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Abstract: In numerous engineering applications, such as polymer or blood flow, the dependence
of fluid viscosity on the local shear rate plays an important role. Standard techniques using
inf-sup stable finite elements lead to saddle-point systems posing a challenge even for state-of-
the-art solvers and preconditioners. Alternatively, projection schemes or time-splitting methods
decouple equations for velocity and pressure, resulting in easier to solve linear systems. Although
pressure and velocity correction schemes of high-order accuracy are available for Newtonian
fluids, the extension to generalised Newtonian fluids is not a trivial task. Herein, we present
a split-step scheme based on an explicit-implicit treatment of pressure, viscosity and convection
terms, combined with a pressure Poisson equation with fully consistent boundary conditions.
Then, using standard equal-order finite elements becomes possible. Stability, flexibility and
efficiency of the splitting scheme is showcased in two challenging applications involving aortic
aneurysm flow and human phonation.

1 INTRODUCTION

Various engineering and industrial applications such as automotive design, wind or hydraulic
power production, medical devices or synthetics manufacturing share incompressible viscous
flow as a central element. The modeling and simulation of fluids has thus been of great interest
even before the beginning of computer aided design. More often than not, such fluids are
modeled assuming a linear relationship between shear rate and viscous stress via constant
viscosity. As it turns out, this modeling assumption may be invalid in various scenarios, blood
and polymer flows being practically relevant examples. A vast majority of numerical schemes,
however, focuses on Newtonian fluids, neglecting these effects. Depending on the problem and
specific flow regime, non-Newtonian characteristics can heavily impact the results obtained and
conclusions drawn from them [1, 2]. The most popular approach to incorporate phenomena
such as plug flow or shear thinning/thickening is to consider the viscosity depending on the
shear rate, leading to so-called generalised Newtonian or quasi-Newtonian assumptions.

Driven by the ever increasing demand, numerical treatment of the Navier-Stokes equations
for incompressible flows have become a staple in modern day computational engineering. But
despite the enormous efforts invested, large-scale flow problems still challenge state-of-the-art
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high-performance computer architectures. The development of new algorithms and methods
designed for such problems therefore remains an intense field of research. When employing finite
elements, basis functions for velocity and pressure have to be chosen with caution, obeying the
Ladyzhenskaya–Babuška–Brezzi (LBB) condition. Some extensions of classical workarounds
for Newtonian fluids are readily available, ranging from penalty methods [3, 4] to pressure
Poisson stabilisation [5] and local pressure projection [2]. Some residual-based stabilisations
have been proposed [6, 7], and we recently presented a novel one [8, 9], eliminating spurious
pressure boundary layers and poor conservation properties even in lowest-order discretisations.
However, preconditioning the arising linear (block-) systems is a critical and often limiting task
when developing numerical schemes, despite well-performing algorithms being available [10–12].

In view of these challenges, one might prefer projection or split-step schemes decoupling ve-
locity and pressure [13, 14], thereby decomposing the system into convection-diffusion, Poisson
and simple mass matrix problems. Nonetheless, projection methods suffer from artificial pres-
sure boundary conditions (refer to Guermond et al. [15] for an excellent overview), which often
call for corrective measures [16, 17]. As an alternative, Liu [18] combines explicit treatment
of the convective velocity with a pressure Poisson equation (PPE) equipped with consistent
boundary conditions. While schemes of similar kind have been applied to challenging incom-
pressible flow problems [19–22], the extension to the non-Newtonian case is in many aspects
challenging. Deteix and Yakoubi [14] proposed the so-called shear rate projection scheme which,
despite being accurate and simple, requires LBB-stable velocity-pressure pairs and the solution
of an advection-diffusion equation, two Poisson problems and more than ten scalar mass matrix
problems per time step.

By contrast, we focus herein on the recent extension of the PPE scheme [18] to generalised
Newtonian fluids [23, 24]. This new framework allows for continuous equal-order finite elements,
is higher-order accurate, iteration-free, and consists of an advection-diffusion equation, a single
PPE, and two mass matrix solves to recover pressure Dirichlet data and viscosity. We focus
on the full-traction variant, additionally including Galerkin least-squares (GLS) stabilisation
[25] to counteract dominant convective terms and the popular three-element Windkessel model
together with backflow stabilisation.

2 PROBLEM STATEMENT

As a starting point, let us consider mass and momentum balance equations for an incom-
pressible fluid in Ω ⊂ Rd, d = 2, 3 and a time interval from t = 0 to T :

ρ [∂tu+ (∇u)u]−∇ · S+∇p = f in Ω× (0, T ], (1)

∇ · u = 0 in Ω× (0, T ], (2)

with a constant density ρ, velocity u, pressure p, volumetric body force f and viscous stress S.
For generalised Newtonian fluids the viscous stress S computes by

S = 2µ∇su, (3)

where µ(x, t) ∈ R+ denotes the variable dynamic viscosity and ∇su := 1/2[∇u+ (∇u)⊤] is the
symmetric part of the velocity gradient. System (1)–(2) is supplemented by

u = g on ΓD × (0, T ], (4)

(S− pI)n = h on ΓN × (0, T ], (5)

u = u0 at t = 0, (6)

given Dirichlet data g on ΓD and Neumann data in terms of the full normal traction h on
ΓN , where ΓD ∪ ΓN = ∂Ω and ΓD ∩ ΓN = ∅. The rheological law describing the viscosity µ
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depending on the shear rate γ̇ is usually formulated in terms of a map η : R+ → R+ \ {0}:

µ = η(γ̇), with γ̇ :=
√

1/2∇su : ∇su . (7)

A popular choice in the context of shear-thinning haemodynamics or polymeric flows is the
well-established Carreau model [26]

η (γ̇) = η∞ + (η0 − η∞)
[
1 + (λγ̇)2

]n−1
2 , (8)

with upper and lower limits η0 and η∞, respectively, and further fitting parameters λ and n ≤ 1.
Homogeneous Newtonian fluids are naturally included in this setting, e.g. for n = 1.

3 TIME-SPLITTING SCHEME

The time-splitting scheme is based on a consistently derived PPE equipped with suitable
boundary conditions. So, let us start by taking minus the divergence of Eq. (1), to obtain

−∇ · (∇p) = −∇ · f + ρ∇ · [∂tu+ (∇u)u]−∇ · (∇ · S) =
−∆p = −∇ · f + ρ∂t (∇ · u) + ρ∇ · [(∇u)u]−∇ · (∇ · S) .

We can further use ∇ · u = 0 and

∇ · S = ∇ · (2µ∇su) = µ∇ (∇ · u) + µ∆u+ 2∇su∇µ = µ∆u+ 2∇su∇µ

to obtain

−∆p = −∇ · f + ρ∇ · [(∇u)u]−∇ · (2∇su∇µ)−∆u · ∇µ− µ∆(∇ · u) ,

which simplifies to

−∆p = ∇ · [ρ(∇u)u− 2∇su∇µ− f ] + [∇× (∇× u)] · ∇µ (9)

using

∆u ≡ ∇ (∇ · u)−∇× (∇× u) = −∇× (∇× u) .

The Dirichlet condition for this auxiliary problem is obtained by dotting the traction boundary
condition on ΓN (5) with the unit outward normal vector n:

n · [(S− pI)n] = n · h ∴ n · [Sn− h] = pn · n = p (10)

and similarly, dotting the momentum balance equation (1) with n

n · ∇p = n · [f − ρ∂tu− ρ(∇u)u+ 2∇su∇µ− µ∇× (∇× u)] (11)

gives the Neumann condition for the PPE when restricted to ΓD. For a detailed derivation, the
interested reader is referred to our recent work [23], while we herein focus directly on a weak
formulation of the split-step scheme. Let us denote the L2(Ω) and L2(ΓD) scalar products by
⟨·, ·⟩ and ⟨·, ·⟩ΓD

, respectively, and start off by multiplying the PPE (9) with a test function
q ∈ H1(Ω), q|ΓN

= 0, integrating by parts and inserting the Neumann boundary condition (11),
thereby yielding

⟨∇q,∇p⟩ =− ⟨q,n · [ρ∂tu+ µ∇× (∇× u)]⟩ΓD

+ ⟨∇q, 2∇su∇µ+ f − ρ(∇u)u⟩+ ⟨q, [∇× (∇× u)] · ∇µ⟩,

             337



Book of Extended Abstracts of the 6th ECCOMAS Young Investigators Conference
7th-9th July 2021, Valencia, Spain

Table 1: Coefficients αm
j and βm

j of order m = 2 for BDF and extrapolation [27].

j 0 1 2

αm
j

2∆tn+∆tn−1

∆tn(∆tn+∆tn−1)
−∆tn+∆tn−1

∆tn∆tn−1
∆tn

∆tn−1(∆tn+∆tn−1)

βm
j − 1 + ∆tn

∆tn−1 − ∆tn

∆tn−1

which is rewritten using integration by parts once again as

⟨∇q,∇p⟩ =⟨∇q, f + 2∇su∇µ− ρ(∇u)u− µ∇× (∇× u)⟩ − ⟨qn, ρ∂tu⟩ΓD
,

Note however, that second-order derivatives are still present, which we mend via

⟨µ∇q,∇× (∇× u)⟩ =⟨∇q × n, µ∇× u⟩Γ + ⟨∇ × (µ∇q) ,∇× u⟩,
=⟨∇q × n, µ∇× u⟩ΓD

+ ⟨∇q, [∇u− (∇u)⊤]∇µ⟩,

omitting some of the details from [23] for brevity. Other vital ingredients of the split-step
scheme are (i) the full decoupling of momentum balance and PPE through explicit treatment
of the pressure gradient term in (1), (ii) projection of the PPE Dirichlet condition on ΓN (10),
(iii) recovering the viscosity µ via an L2 projection and (iv) improving conservation of mass
using divergence damping [20, 22]. For the time integration, we consider variable time steps
∆tn = tn+1 − tn in higher-order accurate backward differentiation (BDF) and extrapolation
formulae (indicated by ⋆) with coefficients αm

j and βm
j given in Tab. 1:

∂tu(t
n+1) ≈ αm

0 u
n+1 +

m∑
j=1

αm
j û

n+1−j , un+1 ≈ u⋆ :=
m∑
j=1

βm
j un+1−j . (12)

Then, given solutions from previous time steps, the split-step scheme reads

1. Momentum balance:
Find un+1 ∈ Xh ⊂ H1(Ω), such that un+1|ΓD

= gn+1 and〈
ρv, αm

0 u+
m∑
j=1

[
αm
j

(
un+1−j −∇φn+1−j

)]
+ (∇u)u⋆

〉
+ ⟨∇v, 2µ⋆∇sun+1 − p⋆I⟩

= ⟨v, fn+1⟩+ ⟨v,hn+1⟩ΓN
∀v ∈ Xh,v|ΓD

= 0. (13)

2. Project viscosity :
Find µn+1 ∈ Yh ⊂ H1Ω, such that

⟨v, µn+1⟩ = ⟨v, η(un+1)⟩ ∀v ∈ Yh. (14)

3. PPE Dirichlet condition:
Recover the continuous ζn+1 := n · [(2µn+1∇sun+1)n− hn+1] on ΓN via L2 projection.

4. Pressure Poisson step:
Find pn+1 ∈ Zh ⊂ H1(Ω), such that pn+1|ΓN

= ζn+1 and

⟨∇q,∇pn+1⟩ = ⟨∇q, fn+1 + 2
(
∇un+1

)⊤ ∇µn+1 − ρ(∇un+1)un+1⟩

−⟨qn, ρ
m∑
j=0

αm
j u

n+1−j⟩ΓD
+ ⟨n×∇q, µ∇× un+1⟩ΓD

∀q ∈ Zh, q|ΓN
= 0. (15)
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5. Divergence damping :
Find φn+1 ∈ Zh, such that φn+1|ΓN

= 0 and

⟨∇ψ,∇φn+1⟩ = ⟨ψ,∇ · un+1⟩ ∀ψ ∈ Zh, ψ|ΓN
= 0, (16)

which will be used in the following time step.

Note here, that the Poisson problems (15)–(16) can be combined, solving only one Poisson
problem per time step (cf. [18, 23]) and for Newtonian fluids, the viscosity projection step (14)
is skipped. Also, the rheological law is easily replaced by swapping the right-hand side of (14)
and was actually lumped in our experiments. Per time step, the scheme consists of solving a
vector-valued advection-diffusion equation, an L2 projection on ΓN , a lumped mass matrix and
one Poisson problem in the auxiliary variable p̂ := p+ φ.

4 NUMERICAL EXAMPLES

The split-step algorithm (13)–(16) is implemented in the open-source finite element library
deal.II [28], using parallel algebraic multigrid (AMG) methods provided by Trilinos’ ML
package [29] for preconditioning the FGMRES and BiCGStab methods used to solve linear
systems corresponding to fluid momentum and PPE, respectively. The versatility and compu-
tational performance of the scheme is showcased in two fundamentally different applications
in biomechanics, the first being flow through an abdominal aortic aneurysm and the second
example considering human phonation.

4.1 Abdominal aortic aneurysm

Aneurysms are pathological vessel malformations giving rise to deformed, bulging lumina,
altering flow fields and triggering various critical health conditions. A physiological setup is
created similar to [30] based on flow data and geometry provided in [31, 32]. This prototypical
segment of the abdominal aorta with length L = 20 cm and inlet/outlet radius R = 1 cm is
subject to periodic inflow and outlet pressure p̄ depicted in Fig. 1. Starting from the quiescent
state, i.e., u0 = 0, we prescribe u = (u1, 0, 0)

⊤ smoothly ramped by

ξ(t) =

{
sin2

(
πt
2τ

)
for t ≤ τ,

1 otherwise,
(17)

with τ = 0.2 s and a quadratic velocity profile, matching the volumetric flow rate computed
by the given mean velocity ū. Concerning the fluid parameters, we set ρ = 1060 kg/m3 and
η0 = 56 mPas, η∞ = 3.45 mPas, λ = 3.313 s and n = 0.3568 in (8) according to [33]. Further
modeling aspects such as three-element Windkessel models, backflow stabilisation and GLS sta-
bilisation are included into the split-step scheme. These extensions, typical for haemodynamic
applications, merely modify Neumann data hn+1 or add terms to the momentum equation, and
a rigorous introduction is omitted for brevity. Moreover, we define the maximum element CFL
and Reynolds numbers as

CFLe = max
e=1,...,Ne

max
i=1,...,d

|un+1
i |∆tn

hi
, Ree = max

e=1,...,Ne

max
i=1,...,d

ρ|un+1
i |hi
µ

, (18)

with the number of elements Ne and directional element size hi taken as the maximum vertex
distance in direction i. Based on (18), we aim for CFLe ≤ 0.5, starting from an initial value of
∆t0 = 10−3 s until five pulses are completed, i.e., t ∈ (0, 5]. The solution is periodic in time,
spatially symmetric and characterised by strong recirculations during diastole, as exemplarily
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Figure 1: Abdominal aortic aneurysm: computational mesh (left) and boundary data (right).

Figure 2: Strong recirculation and viscosity gradients in aneurysm at t ≈ 4.97 s (diastole), selected streamlines
(left) and viscosity in cut domain together with selected velocity vectors (right).

shown in Fig. 2 at t ≈ 4.97 s. Consequently, viscosity spans the whole admissible spectrum
η∞ ≤ µ ≤ η0 due to large variations in the local shear rate. All linear systems are solved
reducing the residual by a factor of 10−6, taking the last timestep solution as the initial guess.
Doing so, iteration counts for momentum balance (Nu) and PPE (Np) stay below 20, while
the projection of pressure Dirichlet data on ΓN needs a constant of 6 steps only for reaching
convergence. Note here, how the former two mildly depend on the flow field as shown in Fig. 3,
where we include the inlet velocity ū for reference. Fig. 3 also depicts the adapting time step
size together with element CFL and Reynolds numbers, showing time steps decreasing from
≈ 0.015 to ≈ 0.002 shortly after peak inflow, yielding a maximum CFLe of ≈ 0.85 without
repeating time steps. CFLe > 1 is admissible in the split-step scheme (cf. Pacheco et al. [23]),
but only at the cost of increasing iteration counts in the momentum balance solve.

4.2 Human phonation

In a second numerical test, we aim to simulate human phonation, which is the process of vocal
folds interacting with air from the lungs, creating the human voice. However, in this preliminary
two-dimensional study, the setup inspired by Kniesburges et al. [34] is limited to fixed vocal
folds. Parameters representing air are selected as ρ ≈ 1.18 kg/m3 and µ = 0.0137 mPas for a
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Figure 3: Iteration counts of momentum balance Nu, pressure boundary projection Nζ and PPE Np (left);
maximum element CFL and Reynolds numbers and ∆tn (right) with inlet velocity ū for reference.

Newtonian fluid. The glottis is modeled as a channel of total length of ≈ 50.4 mm and height
of H = 18 mm, including the vocal folds (VFs) with a height of 8.9 mm as well as in a distance
of 7.5 mm the false vocal folds with a height of 6.5 mm. The gap distance between the two
VFs is HG = 0.2 mm as depicted in Fig. 4.

Figure 4: Computational domain for the phonation example with vocal folds in dark grey.

Starting again from a quiescent state (u0 = 0) and ramping via (17) with τ = 0.01 s,
we enforce a quadratic inflow profile. The maximum inlet velocity is prescribed as 80 cm/s,
yielding an intraglottal maximum velocity of ūG ≈ 56 m/s and Re = ρūGHG/µ = O(103) being
in the physiological range [34]. On the outlet, a zero reference pressure is (approximately) set
using h = 0. Regarding the solver settings, we choose an initial ∆t0 = 10−4 s, adapt the
time step size such that CFLe ≤ 0.8 and reduce the residual by a factor of 10−8 with the last
time step’s solution as initial guess. The resulting velocity field is characterised by a strong
jet, triggering vortices which in return influence the jet direction. Moreover, the pressure field
features fluctuations in the vicinity of the jet as shown in Fig. 5. Low iteration counts result over

Figure 5: Snapshot of the solution at step 12000 (t = 13.576 ms) in the fold region: selected velocity streamlines
(left) and vectors (right) colored by |u| over pressure p in the background.

the whole considered timespan and interestingly, almost constant iteration counts are observed
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after the initial ramp-up phase. This is due to the time step size settling at ∆t ≈ 10−6 s, giving
an almost constant Ree ≈ 720 and CFLe ≈ 0.8. Therefore, we simply report mean iteration
counts over the last 1000 time steps as N̄ζ = 3, N̄u ≈ 22.53 and Np ≈ 54.18. Comparing
to the previous aneurysm example, a slight increase is seen, which is due to a combination of
worsened element aspect ratios and higher Reynolds number, but also depends on the more
strict convergence criterion.

5 CONCLUSION

Within this work, a time-splitting scheme suitable for incompressible (generalised) Newto-
nian fluids has been presented. Momentum and mass balance equations are decoupled using
an implicit-explicit treatment of the pressure, viscosity and convection terms. Thus, only an
advection-diffusion equation for momentum balance and a PPE with fully consistent bound-
ary conditions are computationally relevant steps. Lower equal-order interpolation of velocity
and pressure is also found admissible, while temporal accuracy is determined by suitable BDF
and extrapolation formulae. Two challenging examples in biomedical context were tackled,
namely, flow through an abdominal aortic aneurysm and human phonation, demonstrating the
effectiveness and versatility of the presented approach.
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