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Introduction: The Autonomous Sensory Meridian Response (ASMR) is a

combination of sensory phenomena involving electrostatic-like tingling

sensations, which emerge in response to certain stimuli. Despite the overwhelming

popularity of ASMR in the social media, no open source databases on ASMR related

stimuli are yet available, which makes this phenomenon mostly inaccessible to

the research community; thus, almost completely unexplored. In this regard, we

present the ASMR Whispered-Speech (ASMR-WS) database.

Methods: ASWR-WS is a novel database onwhispered speech, specifically tailored

to promote the development of ASMR-like unvoiced Language Identification

(unvoiced-LID) systems. The ASMR-WS database encompasses 38 videos-for a

total duration of 10 h and 36 min-and includes seven target languages (Chinese,

English, French, Italian, Japanese, Korean, and Spanish). Along with the database,

we present baseline results for unvoiced-LID on the ASMR-WS database.

Results: Our best results on the seven-class problem, based on segments of 2s

length, and on a CNN classifier and MFCC acoustic features, achieved 85.74% of

unweighted average recall and 90.83% of accuracy.

Discussion: For future work, we would like to focus more deeply on the duration

of speech samples, as we see varied results with the combinations applied herein.

To enable further research in this area, the ASMR-WS database, as well as the

partitioning considered in the presented baseline, is made accessible to the

research community.
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1. Introduction

The Autonomous Sensory Meridian Response (ASMR) is a physical response triggered

by sensory stimuli—often described as “tingles”—which typically start in the scalp before

spreading in waves across the body (Gallagher, 2016). Although the perception of ASMR

content has shown to be subjective (Smith and Snider, 2019), varying across individuals,

a typical ASMR brings a pleasurable sense of calm (Gallagher, 2016). Due to this, ASMR

has been recently considered in a variety of initiatives aimed to promote wellness, such

as meditation (Barratt and Davis, 2015), therapy (Gallagher, 2016), and specific processes

aimed at reducing stress (Barratt and Davis, 2015). Research on ASMR is, however,

still reasonably new (Barratt and Davis, 2015; Fredborg et al., 2017), finding a surge in

attention due to the spread of online content—shared predominately through YouTube—

intended to evoke a relaxing sensation (Andersen, 2015). Although ASMR can be triggered

by audio-visual and tactile stimuli, the auditory component of ASMR related content

is essential. Indeed, audio stimuli such as whispered-speech, rustling paper, tapping of

fingers, or crinkling plastic, are typical scenarios used by users with the intention of being

relaxed (Andersen, 2015).
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The development of a system for ASMR content

understanding is of critical importance due to the growing

popularity of ASMR as a potential means of promoting relaxation,

reducing stress, and improving overall wellbeing (Andersen,

2015). However, the subjective and heterogenous nature of ASMR

triggers make it difficult to measure and quantify, and there is

a lack of standardized methods for identifying and categorizing

ASMR videos. Language Identification (LID) serves as the initial

step in building an ASMR content understanding system by

facilitating the automatic classification of videos according to

their language, which is a crucial determinant of their content and

target audience (Mehrabani and Hansen, 2011; Monteiro et al.,

2019). For example, ASMR videos in English may exhibit distinct

triggers or styles from those in other languages, and understanding

these variances can aid in personalizing and optimizing the ASMR

experience for viewers. Furthermore, the presence of whispered

speech (Bartz et al., 2017) in ASMR videos poses challenges for

traditional speech processing techniques. LID can enable the

differentiation of whispered speech in various languages, thereby

enabling more accurate analysis and comprehension of ASMR

content. Thus, the development of a system for ASMR content

understanding that incorporates LID as a foundational element is

integral to advancing our knowledge and comprehension of ASMR

and its potential benefits.

With the aim of filling the gap between LID systems and

speech-based ASMR, we present, to the best of our knowledge,

the first multi-language database specially designed to investigate

ASMR from whispered-speech in a variety of languages. To

encourage the development of further ASMR-based whispered-

speech language identification systems—being of interest for both

the ASMR and speech processing communities—a baseline aimed

to identify the language in ASMR whisper-speech, resulting from

the application of Convolutional Neural Network (CNN) and Long

Short-Term Memory (LSTM) architectures on acoustic features—

Mel-Frequency Cepstral Coefficients (MFCCs) and Logarithmic

Mel-Spectrogram (logMel), is also presented.

2. Related work

The rise of online communities specifically created to elicit

ASMR “tingles” (Fredborg et al., 2017), evidences an always

increasing interest in ASMR. There are several factors that

distinguish ASMR from other atypical sensory experiences, such as

“frisson”, the sudden tingling sensations that occurs also during an

emotional response to music (Fredborg et al., 2017). For instance,

although both, ASMR and frisson, present an affective component

and tend to occur while a given individual is mindful and fully

engaged with the triggering stimulus, the tingles associated with

frisson tend to spread rapidly throughout the body, whereas those

related to ASMR may last up to several minutes (Del Campo and

Kehle, 2016). Some research into the neural substrates linked to

ASMR confirmed that sensorial stimuli, such as light touch, can

bring an internal sensation of deep relaxation (Lochte et al., 2018).

Indeed, recent research has demonstrated that ASMR are related to

the activation of specific brain regions associated to the sensation

of pleasure (Lochte et al., 2018). Showing also, that individuals

who experience ASMR, present a greater default mode network

functional connectivity (Raichle, 2015). Current research suggested

that auditory stimuli—particularly whispered speech—are crucial

in experiencing ASMR (Poerio et al., 2018).

Whispered speech, also known as unvoiced speech and typically

produced with no vocal-cord vibration, is characterized by low-

energy (Zhou et al., 2019). As opposed to “normal” speech,

the speech produced through the use of voiced sounds with

harmonic excitation, whispered speech is produced with broad-

band noise (Zhou et al., 2019), being, for instance, the typical form

of communication for individuals diagnosed with aphonia (Zhou

et al., 2019). In our hypersonic world, whispered speech, which

usually requires closeness between speaker and listener (Li, 2011),

presents an inherent affective component. Indeed, from the ASMR

enthusiasts prospective, it has been described as a recreation

of maternal intimacy (Cheadle, 2012). In recent years, different

machine learning tasks related to whispering have emerged, such

as whispered speech recognition (Xueqin et al., 2016), whispered

emotional speech recognition (Deng et al., 2016), and whisper to

normal speech conversion (Pascual et al., 2018); yet, despite the

gained attention of this research topic and the variety of available

whisper datasets (Silva et al., 2016), ASMR-specific whispered-

speech datasets have not yet been developed.

3. ASMR-WS database: description

The ASMR-WS (Autonomous Sensory Meridian Response

Whispered-Speech) database is made up of 38 WAV audio clips

(mean length 17 min, std dev 37 min, and a total duration of

10 h and 36 min) retrieved from YouTube along with language

labels. Their purpose was to evoke ASMR. The database contains

unvoiced speech produced by 38 adult female speakers in seven

languages (Chinese, English, French, Italian, Japanese, Korean, and

Spanish). For each language, at least four speakers were considered,

and except for Chinese (whose content lasts 37 min), all the other

languages present audio content longer than 1 h (for the number of

speakers and content length of each language cf. Table 1).

3.1. Data selection, acquisition, and
validation

ASMR related content from YouTube is presented in an

audio-visual form; yet, considering that auditory stimuli are crucial

TABLE 1 Speaker information for each language in the ASMR-WS

database.

Languages Duration # Mean Std

Chinese 37min 5 7.4 4.1

English 1 h 40min 5 20.0 5.2

French 2 h 50min 8 21.0 1.6

Italian 1 h 10min 5 14.0 2.6

Japanese 1 h 27min 7 12.4 3.1

Korean 1 h 28min 4 22.0 3.6

Spanish 1 h 24min 4 21.0 5.6

Reporting total duration, number (#) of speakers, and the mean and standard deviation (std)

for duration (in minutes) that each speaker appears.
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TABLE 2 Distribution of the database in train, (dev)elopment, and test sets with the number of speakers, and di�erent segments.

Languages Speakers 0.5 s 1 s 2 s

Train Dev Test Train Dev Test Train Dev Test Train Dev Test

Chinese 3 1 1 6,057 1,030 1771 3,026 514 885 1,511 256 442

English 3 1 1 18,383 2,691 3,172 9,189 1,345 1,585 4,593 672 792

French 4 2 2 18,746 12,373 9,586 9,370 6,185 4,791 4,682 3,091 2,394

Italian 3 1 1 9,245 3,722 3,722 4,620 1,860 1,860 2,307 929 929

Japanese 3 2 2 10,313 6,306 4,171 5,237 3,152 2,085 2,616 1,574 1,042

Korean 2 1 1 15,015 2,976 2,650 7,506 1,487 1,324 3,751 743 661

Spanish 2 1 1 13,003 2,914 3,755 6,499 1,456 1,877 3,248 727 938

6 20 9 9 90,926 32,012 28,827 45,447 15,999 14,407 22,708 7,992 7,198

for ASMR, we decided to keep only audio. In order to increase the

probability of finding speech in a given language, in the results’

filter from the YouTube search, proximity to the location of major

cities was prioritized. Following this criterion, seven languages

were selected: Chinese, English, French, Italian, Japanese, Korean,

and Spanish, those with a sufficient amount of clips. To retrieve

suitable ASMR related content in unvoiced speaking style, obvious

keywords such as ‘ASMR’ and “whisper”, as well as others related to

these, e.g., “reading a book”, were considered (translated into the

targeted languages) to appropriately filter the YouTube results.

The YouTube videos were retrieved through the Application

Programming Interface, which allows developers to retrieve

information from YouTube’s database. The audio layer was

subsequently extracted in WAV format encoded in single channel

16 kHz 16 bit PCM. Only content with at least 120 s of whisper

speech, the minimum considered to enable the recognition of

the target language, was taken into account. In addition, audio

content presenting background music/noise or recorded at low

quality, as well as that with more than one speaker, was dismissed.

Considering that for some languages there were no male speaker,

in order not to collect a heavily gender-imbalanced database, only

female speech was taken into account. Importantly, only content

associated to a Creative Commons license was take into account.1

All these criteria were applied subjectively by two auditors (authors

of the presented work), and only samples targeted as valid by both

auditors were considered part of the database.

4. Experimental setup

A critical challenge for automatic language identification is to

achieve superior classification performance in the context of the

shortest possible speech segments (Van Segbroeck et al., 2015). To

this end, previous works have shown that the success in performing

this task on speech segments with the length of 1 s or even shorter,

leads to rapid language identification for inference (Van Segbroeck

et al., 2015). In this work, we conducted experiments to evaluate our

1 The Creative Commons, CC BY license gives permission that, so long as

the work is attributed, anyone can: adapt – remix, transform, and build upon

thematerial for any purpose. The content validationwasmanually performed.

database, taking into account three different segment lengths: (0.5,

1, and 2 s) An automatic language identification model takes the

acoustic feature sets, such as logMel and MFCCs, that are extracted

from each segment and predicts its belonging language type.

4.1. Data partition and truncation

For the experiments, the database was split into training,

development, and test sets, as appears in Table 2 under column

“Speakers”. The partitioning assures a participant-independent

setting. The primary rationale for utilizing a participant-

independent setting is to mitigate potential sources of bias in

the analysis process by circumventing the effects of individual

variation in data interpretation (Luo et al., 2018). Further, the

audio recordings are truncated with 50% overlap (Charpentier and

Stella, 1986) in length for each segment length, resulting in a total

of 151,765 chunks of 0.5 s, 75,853 chunks of 1 s, and 37,898 chunks

of 2 s, respectively. The reason why we applied overlap technique

is to achieve more complete and continuous representations of the

speech signal (Charpentier and Stella, 1986).

4.2. Feature sets

Two kinds of acoustic feature sets, logMel and MFCC, were

extracted using the open-source OPENSMILE toolkit (Eyben et al.,

2010), which has been widely applied for speech-, audio- and

health-related tasks (Song et al., 2019; Yang et al., 2019; Han et al.,

2020; Qian et al., 2020). Previous research has demonstrated that

logMel and MFCC coefficients are effective in capturing pertinent

information in speech signals, such as spectral characteristics and

modulation patterns (Meghanani et al., 2021). Furthermore, more

intricate feature sets may result in overfitting and computational

inefficiency (Padi et al., 2021), which can adversely impact

performance. Hence, the selection of a limited set of features,

namely logMel and MFCC coefficients, was made to achieve

optimal performance while ensuring computational efficiency.
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4.2.1. LogMel feature set
LogMel frequency is a representation of the Logarithmic Mel-

scale on the short-time frequency, successfully applied in a range

of acoustic tasks, such as speech feature enhancement and acoustic

scene classification, amongst others (Ren et al., 2019, 2020). The

advantage of applying the logarithmic Mel-scale, on one side, is an

easy implementation with higher resolution in the time-frequency

domain (Farooq and Datta, 2002), on the other, the low complexity

of its estimation algorithm (Ambikairajah et al., 2011), which

reduces the computational cost. In this study, we use 26-band

logMel, and the first and second delta regression coefficients (Eyben

et al., 2010). The Delta coefficients are extracted based on the

logMel frequencies in each audio segment with a length of 0.01 s.

4.2.2. MFCC feature set
MFCCs are a representation derived from logMEL frequencies

by computing the cepstrum of the melodic frequencies. MFCCs are

one of the most commonly used filterbank-based parameterization

methods for speech processing applications, such as speech

recognition, speaker verification/identification, and language

identification (Eyben et al., 2013). We gain the advantage of

low dimensionality and independence of the corruption across

feature dimensions (Acero et al., 2006). In this work, we extract

39-dimensional MFCC features, including 13 MFCC coefficients,

the first and the second delta regression coefficients, in which both

delta coefficients have 13 dimensions.

4.3. Classification models

Recently, deep learning models have been successfully

applied to the tasks of language modeling (Sagha et al.,

TABLE 3 LSTM and CNN training hyperparameters.

Parameter Value

Optimizer Adam

Learning rate 0.001

Activation function ReLu

Batch-size 128

Train epochs 100

Loss function Cross-entropy

2016). Previous experience with LSTM on this topic showed

good results on short segments for a limited number of

languages (Gelly and Gauvain, 2017). Another popular

network for this use case are CNNs, which has been

explored in language identification in order to obtain an

utterance level representation (Wang et al., 2019). For these

reasons, in our experiments, we utilize LSTM and CNNs for

baseline results.

The LSTM model contains a single layer to model the

sequential input, and the output of the last hidden unit is

mapped to the number of classes through a sequence of dense

layers. The number of neurons of each dense layer are 64,

128, 256, 127, and 64. The architecture of our CNN model

contains two convolutional layers, activated by a ReLU function.

Both convolutional layers use the kernel size of (5, 5) and

stride size of (1, 1). Max pooling is applied for each layer

with the kernel size of (2, 2). The output feature maps of the

second convolutional layer is flattened, and then projected to

the number of classes via a dense layer. Softmax is used to

normalize the model output. Other hyper-parameters used in

this work to train both models, LSTM and CNN, are given

in Table 3.

5. Baseline results

We presented the performance of our LSTM and CNN models

for different feature representations and different segment lengths

in Table 4. Besides classification accuracy (Acc), Unweighted

Average Recall (UAR) is used in this work to evaluate the LID

performance, as it is commonly used for unbalanced multi-

class classification tasks, for example, in the Native Language

Identification Sub-Challenge held within the INTERSPEECH

2016 Computational Paralinguistics Challenge (Schuller et al.,

2016).

From observing our result, we see that the best identification

results for the 7-class language task comes from CNNs utilizing

MFCCs with at best 90.83% accuracy. We see from the confusion

matrix in Figure 1 that the French language is identified better

than all other languages, with Korean being confused most.

We speculate that this confusion may come from linguistic

similarities, such as phonology and prosody (Madhu et al.,

2017).

For example, although the roman languages

considered, French, Italian, and Spanish, present lexical

TABLE 4 The performances [(Acc)uracy [%] and UAR [%]] of the proposed LSTM and CNNmodels on di�erent durations.

0.5 s 1 s 2 s

MFCC logMel MFCC logMel MFCC logMel

Dev Test Dev Test Dev Test Dev Test Dev Test Dev Test

LSTM Acc [%] 76.77 54.52 86.23 75.45 77.92 77.73 84.31 65.03 74.17 70.63 87.04 82.63

UAR [%] 64.64 62.63 70.12 64.15 68.15 70.09 68.84 54.06 54.81 58.68 71.39 62.36

CNN Acc [%] 56.25 52.68 55.15 54.53 86.16 88.81 83.57 89.49 88.00 90.83 73.23 77.39

UAR [%] 68.85 59.72 67.61 62.63 78.84 83.12 65.68 83.86 80.76 85.74 53.40 70.49

In each duration, the performances of MFCC and logMel features are presented on the (dev)lopment and test set. Bold value indicates the best result.
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and grammatical similarities, their acoustic elements

differ (Parada-Cabaleiro et al., 2018, 2019), which

may have been the cause for increased classification

accuracy. In this case, Korean (where we see our

highest confusion), the languages presents phonologically

short and long vowels, and the length of which is not

represented orthographically (Ingram and Park, 1997).

This complexity in phonetic structure may be the reason

for an impaired classification result, and suggests to

us that these prosodic elements play a strong role in

this task.

We also notice that for shortness of utterances results, for 0.5

s identification tasks, LSTM perform better than CNN for both

MFCC and logMel features. We argue that LSTM stores more

temporal state of data than CNN. For logMel features within the

CNN classifier, the 1 s task works better than the 0.5 second and

2 s tasks. Changing from 0.5 to 1 s, the performance of the CNN

classifier for logMel improves tremendously. For 2 s identification

tasks, the CNN classifier for MFCC feature works very satisfyingly.

We speculate that the reason may stem from the ability of CNNs

to “grab” details at a specific node are better than LSTM due to

grid-like topology.

5.1. Limitations

Although our baseline results confirmed that the ASMR-

WS database is promising for ASMR speech research, there are

some places which could be improved: (i) A standard LSTM

network only predicts the labels based on the past time stamps

in a forward direction. Bidirectional LSTM extends the single-

directional LSTM network by introducing an additional backward

direction (Cai et al., 2019) if non-causality is an option. We

will optimize our classifier architecture as bidirectional LSTM to

improve the performance. (ii) Except machine learning models

used in this work, an i-vector model has shown promising to

extract effective representations for speech recognition tasks (Song

et al., 2013). Therefore, i-vector model based features will be

extracted for the task of unvoiced LID in the future. (iii)

Another current limitation of the database is that Chinese

content is still below 1 h of length. In this regards, we plan

to collect Chinese ASMR speech from Chinese social media

to balance the content of this language. (iv) Additionally,

it is important to acknowledge that our dataset presents a

gender imbalance, as a significant proportion of ASMR material

available on the YouTube platform is generated by female

speakers. Such gender domination can give rise to two primary

concerns: firstly, certain gender-specific ASMR triggers may

be more attractive to individuals of a particular gender, and

secondly, the underrepresentation of male gender can potentially

compromise the generalizability of the models. Nonetheless,

establishing a dataset that encompasses a balanced representation

of both male and female speakers is currently a challenging

task. In order to overcome this limitation, we plan to amass

more ASMR data from male speakers in the future. (v) Our

results for language identification of 2-s audio snippets showed

promising performance for the seven languages considered in

FIGURE 1

Confusion matrix for the best baseline results of the ASMR-WS

dataset. Reporting 90.83% accuracy on test, using 2 s samples, in a

CNN/MFCC paradigm.

our study. However, we acknowledge that the identification

rate for Roman languages, such as French and Italian, may be

affected by the shorter snippet duration. Therefore, it would be

interesting to investigate the detection rate of different languages

at various snippet durations, including 0.5 and 1 s, to better

understand the impact of duration on language identification.

It is worth noting that different languages may exhibit varying

optimal audio lengths, and investigating this aspect could be a

potential direction for further research in the field of ASMR

content understanding.

6. Conclusions

In this study we outline and present baselines for the first

of its kind ASMR-WS dataset, which includes seven languages

from 38 female speakers. In order to establish a benchmark for

the dataset we perform a series of language identification tasks

and developed two state-of-the-art architectures, namely LSTM-

and CNN-based, processing three duration’s of speech samples.

Our experiments have shown promising results for the dataset,

as well as for the task of whisper-based language identification.

Of note, we find that an accuracy of up 90.83% is possible for

the 7-class task. For future work, we would like to focus more

deeply on the duration of speech samples, as we see varied

results with the combinations applied herein. The same would

apply to the use of acoustics features. in which it may be of

interest to explore other well-known speech dataset including low-

level descriptors from the well-known OPENSMILE toolkit. For

whispered speech language identification specifically, it would be

of interest to explore more closely the results we obtained from

the Korean language, as developing a model which focuses on

this seemingly more complex language, may prove fruitful. Lastly,

through the use of state of the art audio-based architectures, it may
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be of interest to apply the ASMR-WS dataset to other novel tasks,

including ASMR activity detection and ASMR whispered speech

generation.
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