitness pressure being too small.

5 MITIGATING THE LIMITED EXPLORATION

In order to shorten the periods of inactivity analysed in the previ-

ous section and promote the activation of inactive nodes, we now

introduce a modification to the mutation operator used in CGP.

Our extended mutation operator is based on each node being as-

sociated with a weight which changes dynamically during training.

We chose to test our idea on both the Normal and Dag variants

of CGP. As Dag is able to form a connection to arbitrary nodes, it

could easily form connections to nodes with the highest probability.

Thus, we hypothesize that it may profit from a guided mutation by

weights.

As for Normal, we believe that our extension is able to improve

this variant, too. By guiding the mutation of connections, we believe

that we can decrease the severity of a positional bias to achieve a

more uniform distribution of active genes in the genotype.

We refer to our CGP variant with weighted mutation of connec-

tions as Weighted-CGP in the following text.

5.1 Weighted mutation of connections

Each computational or output node has one or several incoming

connections. For computational nodes, there is one incoming con-

nection for each input of the mathematical operation associated

with the node whereas for output nodes there is exactly one incom-

ing connection. Mutating one such connection between two nodes

means that its starting node is changed while its end node is kept

fixed (this ensures that each node always has as many incoming

connections as its associated transformation requires inputs). Let 𝑆𝑣
be the set of allowed starting nodes for a connection 𝑣 . The original

CGP mutation operator then simply chooses a new starting node

for an existing connection uniformly from 𝑆𝑣 . Note that 𝑆𝑣 differs

depending on the CGP variant: The standard CGP variant (called

Normal in this paper) sets 𝑆𝑣 as the set of nodes located in grid

columns left of the columns that 𝑣 ’s end node is in whereas Dag

sets 𝑆𝑣 as the set of all nodes except 𝑣 ’s current end node.

For our weighted CGP mutation operator, we now associate each

node𝑛 with a weight𝑤𝑛 ∈ N. The weighted mutation operator then

chooses a new starting node from the set of possible starting nodes

weight-proportionally. This means, the probability of node 𝑛 ∈ 𝑆𝑣
to be selected as the new starting node for an existing connection

𝑣 is
𝑤𝑛∑

𝑛̃∈𝑆𝑣 𝑤𝑛̃

(1)

Note that this is applicable without modifying Normal or Dag,

since our extension only changes the set of allowed starting nodes

𝑆𝑣 .

For each active node 𝑎, we set𝑤𝑎 B 𝑤min where𝑤min ∈ N+ is
a hyperparameter. Furthermore,𝑤min > 0 since otherwise active

nodes are associated with a probability of 0 of being chosen for a

connection again, which would, in return, restrict the exploration

of the search space undesirably again.

For each inactive node𝑏, the corresponding weight𝑤𝑏 is updated

each iteration by

𝑤𝑏 ← min

(
𝑤𝑏 +𝑤step,𝑤max

)
(2)

where 𝑤step ∈ N+ is a hyperparameter serving as a step size and

𝑤max ∈ N+ is another hyperparameter which restricts the maxi-

mum possible weight.

We deliberately chose to introduce a maximum weight 𝑤max

to maintain an element of balance in the context of exploration

and exploitation. Given two inactive nodes 𝑏1 and 𝑏2 with 𝑏1 being

Weighted-CGP to Mitigate Search Space Limitations FOGA ’23, August 30-September 1, 2023, Potsdam, Germany

inactive for less iterations than 𝑏2. Without an upper bound on

the weights, both nodes’ weights could keep growing indefinitely.

However, the 𝑤𝑏1 will always be smaller than 𝑤𝑏2 and mutating

connections will in turn always favour 𝑏2. Hence, we assume that

unlimited weights would favour exploitation over exploration too

strongly.

As a result of performing step-wise updates of𝑤𝑛 , the probability

of a node𝑛 being chosen to be part of a new connection immediately

after becoming inactive is only marginally higher than𝑤min. This

gives other nodes, which have been inactive for a longer period

of time, a higher chance to be picked and having their potential

in the phenotype explored. Furthermore, we hypothesize that it is

not even desirable for nodes to immediately become active again,

which would, for example be the case, if weights were set to𝑤max

immediately upon becoming inactive. While this would lead to a

higher percentage of nodes being active, this would inhibit neutral

drift (inactive nodes changing over time) which may be beneficial

(see Section 3). However, as has been already mentioned, Goldman

and Punch [5] as well as Collins [3] doubt the importance of genetic

drift in the context of CGP, so this preference may be debatable.

This concept of weighted connections is tested on both the Nor-

mal and Dag variants of CGP; within this paper, we name these new

variants Weighted-Normal and Weighted-Dag, respectively.

5.2 Time complexity

The modifications to the mutation operator incur additional time

complexity which we now shortly analyse. In the following, let

𝑁 ∈ N+ be the number of input and computational nodes of the

considered CGP graph. In each iteration, the weights of 𝑁 nodes

have to be updated which leads to an additional runtime of O(𝑁).
To mutate a single connection 𝑣 , a new node must be drawn from

𝑆𝑣 while considering the weights of each node in 𝑆𝑣 . The distribu-

tion over possible nodes for a certain connection 𝑣 is univariate

discrete and has |𝑆𝑣 | ≤ 𝑁 possible values. Drawing from this distri-

bution is possible in O(|𝑆𝑣 |) time. This is achieved by computing

its cumulative distribution in O(|𝑆𝑣 |), sampling a random number

fromU(0, 1) (possible in amortized O(1)) and then performing a bi-

nary search over the previously computed cumulative distribution

in O(log |𝑆𝑣 |) [8].

6 EVALUATION OF WEIGHTED-CGP

In order to find out whether the modifications we proposed for

the CGP mutation operator have merit, we conducted an empirical

study
3
. This section first describes our experimental design and how

we collected data. After that, we attempt to answer the following

questions:

Q1 Which model is, on the learning tasks considered, faster in

terms of solution time, the baselines or Weighted-CGP?

Q2 Is it possible to employ less nodes with Weighted-CGP

while keeping similar number of training iterations?

Q3 In Section 4, we report that some nodes spend many train-

ing iterations inactive. Does the distribution of inactive nodes

over the grid change with Weighted-CGP?

3
Implementation and benchmarks can be found at https://github.com/CuiHen/

Weighted-mutation-in-CGP.

Table 1: Number of nodes used for each benchmark task;

determined by performing a hyperparameter study.

Parity Encode Decode Multiply

Normal 500 500 1,000 1,000

Dag 100 100 100 100

For each of these questions, we also want to assess how confident

we can be in our answer given the data we collected.

6.1 Experimental design

We make use of four Boolean benchmark problems: 3-bit Parity, 16-

4-bit Encode, 4-16-bit Decode and 3-bit Multiply. In the followingwe

will call these Parity, Encode, Decode and Multiply, respectively. De-
spite Parity being regarded as too easy by the Genetic Programming

community [29], it is commonly used as a benchmark [12, 13, 31]

and we include it in our evaluation for ease of comparison. Encode

and Decode are problems with different input and output sizes and

found in several CGP-related works as well [5–7]. Finally, Mul-

tiply [27] is a comparatively hard problem which was proposed

by White et al. [29].

In 3-bit Parity, a Boolean function 𝑓 : {0, 1}3 → {0, 1} with
property 𝑓 (𝑥) = 1 if and only if the number of ones in the vector

𝑥 ∈ {0, 1}3 is odd, is learned. Considering 16-4-bit Encode, the

objective is to take one-hot encoded numbers from zero to 15 and

convert them into a four bit encoded integer. On the other hand, the

goal of 4-16-bit Decode is the exact opposite, where four bit encoded

integers are taken and must be converted into their respective one-

hot encoding. For 3-bit Multiply, the aim is to multiply two 3-bit

numbers into a 6-bit number. [27, 28]

Considering the function set used, all four benchmarks are trained

with the standard function set for these Boolean problems: AND,
OR, NAND and NOR.

As for the fitness function, let 𝑓 : {0, 1}𝑛 → {0, 1}𝑚 be a

correct Boolean mapping function. The fitness of an individual

𝑔 : {0, 1}𝑛 → {0, 1}𝑚 relating to the learning task 𝑓 is defined as:

|{𝑥 ∈ {0, 1}𝑛 | 𝑓 (𝑥) = 𝑔(𝑥)}|
|{0, 1}𝑛 |

For the baselines (Normal and Dag, we use the commonly-

used (1 + 4)-ES with Single mutation introduced in Section 2.2. For

Weighted-Normal and Weighted-Dag, we employ the (1 + 4)-
ES as well but use the mutation operator proposed in Section 5.1,

that is, Single mutation extended with weighted connections.
We determined an appropriate number of nodes 𝑁 for each

problem configuration by performing an exhaustive grid search

over a fixed set of values for 𝑁 . At that, for Normal we investi-

gated 𝑁 ∈ {250, 500, 1000, 2000} and 𝑁 ∈ {50, 100, 250, 500, 1000}
for Dag. Note that we deliberately chose lower values for Dag,

since Goldman and Punch [7] showed that Dag needs less nodes

than Normal. Table 1 states for each benchmark problem the num-

ber of nodes chosen for the following sections (highest mean per-

formance over 15 independent repetitions with different random

seeds).

https://github.com/CuiHen/Weighted-mutation-in-CGP
https://github.com/CuiHen/Weighted-mutation-in-CGP

FOGA ’23, August 30-September 1, 2023, Potsdam, Germany Henning Cui, David Pätzel, Andreas Margraf, and Jörg Hähner

As introduced in Section 5.1, Weighted-CGP has three hyper-

parameters:𝑤min,𝑤max and𝑤step. For𝑤min, this parameter can be

chosen rather arbitrarily and we chose𝑤min = 100. Since the other

two hyperparameters can be expected to have strong impact on

performance while at the same time a range of sensible values for

them is not obvious, we perform experiments for a set of values

for each of them: We combine 𝑤max ∈ {250, 500, 750, 1000} and
𝑤step ∈ {10, 25, 50, 100}. Note that the magnitude of sensible values

for both 𝑤max and 𝑤step very likely depends on the magnitude

of the chosen value for𝑤min which is why we deliberately chose

larger steps.

With the number of nodes fixed according to Table 1, we now

performed 20 independent repetitions with different random seeds

for each combination of values of𝑤max and𝑤step. Runs were ter-

minated either when a solution with maximum fitness (a rate of

correct outputs of 100 %) was found or as soon as the number of

iterations exceeded 750,000. We recorded as our measure of perfor-

mance either the number of training iterations until that maximum

fitness solution was found or the fact that no maximum fitness

solution was found in time.

For the posterior distributions of our results and their evalua-

tions, we perform a Bayesian data analysis
4
. The model to compare

the baseline with Weighted-CGP is inspired by Kruschke [14]. It

differs from Kruschke’s model in that it is based on two gamma

distributions, one for the baseline and one for our extension, and by

the fact that we also model the observations where the tasks have

not been solved within 750,000 steps as censored data. Since we

only consider the number of training iterations, the units we con-

sider can never be negative. Thus, other common distributions such

as Student’s 𝑡 distributions can not be expected to model the data

well. We also conducted a prior sensitivity analysis to ensure the

robustness of the models. They always display almost identical re-

sults, implicating robust models. Finally, please note that cmpbayes
uses Markov Chain Monte Carlo sampling to obtain its distribu-

tions. We performed the usual checks to ensure convergence and

well-behavedness (trace plots, posterior predictive checks, 𝑅 values,

effective sample size). For more information regarding the models,

we refer to Kruschke [14] and Pätzel [22].

6.2 Performance on training iterations

Summaries of the results obtained for the two baselines Normal

and Dag (i. e. without our modifications) are given in Table 2. We

provide these mainly to improve comparability with earlier work

on CGP.

The best results on each of the four benchmark problems for

Weighted-Normal and Weighted-Dag are reported in Table 3.

For each individual result, we refer to Table 5 in Appendix B.

We compute for each considered hyperparameter configuration

(𝑤max,𝑤step) the 95 % highest posterior density intervals (HPDI) of
the distributions of 𝜇1/𝜇2 with 𝜇1 B 𝜇𝑤step,𝑤max

and 𝜇2 B 𝜇
baseline

where 𝜇1 and 𝜇2 are random variables corresponding to the respec-

tive mean numbers of iterations until solution. At that, the distribu-
tions of 𝜇1 and 𝜇2 are estimated by the gamma distribution–based

model for comparing non-negative data from cmpbayes [22]. A 95 %

HPDI interval [𝑙, 𝑢] can be read as 𝑝 (𝑙 ≤ 𝜇1/𝜇2 ≤ 𝑢) = 95 %, that is,

4
For this task, the Python library cmpbayes [22] is used.

Table 2: Mean number (20 independent repetitions with dif-

ferent random seeds) of iterations until a solution is found

by the Normal and Dag baselines (i. e. without our exten-

sion) on the benchmark problems. All runs considered here

finished within the maximum number of iterations.

Parity Encode Decode Multiply

Normal 698.5 15,672.3 22,558.2 247,726.6

Dag 744.3 10,439.2 51,908.2 69,293.6

the ratio between the modified algorithm with the given parametriza-
tion and the baseline lying between the two bounds has a probability
of 95 %. Correspondingly, if the ratio takes a value of less than one,
then our extension needs less iterations, whereas if the ratio’s value

is greater than one then the baseline needs less iterations. More

information on these models can be found in Appendix A.

When best results are mentioned, please consider that the best

results are always select via a Bayesian model to compare mul-

tiple algorithms. The model is based on the Plackett-Luce model

described by Calvo et al. [2]. This model allows to compute for a

set of ranked options an estimate of the probabilities of each of the

options to be the one with the highest rank. In this case, the set of

ranked options are all (𝑤max,𝑤step) configurations, ranked by our

performance metric.

In addition, we define for each benchmark a region of practical
equivalence (ROPE). For the results in Table 3, the ROPE is defined

by 1 % of the mean number of iterations until Weighted-CGP finds

a solution for the given benchmark.

6.2.1 Results for Weighted-Normal. For our results of Weighted-

Normal on Parity, Encode and Decode, the 95 % HPDIs for the ratio

of the numbers of iterations have a lower bound of less than one but

an upper bound of greater than one. Hence, there is no guarantee of

Weighted-Normal performing better than the baseline in all cases.

On another note, the Bayesian models employed allow us not only

to estimate HPDIs but also the posterior probability of one method

outperforming the other. Given these probabilities, our extension

is slightly favoured, as the means are negative and the probability

of Weighted-Normal being better is between 60% to 81%. This

means, on average, Weighted-Normal will need less iterations to

find a solution. However, based on the number of iterations alone,

we cannot make a clear recommendation as to whether to keep

using the baseline or our proposed extension. While some improve-

ments can be achieved with Weighted-Normal, two additional

hyperparameters are needed to achieve these results.

The only configuration where we can say with 95 % confidence

that there is a definite difference is Weighted-Normal on Multiply

with (250, 50). Here, the 95% HPDI is in the interval of [0.3, 0.7],
which corresponds to Weighted-Normal being faster than Nor-

mal by around 54,000 to 240,000 iterations. For this parametriza-

tion of Weighted-Normal on Multiply, there is a high probability

(about 100 %) that Weighted-Normal has, indeed, a lower number

of iterations until solution than the corresponding baseline.

6.2.2 Results for Weighted-DAG. Considering Weighted-Dag, a

benefit can be seen for all benchmarks, as the lower and upper

Weighted-CGP to Mitigate Search Space Limitations FOGA ’23, August 30-September 1, 2023, Potsdam, Germany

Table 3: Results of iterations until finished training for Weighted-Normal and Weighted-Dag. Among others, we report the

difference of means between the best configuration and the baseline for both empirical and model data. In addition, we present

the lower and upper bounds of the 95 %HPDI as described in 6.2 and their numerical bounds. Furthermore, the probability 𝑝𝑏 (in

%, rounded) of the baseline being better, probability 𝑝𝑒 of both configurations being practically equivalent and the probability

𝑝𝑤 of Weighted-CGP being better, is reported. The probability is given as a triplet: (𝑝𝑏 , 𝑝𝑒 , 𝑝𝑤).

Variant Benchmark Weights

Empirical

mean diff.

Model mean diff. HPDI total HPDI Prob.

Weighted-Normal

Parity (750, 50) −256 −260 [0.3, 1.4] [−746, 96] (8, 11, 81)
Encode (750, 100) −3,912 −3,860 [0.4, 1.4] [−11,773, 2,602] (17, 2, 81)
Decode (500, 25) −855 −866 [0.7, 1.3] [−6,157, 4,273] (38, 2, 60)
Multiply (250, 50) −144,211 −138,464 [0.3, 0.7] [−247,099,−54,358] (0, 0, 100)

Weighted-Dag

Parity (250, 25) −266 −267 [0.3, 1.3] [−6367,−201] (7, 8, 85)
Encode (1000, 10) −3,092 −3,081 [0.5, 1.0] [−22,381,−2,370] (2, 5, 93)
Decode (500, 10) −11,643 −11,637 [0.6, 1.0] [−21,570,−1,862] (2, 1, 97)
Multiply (500, 25) −12,508 −12,397 [0.6, 1.1] [−30,109, 4,136] (10, 2, 88)

bounds of the HPDIs tend towards Weighted-Dag being better

than Dag. This notion can be confirmed by their stated probabilities,

as Weighted-Dag is better than the baseline by 85 % or more.

6.3 Influence on the number of nodes

Section 6.2 was only concerned with the number of iterations while

keeping the number of nodes fixed for each experiment. We did

deliberately not choose to change the number of nodes to see

Weighted-CGPs performance on the same amount of nodes. How-

ever, the usage of weights may influence the number of nodes

needed to efficiently evolve CGP graphs. A higher number of nodes

leads to a higher amount of CPU time per iteration as well as higher

memory requirements. Also, a lower number of nodes decreases

the size of the search space which can aid the evolutionary search.

For Normal, each combination of the following parameters are

exhaustively observed
5
:

• 𝑤max ∈ {250, 500, 750, 1000}
• 𝑤step ∈ {10, 25, 50, 100}
• 𝑁 ∈ {50, 100, 200, 250, 500, 1000, 2000}

Based on that data, we then fitted and sampled for each bench-

mark a model to compare multiple algorithms based on [2] to get

an estimate of which of the available configurations performs best

with the highest probability. Note that we used the same kind of

model to select well-performing (𝑤𝑚𝑎𝑥 ,𝑤step) configurations in
Section 6.2.

We then compare that probably best-performing configuration

with the baseline by fitting and then sampling the gamma distribu-

tion–based model described in Section 6.1. The probably best-

performing parameters as well as a summary of posterior distribu-

tion of the gamma distribution–based model is given in Table 4. We

define for each benchmark a region of practical equivalence (ROPE)
as 1 % of the average number of iterations until Normal finds a

solution for the given benchmark.

Our results of number of nodes needed is reported in Table 4.

These results can be compared to our baselines in Tables 1 and 2.

5
We do not consider Dag in this context, as we already use a very low 𝑁 for that CGP

variant.

Examining the number of nodes for each task as well as the resulting

average number of iterations achieved, it can be seen that

• the optimal hyperparameter configuration for Weighted-

Normal contains a smaller number of nodes than the base-

line, and

• that optimal configuration performs with reasonably high

probabilities of 84 % (Parity and Encode), 95 % (Decode) and

98 % (Multiply) better or equal to the baseline.

We thus conclude that introducing the weighted mutation operator

decreases the required number of nodes on all benchmark datasets.

6.4 Positional bias and node inactivity

In Section 4, we hypothesize that a limitation of Dag may be the

prolonged inactivivity of nodes. Hence, we next investigate the

number of iterations that nodes stay inactive during training and

analyse Dag compared to Weighted-Dag. Furthermore, we inves-

tigate the positional bias mentioned by Goldman and Punch [5]. To

do so, we compare the positional bias of Normal to the positional

bias of Weighted-Normal graphically.

Note that we always compare the baselines against the best

hyperparameter configuration of Weighted-CGP which are given

in Tables 3 and 4 for Weighted-Dag and Weighted-Normal,

respectively. Please note that, for both Normal and Dag, we only

visualize our findings for Multiply as Parity, Encode and Decode

show almost-identical plots and behaviours.

6.4.1 Positional Bias. Regarding the positional bias of Normal,

Weighted-Normal is able to neutralize the bias slightly. This trend

can be seen in Figure 4. It shows the percentage of nodes being

active during training. As the baseline and Weighted-Normal

have different number of nodes, reporting the actual node index

for both approaches would lead to less legible graphs. Hence, we

report the relative node index in percentage to the graph’s total

length.

According to Figure 4, the baseline (orange line) shows the afore-

mentioned positional bias. Nodes to the left of the grid are more

active during training while subsequent nodes are barely active.

Contrary to this, Weighted-Normal (blue line) shows a similar

FOGA ’23, August 30-September 1, 2023, Potsdam, Germany Henning Cui, David Pätzel, Andreas Margraf, and Jörg Hähner

Table 4: Results of nodes needed with Weighted-Normal. We report the probability 𝑝𝑏 (in %) of the baseline being better,

probability 𝑝𝑒 of both configurations being practically equivalent and the probability 𝑝𝑤 of Weighted-Normal with less

nodes being better. The probability is given as a triplet: (𝑝𝑏 , 𝑝𝑒 , 𝑝𝑤).

Benchmark #Nodes Normal vs. Weighted-Normal Weights HPDI total HPDI Probabilities

Parity 500 vs. 100 (750, 25) [0.49, 1.42] [−474, 184] (16, 16, 67)
Encode 500 vs. 250 (250, 100) [0.65, 1.23] [−3470, 1509] (16, 21, 64)
Decode 1000 vs. 200 (500, 25) [0.75, 1.12] [−7640, 1015] (5, 15, 80)
Multiply 100 vs. 200 (750, 50) [0.50, 0.99] [−92232,−8950] (2, 0, 98)

0 20 40 60 80 100
Relative node index in % to the graph's total length

0.0

0.2

0.4

0.6

0.8

1.0

%
 a

ct
iv

e
du

rin
g

tra
in

in
g

Multiply

Weighted
Baseline

Figure 4: Node activity of Normal compared to Weighted-

Normal during the training of Multiply. Weighted-Normal

has less positional bias compared to the baseline, as later

nodes are active more often.

0 20 40 60 80 100
Relative node index in % to the graph's total length

0.5

0.6

0.7

0.8

0.9

1.0

%
 a

ct
iv

e
du

rin
g

tra
in

in
g

Multiply

Weighted
Baseline

Figure 5: Node activity of Dag vs. Weighted-Dag during the

training of Multiply. The nodes of Weighted-Dag are more

active compared to their baseline.

but less extreme effect. Nodes at the beginning and in the middle

of the grid are active more frequently compared to the baseline,

which indicates less positional bias. This could may be the reason

why Weighted-Normal is able to achieve similar results with less

nodes compared to Normal.

6.4.2 Node Inactivity. In regard to the limited search space explo-

ration of Dag, their results show interesting trends. Figure 5 shows

the percentage a node is active during the training of Multiply, com-

paring the baseline with Weighted-Dag. Interestingly, nodes of

the baseline are active during 50 % to 80 % of the training iterations

whereas the nodes of Weighted-Dag are active during 80 % to 90 %.

Furthermore, it is interesting to note a decreased variance in the

percentage of active nodes during training considering each node.

This may indicates that there are no nodes in the graph which are

more active or inactive compared to the others.

In addition, our experiments show that across all benchmarks,

the maximal number of inactivity reduces by about 30 %. Further-

more, the frequency of such long inactivity periods should occur

less, too. Given the number of iterations a node is inactive during

a whole training, we counted the outliers outside of a 95% HPDI

interval. Comparing the number of outliers between Weighted-

Dag and Dag, Weighted-Dag is able to reduce the number of

outliers—and the number of nodes being inactive for long periods—

by about 91 %. Hence, long periods of inactivity as described in

Section 4 should occur less. Combined with the better performance

of Weighted-Dag, it is possible that a higher percentage of nodes

being active leads to the improvement. However, as more nodes are

active, more computational time is needed to calculate an output

because more nodes contribute to such. Consequently, Weighted-

Dag leads to a trade-off. Less iterations are needed until a solution

is found but each iteration is probably more expensive computa-

tionally.

On another note, another insight for Dag is the number of nodes

being inactive for only one iteration. We found that nodes are more

likely to be inactive for only one iteration during the training of

Dag. On average, during the training of the baseline, nodes are

10,352 times inactive for only one iteration. On the other hand, this

number decreases for Weighted-Dag to an average of only 784.

Given the same gamma distribution-based model for comparing

non-negative data from Section 6.2, we build a model based on the

number of iterations nodes spend inactive for Dag and Weighted-

Dag, respectively. Here, we found that nodes of the baseline are

7,700 to 11,700 times more inactive for only one iteration during

their training compared to Weighted-Dag. It is possible that this

effect is another factor for Weighted-Dags improved performance.

However, this remains only a conjecture as no conclusions can be

drawn based on our experiments.

7 CONCLUSION

Long periods of node inactivity and the possibility of nodes never

becoming active is a limitation in the exploration of the search

space of Cartesian Genetic Programming (CGP). We hypothesize

that these inactivity periods could decrease the exploration of CGPs

search space. To combat this potential drawback, we introduced

Weighted-CGP, wherein we present a new, guided mutation opera-

tor for CGP. By utilizing weights during the mutation of connection

genes, specific nodes have a higher probability of becoming active.

Furthermore, we hypothesize that these weights are able to decrease

the impact of the positional bias of CGP: nodes near input nodes

are more likely to be active than nodes near output nodes—which

Weighted-CGP to Mitigate Search Space Limitations FOGA ’23, August 30-September 1, 2023, Potsdam, Germany

decreases CGPs exploration of its search space. This extensions

was then tested and evaluated on several Boolean benchmark prob-

lems and on two different CGP variants: the standard CGP variant

(Normal) and Dag.

When the number of nodes are not changed,Weighted-Normal

performs equally to Normal in most cases. Only in 1 out of 4 tasks,

Weighted-Normal definitely outperforms Normal. When Dag is

compared to Weighted-Dag, the latter is able to solve all bench-

marks with less iterations needed given the right configuration.

We evaluate the influence of Weighted-CGP on the number of

nodes needed to train a problem, too. In this case, we can confirm

that less nodes are needed which can save space, computational

complexity and potentially decrease the size of the search space.

Furthermore, we investigate the effect of Weighted-CGP on the

positional bias of Normal as well as the activity of Dag. This leads

to new insights, as Weighted-CGP is indeed able to decrease Nor-

mals positional bias. Finally, for Dag, nodes are more active during

their training which potentially leads to less training iterations

needed.

As for future work, there is the possibility to analyse the concept

and workings of CGP and Weighted-CGP in more detail. For

example, a more detailed evaluation of the hyperparameters𝑤𝑚𝑎𝑥

and𝑤step could be conducted to better understand their interplay.

Furthermore, the analysis of active node distributions and the

periods of inactivity is not complete.We found that, in the context of

Dag, nodes are over 10 times more likely to be inactive for only one

iteration. The real impact of this phenomenon remains unknown

and further—more in-depth—experiments should be conducted.

Most of the current research of neutral genetic drift in CGP

describes the importance of many inactive nodes. However, with

Weighted-Dag, most nodes are active during 90 % of the training

and are able to outperform Dag which has less active nodes. A simi-

lar tendency can be seen with Weighted-Normal, too. Weighted-

Normal and Normal perform equally in terms of iterations needed

until a solution is found. However, Weighted-Normal needs less

nodes, with more nodes being active, too. Both of those insights,

in turn, could go against the current research direction of neutral

genetic drift in CGP and could be topic of more in-depth analysis.

Nonetheless, there is still the possibility of an interplay between ac-

tive and inactive nodes. With nodes being active more frequently, it

may give modified inactive nodes the opportunity to be tested. This

would, in turn, be another argument in favour of neutral genetic

drift.

ACKNOWLEDGMENTS

The authors would like to thank the German Federal Ministry of

Education and Research (BMBF) for supporting the project SaMoA

within VIP+.

REFERENCES

[1] Peter J. Bentley and Soo Ling Lim. 2017. Fault tolerant fusion of office sensor

data using cartesian genetic programming. In 2017 IEEE Symposium Series on
Computational Intelligence (SSCI). IEEE, 1–8.

[2] Borja Calvo, Josu Ceberio, and Jose A. Lozano. 2018. Bayesian Inference for

Algorithm Ranking Analysis. In Proceedings of the Genetic and Evolutionary
Computation Conference Companion (Kyoto, Japan) (GECCO ’18). Association for

Computing Machinery, New York, NY, USA, 324–325. https://doi.org/10.1145/

3205651.3205658

[3] M. Collins. 2005. Finding Needles in Haystacks is Harder with Neutrality. In

Proceedings of the 7th Annual Conference on Genetic and Evolutionary Computation
(Washington DC, USA) (GECCO ’05). Association for Computing Machinery, New

York, NY, USA, 1613–1618. https://doi.org/10.1145/1068009.1068282

[4] Henning Cui, Andreas Margraf, and Jörg Hähner. 2022. Refining Mutation

Variants in Cartesian Genetic Programming. In Bioinspired Optimization Methods
and Their Applications, Marjan Mernik, Tome Eftimov, and Matej Črepinšek (Eds.).

Springer International Publishing, Cham, 185–200.

[5] Brian W. Goldman and William F. Punch. 2013. Length Bias and Search Lim-

itations in Cartesian Genetic Programming. In Proceedings of the 15th Annual
Conference on Genetic and Evolutionary Computation (Amsterdam, The Nether-

lands) (GECCO ’13). Association for Computing Machinery, New York, NY, USA,

933–940. https://doi.org/10.1145/2463372.2463482

[6] Brian W. Goldman and William F. Punch. 2013. Reducing Wasted Evaluations

in Cartesian Genetic Programming. In Genetic Programming, Krzysztof Krawiec,
Alberto Moraglio, Ting Hu, A. Şima Etaner-Uyar, and Bin Hu (Eds.). Springer

Berlin Heidelberg, Berlin, Heidelberg, 61–72.

[7] Brian W. Goldman and William F. Punch. 2015. Analysis of Cartesian Genetic

Programming’s Evolutionary Mechanisms. IEEE Transactions on Evolutionary
Computation 19, 3 (2015), 359–373. https://doi.org/10.1109/TEVC.2014.2324539

[8] Wolfgang Hörmann, Josef Leydold, and Gerhard Derflinger. 2004. Discrete Dis-
tributions. Springer Berlin Heidelberg, Berlin, Heidelberg, 215–241. https:

//doi.org/10.1007/978-3-662-05946-3_10

[9] Jakub Husa and Roman Kalkreuth. 2018. A Comparative Study on Crossover in

Cartesian Genetic Programming. In Genetic Programming, Mauro Castelli, Lukas

Sekanina, Mengjie Zhang, Stefano Cagnoni, and Pablo García-Sánchez (Eds.).

Springer International Publishing, Cham, 203–219.

[10] Roman Kalkreuth. 2022. Phenotypic Duplication and Inversion in Cartesian

Genetic Programming Applied to Boolean Function Learning. In Proceedings
of the Genetic and Evolutionary Computation Conference Companion (Boston,

Massachusetts) (GECCO ’22). Association for Computing Machinery, New York,

NY, USA, 566–569. https://doi.org/10.1145/3520304.3529065

[11] Roman Kalkreuth, Günter Rudolph, and Andre Droschinsky. 2017. A New Sub-

graph Crossover for Cartesian Genetic Programming. In Genetic Programming,
James McDermott, Mauro Castelli, Lukas Sekanina, Evert Haasdijk, and Pablo

García-Sánchez (Eds.). Springer International Publishing, Cham, 294–310.

[12] Paul Kaufmann and Roman Kalkreuth. 2017. An Empirical Study on the

Parametrization of Cartesian Genetic Programming. In Proceedings of the Ge-
netic and Evolutionary Computation Conference Companion (Berlin, Germany)

(GECCO ’17). Association for ComputingMachinery, NewYork, NY, USA, 231–232.

https://doi.org/10.1145/3067695.3075980

[13] Paul Kaufmann and Roman Kalkreuth. 2020. On the Parameterization of Cartesian

Genetic Programming. In 2020 IEEE Congress on Evolutionary Computation (CEC).
1–8. https://doi.org/10.1109/CEC48606.2020.9185492

[14] John K. Kruschke. 2013. Bayesian estimation supersedes the t test. Journal of
Experimental Psychology: General 142, 2 (2013), 573.

[15] Andreas Margraf, Anthony Stein, Leonhard Engstler, Steffen Geinitz, and Jorg

Hahner. 2017. An evolutionary learning approach to self-configuring image

pipelines in the context of carbon fiber fault detection. In 2017 16th IEEE Interna-
tional Conference on Machine Learning and Applications (ICMLA). IEEE, 147–154.

[16] Julian Miller and P. Thomson. 2000. Cartesian Genetic Programming. In Proc.
European Conference on Genetic Programming, Vol. 1802. Springer, 121–132.

[17] Julian Miller, P. Thomson, and T. Fogarty. 1999. Designing Electronic Circuits

Using Evolutionary Algorithms. Arithmetic Circuits: A Case Study. Genetic
Algorithms and Evolution Strategies in Engineering and Computer Science (10

1999).

[18] Julian F. Miller. 2011. Cartesian Genetic Programming. Springer Berlin Heidelberg,

Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17310-3_2

[19] Julian Francis Miller. 2020. Cartesian genetic programming: its status and future.

Genetic Programming and Evolvable Machines 21, 1 (01 Jun 2020), 129–168. https:

//doi.org/10.1007/s10710-019-09360-6

[20] Andrew J. Payne and Susan Stepney. 2009. Representation and structural biases

in CGP. In 2009 IEEE Congress on Evolutionary Computation. 1064–1071. https:

//doi.org/10.1109/CEC.2009.4983064

[21] Wenzel Pilar von Pilchau, David Pätzel, Anthony Stein, and Jörg Hähner. 2023.

Deep Q-Network Updates for the Full Action-Space Utilizing Synthetic Expe-

riences. In 2023 International Joint Conference on Neural Networks (IJCNN), to
Appear.

[22] David Pätzel. 2023. cmpbayes. https://github.com/dpaetzel/cmpbayes. commit =

4de0abc37ee28b35267db173d32bb96ca9e69236.

[23] Masanori Suganuma, Masayuki Kobayashi, Shinichi Shirakawa, and Tomoharu

Nagao. 2020. Evolution of Deep Convolutional Neural Networks Using Carte-

sian Genetic Programming. Evolutionary Computation 28, 1 (03 2020), 141–163.

https://doi.org/10.1162/evco_a_00253 arXiv:https://direct.mit.edu/evco/article-

pdf/28/1/141/2020362/evco_a_00253.pdf

https://doi.org/10.1145/3205651.3205658
https://doi.org/10.1145/3205651.3205658
https://doi.org/10.1145/1068009.1068282
https://doi.org/10.1145/2463372.2463482
https://doi.org/10.1109/TEVC.2014.2324539
https://doi.org/10.1007/978-3-662-05946-3_10
https://doi.org/10.1007/978-3-662-05946-3_10
https://doi.org/10.1145/3520304.3529065
https://doi.org/10.1145/3067695.3075980
https://doi.org/10.1109/CEC48606.2020.9185492
https://doi.org/10.1007/978-3-642-17310-3_2
https://doi.org/10.1007/s10710-019-09360-6
https://doi.org/10.1007/s10710-019-09360-6
https://doi.org/10.1109/CEC.2009.4983064
https://doi.org/10.1109/CEC.2009.4983064
https://github.com/dpaetzel/cmpbayes
https://doi.org/10.1162/evco_a_00253
https://arxiv.org/abs/https://direct.mit.edu/evco/article-pdf/28/1/141/2020362/evco_a_00253.pdf
https://arxiv.org/abs/https://direct.mit.edu/evco/article-pdf/28/1/141/2020362/evco_a_00253.pdf

FOGA ’23, August 30-September 1, 2023, Potsdam, Germany Henning Cui, David Pätzel, Andreas Margraf, and Jörg Hähner

[24] Ali Torabi, Arash Sharifi, and Mohammad Teshnehlab. 2022. Using Carte-

sian Genetic Programming Approach with New Crossover Technique to De-

sign Convolutional Neural Networks. Neural Processing Letters (01 Dec 2022).
https://doi.org/10.1007/s11063-022-11093-0

[25] Andrew James Turner and Julian Francis Miller. 2015. Neutral genetic drift: an

investigation using Cartesian Genetic Programming. Genetic Programming and
Evolvable Machines 16, 4 (01 Dec 2015), 531–558. https://doi.org/10.1007/s10710-

015-9244-6

[26] Vesselin K. Vassilev and Julian F. Miller. 2000. The Advantages of Landscape

Neutrality in Digital Circuit Evolution. In Evolvable Systems: From Biology to Hard-
ware, Julian Miller, Adrian Thompson, Peter Thomson, and Terence C. Fogarty

(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 252–263.

[27] James Alfred Walker and Julian Francis Miller. 2008. The Automatic Acqui-

sition, Evolution and Reuse of Modules in Cartesian Genetic Programming.

IEEE Transactions on Evolutionary Computation 12, 4 (2008), 397–417. https:

//doi.org/10.1109/TEVC.2007.903549

[28] Ingo Wegener. 2005. Complexity theory: exploring the limits of efficient algorithms.
Springer Science & Business Media.

[29] David White, James Mcdermott, Mauro Castelli, Luca Manzoni, Brian Goldman,

Gabriel Kronberger, Wojciech Jaśkowski, Una-May O’Reilly, and Sean Luke.

2013. Better GP benchmarks: Community survey results and proposals. Genetic
Programming and Evolvable Machines 14 (03 2013), 3–29.

[30] Dennis G. Wilson, Julian F. Miller, Sylvain Cussat-Blanc, and Hervé Luga. 2018.

Positional cartesian genetic programming. arXiv preprint arXiv:1810.04119 (2018).
[31] Tina Yu and Julian Miller. 2001. Neutrality and the Evolvability of Boolean

Function Landscape. In Genetic Programming, Julian Miller, Marco Tomassini,

Pier Luca Lanzi, Conor Ryan, Andrea G. B. Tettamanzi, and William B. Langdon

(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 204–217.

[32] Tina Yu and Julian Miller. 2002. Finding needles in haystacks is not hard with

neutrality. In European Conference on Genetic Programming. Springer, 13–25.

A STATISTICAL MODEL TO COMPARE TWO

CGP CONFIGURATIONS

We compare the sets of number of iterations until a solution is
found (NIS) for two different CGP solutions (in our example, a

Weighted-CGP configuration compared to the baseline) for a

given task. In the following, for each NIS, a random variable 𝑇𝑖
with 𝑖 ∈ {Weighted-CGP, 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒} is denoted.

For that purpose, a model inspired by the model described by

Kruschke [14] is used. Our model differs, as it is based on two

gamma distributions, one for each 𝑇𝑖—instead of the Student’s t-
distribution used by Kruschke [14]. We differ from the t-distribution,

as it supports negative values. The mean NIS, however, can not be

negative, so false assumptions would be made with the Student’s t-

distribution. Hence, we rely on a gamma distribution, as its support

𝑥 ∈ (0,∞) is non-negative and can be mapped to our data more

precisely.

The gamma distributions are parametrized for a mean parameter

𝜇𝑖 (the shape parameter) and a rate parameter 𝛽𝑖 . As a prior for

𝜇𝑖 , a broad exponential distribution is used, which is parametrized

such that 90 % of means lie in [0, 1,500,000]. Here, the upper bound
is two times the maximum number of iterations for a CGP training.

Furthermore, a mean NIS can not be negative or zero, so the expo-

nential distribution is shifted by one hundredth of the minimum

of the measured NIS. As for the rate parameter 𝛽𝑖 , its prior is a

uniform distribution chosen such that the variance of the distribu-

tion is at least 𝑙 times, but at most 𝑢 times the variance of the data.

In accordance with the work from Kruschke [14], we choose 𝑙 as

one-thousandth, and 𝑢 as thousand times the standard deviation of

the pooled data.

We treat runs that were aborted after 750,000 iterations (i.e. runs

that did not solve the task in time) as censored data. In our setting,

we treat censored data as missing data, which is constrained to

fall in the censored range. Therefore, we explicitly represent our

censored data as a parameter 𝑇𝑖,𝑐𝑒𝑛𝑠 . This value is sampled with

the same 𝛽𝑖 and 𝜇𝑖 parameters. However, all imputed values for

the censored data will be greater than our maximal number of

iterations.

In accordance with the description, we define a full model for

two instances of

{
𝑇𝑖 ,𝑇𝑖,𝑐𝑒𝑛𝑠

}
with 𝑖 ∈ {Weighted-CGP, 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒}

as follows:

𝑇𝑖 ∼ Gamma (𝜇𝑖 , 𝛽𝑖) (3)

𝑇𝑖,𝑐𝑒𝑛𝑠 ∼ Gamma (𝜇𝑖 , 𝛽𝑖) ,𝑇𝑖,𝑐𝑒𝑛𝑠 > 750,000 (4)

𝜇𝑖 −
𝑚𝑖𝑛 (𝑇𝑖)

100

∼ 𝐸𝑥𝑝 (𝜆𝑖) (5)

𝜆𝑖 = −
𝑙𝑛 (𝑖 − 0.9)

𝑢𝜇
(6)

𝛽𝑖 | 𝜇𝑖 ∼ U
(

𝜇𝑖

𝑢 ·𝑉𝑎𝑟 (𝑇𝑖)
,

𝜇𝑖

𝑙 ·𝑉𝑎𝑟 (𝑇𝑖)

)
(7)

𝑙 = 1000
−1, 𝑢 = 1000, 𝑢𝜇 = 1,500,000 (8)

To compare two CGP configurations, the parameters of interest

are 𝜇𝑖 as well as their difference to estimate their ordering and mag-

nitude of any effects. The model provides a posterior distribution

for 𝜇𝑖 . As a result, they can be sampled, randomly paired and then

subtracted to obtain a sample of the distribution of the difference

of the mean values of Weighted-CGP and the baseline. Given that

the samples are large enough, it is possible to reason about the

underlying distribution itself and to compute probabilities of the

difference being positive or negative.

Please note that the cmpbayes [22] library uses Markov Chain

Monte Carlo sampling to obtain the samples for the model. Here,

four independent chains of 10,000 samples are sampled, each after a

warm-up phase of 1,000. A more detailed description can be found

in the work of Pilar von Pilchau et al. [21].

B RESULTS: TRAINING ITERATIONS

The results of each Weighted-Normal and Weighted-Dag con-

figuration are stated in Table 5. Each configuration is compared to

the baselines given in Table 2, with the same number of nodes. They

extend Table 3 to judge the performance of Weighted-Normal

and Weighted-Dag configurations.

https://doi.org/10.1007/s11063-022-11093-0
https://doi.org/10.1007/s10710-015-9244-6
https://doi.org/10.1007/s10710-015-9244-6
https://doi.org/10.1109/TEVC.2007.903549
https://doi.org/10.1109/TEVC.2007.903549

Weighted-CGP to Mitigate Search Space Limitations FOGA ’23, August 30-September 1, 2023, Potsdam, Germany

Table 5: Results of Weighted-Normal and Weighted-Dag on the benchmark problems, given in intervals. We compute

for each considered hyperparameter configuration (𝑤max,𝑤step) the 95% highest posterior density intervals (HPDI) of the

distributions of 𝜇1/𝜇2 with 𝜇1 B 𝜇𝑤step,𝑤max
and 𝜇2 B 𝜇

baseline
where 𝜇1 and 𝜇2 are random variables corresponding to the

respectivemean numbers of iterations until solution. We report the lower and upper bounds of the 95%HPDI of the distribution

of 𝜇1/𝜇2. A 95% HPDI interval [𝑙, 𝑢] can be read as 𝑝 (𝑙 ≤ 𝜇1/𝜇2 ≤ 𝑢) = 95 %, that is, the ratio between the modified algorithm with
the given parametrization and the baseline lying between the two bounds has a probability of 95%

Weighted-Normal Weighted-Dag

𝑤max 𝑤max

𝑤step 250 500 750 1,000 250 500 750 1,000

Parity

10 [0.7, 3.5] [0.9, 6.6] [1.3, 8.2] [0.8, 4.8] [0.3, 1.3] [0.5, 1.8] [0.6, 2.3] [0.5, 2.0]
25 [0.4, 2.0] [0.6, 4.0] [0.4, 1.9] [1.0, 6.7] [0.3, 1.3] [0.5, 1.7] [0.7, 2.4] [0.4, 1.7]
50 [0.7, 3.9] [1.2, 8.0] [0.3, 1.4] [0.9, 6.1] [0.5, 2.1] [0.5, 2.2] [0.7, 2.7] [0.5, 1.8]
100 [0.5, 2.1] [0.6, 4.1] [0.5, 2.8] [0.5, 2.4] [0.5, 2.3] [0.6, 2.0] [0.7, 2.8] [0.7, 2.7]

Encode

10 [0.6, 2.4] [0.8, 4.6] [0.8, 3.1] [1.0, 4.3] [0.7, 2.0] [0.5, 1.3] [0.7, 1.6] [0.5, 1.0]
25 [0.8, 4.3] [1.0, 4.8] [0.5, 1.7] [0.7, 3.2] [0.7, 1.7] [0.5, 1.3] [0.6, 1.6] [0.5, 1.1]
50 [0.6, 2.6] [0.5, 1.4] [0.8, 3.4] [1.6, 6.6] [0.6, 1.6] [0.7, 1.7] [0.6, 1.6] [0.5, 1.4]
100 [0.5, 1.6] [0.5, 1.8] [0.4, 1.4] [0.6, 2.1] [0.7, 1.7] [0.6, 1.5] [0.7, 1.5] [0.6, 1.6]

Decode

10 [0.8, 1.5] [1.0, 2.1] [0.8, 1.5] [1.2, 2.5] [0.7, 1.2] [0.6, 1.0] [0.6, 1.0] [0.8, 1.3]
25 [0.9, 1.6] [0.7, 1.3] [0.9, 1.5] [1.0, 2.0] [0.8, 1.4] [0.8, 1.3] [0.7, 1.3] [0.8, 1.3]
50 [0.8, 1.4] [1.0, 1.9] [1.1, 1.7] [1.2, 2.5] [0.7, 1.1] [0.7, 1.1] [0.7, 1.2] [0.6, 1.2]
100 [0.8, 1.5] [0.8, 1.5] [0.9, 1.7] [1.1, 2.3] [0.7, 1.3] [0.8, 1.4] [0.8, 1.7] [0.9, 1.5]

Multiply

10 [0.3, 1.2] [0.5, 1.7] [0.5, 1.9] [0.9, 3.5] [0.6, 1.3] [0.9, 2.0] [0.7, 1.5] [0.8, 1.8]
25 [0.4, 1.7] [0.7, 2.7] [0.7, 2.4] [0.4, 1.4] [0.9, 2.1] [0.6, 1.1] [0.7, 1.3] [0.8, 2.2]
50 [0.3, 0.7] [0.8, 2.8] [0.7, 2.4] [0.3, 1.2] [0.7, 1.4] [0.7, 1.3] [0.7, 1.6] [0.8, 1.9]
100 [0.4, 1.4] [0.7, 2.5] [0.4, 1.8] [0.8, 3.0] [0.7, 1.4] [0.6, 1.2] [0.8, 1.5] [0.7, 1.3]

	Abstract
	1 Introduction
	2 Cartesian Genetic Programming
	2.1 Representation
	2.2 Evolutionary algorithm used by CGP
	2.3 Extension: DAG

	3 Related Work
	4 Limited search space exploration
	4.1 Frequent node inactivity during training
	4.2 Periods of inactivity in the context of neutral drift

	5 Mitigating the limited exploration
	5.1 Weighted mutation of connections
	5.2 Time complexity

	6 Evaluation of Weighted-CGP
	6.1 Experimental design
	6.2 Performance on training iterations
	6.3 Influence on the number of nodes
	6.4 Positional bias and node inactivity

	7 Conclusion
	Acknowledgments
	References
	A Statistical model to compare two CGP configurations
	B Results: training iterations

