
Improving the Self-X Properties of Organic
Computing Systems with Trust

Nizar Msadek
Department of Computer Science

University of Augsburg
D-86159 Augsburg, Germany

Email: Nizar.Msadek@informatik.uni-augsburg.de

I. INTRODUCTION

The Organic Computing Initiative [1] has turned out to be a
challenging vision for future information processing systems.
This initiative consists of developing computer systems capa-
ble of so-called self-x properties (like self-configuration, self-
optimization, self-healing and self-protection) to cope with
the rapidly growing complexity of computing systems and to
reduce the barriers that complexity poses to further growth.
These properties are achieved by constantly observing them-
selves and initiating autonomous reconfiguration if necessary.

An essential aspect that becomes particulary prominent
in this kind of systems is trust [2]. As part of my PhD
thesis, a new design of self-x properties for organic computing
systems will be investigated. Its main task is to improve
self-x properties with trust capabilities to enable building a
reliable system from unreliable components. The middleware
system used in this work is the Trust-Enabling Middleware
(TEM [3]) but these techniques can also be applied to any
kind of distributed system.

This dissertation is part of the research unit OC-Trust of
the German Research Foundation(DFG), which presented the
following trust metrics to calculate the trust values required for
the self-x properties. It is to note that all these trust metrics
are integrated in TEM.

• Direct Trust [4] Is based on the experiences one has
made directly with an interaction partner. Typically, trust
values are calculated by taking the mean or weighted
mean of past experiences.

• Reputation [5] Is based on the trust values of others that
had experiences with the interaction partner. Reputation
is typically raised if not enough or outdated experiences
exist.

• Confidence [6] Before both values, direct trust and
reputation, can be aggregated to a total trust value, the
reliability of one’s own trust value has to be determined,
the so called confidence. If a node does have a direct trust
value but is not confident about its accuracy, it needs to
include reputation data as well.

• Aggregation [7] When all the aforementioned values are
obtained, a total trust value based on the direct trust and
reputation values can be calculated using confidence to

weight both parts against each other. This value can then
be used to improve the self-x properties.

The remainder of this paper is structured as follows.
Section II introduces self-configuration, Section III gives an
overview of self-optimization, Section IV describes mecha-
nisms of self-healing and how to cope with failures. Section V
presents the role of self-protection. Conflicting problems of
trust values are discussed in Section VI. Finally, the scalability
is shown in Section VII.

II. SELF-CONFIGURATION

The approach of self-configuration is a crucial part for
developing dependable and robust systems using self-x prop-
erties. This consists mainly of finding a robust distribution
of services by including trust. The services are therefore
categorized into important services i.e., with high trust level,
and non important services i.e., with low trust level. The
goal is to maximize the availability of important services.
Therefore, it is necessary to assign the more important services
to more reliable nodes. In addition to the reliability, resource
requirements (e.g., like CPU and memory) should also be
considered to be able to balance load of the nodes.

A. Metrics

The self-configuration focuses on assigning services with
different trust levels to nodes such that the more important
services are assigned to the more reliable nodes. Furthermore,
the overall utilization of resources in the network should be
well balanced. Therefore a metric is defined to calculate a
Quality of Service (QoStotal).

QoStotal = (1− α) ·QoStrust + α ·QoSworkload.

The relationship between trust and workload can be set
through α. α is constant (0 ≤ α ≤ 1) for a node. If α = 1, the
QoStotal is only obtained by the current value QoSworkload.
If α = 0, the QoStotal is decided only by the actual QoStrust

value. A higher value α favors QoSworkload over QoStrust.
• QoStrust indicates how well the reliability of a node

fulfilled the required reliability of a service. Figure 1
visualizes the possible situations that can occur in the
calculation of the QoStrust.

45

𝑡𝑛

𝑡𝑛 + δ𝑚𝑎𝑥

𝑡𝑛 + δ𝑚𝑖𝑛

𝑡𝑛 − δ𝑚𝑎𝑥

+Φ

-Φ

𝑄𝑜𝑆𝑡𝑟𝑢𝑠𝑡

𝑇𝑟𝑢𝑠𝑡

𝑡𝑛 − δ𝑚𝑖𝑛
0

𝑡𝑠

1

𝑡𝑛 : Current trust value (i.e., reliability) of a node.
𝑡𝑠 : Required trust value (i.e., reliability) of a service.

Fig. 1. Calculating QoStrust based on the difference between the reliability
of the node n (tn) compared to the required reliability of the service s (ts)

tn represents the current trust value of a node n. ts
represents the required trust value of service s. If both
of these values are close enough then n has fulfilled
the required trust value of a service s. Close enough is
defined by the threshold δmin. If the difference between
tn and ts is more than δmin, then QoStrust will be
gradually decreased until it reaches tn ± δmax. If ts is
even beyond tn ± δmax then the QoStotal will be fully
decreased by φ where φ is the maximum value QoStrust

can decrease.
• QoSworkload is computed with the metric of Trum-

ler [8]. As long as a node is not overburdened, the quality
of service decreases linearly, otherwise it decreases ex-
ponentially.

B. Self-Configuration Process

This section discusses the methodology for distributing
services. This consists of a collection of services with different
priority levels which should run on nodes with different
reliability levels. It is known to be a NP-hard problem to
find an optimal solution for the distribution of the services
on the nodes, such that the quality of service is optimal
in terms of some predefined parameters [9]. Furthermore,
there is no known polynomial algorithm which can, for a
given solution, identify whether it is optimal. The aim behind
self-configuration is to find a distributed and robust but not
necessarly optimal, solution.

The quality of service metric presented in II-A is intended to
evaluate the distribution phase which is based on the Contract
Net Protocol [10]. During the distribution phase, every node
on the network can act at different times or for different
services as a manager or contractor. A manager is responsible
for assigning services. A contractor is responsible for actual
execution of the service. However, the manager is determined
earlier by the user. Figure 2 visualizes a step-by-step example
on how the negotiation process is run between nodes.

1) Service Announcement: The manager (e.g., node1) that
has a service initiates contract negotiation by advertising
the existence of that service to the other contractors (e.g.,
node2, node3 and node4) with a service announcement

(1) Announcement

(1) Announcement

(1) Announcement

(2) Bidding

(2) Bidding

(3) Awarding

(2) Bidding

node1
(Manager)

node2
(Contractor)

node4
(Contractor)

node3
(Contractor)

Fig. 2. Elementary representation of the distribution phase

message. A service announcement can be transmitted
to a single contractor in the network (unicast), to a
specific set of contractors (multicast) or to all contractors
(broadcast).

2) Bidding: Every contractor that receives the announce-
ment calculates the QoSworkload itself for the given
service, i.e., based on its own locally available resources
and then submit its bid in form of QoSworkload to the
manager back. Note that the service annoucement is
ignored if the service cannot be hosted due to missing
resources.

3) Awarding: If the expiration time has passed, the man-
ager that sends the service announcement must calculate
QoStrust for every contractor in order to build the
QoStotal and decides who to award the contract to. The
result of this process will be then communicated to the
contractors that submitted a bid. The expiration time is
defined as a deadline for receiving bids. It is to note that
the expiration time is determined earlier by the user.

C. Conflict Resolution

During the self-configuration process, several nodes could
be ranked with the same QoStotal. This might lead to a conflict
for the manager to decide to whom he awards the service.
To avoid this a conflict resolution mechanism is used which
does not need any further messages. The conflict resolution
mechanism consists of three stages which might be used in
the following chronological order:

1) Minimum latency: The node with the lowest latency
will get the service.

2) Minimum amount of already assigned services: The
node with the least amount of already assigned services
will get the service, assuming that a lower amount of

46

services will produce less load (e.g., process or thread
switching produces additional load).

3) Node ID: It is unlikely but not impossible that all of the
former values were equal. In this case the id of the node
will be used to find a solution to the conflict because
every node has a unique id.

III. SELF-OPTIMIZATION

Based on the proposed self-configuration techniques, the
services can be distributed on the nodes by different distri-
bution strategies:

• Uniform distribution: The services are distributed on
the nodes to evenly utilize all nodes and prevent single
nodes to be overburdened. This leaves every node with a
safety margin to cover possible performance spikes.

• Power save distribution: All services should run on
a minimal number of nodes, so that free nodes can be
deactivated in order to save energy.

Without trust, important services might run on unreliable
nodes and are prone to failures. Such situations can be avoided.
With trust, the reliability of a node can be measured and taken
into consideration for the service distribution. For that reason,
the distribution mechanisms should be investigated with and
without a known reliability. The differences between using
trust and not using trust have to be evaluated regarding the
downtime of important services.

IV. SELF-HEALING

To investigate and research Self-Healing metrics, two ways
have to be considered:

• Proactive Self-Healing: Enables to detect node instabil-
ity prior to fail and then to move all running services
by using self-configuration techniques to a more reliable
node. False proactive shifts should be avoided.

• Reactive Self-Healing: Nodes save recovery information
periodically during failure free execution. Upon failure,
which has to be detected by using a failure detector, a
node uses the already saved information to restart from
an intermediate state i.e., called checkpoint, thus reducing
the amount of lost computation.

V. SELF-PROTECTION

Trust values build the basis for all operations to increase
the robustness of an organic computing system. Therefore,
they must be specially protected against manipulation. Mármol
and Pérez [11] presented some of the most important and
critical security threat scenarios that can be found in the area
of trust and reputation in a distributed system. Hence, all these
scenarios have to be investigated and researched in order to
make the self-x properties more resistent against such attacks.

VI. PROBLEM OF CONFLICTING TRUST VALUES

Another interesting point is to find a solution for conflicting
trust values. This can happen by collecting reliability values
independently from the neighbors of a node that can contradict

node1

node2 node3

t
12

 = 1

t
13

 = 1

t
31

 = 1

t
32

 = 0.2

t
21

 = 1

t
23

 = 0.2

Fig. 3. Trust conflicting values in an example of three nodes

each other. Figure 3 visualizes this problem in an example of
three nodes.

A shielding wall is set between two nodes i.e., node2 and
node3 producing poor reliability values between these nodes,
while a third node (node1) is not affected. t23 is the trust
value node2 has about node3, so it wants to apply self-healing
techniques in order to save all services running on node3,
while node1 sees no need for action. Such situations must be
omitted using metrics, which enable to deal with conflicting
values.

VII. DEALING WITH LARGE SCALE ORGANIC COMPUTING
SYSTEMS

In a hierarchical system, e.g., in a clustered Data Center,
the already developed trust metrics are so far not entirely
applicable, since only the next level in the hierachy is visible.
Some nodes within a cluster could be less trustworthy. The
cluster itself is still trusted because the cluster head is able
to deal with its cluster members. Such situations can be
omitted by using methods enabling the cluster head to control
unreliable cluster members and to return a good result despite
such members.

VIII. RELATED WORK

The presented trust-enhanced self-x properties differ from
state of the art selforganising mechanisms [12] [13] [1] [14]
in three major points:

1) Development of techniques that allow the consideration
of trust during analysis and interaction of Organic Com-
puting systems.

2) Possibility to control complex systems with variable
behavior.

3) Making a reliable and robust system out of unreliable
components.

IX. SUMMARY AND OUTLOOK

In this paper, a new design of self-x properties for organic
computing systems is presented. Its main task is to improve
using trust self-configuration, self-optimization, self-healing
and self-protection. This approch will be embedded in a future
work into the TEM, which is a trust enabling middleware
implemented in Java and based on a peer to peer network.

47

Furthermore, two major existing problems in TEM are dis-
cussed, which are scalability and conflicting trust values.

ACKNOWLEDGMENT

This research is sponsored by the research unit OCTrust
(FOR 1085) of the German Research Foundation (DFG).

REFERENCES

[1] C. Müller-Schloer, “Organic Computing - On the Feasibility of Con-
trolled Emergence,” CODES + ISSS 2004. International Conference
on Hardware/Software Codesign and System Synthesis, 2004., vol. 2-
5, 2004.

[2] J.-P. Steghöfer, R. Kiefhaber, K. Leichtenstern, Y. Bernard, L. Kle-
jnowski, W. Reif, T. Ungerer, E. André, J. Hähner, and C. Müller-
Schloer, “Trustworthy Organic Computing Systems: Challenges and
Perspectives ,” Proceedings of the 7th International Conference on
Autonomic and Trusted Computing (ATC 2010), Springer, vol. 14, pp.
62–76, 2010.

[3] G. Anders, F. Siefert, N. Msadek, R. Kiefhaber, O. Kosak, W. Reif, and
T. Ungerer, “TEMAS - A Trust-Enabling Multi-Agent System for Open
Environments,” Universität Augsburg, Tech. Rep., 2013.

[4] R. Kiefhaber, B. Satzger, J. Schmitt, M. Roth, and T. Ungerer, “Trust
measurement methods in organic computing systems by direct obser-
vation,” in IEEE/IFIP 8th International Conference on Embedded and
Ubiquitous Computing (EUC 2010), december 2010, pp. 105 –111.

[5] R. Kiefhaber, S. Hammer, B. Savs, J. Schmitt, M. Roth, F. Kluge,
E. André, and T. Ungerer, “The neighbor-trust metric to measure
reputation in organic computing systems,” in Fifth IEEE Conference on
Self-Adaptive and Self-Organizing Systems Workshops (SASOW 2011),
october 2011, pp. 41 – 46.

[6] K. Rolf, A. Gerrit, S. Florian, U. Theo, and R. Wolfgang, “Confidence
as a means to assess the accuracy of trust values,” in The sixth IEEE
International Conference on Self-Adaptive and Self-Organizing Systems
(SASO2012), september 2012.

[7] K. Rolf, J. Ralf, M. Nizar, and U. Theo, “Ranking of direct trust, confi-
dence, and reputation in an abstract system with unreliable components,”
in The seventh IEEE International Conference on Self-Adaptive and Self-
Organizing Systems (SASO2013), september 2013.

[8] W. Trumler, “Organic ubiquitous middleware,” Ph.D. dissertation, 2006.
[9] K. R. Reischuk, Komplexitätstheorie: Band 1. Teubner Verlag, 1999.

[10] R. G. Smith, “The Contract Net Protocol: High-Level Communication
and Control in a Distributed Problem Solver ,” in Defence Research
Establishment Atlantic. IEEE TRANSACTIONS ON COMPUTERS,,
1980, pp. 1–10.

[11] F. G. Mármol and G. M. Pérez, “Security threats scenarios in trust
and reputation models for distributed systems,” Computers & Security,
vol. 28, no. 7, pp. 545–556, 2009.

[12] R. Urban, M. Moez, B. Jürgen, M.-S. Christian, and S. Hartmut, “To-
wards a generic observer/controller architecture for organic computing,”
Bonner Köllen Verlag, pp. 112–119, 2006.

[13] O. Jeffrey and C. David M, “The vision of autonomic computing,” IEEE
Computer Society, pp. 41 – 50, 2003.

[14] B. Jürgen, M. Moez, M.-S. Christian, P. Holger, R. Urban, R. Fabian, and
S. Hartmut, “Organic computing addressing complexity by controlled
self-organization,” Second International Symposium on Leveraging Ap-
plications of Formal Methods, Verification and Validation, pp. 185 –
191, 2006.

48

