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Abstract 19 

 20 

Estimates of global horizontal irradiance (GHI) from reanalysis and satellite-based data are the 21 

most important information for the design and monitoring of PV systems in Africa, but their 22 

quality is unknown due to the lack of in situ measurements. In this study, we evaluate the 23 

performance of hourly GHI from state-of-the-art reanalysis and satellite-based products 24 

(ERA5, CAMS, MERRA-2, and SARAH-2) with 37 quality-controlled in situ measurements 25 

from novel meteorological networks established in Burkina Faso and Ghana under different 26 

weather conditions for the year 2020. The effects of clouds and aerosols are also considered in 27 

the analysis by using common performance measures for the main quality attributes and a new 28 

overall performance value for the joint assessment. The results show that satellite data performs 29 

better than reanalysis data under different atmospheric conditions. Nevertheless, both data 30 

sources exhibit significant bias of more than 150 W/m2 in terms of RMSE under cloudy skies 31 

compared to clear skies. The new measure of overall performance clearly shows that the hourly 32 

GHI derived from CAMS and SARAH-2 could serve as viable alternative data for assessing 33 

solar energy in the different climatic zones of West Africa. 34 

 35 
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 37 

1. Introduction 38 

Global horizontal irradiance (GHI) also called surface shortwave downward radiation or solar 39 

irradiance, is defined as the amount of sunlight received from the Sun at the surface. It plays a 40 

vital role in the dynamics of the Earth’s surface and drives physical processes in the atmosphere 41 

and on the land surface (Huang et al., 2019). In addition, knowledge of the values of GHI in 42 

the solar energy sector is crucial to installing photovoltaic (PV) systems at a given location. 43 

The West Africa region receives abundant GHI throughout the year; and the daily average is 44 

estimated to be around 5-6 kWh/m2 (Sawadogo et al., 2020a). In recent years, the capacities of 45 

solar PV technology in off-grid (rural and urban) and grid-connected systems strongly 46 

increased. For instance, between 2016 and 2018, the installed PV capacity almost tripled, and 47 

this trend is expected to continue in the coming years (ECREEE, 2020). However, the long-48 

term profitability of solar energy plants based on the PV technology requires an accurate GHI 49 

estimation. 50 

 51 

Ground-based measurements from state-of-the-art pyranometers according to the WMO 52 

(World Meteorology Organization) standards are still the best data source for GHI observations 53 

(Mabasa et al., 2021). However, GHI observations and related information such as sunshine 54 

duration from meteorological stations are often not accessible from African meteorological 55 

agencies due to a poor station network, national data regulations and other reasons (Bliefernicht 56 

et al., 2021; Salack et al., 2019; Dinku, 2019). In addition, station maintenance remains a 57 

challenge due to high costs, while support from local governments has declined (Dike et al., 58 

2018). This had a strong negative impact on data quality (e.g., UNECA, 2011) and continuity 59 

in Africa (Lorenz & Kunstmann, 2012). Therefore, obtaining reliable long-term GHI 60 

observations and related information from weather stations across the region is a fundamental 61 

problem for recent and past periods. This strongly affects reliable GHI information for solar 62 

energy projects planning, operation, and quality assessment. Recently, a number of different 63 

initiatives such as WASCAL (West African Science Service Centre on Climate Change and 64 

Adapted Land Use; Salack et al., 2019), SASSCAL (Southern African Science Service Centre 65 

for Climate Change and Adaptive Land Management; Kaspar et al., 2015) and TAHMO 66 

(Trans-African Hydro-Meteorological Observatory; van de Giesen et al., 2014; Schunke et al., 67 

2021) established a relatively dense network of automatic weather stations providing ground-68 

based meteorological measurements at high temporal resolution for many parts of the Africa 69 

continent for the first time.   70 
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GHI satellite and reanalysis data are essential in supplementing ground-based measurements, 71 

particularly in data-scarce regions such as Africa. These datasets provide long-term GHI time 72 

series for recent periods in a relatively high spatio-temporal resolution (Polo et al., 2016;  73 

Gueymard and Wilcox, 2011) in uniform gridded data formats where users can retrieve the 74 

nearest grid point for their region of interest. Taking advantage of this, many investigations 75 

rely on GHI satellite-based or reanalysis data for the assessment of solar energy potential or 76 

climate impact studies (Sawadogo et al., 2020a; Sawadogo et al., 2020b; Tang et al., 2018; Fant 77 

et al., 2016; Mahtta et al., 2014).  78 

However, to recommend the use of GHI satellite-based data or reanalysis data in the absence 79 

of ground-based measurements for these studies, a detailed inter-comparison and validation of 80 

these datasets for the region of interest are required. From this point of view, several studies 81 

have already carried out an inter-comparison between GHI observational, satellite, and 82 

reanalysis data. Most of them suggest that the accuracy of GHI from satellite-based and 83 

reanalysis data is lower than ground-based measurements (Yang, 2018). For example, Yang 84 

and Bright (2020) evaluated hourly GHI from 57 radiometric stations of the Baseline Surface 85 

Radiation Network (BSRN) distributed across the world with six satellite-based and two 86 

reanalysis data in a period of 27 years. They concluded that the satellite-derived hourly GHI 87 

performed better than the reanalysis data; and also, cloudy days have a higher bias than clear-88 

sky days. Another study was carried out in the Netherlands by Marchand et al. (2019), where 89 

they used a dense 32 observational networks to assess the accuracy of hourly GHI using the 90 

Copernicus Atmosphere Monitoring Service version 3.2 (CAMS) and HelioClim-3 version 5 91 

with correlation between 0.94 and0.98. They showed that both satellite-based data showed a 92 

relatively good correlation with the 32 radiometric stations and satisfactorily reproduced the 93 

hourly variations of GHI. Another study conducted in Brazil showed that GHI derived from 3 94 

satellite-based datasets could be used as an additional source for solar energy assessment in 95 

this region (Thomas et al., 2016) where the relative mean bias of CAMS is about 7%. A recent 96 

study by Du et al. (2022) evaluated the hourly GHI performance of the second version of the 97 

MERRA-2 (Modern-Era Retrospective Analysis for Research and Applications Version 2) 98 

reanalysis data compared to 37 in-situ measurements over China under different sky conditions 99 

in 2018. In general, MERRA-2 overestimates the hourly GHI over China with a mean bias 100 

error of 69.35 W/m2. Their results are consistent with Yang and Bright (2020) where high 101 

deviations occur under cloudy conditions.  102 

For sub-Saharan Africa, Mabasa et al. (2021) recently performed an inter-comparison of five 103 

datasets (CAMS, ERA5, SARAH-2, MERRA-2 SOLCAST) for hourly GHI, with 13 ground-104 
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based data in South Africa, in which the MERRA-2 reanalysis exhibits the weakest 105 

performance with a relative mean bias error (rMBE) of 11%. The authors recommended the 106 

use of the CAMS (rMBE=2.14%) and SARAH-2 (Surface Solar Radiation Data Set – Heliosat; 107 

rMBE=2.13%) datasets for solar energy applications in the country. In West Africa, Tall et al. 108 

(2019) showed that ERA5 provided a good representation of daily GHI compared to ERA-109 

Interim datasets at four weather stations in Burkina Faso for the year 2017. Later, Neher et al. 110 

(2020) used three radiometric observations from the African Monsoon Multidisciplinary 111 

Analysis program (AMMA) to validate the daily and monthly GHI against the SARAH-2 112 

dataset. On both temporal scales, the SARAH-2 performed relatively well but with notable 113 

biases. However, GHI was evaluated on a daily and monthly basis with a limited number of 114 

stations in these studies, while hourly GHI data are essential for accurate solar power plant 115 

design and planning. Moreover, knowledge of hourly GHI is useful for GHI forecasting (Khatib 116 

and Elmenreich, 2015). A detailed validation process with high-quality data is needed to 117 

substitute GHI from ground-based measurements to GHI satellite-based or reanalysis data. To 118 

our knowledge, such study has used hourly GHI from dense observation networks to validate 119 

GHI derived from satellite and reanalysis data over West Africa. 120 

      121 

Therefore, this study aims to evaluate the performance of hourly GHI derived from MERRA-122 

2, ERA5, SARAH-2 and CAMS data with ground-based data for the year 2020 for solar energy 123 

monitoring. For the first time in Africa, 51 automatic weather stations (AWS) are used for 124 

hourly GHI assessment. The AWS belongs to four different transboundary and national 125 

networks recently established by WASCAL, the Ghana Meteorological Agency (GMet) and 126 

the Burkina Faso National Meteorological Agency (ANAM) and partner institutions covering 127 

the most critical climate zones (Guinea, Savannah, and the Sahel) in West Africa. The focus of 128 

this study is on the evaluation of the different satellite and reanalysis datasets based on 129 

observations under different atmospheric conditions: (i) cloudy sky, (ii) clear-sky and (iii) all-130 

sky. This is realized by using a wide range of performance measures and methods and 131 

introducing a novel multi-objective performance measure to select the best performance among 132 

the datasets for the region.  In addition, the effect of aerosols on the hourly GHI during the 133 

Harmattan period over the area is investigated.  134 

 135 

The paper is structured as follows. The following section presents the study area, the detailed 136 

information on the different datasets, and the methodology used. Section 3 presents the 137 
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outcomes of the study and highlights the discussion of the various findings of the study. The 138 

study ends with conclusions and general recommendations regarding satellite and reanalysis 139 

based on GHI information.   140 

 141 

2. Materials and methodology 142 

2.1 Study area  143 

The study focuses on the West African region, particularly Burkina Faso and Ghana (Fig.1). 144 

The region is governed by the West African Monsoon (WAM) which modulates atmospheric 145 

processes and triggers most of the rainfall in the region (Nicholson et al., 2018). West Africa 146 

is characterized by a long dry season and a rainy season (during the summer months) with 147 

annual rainfall ranging between 150 and2500 mm (Raj et al., 2019). The Harmattan period lasts 148 

from late November to mid-March and transports dust from the Sahara Desert across the region 149 

(Sunnu et al., 2008). The strong environmental transitions from the Guinean forests in the south 150 

to the hyper-arid Sahara Desert in the north, the region can be divided into three distinct 151 

climatic zones: Guinea (4˚N–8˚N), Savannah (8˚N–12˚N) and Sahel (12˚N–16˚N) (Abiodun et 152 

al., 2012) as shown in Fig. 1. The Guinea region is categorized as having a tropical monsoon 153 

climate near the coast and a tropical wet and dry climate in other areas. The zone is 154 

characterized by a humid climate and has an annual rainfall of 1250–1500 mm with a bimodal 155 

rainfall distribution. The intense presence of low clouds is common, while deep convective 156 

clouds are rare in this zone (Parker et al., 2017; Schuster et al., 2013). In addition, mid-level 157 

dust layers in the troposphere can occur in this area during the Harmattan period. The Savannah 158 

(tropical wet and dry climate) and Sahel (hot semi-arid climates) zones are semi-arid areas with 159 

average annual rainfall of 750-1250 mm and below 750 mm, respectively. Both zones have a 160 

unimodal rainfall distribution and are places where deep convective cloud activity is often 161 

associated with mesoscale convective systems and heavy rainfall during the summer monsoon 162 

(from June to September), which peaks in August. The Sahel zone is known as a predominantly 163 

cloud-free zone and is an important source of mineral dust. 164 

 165 
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 166 

 167 

Figure 1: Study area showing the topography of the region. The different dots are the location of the 168 

automatic weather stations (AWS). The AWSs in red and black dots are owned by GMet and ANAM, 169 

respectively. The blue dots indicate WASCAL’s AWSs and the orange locations are jointly operated by 170 

WASCAL and GMet. The red dashed lines delineate the different climatic zones. Each number 171 

corresponds to the station in Table 1.  172 

 173 

2.2. Data  174 

2.2.1 Ground-based measurements 175 

Fig. 1 shows the spatial distribution of the 51 AWSs used in this study. The different AWSs 176 

measure in most cases several meteorological variables such as relative humidity, wind speed 177 

and direction, precipitation, air temperature at 2 m height and GHI. Of the 51 AWSs, 7 are 178 

owned by WASCAL, 15 are the property of GMet, 4 belong to WASCAL-GMet and 25 to 179 

ANAM.  180 
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The AWSs of the WASCAL network are part of a mesoscale research observation network 181 

established by WASCAL and partner institutions in the Sudan Savannah in Ghana and Burkina 182 

Faso in 2012 and 2013 (Bliefernicht et al., 2018; Salack et al., 2019). Measurements from this 183 

network are made at a temporal resolution (average over each 5 minutes) and standard 184 

equipment maintenance such as cleaning radiation sensors is carried out regularly (e.g., twice 185 

a month).  186 

GMet operates a surface observation network of 120 weather stations in Ghana, which are well 187 

distributed across the country. In late 2018 and early 2019, 22 novel AWS were installed by 188 

GMet and radiation measurements of which 15 AWS were are in the current study. The 189 

temporal resolution of the radiation measurements is an average of 15 minutes. Due to the 190 

number of weather stations across the country, maintenance is done twice a year.   191 

The WASCAL-GMet stations belong to a transboundary climate observation network 192 

established under the WASCAL programme for different West African countries (Salack et al., 193 

2019). 6 AWS were donated by WASCAL through a funding from the German Federal 194 

Ministry of Education and Research (BMBF) and were installed by a joint team from both 195 

WASCAL and GMet in December 2017 after the signature of Memorandum of Understanding 196 

(MoU) on data sharing and services development. The implemented stations were handed over 197 

to GMet, which manages their maintenance. Measurements are being recorded on an average 198 

of every 10 minutes. 199 

ANAM has a total of 270 weather stations across the country whereof which 22 were selected 200 

in this study, as outlined in Tab.1. New AWSs were installed in 2017 in cooperation between 201 

the Burkina Faso government and its technical and financial partners. The maintenance 202 

schedule of these stations is similar to GMet, and data is recorded at 15-minute intervals on an 203 

average basis. Note that all data recorded in the different AWS are subject to basic quality 204 

control (e.g., data format, measurement interval, and data consistency) by different institutions. 205 

Accordingly, to the data availability, we have collected raw data for the year 2020 to validate 206 

GHI with the datasets from ERA5, MERRA-2, SARAH-2, and CAMS datasets.   207 

 208 

 209 

 210 

 211 

 212 

Table 1: The 51 AWSs used in this study with their basic measurement characteristics and pyranometer 213 

features. 214 
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ID Station Institution 
Temporal 

Resolution 
Climatic 

Zone 
Pyranometer 

model  

Maximum  
range 

(W/m2) 

Spectral 
range (μm) 

Sensitivity 
(µV/W/m²)  

1 Abetifi 

GMet 10-minute 

Guinea 

SMP12 Class 
A 

2000 

0.285-2.75 

5-20 

2 Ada 

3 Akim_Oda 

4 Akosombo 

5 Akuse 

6 Axim 

7 Sefwi_Bekwai 

8 Tarkwa 

9 Tema 

10 Nakpaboni 

Savannah 

11 Wa_varenpera 

12 Fumbisi 

13 Yendi CMP3 0.3-2.8 

14 Jirapa SMP12 Class 
A 

0.285-2.75 
15 Loagri 

16 Oualem 

WASCAL 

5-minute 

 First class 
Global Solar 

Radiation 
Sensor (RSG1) 

0.3- 3 ~10  

17 Nebou 

18 Doninga 

19 Aniabisi 

20 Bongo_Soe 

21 Tabou 

22 Gwosi 

23 Kpandai 

WASCAL-
GMet 

24 Manga 

25 Tuna 

26 Kpando Guinea 

27 Bagre 

ANAM 15-minute 

Savannah 

SP-Lite 0.4 - 1.1 ~75  

28 Bama 

29 Banfora 

30 Batie 

31 Beregadougou 

32 Bitou 

33 Diebougou 

34 Fara 

35 Hounde 

36 Boromo 

37 Gaoua 

38 Bobo_Dioulasso 

39 Guiloungou 
Sahel 

40 Bani 
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41 Boulsa 

42 Bousse 

43 Gayeri 

44 Gorom 

45 Kamboince 

46 Kouka 

47 Barsalogho 

48 Djibo 

49 Dedougou 

50 Dori 

51 Bogande 

 215 

2.2.2. SARAH-2 dataset 216 

The satellite dataset used in this study is the second edition of the Surface Solar Radiation Data 217 

Set – Heliosat Edition 2 (SARAH-2) from the Satellite Application Facility on Climate 218 

Monitoring (Pfeifroth et al., 2018). The SARAH-2 covers the region of ±65o longitude and 219 

±65o latitude (Europe, Africa, and the Atlantic Ocean) with a spatial resolution of 0.05° by 220 

0.05° (~ 5 km).  The dataset has a temporal resolution of 30 minutes (instantaneous values) and 221 

is available from 1983 to the present. The SARAH-2 products are based on the Heliosat 222 

algorithm, which incorporates the LibRadTran radiative transfer model and the MAGICSOL 223 

clear sky model to estimate GHI under cloud-free conditions (Posselt et al., 2012; Mayer and 224 

Kylling, 2005). The GHI data used in the SARAH-2 (referred to as surface incoming shortwave 225 

radiation) product are calculated using a radiative transfer model from water vapor, surface 226 

albedo, a cloud index (from satellite observations), aerosols and ozone. SARAH-2 uses the 227 

monthly aerosol climatology from the Monitoring Atmospheric Composition and Climate 228 

(MACC) project, which has a spatial resolution of 120 km and is interpolated on the SARAH-229 

2 grid (Amillo et al., 2014). The 30-minute instantaneous values of GHI were downloaded from 230 

the SARAH-2 database (https://wui.cmsaf.eu/) for the year 2020. The hourly GHI is the 231 

average of two 30-minute periods within one hour.  232 

 233 

2.2.3 CAMS dataset 234 

The Copernicus Atmosphere Monitoring Service (CAMS) Radiation Service provides solar 235 

energy radiation products. Its algorithm for calculating these products is based on the Helliosat-236 

4 approach (Qu et al., 2017). The method uses the McClear algorithm to estimate GHI under 237 

clear-sky conditions (Lefèvre et al., 2013) and the McCloud model to estimate the attenuation 238 

of solar irradiance caused by clouds. The McClear and McCloud models are implemented using 239 
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the libRadtran radiative transfer model developed by Mayer and Kylling (2005). The radiative 240 

transfer model calculates GHI under all-sky conditions by the product of GHI under clear-sky 241 

conditions with a clear-sky index, also called the cloud modification factor (Qu et al., 2017; 242 

Oumbe et al., 2014). The AOD inputs are from the CAMS service with a spatial resolution of 243 

40 km and are updated every 3-hours. CAMS covers Africa, Europe, the Eastern part of South 244 

America, the Middle East and the Atlantic Ocean and has been available from 2004 to the 245 

present with a delay of 2 days. The data are accessible in high-temporal resolution and different 246 

resolutions (e.g., 1 minute, 15 minutes, hourly, daily, and monthly); users can access the data 247 

up to the point of interest. In this study, we used the latest version of CAMS radiation service 248 

(version 4.5), which uses a second APOLLO_NG production chain to improve cloud 249 

redundancy. We downloaded the 1-minute GHI for the 51 AWS sites for the year 2020 and 250 

then computed the average hourly GHI values.  251 

 252 

2.2.4. MERRA-2 dataset 253 

The Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-254 

2) is a product of the NASA atmospheric reanalysis (Buchard et al., 2017). MERRA-2 replaces 255 

the original MERRA with an improved data assimilation system of the Goddard Earth 256 

Observing System Model version 5 (GEOS-5). The GEOS-5 model is coupled with the 257 

Goddard Chemistry Aerosol Radiation and Transport (GOCART) model and simulates five 258 

types of aerosols: sulfate, dust, sea salt, and black and organic carbon (Colarco et al., 2010;  259 

Chin et al., 2002). The system includes a large-scale prognostic cloud in the moist physics 260 

scheme and uses a shortwave and longwave radiation scheme from Chou and Suarez (1999) 261 

and Chou et al. (2001) respectively. MERRA-2 uses real-time bias-corrected AOD inputs from 262 

the Advanced Very High Resolution Radiometer (AVHRR) instruments with a spatial 263 

resolution of 1.1 km (Heidinger et al., 2014). It has a spatial resolution of 0.5˚ by 0.625˚ (~ 50 264 

km) with an output of 72 model levels and 42 pressure levels from the surface to 0.01 hPa and 265 

a temporal resolution of 1-hour. The data cover the period from 1980 to present with a lag of 2 266 

months. GHI hourly data were downloaded from the MERRA-2 server for the year 2020. 267 

Hourly data in MERRA-2 are averaged over the specified hour and stamped at the central hour, 268 

i.e., 00:30 GMT, 01:30 GMT, etc. 269 

 270 

2.2.5. ERA5 dataset 271 

ERA5 is the fifth-generation of atmospheric reanalysis from the European Centre for Medium-272 

Range Weather Forecasts (ECMWF; Hersbach et al., 2019). ERA5 has a spatial resolution of 273 
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0.25˚ by 0.25˚ (~ 31 km) and a temporal resolution of 1 hour. It includes 137 model levels, and 274 

37 pressure levels and covers the entire globe. ERA5 uses the RTTOVv11 model as the 275 

radiative transfer model and “McRad” as the radiation scheme, which includes the shortwave 276 

and longwave Rapid Radiative Transfer Model for GCM (RRTMG) schemes. ERA5 uses a 277 

prescribed monthly climatological aerosol information from the Global Ozone Chemistry 278 

Aerosol Radiation and Transport (GOCART) model with a horizontal resolution of 2.5° 279 

longitude by 2° latitude which includes stratospheric sulfate aerosols (Hersbach et al., 2015; 280 

Liu, 2005). Over West Africa, the GOCART shows a discrepancy with the observed AOD from 281 

AERONET data which is attributed to the strong perturbation of local dust source (Chin et al., 282 

2002). The ERA5 data are available from 1979 to the present. From the ECMWF platform, we 283 

retrieved the hourly GHI, which refers to surface solar radiation for the year 2020. The ERA5 284 

GHI values are hourly expressed in J/m2. We divided the accumulated values by 3600 s to get 285 

the average GHI values in W/m2. The hourly data of GHI in ERA5 are computed as the mean 286 

rate of the previous hour. For example, the GHI value at 12:00:00 UTC corresponds to the 287 

average GHI from 11:00:00 UTC to 11:59:59 UTC. To ensure consistency with the observation 288 

data and other datasets where the hourly averaged is computed on the current time, we adjusted 289 

the time to a 1hour shift. 290 

 291 

Table 2 shows the different datasets used with their characteristics. We used a linear 292 

interpolation technique to determine the radiation information from the ERA5, MERRA-2, and 293 

SARAH-2 datasets for corresponding sites of the in-situ measurements. 294 

 295 

Table 2: Characteristics of different satellite and reanalysis datasets used in this study. 296 

Data SARAH-2 CAMS MERRA-2  ERA5 

Date type satellite Satellite reanalysis reanalysis 

Spatial resolution 0.05 x 0.05 (~5 km) Interpolation to the point of  
interest 

50 km 31 km 

Temporal 
resolution 

30 min, day, 
month 

1 min, 15 min, 
 1 h, day, month 

1 h 1h  

Radiative  
transfer model 

LibRadTran  
(Mayer and Kylling, 
2005) 

LibRadtran 
 (Mayer and Kylling, 2005) 

Community Radiative  
Transfer Model 
 (Chen et al., 2008) 

RTTOVv11 

AOD source ECMWF-MACC CAMS global services 

 Advanced Very High-
Resolution Radiometer 
(AVHRR) 

Global Ozone 
Chemistry 
Aerosol Radiation 
and Transport 
(GOCART) model 

Spatial and 
temporal of AOD 

120 km; monthly 40 km; 3-hourly 

1.1 km 

prescribed monthly  
climatology. 
 

Time period 1983 to present 2004 to present (2 days delay) 1980 to present (2 
months delay) 

1979 to present 
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Area of coverage 
 Europe, Africa, 
Atlantic Ocean 

Europe, Africa, Middle East,  
Eastern of South America, 
Atlantic Ocean 

Global Global 

Data policy Free Free 
free Free 

 297 

 298 

 299 

2.3. Methodology 300 

2.3.1. Quality control  301 

 302 

Fig.2 outlines a comprehensive process for quality control of the individual weather stations. 303 

This process includes visualization of the data, various tests and techniques, identification of 304 

unrealistic values and removal of outliers to ensure data quality. These steps help improve the 305 

integrity and reliability of the station data used in this study. 306 

 307 

 308 

Figure.2: Flowchart of the quality control of the ground-based measurement used in this study. 309 

 310 

The observational data used in the study have different temporal resolutions (5 min, 10 min 311 

and 15 min, compared Tab. 1). To compute the hourly data, the sub-hourly data were averaged 312 

using the following steps: 313 

1. If there is a missing date in the time series, the date is added, and the value for 314 

GHI is marked as missing.. 315 

2. All GHI values during nighttime are set to 0, even if there are missing values. 316 

3. For the 5-minute data, the values of GHI are averaged to an hourly value if 95% 317 

of the measurements are available within the specific hour. Otherwise, the value 318 

is set to a missing value. For the 10- and 15-minute data, 100% of the measures 319 

must be available to calculate hourly GHI values. 320 
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 321 

To validate the accuracy of the hourly GHI satellite and reanalysis data, reliable ground-based 322 

GHI measurements are essential. To ensure the quality of the different AWSs, we applied the 323 

techniques shown in Fig.2. Our first step was to exclude stations with large missing data. Fig.3 324 

shows the periods with missing hourly GHI data for the different AWS in 2020. The vertical 325 

bars indicate missing periods, while the sum of the missing hours and their percentage (in 326 

parentheses) can be seen on the right ordinate. Overall, 44 out of 51 stations have no data gaps 327 

or only a few missing measurements. However, stations such as Abefiti, Loagri, Aniabisi, 328 

Bango Soe, Kpando, Tuna and Gaoua have a much higher percentage of missing data between 329 

5% and 33.5%. For the data quality assessment, these stations were excluded. No gap-filling 330 

techniques were applied to stations with less than 5% missing values. All missing data were 331 

removed from the station in question and the extracted coordinate of this station were subjected 332 

to the same exclusion process in the corresponding satellite and reanalysis datasets. 333 

The second step was to categorize the different AWS based on their respective climate zones 334 

(see  Appendix Fig.17-20). We then excluded stations that differed from their counterparts. 335 

Such discrepancies could be caused by shadows, faulty sensors, or calibration problems. We 336 

also combined this analysis with the clearness index (Kt) to identify suspicious AWS. For this 337 

purpose, we calculated the daily average (Kt) for all AWSs. The Kt is defined as the ratio of 338 

surface solar irradiance to extraterrestrial solar irradiance 𝐺0 and is expressed as follows: 339 

 340 

𝐾𝑡 =
𝐺𝐻𝐼

𝐺0
                                                                                                                                   (1) 341 

The daily GHI is determined from the hourly GHI if there is no single missing value.  342 

The clearness index has been used in previous studies to identify sky conditions. For instance, 343 

Du et al. (2022) classified the sky conditions using Kt to validate the MERRA-2 hourly dataset 344 

for clear-sky and cloudy conditions over China. However, the values of Kt used to define cloudy 345 

and clear skies vary by location. Kambezidis and Psiloglou (2020) have used the modified 346 

clearness, Kt’ introduced by Perez et al. (1990), for clear skies they used 0.65 < Kt’ ≤1. On the 347 

other hand, Kambezidis et al. (2021) have used the diffuse fraction, Kd, and established the 348 

range of 0≤ Kd ≤  0.26 to correspond to clear skies worldwide. This study describes clear-sky 349 

when Kt ≥ 0.6 and cloudy-sky when 0.12≤ Kt < 0.35. These values were adopted from previous 350 

studies on West Africa (Soneye, 2020; Okogbue et al., 2009; Kuye and Jagtap, 1992). Based 351 

on this information, the number of clear-sky days and cloudy days was calculated for each 352 

station, and those stations with no realistic clear-sky days throughout the year were removed 353 
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(see Fig. 21 in the Appendix). After the first and second steps, only 38 stations passed these 354 

tests and were used for other quality checks.  355 

 356 

 357 

  358 

 359 

Figure.3: Heatmap showing the missing values spread over the whole year for all the radiometric 360 

stations. The vertical black indicates a missing hour value. The total number of missing hours and the 361 

percentage is given on the right side.  362 

 363 

The third step was to identify GHI values that are outside the normal range of the 38 AWSs, 364 

we, therefore used the extremely rare limit (Eq.2) and the physically possible limit (Eq. 3) of 365 

GHI measurements from the BSRN guidelines (BSRN, 2021). 366 

 367 

−2 𝑊/𝑚2 < 𝐺𝐻𝐼 < 𝐼0 ∗ 1.5 ∗ 𝑐𝑜𝑠 (𝑆𝑍𝐴)1.2 + 50 𝑊/𝑚2                                                   (2) 368 

−4 𝑊/𝑚2 < 𝐺𝐻𝐼 < 𝐼0 ∗ 1.5 ∗ 𝑐𝑜𝑠 (𝑆𝑍𝐴)1.2 + 100 𝑊/𝑚2                                                 (3) 369 

where  𝐼0 the solar constant (1367 W.m-2; Li et al.(2011)) and 𝑆𝑍𝐴 is the solar zenith angle. 370 

For the BSRN’s closure tests, the analyses were done when SZA < 80˚ to account for the 371 

seasonality of sunrise and sunset over the region. 372 

 373 
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Fig. 4 illustrates the quality control of the hourly GHI aggregated data for all stations based on 374 

the Eqs. 2 and  3. The physically possible limit is drawn in red, the extremely rare limit in 375 

green. The blue dots indicate the individual hourly GHI measurements for all 38 weather 376 

stations. Most data points that fall outside the BRSN interval are for 75˚ < SZA < 80˚. These 377 

intervals correspond to early morning and late afternoon measurements, i.e., between 7am-8am 378 

and 5pm-6pm, respectively according to the region. At some stations such as Oualem, Nebou 379 

and Mange (see Tab.5 in the Appendix), there are some data points that show a high value of 380 

GHI under conditions of low irradiance and high zenith angle. These deviations could be due 381 

to interfering reflections from the roof edge in the early morning and late afternoon hours 382 

(Neher et al., 2017). These data points have GHI values that are above the physically possible 383 

and extremely rare limits GHI. About 649 (0.44%) such data points were flagged and removed 384 

from the analysis.  385 

 386 

 387 

Figure.4: Quality control of the 38 weather stations based on the Baseline Surface Radiation Network 388 

(BSRN). The measured hourly GHI are represented in blue dots. The red dots indicate the physically 389 

possible limit, while the extremely rare limit is in green dots. 390 

 391 

In the last step, we employed outliers to identify erroneous GHI from the different AWSs. In 392 

this study, we analyzed a far outlier for observation, which is calculated as follows (Younes et 393 

al., 2005): 394 
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Upper outlier limit =  3rd quartile +  3 x (3rd quartile –  1st quartile)                          (4) 395 

lower outlier limit =  1st quartile −  3 x (3rd quartile –  1st quartile)                            (5) 396 

 397 

The outlier analysis was based on daily Kt, and we removed from the analysis data that fall 398 

outside the upper and lower limit. Fig.5 shows the interquartile range (in grey) and the upper 399 

outlier limit (red dot) and the lower limit (green dot) of the different AWSs. There are some 400 

stations where some data points are beyond the designed bound. Consequently, with 401 

combination of other AWSs from the same area, Bani was removed from the analysis. After 402 

performing all the steps outlined in this study, only 37 AWSs were used to evaluate the 403 

performance of GHI, based on satellite and reanalysis data, for the year 2020.   404 

  405 

 406 

Figure.5: Boxplot of the daily clearness index (Kt) of the different AWSs for the year 2020. The red dots 407 

indicate the upper outlier limit, while the green dots indicate the lower outlier limit of the individual 408 

stations. The number indicates the percentage of data points that fall outside the upper and lower 409 

outlier limits. 410 

 411 

 412 

2.3.2 Performance metrics 413 

The performance of the different datasets against the AWS wass assessed using several 414 

statistical metrics. We used the mean absolute error (MAE), the root mean square error (RMSE) 415 

and their normalized versions (nRMSE and nMAE) as important accuracy measures. In 416 

addition, the Pearson's correlation (R) was used to include a skill score in the current analysis. 417 

A statistical metric that is sensitive to extreme values is important for evaluating GHI. For that 418 

we applied the index of agreement (IOA), which represents the ratio between the mean square 419 

error and the potential error. The value of IOA ranges from 0 to 1; 1 means perfect agreement 420 
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while 0 means no agreement (Willmott, 1981). The different statistical metrics are expressed 421 

as follows: 422 

 423 

𝑀𝐴𝐸 =
1

𝑛
∑ (|𝑃𝑖 − 𝑂𝑖|)𝑛

𝑖=1                                                                                                         (6) 424 

 425 

𝑛𝑀𝐴𝐸 = [
𝑀𝐴𝐸

𝑂
] ∗ 100                                                                                                             (7)         426 

𝑅𝑀𝑆𝐸 = √∑
(𝑃𝑖−𝑂𝑖)2

𝑛
𝑛
𝑖=1                                                                                                           (8)                                                                                 427 

 428 

𝑛𝑅𝑀𝑆𝐸 = [
𝑅𝑀𝑆𝐸

𝑂
] ∗ 100                                                                                                         (9) 429 

 430 

𝑅 =
∑ (𝑂𝑖−𝑂)(𝑃𝑖−𝑃)𝑛

𝑖=1

√∑ (𝑂𝑖−𝑂)2  𝑛
𝑖=1 ∑ (𝑃𝑖−𝑃)2𝑛

𝑖=1   
                                                                                                 (10) 431 

𝐼𝑂𝐴 = 1 −
∑ (𝑃𝑖−𝑂𝑖)𝑛

𝑖=1

∑ (|𝑃𝑖−𝑂||𝑂𝑖−𝑂|)2𝑛
𝑖=1

                                                                                                 (11) 432 

 433 

where 𝑃 is the reanalysis or satellite data value, 𝑂 the observation data at timestep i and 𝑛 the 434 

number of data points used for comparison. 𝑂 and 𝑃 are the mean values of the observation 435 

and reanalysis or satellite data, respectively. 436 

 437 

Comparing observations and different datasets using the above statistical metrics can 438 

sometimes be challenging to select the best dataset. For example, some datasets may have low 439 

RMSE, high correlation, and high IOA, while other datasets may have a low RMSE, low 440 

correlation, and low or high IOA compared to their subjects. We included therefore an 441 

additional performance measure based on the RMSE, R and IOA to better determine the overall 442 

performance for the different datasets. Based on these metrics, a satellite or reanalysis dataset 443 

perfectly fits to the ground-based observations, if the nRMSE=0, the IOA=1, and the R=1. The 444 

new overall performance measure (OP) can be expressed as follows: 445 

 446 

𝑂𝑃 = 1 − [
𝑛𝑅𝑀𝑆𝐸

100
+ (1 − 𝑅) + (1 − 𝐼𝑂𝐴)]                                                                         (12) 447 

 448 
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This new  coefficient is dimensionless. +1 means that the dataset is perfectly close to the 449 

observation, while a negative value means that the dataset is far from the observation. 450 

Moreover, the OP provides a unified grade that considers a range of statistical metrics to assess 451 

the overall performance of the dataset. It allows a more comprehensive assessment of a dataset's 452 

agreement with ground-based observations and gives valuable insight into the performance of 453 

a dataset and its suitability for a particular application or assessment.  454 

 455 

2.3.2 Evaluation of GHI 456 

The analysis was based on "clear-sky", "cloudy-sky" and "all-sky" conditions. The atmospheric 457 

sky condition depends on the observations. An algorithm was developed to identify the days 458 

that meet the criteria for average cloudy and clear sky days for different AWSs. Based on the 459 

day found in the observation for the sky condition classification, the same day was used as 460 

cloudy-sky or clear-sky for the different datasets. Nevertheless, the criteria used may consider 461 

the day with aerosol particles present in the atmosphere as a cloudy day. Dust aerosols and 462 

carbonaceous aerosols from biomass burning are the main aerosol types over the region. The 463 

latter aerosol type is the most important during the winter season (Harmattan period), while 464 

dust aerosol dominates in the rest of the year (Chin et al., 2002). Therefore, we analyzed 465 

conditions on cloudy days during the Harmattan period (December-January-February) and on 466 

cloudy days during the rainy season (June-July-August). We selected 15 stations to analyze the 467 

diurnal variation of GHI. The selection was based on the representativeness of the stations in 468 

their respective climatic zones, i.e., we have taken the minimum, maximum, median, 25th 469 

percentile and 75th percentile based on the annual mean of GHI. We also used the Taylor 470 

diagram (Taylor, 2001) and the cumulative distribution function (CDF) to evaluate the different 471 

datasets. Finally, we analyzed the performance of the different datasets under different 472 

atmospheric conditions at the seasonal level for individual stations and also for the different 473 

climate zones. 474 

 475 

 476 

3. Results and discussions 477 

3.1 Performance of reanalysis and satellite-based hourly GHI 478 

The performance of the different datasets varies according to the sky conditions for the 37 479 

AWSs (Fig. 6. a-d). High performance occurs in clear skies, while low performance occurs in 480 

cloudy skies for CAMS, ERA5, SARAH-2, and MERRA-2. This performance also differs from 481 

dataset to dataset. Under cloudy skies, most data points are on the left side of the 1:1 line, i.e., 482 
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all datasets overestimate the hourly GHI. The RMSE ranges from 232 to 303 W/m2 and the 483 

MAE varies from 153 to 232 W/m2. CAMS shows the lowest RMSE and MAE, while ERA5 484 

gives the highest values. In general, both satellites (CAMS and SARAH-2) show good 485 

performance compared to the reanalysis data (ERA5 and MERRA-2). The biases in the 486 

reanalyses are higher than those in the satellite data. For example, the MAE in ERA5 is 303 487 

W/m2 (122.28%) and the SARAH-2 has a value of 238 W/m2 (96.07%). This discrepancy 488 

between the satellite and reanalysis data could be explained by the methodology used to 489 

calculate the cloud contents and their optical properties in the radiative transfer model. The 490 

cloud contents and their optical properties used in CAMS and SARAH-2 come from satellite 491 

observations, while the cloud contents in the reanalysis (ERA5 and MERRA-2) are prognostic 492 

clouds (Hinkelman, 2019; Morcrette et al., 2008). In addition, the misinterpretation of cloudy 493 

skies as clear skies could also be a factor in the poor performance of the reanalysis (Fig.21 a-d 494 

in the Appendix). The reanalysis data show a poor correlation (ERA5=0.04; MERRA-2=0.08) 495 

on cloudy-sky days, while the satellite data indicate a moderate correlation (CAMS=0.22; 496 

SARAH-2=0.23). However, all datasets show high MAE and RMSE under cloudy skies.  497 

 498 

Under clear skies, the performance of the different datasets improved significantly compared 499 

to that under cloudy skies, with a difference of more than 150 W/m2 in terms of RMSE (Fig. 6. 500 

e-h). This shows how difficult it is for reanalysis and satellite data to reproduce the hourly GHI 501 

under cloudy skies. The RMSE, R, and IOA of ERA5 (120 W/m2; 0.89; 0.88), CAMS (119 502 

W/m2; 0.90; 0.88) are comparable, but MERRA-2 (142 W/m2; 0.86; 0.84) shows poor 503 

performance under clear-sky conditions.  There is good agreement between SARAH-2 and 504 

observations. The values of RMSE, MAE, R, and IOA for SARAH-2 are 113 W/m2, 84 W/m2, 505 

0.92, and 0.89, respectively, indicating that the MAGICSOL clear sky model used in SARAH-506 

2 to derive GHI under cloud-free conditions performs well over the area compared to the other 507 

clear sky models used in ERA5, MERRA-2 and CAMS.  508 

 509 

For all-sky conditions, CAMS outperforms the datasets from ERA5, MERRA-2, and SARAH-510 

2 in the hourly estimates of GHI (Fig. 6. i-l). MERRA-2 shows poor performance with an 511 

RMSE value of 179 W/m2 (36.49%) and a MAE value of 134 W/m2 (27.39%). The 512 

unsatisfactory performance of MERRA-2 is the result of poor performance under a clear sky. 513 

A similar result of poor performance of MERRA-2 in hourly GHI estimation was highlighted 514 

in South Africa (Mabasa et al., 2021). Moreover, our results are comparable with different sites 515 

around the world under all-sky conditions. For example, the study by Yang and Bright (2020) 516 
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found that the nRMSE values for the hourly GHI of MERRA-2, ERA5, CAMS and SARAH -517 

2 ranged from 8% to 127% under all-sky conditions. Our results are consistent with previous 518 

studies that found satellite data to perform better than reanalysis data in estimating GHI 519 

(Mabasa et al., 2021; Salazar et al., 2020; Yang and Bright, 2020; Babar et al., 2019). The 520 

statistical metrics of the datasets under different atmospheric conditions are summarized in 521 

Table.3.  522 

 523 

 524 

 525 

 526 

Figure.6: Density plot of hourly GHI values from different datasets (CAMS, ERA5, SARAH-2, and 527 

MERRA-2) against observation for 37 stations using Gaussian kernels with normalized values of 0–1 528 

for different sky conditions. The RMSE, R, IOA, and MAE denote the root-mean-square error, the 529 

Pearson correlation, the index of agreement, and the mean absolute error, respectively, while nRMSE 530 

and nMAE denote the normalized RMSE and normalized MAE, respectively. 531 

 532 

 533 

 534 

 535 

 536 

 537 

 538 
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 539 

 540 

 541 

 542 

 543 

 544 

 545 

 546 

 547 

 548 

 549 

 550 

Table.3: Error metrics of different datasets and atmospheric conditions on GHI of the aggregated 37 551 

stations. The bold number shows the best metric values.  552 

Sky 
condition 

 Metric CAMS SARAH-2 ERA5 MERRA-2 

Cloudy  

RMSE (W/m2) 232 238 303 282 

nRMSE (%) 93.63 96.05 122.28 113.81 

R 0.62 0.60 0.42 0.44 

MAE (W/m2) 153 160 232 215 

nMAE (%) 61.87 64.58 93.97 87.10 

IOA 0.56 0.56 0.50 0.52 

Clear  

RMSE(W/m2) 119 113 120 142 

nRMSE (%) 20.14 19.13 20.31 24.04 

R 0.90 0.92 0.89 0.86 

MAE (W/m2) 90 84 91 106 

nMAE (%) 15.32 14.25 15.56 18.03 

IOA 0.88 0.89 0.88 0.84 

All  

RMSE (W/m2) 153 161 177 179 

nRMSE (%) 31.19 32.82 36.08 36.49 

R 0.86 0.86 0.80 0.77 

MAE (W/m2) 111 118 131 134 

nMAE (%) 22.66 24.11 26.76 27.39 

IOA 0.83 0.82 0.80 0.80 

 553 

Fig.7 shows the Taylor diagram and the cumulative distribution of the hourly GHIs under 554 

different sky conditions. The Taylor diagram displays the correlation coefficient, the 555 

centralized RMSE and the normalized standard deviation of each dataset relative to 556 

observations. A dataset performs well when it is closer to the observation, while a dataset with 557 

large differences is far from the observation. From the Taylor diagram, it is clear that the 558 

SARAH-2 and CAMS exhibits the best performance in estimating the hourly GHIs under 559 

different atmospheric conditions over the area (Fig.7 a–c). However, the satellite and reanalysis 560 

data exhibit poor performance and each source is clustered under cloudy-sky conditions. 561 

Moreover, both satellite and reanalysis data miss the shape of the observation and overestimate 562 
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the hourly values (Fig.7 d). This shows how difficult it is to mimic the spatio-temporal variation 563 

of cloud properties with reanalysis and satellite data. In clear skies, the ERA5, MERRA-2 and 564 

CAMS are clustered with a slightly high value of the centered root-mean-square (0.6 W/m2) 565 

from MERRA-2 compared to the SARAH-2 dataset where the value is about 0.4 W/m2. All 566 

datasets are able to capture the pattern of the observation, but the MERRA-2 shows a slight 567 

underestimation for values of 400–800 W/m2 but agrees under all-sky conditions (Fig.7 e–f). 568 

Under all-sky conditions, the ERA5, CAMS and SARAH-2 slightly overestimate the observed 569 

values of 400–800 W/m2.   570 

 571 

To assess how well the different datasets capture the maximum observed GHIs, we used the 572 

Kolmogorov-Smirnov (KS) Integral metric. This metric measures the maximum vertical 573 

distance between two CDFs. The KS metric ranges between 0 and 1, where 0 indicates that the 574 

CDFs are identical. Table.4 displays the significant KS values at a 95% confidence level for 575 

different datasets under various sky conditions. When compared to the satellite data, the 576 

reanalysis data demonstrate high KS values under cloudy conditions. In other words, the 577 

satellite demonstrates the capability of capturing the maximum observed GHIs with low bias 578 

compared to reanalysis. Conversely, the reanalysis data exhibit a low bias in capturing the 579 

maximum observed GHIs compared to the satellite data under clear skies. Overall, our analysis 580 

revealed that the ERA5 (KS=0.088) and MERRA-2 (KS=0.036) demonstrate a low bias in 581 

capturing the maximum observed GHIs, whereas the SARAH-2 (KS=0.142) and CAMS 582 

(KS=0.104) exhibit a higher bias under all sky conditions. 583 

 584 
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 586 
 Figure.7: the panel (a–c) shows the Taylor diagram of different datasets under clear, cloudy and all-587 

sky conditions for the 37 stations. The dashed gray circle indicates the centered mean-square-error. 588 

The panel (d–f) presents the cumulative distribution function for the 37 stations under different 589 

atmospheric conditions. 590 

 591 

 592 

 593 

 594 

 595 

Table.4: Kolmogorov-Smirnov (KS) metric values for CAMS, SARAH-2, ERA5, and MERRA-2 datasets 596 

under different atmospheric conditions and datasets.  597 

Sky 
condition 

  CAMS SARAH-2 ERA5 MERRA-2 

Cloudy  
KS 0.224 0.215 0.331 0.294 

pvalue P<0.05 P<0.05 P<0.05 P<0.05 

Clear  
KS 0.090 0.110 0.042 0.070 

pvalue P<0.05 P<0.05 P<0.05 P<0.05 

All 
KS 0.104 0.142 0.088 0.036 

pvalue P<0.05 P<0.05 P<0.05 P<0.05 

 598 

 599 

To better understand the poor performance of the different datasets under cloudy skies, Fig.8 600 

shows a density plot of GHI for cloudy skies during the Harmattan period (DJF) and the rainy 601 

season (JJA) over the region. In general, all datasets perform better in the rainy season than in 602 

the Harmattan period. In the Harmattan period, the nRMSE value reaches 20–50% of the 603 

RMSE values in the rainy season. During the Harmattan period, trade winds transport large 604 

amounts of mineral dust from the Chad Basin to the Sahel and the Guinean coast (Schwanghart 605 
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and Schütt, 2008). The effect of aerosol could explain the large RMSE, and MAE found over 606 

the region under cloudy skies. The effects of aerosol as a source of large uncertainties in the 607 

estimation of GHI are well known in the literature (Neher et al., 2017; Chander et al., 2015; 608 

Ramanathan et al., 2001). Among the datasets, the MERRA-2 shows the lowest RMSE (331 609 

W/m2), MAE (263 W/m2) during the Harmattan period. The relatively better performance of 610 

MERRA-2 in DJF (Harmattan period) is also seen under all skies (Fig. 8). The AOD inputs to 611 

MERRA-2 have a spatial resolution of 1.1 km and a temporal resolution of 1-hour. This 612 

suggests that high spatial and temporal resolution of the AOD could improve the estimated 613 

hourly GHI over the region. However, the observed large deviation suggests that the reanalysis 614 

and satellite data did not correctly estimate the hourly GHI during the dust period. This result 615 

is consistent with Du et al. (2022) Kosmopoulos et al.(2017). During the rainy season under 616 

cloudy sky (Fig.7 e–f), the CAMS shows the lowest RMSE (171 W/m2), while the MERRA-2 617 

gives the highest value (270 W/m2). The good performance of SARAH-2 and CAMS under 618 

cloudy sky could be a consequence of their performance during the rainy season. This can be 619 

confirmed in Fig.9 (i–l) where both datasets show good performance under all skies compared 620 

to that for MERRA-2 and ERA5. In the seasons of MAM (Fig.9 e–h) and SON (Fig.9 m–p), 621 

the satellite data also outperform the reanalysis data. 622 

 623 

 624 
 625 

Figure.8: Similar to Fig.6 but for cloudy days occurring during the Harmattan period (DJF) and the rainy 626 

season (JJA). 627 

 628 
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 629 
 630 

Figure.9: Similar to Fig.6 but for all-sky conditions for different seasons.  631 

 632 

 633 

3.2 Spatial distribution of the nRMSE 634 

Fig.10 depicts the spatial distribution of the nRMSE over the area for different sky conditions. 635 

For a given sky condition, the nRMSE decreases from south to north, i.e., high nRMSEs are in 636 

the Guinea zone and low nRMSEs in the Sahel zone. The Sahel zone is known as a zone with 637 

low cloud cover, while the Guinea zone is a place with frequent occurrence of clouds and higher 638 

humidity throughout the year. This result leads to a similar conclusion where the reanalysis and 639 

satellite data show a large bias in the GHI estimate for cloudy regions (Yang and Bright, 2020; 640 

Urraca et al., 2018). Under cloudy skies, most stations have a high nRMSE in the range of 80-641 

120 %. This large bias in cloudy regions could be due to the 3D effect of clouds leading to 642 

overshoots – a feature that becomes important in the case of patchy cumulus clouds, especially 643 

if the clouds have a large height.  In particular, the angle of view in each pixel by the satellite 644 

could be a relevant factor in this respect. Clouds are 3D structures, and the way they reflect, 645 

absorb and scatter light can affect the angle from which the satellite observes them (Dubovik 646 

et al., 2021). On the other hand, most AWSs show low nRMSE values under clear-sky and all-647 

sky conditions. The nRMSE values under clear-sky are better than those under all-sky 648 
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conditions. The majority of the stations indicate good coherence with the datasets of the 649 

SARAH-2 and CAMS, while the ERA5 and MERRA-2 show relatively poor performance 650 

under different atmospheric conditions. The ERA5 has the highest nRMSE in most of the 651 

stations under cloudy conditions. The high biases in the ERA5 dataset could be due to 652 

overestimation or underestimation of cloud properties as reported in some studies (Mabasa et 653 

al., 2021; Urraca et al., 2018). However, the good performance of ERA5 has been demonstrated 654 

in some regions (Zhang et al., 2020; Salazar et al., 2020; Sianturi et al., 2020). The discrepancy 655 

of the ERA5 performance in the studied area under cloudy conditions could be due to the low 656 

number of weather stations in the region for the ERA5 reanalysis assimilation and/or the 657 

representation of cloud properties in the dataset, as the region is located within the Intertropical 658 

Convergence Zone (ITCZ). In the region, low-level clouds are common, and it is well known 659 

that reanalysis and climate models poorly represent them (Hannak et al., 2017). 660 

 661 

 662 
 663 
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Figure.10: Normalized root-mean-square error (nRMSE) for hourly GHI at each AWS for cloudy-sky, 664 

clear-sky, and all-sky conditions and different datasets. Each color point indicates the value of nRMSE 665 

represented by the color bar.  666 

 667 

 668 

3.3. Average diurnal cycle of GHI 669 

3.3.1. Cloudy-sky conditions 670 

The average diurnal variation between the measured and estimated values of GHI for 15 671 

selected stations within the three climate zones under cloudy skies is shown in Fig.11. It can 672 

be observed that the Guinea zone experiences a greater number of cloudy days compared to the 673 

Sahel zone. All datasets are able to reproduce the pattern of observed GHI but overestimate the 674 

average diurnal variation. The overestimation occurs mainly at midday for all datasets and also 675 

in the early morning and late afternoon for some of them. The overestimation in the early 676 

morning could be related to cloud cover, as there is stratus in the morning especially on the 677 

Guinea coast (Knippertz et al., 2011). A minimum of convective activity occurs over the 678 

climate zones around noon and the maximum occurs in the late afternoon (~17:00 local time) 679 

mainly at latitudes below 9˚ N (Guinea zone and some parts of the Savannah zone) and also 680 

above 9˚ N (some parts of the Savannah zone and the Sahel zone) around 20:00 (Knippertz et 681 

al., 2011). In the Savannah and Sahel zones, all datasets are able to mimic the late afternoon 682 

observation well. In addition, these overestimates of the diurnal GHI pattern could also be due 683 

to the suspension of dust particles, especially during the DJF season when the reanalysis and 684 

satellite data are challenging to estimate GHI (see Fig. 8 a–d). However, the satellite data show 685 

less bias compared to that of the reanalysis data in estimating the maximum observed GHI. 686 

This is consistent with the results of Table.3. Overall, the reanalysis and satellite data show 687 

how difficult it is to reproduce the average daily variations of the selected stations under cloudy 688 

skies. 689 

 690 
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 691 
 692 

 693 

Figure.11: Average diurnal variation of the observed GHI compared with the CAMS, ERA5, SARAH-2, 694 

MERRA-2 dataset for the selected stations under cloudy skies. Nb_days means the number of days 695 

that fall in clear skies conditions. The grey shaded curve indicates the 95% interval confidence of the 696 

measurement. 697 

 698 

 699 

 700 

 701 

3.3.2. Clear-sky and all-sky conditions 702 

Figs.12 & 13 display the aggregate diurnal variations of GHI from the observation and the 703 

datasets under clear-sky and all-sky conditions, respectively. Unlike cloudy skies, most of the 704 

datasets show a good pattern of the measured GHI in most stations under clear and all skies.  705 

The number of clear sky days increases towards the north. In the Guinea zone, the ERA5 and 706 

MERRA-2 generally underestimate the maximum of the observation, while the SARAH-2 and 707 

CAMS are able to record the maximum under clear skies. In the Savannah and Sahel, most 708 

dataset also capture the maximum GHI, whereas the SARAH-2 and CAMS slightly 709 

overestimates the maximum. Similarly, in all skies, the SARAH-2 and CAMS slightly 710 

overestimates the maximum GHI. This agrees with the KS values previously mentioned (see 711 

Table.3) for both clear and all-sky conditions. In general, most datasets overestimate the 712 

maximum GHI under all-sky conditions in all climate zones, especially in the Guinea zone. 713 
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This could be the result of an overestimation of the average diurnal variation of GHI under 714 

cloudy and/or overcast sky (Kt <0.2, which is not shown in this study).  715 

 716 

 717 

 718 
Figure.12: Similar to Fig. 11, but for clear-sky conditions  719 

 720 

 721 
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 722 

 723 
 724 

Figure.13: Similar to Fig.11, but for all-sky conditions  725 

 726 

3.4. Overall performance over different stations 727 

The use of GHI, derived from reanalysis and satellite data, to assess and monitor solar energy 728 

is widespread. However, selecting the best product can be a difficult task. Here we present a 729 

new overall performance based on the nRMSE, correlation, and IOA (see Eq. 12) to select the 730 

best product for the area. The corresponding statistical metrics (nRMSE, nMAE, R, IOA) for 731 

each station are given in the Appendix (see Fig. 22–24). Fig.14 shows the OP of the different 732 

AWSs under various sky conditions. Under cloudy-sky conditions, all the datasets show a 733 

negative value with a maximum of -1.5 at some stations. This means that the datasets are 734 

significantly far from observations. However, the SARAH-2 and CAMS show the lowest OP 735 

values compared to that for the ERA5 and MERRA-2 at most stations. Some stations like 736 

Oualem, Nebou, Doninga, and Manga show good OP for the CAMS and SARAH-2 datasets 737 

with a high positive value especially in Nebou. The OP value is about 0.5, which means that 738 

CAMS and SARAH-2 are consistent with the observations. To verify this, Fig.15 shows the 739 

average diurnal variation of four stations under cloudy conditions. We can clearly see that the 740 

stations of Nebou, Oualem, Doninga and Manga, which show  a high OP value for SARAH-2 741 

and CAMS, are closer to the average diurnal variation of measured GHI in comparison with 742 

ERA5 and MERRA-2. We also plotted the average diurnal variation of GHI with stations 743 
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showing a high negative OP (Ada, Akue, Jirapa, and Dedougou), as shown in Fig.16. The 744 

average diurnal variations of all datasets are far from the observations. The results confirm that 745 

it is a good choice to use an overall performance indicator for the selection of datasets for the 746 

estimation of GHI. The satellite data, however, show the best performance at most stations 747 

under cloudy conditions. 748 

 749 

 750 

In both clear-sky and all-sky conditions, all stations show a positive value of OP. The OP value 751 

of SARAH-2 and CAMS are higher than that of the MERRA-2 and ERA5 datasets, especially 752 

in stations that belong to the Guinea and the Savannah zones. In the Sahel region, the OP values 753 

are comparable between the ERA5, CAMS and SARAH-2 under clear skies at some stations. 754 

The OP value reaches about 0.7 under clear skies in Oualem, Nebou and Manga for the 755 

SARAH-2 dataset. In summary, it can be deduced from this analysis that the satellite data  are 756 

better than the reanalysis data over the entire area. 757 

 758 

We also examined the performance of different datasets at different stations and different 759 

seasons, considering different atmospheric conditions. A more detailed analysis can be found 760 

in the Figs.25-27 in the Appendix. During the DJF season, when the sky is cloudy, we observed 761 

the highest uncertainties at each station. Most datasets showed similar values, but the MERRA-762 

2 dataset showed relatively better results. In contrast, the satellite data performed better than 763 

the reanalysis data during the rainy season, which is consistent with the results shown in Figure 764 

9. Under clear skies, the datasets showed relatively low nRMSE values at each station 765 

throughout the year. However, during the JJA season we noted high nRMSE values at some 766 

stations, reaching up to 45%. This indicates larger uncertainties during this period. These 767 

results are consistent under all-sky conditions. Both the satellite and reanalysis data showed 768 

higher nRMSE values during the JJA season than in other seasons. Nevertheless, the satellite 769 

data outperformed the reanalysis data at each station overall. 770 

 771 
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 772 

 773 

Figure.14: Overall performance of hourly GHI for different AWS under cloud (a), clear (b) and all (c) 774 

sky conditions. 775 

 776 

 777 

 778 
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 779 
Figure.15: Average diurnal variation of the observed GHI compared with the CAMS, ERA5, SARAH-2, 780 

MERRA-2 datasets with high positive overall performance (OP) under cloudy skies. Nb_days means 781 

the number of days that fall in clear skies conditions. The grey shaded curve indicates the 95% 782 

confidence interval of the average diurnal cycle. 783 
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 786 
Figure.16: Similar to Fig. 10, but for a high negative overall performance (OP). 787 

 788 

 789 

 790 

3.5. Overall performance over the climate zones 791 

Fig.17 shows the performance metrics of different datasets in different climate zones for hourly 792 

GHI. The values were obtained by aggregating the stations in each climate zone. The Guinea 793 

zone and the different sky conditions have high values for nRMSE and nMAE with low 794 

correlation and IOA. In Guinea and Savannah, the nRMSE and nMAE values are comparable 795 

under cloudy skies. The satellite-derived data outperform the reanalysis data in the Sahel with 796 

low nRMSE (~25%) and nMAE (~20%) under cloudy skies. Under cloudy skies, all the zones 797 

show a negative OP value; the CAMS and SARAH-2 datasets show the lowest value compared 798 

to that of the two-reanalysis datasets. All climate zones exhibit a positive value for clear skies 799 

and all skies, with SARAH-2 and CAMS showing a higher value. The ERA5 also performs 800 

well for clear skies in all climate zones. When estimating the hourly GHIs, the satellite data 801 

outperform the reanalysis data under all-sky conditions in all climatic zones. 802 

 803 
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 804 
 805 

Figure.17: Performance metrics showing the normalized root-mean-square-error (nRMSE), 806 

normalized mean absolute error (nMAE), correlation (R), index of agreement (IOA) and the overall 807 

performance (OP) for the hourly GHI in different climate zones and various sky conditions. Panels (a, 808 

d, g, j, m) show the performance of different datasets under cloudy skies, while panels (b, e, h, k, n) 809 

indicate that for clear skies. The performance under all-skies is depicted in panels (c, f, i, l, o). 810 

 811 

 812 

 813 

 814 

 815 

 816 

 817 

 818 

 819 

 820 
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4. Conclusion 821 

The aim of this study was to validate four state-of-the-art satellite and reanalysis (CAMS, 822 

SARAH-2, ERA5, and MERRA-2) data using hourly GHI data from ANAM, WASCAL and 823 

GMet for the year 2020. To ensure the accuracy of the data, the ground-based measured data 824 

were subjected to strict quality controls; only 37 out of 51 stations were finally used as 825 

reference stations for analysis. The evaluation was conducted under different weather 826 

conditions, including cloudy skies, clear skies and all skies, using a new overall measure to 827 

identify the best product for the region, along with other criteria. In addition, the study 828 

examined the relationship between aerosol, clouds, and radiation during the Harmattan period 829 

and the rainy season. The results of the study can be summarized as follows: 830 

• For the combined 37 stations, the hourly GHI values derived from satellite and 831 

reanalysis data perform better in an area with cloud-free conditions than in a cloudy 832 

region in terms of the RMSE and MAE metrics. 833 

• Both satellite-based hourly GHI estimates perform well in cloudy conditions compared 834 

to the reanalysis data. 835 

• MERRA-2 outperforms SARAH-2, ERA5 and CAMS in estimating hourly GHI during 836 

the Harmattan period (DJF season), while SARAH-2 performs best during the rainy 837 

season (JJA) under cloudy skies. 838 

• Most datasets capture the average diurnal variation in measured GHI under cloudy and 839 

all skies, while overestimating it under cloudy skies. 840 

• ERA5 reanalysis also shows a good performance in estimating hourly GHI under clear-841 

sky conditions. 842 

• The overall performance measure shows that the SARAH-2 and CAMS data 843 

outperforms the ERA5 and MERRA-2 ones in all climate zones of the region and under 844 

different atmospheric conditions. 845 

 846 

The results of this study showed that the satellite data from SARAH-2 and CAMS perform well 847 

in estimating hourly GHI data over the study area and may serve as viable alternative to ground-848 

based measurements for assessing solar energy in West Africa. However, the data showed 849 

significant biases, especially during the Harmattan period when dust is more prevalent in the 850 

region. Future research should focus on exploring the spatial and temporal resolution of the 851 

AOD data from SARAH-2 and CAMS. On the other hand, the atmospheric reanalysis datasets 852 

used in this study performed poorly under cloudy conditions compared to the satellite data. It 853 
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is important to note that the use of a one-year dataset could limit the generality of conclusions 854 

between reanalysis and satellite data in the region. For the poor performance of the reanalysis 855 

data, we hypothesize that the parameterization of the convective scheme and the interaction 856 

between radiation and aerosols in global circulation models needs to be improved to better 857 

capture the specific features of the monsoon, such as squall lines in this challenging region 858 

(Deetz et al., 2018). In addition to the evaluation of the GHI products, the novel AWS network 859 

with the sub hourly GHI measurements enables many other important applications such as the 860 

evaluation of regional climate models, as shown for  the Weather Research and 861 

Forecasting (WRF) model (Jiménez et al., 2022;  Incecik et al., 2019; Zempila et al., 2015). 862 

The data can also be used for statistical refinement of the satellite and reanalysis products to 863 

remove biases and perform spatio-temporal disaggregation of the satellite products to better 864 

meet the needs of local applications. In addition, the high-resolution measurements of the novel 865 

networks could also improve the reconstruction of weather conditions on the ground and lead 866 

to better GHI estimates over West Africa, if this information is directly incorporated into the 867 

atmospheric models that to produce reanalysis products. Thus, there are many opportunities to 868 

further improve GHI data products for solar energy applications that need to be explored in 869 

future studies for West Africa. This will enable better planning and design of PV systems and 870 

directly contribute to better meeting the rapidly increasing demand for sustainable electricity 871 

in Africa. 872 
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Appendix 894 

 895 

 896 

 897 
Figure.17: Hourly GHI plot for different AWS within the Guinea zones for the year 2020.  898 
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 899 
Figure.18: Same ad Fig.17, but within the Savannah zone.  900 

 901 

 902 
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Figure.19: Same ad Fig.17, but within the Sahel zone.  904 

 905 

 906 
 907 

Figure.20: Bar plot showing the number of clear-sky and cloudy-sky days for different stations. 908 

 909 

 910 

 911 

Table.5: Number of data point that are above the physically possible limit and the extremely rare 912 

limit for different stations. 913 

Station Number of data outside  
from the BSRN range 

Number of data outside from 
the BSRN range in percentage 

Ada 2 0.05% 

Akim_Oda 1 0.03% 
Akosombo 1 0.03% 
Akuse 11 0.29% 
Axim 3 0.08% 
Fumbisi 1 0.03% 
Jirapa 0 0.00% 
Nakpaboni 2 0.05% 
Tema 10 0.26% 
Wa_varenpera 0 0.00% 
Yendi 2 0.05% 
Oualem 134 3.47% 
Nebou 146 3.79% 
Doninga 0 0.00% 
Tabou 151 3.91% 
Gwosi 2 0.05% 
Manga 179 4.64% 
Bagre 1 0.03% 
Bama 1 0.03% 
Banfora 0 0.00% 
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Bani 1 0.03% 
Batie 0 0.00% 
Beregadougou 1 0.03% 
Bitou 0 0.00% 
Boulsa 0 0.00% 
Bousse 0 0.00% 
Diebougou 0 0.00% 
Djibo 0 0.00% 
Gayeri 0 0.00% 
Gorom 0 0.00% 
Hounde 0 0.00% 
Kamboince 0 0.00% 
Kouka 1 0.03% 
Barsalogho 0 0.00% 
Boromo 0 0.00% 
Dedougou 0 0.00% 
Dori 0 0.00% 
Bogande 0 0.00% 
Bobo_Dioulasso 2 0.05% 
Guiloungou 0 0.00% 
all stations 649 0.44% 

  914 

 915 

 916 

 917 
 918 

Figure.21: Density plot of the daily clearness index (Kt) from different datasets (CAMS, ERA5, SARAH-919 

2, and MERRA-2) against observation for 37 stations using Gaussian kernels with normalized values of 920 

0-1 for different clear and cloudy skies. The dashed gray line shows the line: 1:1 line. R indicates the 921 

Pearson correlation. 922 

 923 

 924 
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 925 
 926 

Figure.22: Performance metrics of different datasets at different weather stations under cloudy skies. 927 

Panel (a) shows the normalized root-mean-square-error (nRMSE); panel (b) indicates the normalized 928 

mean absolute error (nMAE); panel (c) shows the correlation, and panel (d) displays the Index of 929 

Agreement (IOA). 930 
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 931 
 932 

Figure.23: Similar to Fig.22, but for clear skies.  933 
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 935 
 936 

Figure.24: Similar to Fig.22, but for all skies. 937 

 938 

 939 
 940 

Figure.25: Performance metrics of different datasets at different season under cloudy skies. The 941 

number in the heat map shows the number of cloudy days that occur at a given season and station. 942 

The empty areas indicate absence of cloudy days. 943 
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 944 
Figure.26: Similar to Fig.25, but for clear skies. 945 

 946 

 947 
Figure.27: Similar to Fig.25, but for all skies. 948 

 949 

 950 

 951 

 952 
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