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Abstract

Incompressible flow problems with nonlinear viscosity, as they often appear in biomedical and industrial applications,
mpose several numerical challenges related to regularity requirements, boundary conditions, matrix preconditioning, among
ther aspects. In particular, standard split-step or projection schemes decoupling velocity and pressure are not as efficient for
eneralised Newtonian fluids, since the additional terms due to the non-zero viscosity gradient couple all velocity components
gain. Moreover, classical pressure correction methods are not consistent with the non-Newtonian setting, which can cause
umerical artifacts such as spurious pressure boundary layers. Although consistent reformulations have been recently developed,
he additional projection steps needed for the viscous stress tensor incur considerable computational overhead. In this work, we
resent a new time-splitting framework that handles such important issues, leading to an efficient and accurate numerical tool.
wo key factors for achieving this are an appropriate explicit–implicit treatment of the viscous and convective nonlinearities,
s well as the derivation of a pressure Poisson problem with fully consistent boundary conditions and finite-element-suitable
egularity requirements. We present first- and higher-order stepping schemes tailored for this purpose, as well as various
umerical examples showcasing the stability, accuracy and efficiency of the proposed framework.
c 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
http://creativecommons.org/licenses/by/4.0/).

eywords: non-Newtonian fluids; Incompressible flow; Split-step schemes; Finite element methods; Pressure boundary conditions; Pressure
oisson equation

1. Introduction

Split-step or time-splitting methods for incompressible flow problems, the most famous of which being the so-
alled projection schemes, are numerical methods that decouple the computation of pressure and velocity. This
s highly advantageous especially when employing iterative solvers, since the decoupled blocks reduce to simple
onvection–diffusion, Poisson and mass matrix problems. An excellent discussion and overview of early projection
ethods was performed by Guermond et al. [1,2]. The first generation of such schemes were plagued by nonphysical

ressure boundary conditions (BCs) that induced severe numerical boundary layers and spoiled their order of

∗ Corresponding author at: Institute of Applied Mathematics, Graz University of Technology, Graz, Austria.
E-mail address: pacheco@math.tugraz.at (D.R.Q. Pacheco).
https://doi.org/10.1016/j.cma.2021.113888
0045-7825/ c⃝ 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.
org/licenses/by/4.0/).

http://www.elsevier.com/locate/cma
https://doi.org/10.1016/j.cma.2021.113888
http://www.elsevier.com/locate/cma
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cma.2021.113888&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:pacheco@math.tugraz.at
https://doi.org/10.1016/j.cma.2021.113888
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


D.R.Q. Pacheco, R. Schussnig and T.-P. Fries Computer Methods in Applied Mechanics and Engineering 382 (2021) 113888

t

accuracy. Timmermans et al. [3] solved this issue by introducing the so-called rotational pressure correction scheme
that adds a correction term to the pressure update. In one of the rather scarce theoretical studies that are not restricted
to pure Dirichlet problems, Guermond et al. [1] showed that in three-dimensional problems with natural BCs, the
rotational projection method has an intrinsic contradiction: the factor multiplying the added correction term should
be set to 1 in order to attain consistent pressure BCs, but must be taken as less than 2/3 if we wish to guarantee
stability. Although this does not spoil the asymptotic order of convergence per se, remedies have been proposed in
order to increase the accuracy of the pressure approximation on the boundaries [4].

An alternative solution was presented by Liu [5], extending the pressure Poisson method of Johnston and Liu
[6] to the more realistic setting where open/traction boundaries are allowed. Liu’s method completely replaces the
continuity equation by a pressure Poisson problem with consistent boundary conditions. Furthermore, by treating
the convective term explicitly, the scheme decouples even the velocity components, leading to a sequence of scalar
problems that can be efficiently tackled. Variations of that scheme including high-order methods are available and
have proven to be powerful tools in the solution of challenging incompressible flow problems [7–13].

Extending time-splitting schemes to generalised Newtonian fluids is not a trivial task, especially in a finite element
framework. In fact, only very recently have the first steps in this direction been taken. Deteix and Yakoubi [14]
started by extending the popular rotational projection method to fluids with non-homogeneous viscosity. A more
general setting allowing natural boundary conditions was then formulated by Plasman et al. [15]. Yet, when the
viscosity is not simply variable but actually dependent on the velocity gradient, the divergence of the discretised
stress tensor will not be regular (smooth) enough to be incorporated directly into the pressure correction step. One
way around that is to project the viscous stress tensor onto a continuous space, as done by Deteix and Yakoubi [16]
in their recently introduced shear rate projection (SRP) scheme. Despite being very accurate and simple, the SRP
method has a high cost when compared to standard (Newtonian) pressure correction schemes: in three dimensions,
it requires the solution of a vector-valued convection–diffusion problem, two Poisson equations and at least ten
scalar mass matrix problems (for adding quantities from different vector spaces). Moreover, the SRP method does
not allow the use of equal-order velocity–pressure pairs, requiring a higher order for the velocity. For these reasons,
the method can be rather expensive in practical applications.

In this context, we present here a new time-splitting framework with consistent Dirichlet and Neumann pressure
BCs, reduced computational cost, good accuracy and stability properties, while still allowing the use of equal-
order finite element pairs. By treating the rheological law and the viscous stress appropriately, we manage to
decouple the velocity components and end up with a method that requires the solution of one Poisson equation, one
scalar projection and two or three (i.e., the number of spatial dimensions) scalar convection–diffusion equations.
The approach can be seen as an extension of the pressure Poisson method by Liu [5] to the generalised
Newtonian case [17]. Also related is our recent work on pressure-Poisson-based stabilisation methods for equal-order
elements [18]. First- and higher-order temporal discretisations are considered, in combination with the appropriate
extrapolation rules. Various numerical examples are provided to showcase the efficiency and accuracy of our novel
framework.

2. Strong formulation

Let us consider a spatial domain Ω ⊂ Rd , d = 2 or 3, with a Lipschitz boundary Γ := ∂Ω decomposed into
wo non-overlapping regions ΓD and ΓN . The standard setting for the incompressible Navier–Stokes system reads

ρ [∂t u + (∇u)u] − ∇ · S + ∇ p = f in Ω × (0, T ], (1)

∇ · u = 0 in Ω × (0, T ], (2)

u = g on ΓD × (0, T ], (3)

(µ∇u − pI)n = h on ΓN × (0, T ], (4)

u = u0 at t = 0, (5)

where u is the flow velocity, p is the pressure, ρ is the fluid’s density, S is the viscous stress tensor, I is the d × d
second-order identity tensor, µ is the dynamic viscosity and the right-hand side vectors are given quantities. The
symbols ∇ and ∂t denote spatial and temporal differentiation, respectively. For a generalised Newtonian (often called
quasi-Newtonian) fluid, the stress–strain relationship is given by

s
S = 2µ∇ u, (6)
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where ∇
su is the symmetric part of the velocity gradient, namely,

∇
su :=

1
2

[
∇u + (∇u)⊤

]
.

The viscosity is most commonly modelled through a nonlinear dependence on the shear rate γ̇ :=
√

∇su : ∇su/2
by a map η : R+ → R∗

+
, that is,

µ = η(γ̇ ).

Most rheological models of industrial and biomedical interest, such as those describing polymer melts and blood,
can be written in the generic form [19]

η (γ̇ ) = η1 + η2
[
κ + (λγ̇ )a

] n−1
a ,

where a, n, κ, λ, η1, η2 are fitting parameters depending on rheological properties. The choice κ = η1 = 0 gives the
o-called power-law model, whereas κ = 1 leads to the Carreau–Yasuda model (or simply Carreau model when
= 2). We can recover the Newtonian case by setting η2 = 0 or n = 1.

emark 1. We herein focus on the setting in which the natural boundary conditions are given in terms of normal
seudo-tractions (µ∇u−pI)n, which is the preferable one for simulating open/truncated outflow boundaries [19–22].
n certain classes of problems such as fluid–structure interaction and two-phase flows, formulations in terms of real
ractions are more appropriate for an accurate interface coupling [23].

Even in the Newtonian case, the saddle-point structure of standard variational formulations of (1)–(5) prohibits
he use of equal-order finite element spaces for pressure and velocity, as such spaces are incompatible in the Ladyzh-
nskaya–Babuška–Brezzi (LBB) sense. One way to circumvent that is to use residual-based stabilisation techniques
uch as Petrov–Galerkin-like or Galerkin least-squares methods [24,25]. Alternatively, Johnston and Liu [6]
roposed replacing the explicit divergence-free constraint (2) by a C0-conforming pressure Poisson equation (PPE)
hat enforces incompressibility implicitly. The advantage of their formulation with respect to standard stabilised

ethods is that, when treating the convection and pressure terms in the momentum equation explicitly in time, it
s possible to decouple the computation of not only pressure and velocity, but also of the velocity components.
his leads to conditionally stable and highly efficient incompressible flow solvers. That approach, however, was

nitially possible only for the Dirichlet problem, which limited its applicability [10]. Liu [5] then extended the
PE approach to allow natural BCs in a fully consistent way. The extension of their method to the non-Newtonian
ase is not trivial, though, due to the increased complexity of the corresponding PPE and also additional regularity
equirements induced by the shear-dependent viscosity, as we tackle next.

We propose replacing the classical initial–boundary value problem (IBVP) (1)–(5) by an alternative one:

ρ [∂t u + (∇u)u] − µ∆u − 2∇
su∇µ+ ∇ p = f in Ω × (0, T ], (7)

−∆p + ∇ ·
[
2∇

su∇µ− (ρ∇u)u
]
− [∇ × (∇ × u)] · ∇µ = −∇ · f in Ω × [0, T ], (8)

u = g on ΓD × (0, T ], (9)

(µ∇u − pI)n = h on ΓN × (0, T ], (10)

u = u0 at t = 0, (11)

∇ · u0 = 0 in Ω , (12)

p = Φ(u) on ΓN × [0, T ], (13)
∂p
∂n

= Ψ (u) on ΓD × [0, T ], (14)

here

Φ(u) := µ∇u : (n ⊗ n − I)− h · n,
Ψ (u) :=

[
f − ρ∂ g − (ρ∇u)u + 2∇

su∇µ− µ∇ × (∇ × u)
]
· n.
t
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Although this IBVP may seem somewhat more complex than the original one, we will later show how it can be
used for constructing simple finite element formulations requiring only the solution of Poisson and convection–
diffusion problems. Note that, for the homogeneous Newtonian case (∇µ ≡ 0), several terms vanish, recovering
the formulation by Liu [5].

Theorem 2.1. For sufficiently regular p,u, f, g,h, systems (7)–(14) and (1)–(5) are equivalent.

Proof. We will first show that (1)–(5) imply (7)–(14). Eq. (7) comes from the original momentum balance (1),
since when ∇ · u = 0 we can write

∇ · S = ∇ ·
(
2µ∇

su
)

= µ∇ (∇ · u)+ µ∆u + 2∇
su∇µ

= µ∆u + 2∇
su∇µ.

(15)

ow we obtain the Neumann BC (14) by dotting Eq. (7) with the normal vector n, restricting the result to ΓD and
using the relation

∆u ≡ ∇ (∇ · u)− ∇ × (∇ × u) = −∇ × (∇ × u) . (16)

imilarly, the PPE (8) is obtained by taking (minus) the divergence of Eq. (7), so that

−∆p + ∇ ·
[
2∇

su∇µ− (ρ∇u)u
]
+ ∇ · f = ∇ · (ρ∂t u)− ∆u · ∇µ

= ρ∂t (∇ · u)+ [∇ × (∇ × u)− ∇ (∇ · u)] · ∇µ

= [∇ × (∇ × u)] · ∇µ.

To obtain the pressure Dirichlet BC (13), we first dot Eq. (4) by n to get

h · n = [(µ∇u − pI)n] · n
≡ µ∇u : n ⊗ n − pn · n
= µ∇u : n ⊗ n − p.

Due to Eq. (2), we can subtract µ∇ · u from the right-hand side and restrict the result to ΓN , which finally gives
us Eq. (13), since ∇ · u ≡ ∇u : I. The additional condition (12) is simply the restriction of the incompressibility
constraint to t = 0, which completes the first part of the proof.

Proving the other direction, i.e, that (7)–(14) implies (1)–(5), can be done by first taking the divergence of Eq. (7)
and adding the result to Eq. (8), which gives us

0 = [∇ × (∇ × u)] · ∇µ+ ∇µ · ∆u + µ∇ · (∆u)− ρ∂t (∇ · u)
= µ∇ · (∆u)+ ∇µ · [∆u + ∇ × (∇ × u)] − ρ∂t (∇ · u) .

(17)

Therefore, since ∇ · (∆u) ≡ ∆ (∇ · u), we get a heat-like equation on the variable φ := ∇ · u:

∂tφ − ∇ · (ν∇φ) = 0, (18)

where ν = µ/ρ is the kinematic viscosity. Zero initial condition on φ is guaranteed by (12). We can obtain Neumann
BCs for this equation by dotting Eq. (7) with n, restricting the result to ΓD and subtracting from (14), which gives

0 = {n · [∆u + (∇ × ∇ × u)]} |ΓD

= {n · [∇ (∇ · u)]} |ΓD

=
∂φ

∂n

⏐⏐⏐⏐
ΓD

.

(19)

Dirichlet BCs for φ on ΓN can be obtained by dotting (10) with n and adding the result to (13), yielding

0 = (µ∇u : I) |ΓN

= (µ∇ · u) |ΓN (20)

= (µφ) |ΓN ,

4
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that is, φ|ΓN = 0, as the viscosity is assumed to be strictly positive. We thus get φ ≡ 0, that is, our modified
system also enforces incompressibility. With mass conservation now proved, the equivalence between the reduced
momentum equation (7) and the standard one (1) is straightforward, which concludes the proof. □

3. A C0 variational formulation

Of course, introducing the PPE as a replacement for the simple, explicit incompressibility constraint increases
the regularity requirements for both pressure and velocity. We will now show how to devise an appropriate weak
formulation allowing the use of standard C0 finite element spaces for the spatial discretisation.

3.1. Pressure Poisson equation

We begin by multiplying Eq. (8) by a test function q ∈ H 1(Ω ), with q|ΓN = 0, and using integration by parts
to yield

⟨∇q,∇ p⟩ −

⟨
q,
∂p
∂n

⟩
ΓD

− ⟨q, [∇ × (∇ × u)] · ∇µ⟩ =
⟨
q,∇ ·

[
(ρ∇u)u − 2∇

su∇µ− f
]⟩
,

where ⟨·, ·⟩ and ⟨·, ·⟩Γ denote the L2(Ω ) and L2(Γ ) scalar products, and analogously for ⟨·, ·⟩ΓN and ⟨·, ·⟩ΓD on
he respective parts of the boundary. Integrating the right-hand side by parts and enforcing the Neumann BC (14)
ields

⟨∇q,∇ p + (ρ∇u)u − f⟩ + ⟨q, ∂t (n · g)⟩ΓD

=
⟨
∇q,

[
∇u + (∇u)⊤

]
∇µ

⟩
+ ⟨q, [∇ × (∇ × u)] · ∇µ⟩ − ⟨qn, µ∇ × (∇ × u)⟩ΓD

, (21)

and

⟨qn, µ∇ × (∇ × u)⟩ΓD
= ⟨qn, µ∇ × (∇ × u)⟩Γ
= ⟨∇ (qµ) ,∇ × (∇ × u)⟩ + ⟨q, µ∇ · [∇ × (∇ × u)]⟩
= ⟨∇ (qµ) ,∇ × (∇ × u)⟩
= ⟨∇q, µ∇ × (∇ × u)⟩ + ⟨q,∇µ · [∇ × (∇ × u)]⟩ .

Therefore, the right-hand side of Eq. (21) reduces to⟨
∇q,

[
∇u + (∇u)⊤

]
∇µ

⟩
− ⟨∇q, µ∇ × (∇ × u)⟩ .

Notice that we still have a second-order term which cannot be handled by C0 finite element spaces. In order to allow
the use of such standard discretisations, we must rewrite this second-order term using only first-order derivatives.
Integration by parts gives

⟨µ∇q,∇ × (∇ × u)⟩ = ⟨∇q × n, µ∇ × u⟩Γ + ⟨∇ × (µ∇q) ,∇ × u⟩ ,

but

⟨∇ × (µ∇q) ,∇ × u⟩ = ⟨∇µ× ∇q + µ∇ × (∇q) ,∇ × u⟩

= ⟨∇µ× ∇q,∇ × u⟩

≡ ⟨∇q, (∇ × u)× ∇µ⟩

≡
⟨
∇q,

[
∇u − (∇u)⊤

]
∇µ

⟩
.

Hence, the weak form simplifies to

⟨∇q,∇ p⟩ =
⟨
∇q, f − (ρ∇u)u + 2(∇u)⊤∇µ

⟩
+ ⟨n × ∇q, µ∇ × u⟩Γ − ⟨q, ∂t (n · g)⟩ΓD

.

Lemma 3.1. For v ∈ [L2(Γ )]d and q such that n × ∇q ∈ [L2(Γ )]d , with q|ΓN = 0, we have

⟨n × ∇q, v⟩Γ = ⟨n × ∇q, v⟩ΓD
. (22)
5
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Proof. The gradient ∇q can be decomposed into normal and tangential derivatives as

∇q =

(
∂q
∂n

)
n + ∇τq = (n · ∇q)n + (n × ∇q)× n.

Since q|ΓN = 0, the tangential derivative ∇τq will also be zero on ΓN . Thus, taking the left cross product with n
and restricting the result to ΓN gives us

n × ∇q|ΓN =

(
∂q
∂n

)
n × n

⏐⏐⏐⏐
ΓN

+ n × ∇τq|ΓN =
∂q
∂n

⏐⏐⏐⏐
ΓN

0 + n × 0 = 0.

ence,

⟨n × ∇q, v⟩Γ = ⟨n × ∇q, v⟩ΓD
+ ⟨n × ∇q, v⟩ΓN

= ⟨n × ∇q, v⟩ΓD
, (23)

s we wanted to prove. □

Thus, we can further simplify the PPE to

⟨∇q,∇ p⟩ =
⟨
∇q, f − (ρ∇u)u + 2(∇u)⊤∇µ

⟩
+ ⟨n × ∇q, µ∇ × u⟩ΓD

− ⟨q, ∂t (n · g)⟩ΓD
. (24)

Although at first glance we may seem to have ended up with a weak formulation containing only first-order
erivatives, that is not exactly true. Since in most applications the viscosity depends on ∇

su, the presence of ∇µ in
the variational formulation would induce higher smoothness requirements on the velocity interpolant and therefore
prohibit the use of standard Lagrangian finite elements. As done in least-square finite element methods, this can
be overcome by introducing µ as a continuous additional unknown, and recovering it weakly through a simple L2

projection. In other words, given u, we must find µ ∈ C0
(
Ω

)
such that for all υ ∈ L2(Ω )

⟨υ,µ⟩ = ⟨υ, η(γ̇ )⟩ , (25)

hich at the discrete level corresponds to a simple mass matrix solve. The idea of projecting the viscosity (or even
he whole viscous tensor) as a means to avoid higher-order regularity requirements has been employed in similar
orks on non-Newtonian fluids [16,17].

.2. Momentum equation

We are now left with the simpler task of designing an appropriate variational formulation for the momentum
quation (7). The only difference in comparison to the Newtonian case is the viscous term µ∆u + 2∇

su∇µ, which
in our case has an additional part due to the spatial variation of the viscosity field. In order to obtain the desired
natural boundary conditions (4), we need to apply integration by parts only to the Laplacian term. For a test function
w ∈ [H 1(Ω )]d , with w|ΓD = 0, we have

−
⟨
w, µ∆u + 2∇

su∇µ
⟩
= ⟨∇u,∇(µw)⟩ − ⟨w, (µ∇u)n⟩ΓN

−
⟨
w, 2∇

su∇µ
⟩

= ⟨∇u, µ∇w + w ⊗ ∇µ⟩ − ⟨w, (µ∇u)n⟩ΓN
−

⟨
w, 2∇

su∇µ
⟩

≡ ⟨∇w, µ∇u⟩ + ⟨w,∇u∇µ⟩ − ⟨w, (µ∇u)n⟩ΓN
−

⟨
w, 2∇

su∇µ
⟩

= ⟨∇w, µ∇u⟩ −
⟨
w, (∇u)⊤∇µ

⟩
− ⟨w, (µ∇u)n⟩ΓN

.

Now that second-order differentiation has been completely eliminated from our weak formulation, we are in
osition to define our semi-discrete variational problem based on standard C0 Lagrangian finite element spaces for
he interpolation of u, p and µ. The finite element spaces used for velocity, pressure and viscosity will be denoted by
Xu

h , X p
h and Xµ

h , respectively. Let (ψµ, ψ p, ψu) be the shape functions for the corresponding finite element spaces;
hen, we shall use subscripts to refer to nodal values: e.g., ψ p

i denotes the pressure shape function associated to the
th pressure node.

.3. Enforcing the pressure Dirichlet BCs

In terms of regularity aspects, the last issue to be addressed is the pressure Dirichlet BC. When trying to
nforce (13) on a certain section of the outflow boundary Γ , we face a problem: in the discrete case, the quantity
N

6
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ζ := µ∇u : (n ⊗ n − I) − h · n will be discontinuous and, therefore, not well defined at the pressure nodes we want
o fix. The solution proposed by Liu [5] and also used in the SRP method by Plasman et al. [15] is to project ζ
nto ΓN such that the resulting quantity ζ̂ is continuous on each section of ΓN . The cost of this projection on the
oundary is negligible in comparison to the other projection/solution steps in the overall scheme.

. Efficient iteration-free split-step schemes

In the present work, as in standard projection methods, we are interested in schemes that decouple velocity
nd pressure in order to allow efficient solution methods. Therefore, the pressure term in the momentum equation
ill be treated explicitly. Moreover, to further improve efficiency, we will focus on schemes that decouple also the
elocity components. In the Newtonian case, this can be achieved by simply treating convection explicitly, whereas
he viscous term can be kept implicit or semi-implicit [6]. This does not only reduce the size of the problem, but
lso results in a linearised system that does not require an iterative method such as Newton–Raphson or Picard.
owever, in the presence of nonlinear viscosity, it is necessary to treat the viscous term appropriately in order to
eep the velocity components decoupled, as we will show next.

In the non-Newtonian case, the viscous trilinear form has two contributions: a typical weak Laplacian term
∇w, µ∇u⟩, and an asymmetric term due to the spatial gradient of the viscosity field. The latter can hinder efficiency,
s it couples the velocity components even if the viscosity is linearised/extrapolated. Therefore, we treat such term
xplicitly, whereas for the symmetric one we use the linearised viscosity but the current velocity. When it comes
o convection, there are two approaches that allow the decoupling: one is to treat the convective term in a fully
xplicit way [6], and the other one is to use an extrapolated convective velocity but the current velocity gradient.
n the first-order (in time) case, this leads to the problem of finding un+1

∈ [Xu
h ]d , with un+1

|ΓD = gn+1, such that⟨
w, (ρ∇un+1)un

+
ρ

∆t
un+1

⟩
+

⟨
∇w, µn

∇un+1⟩
=

⟨
w, fn+1

+
ρ

∆t
un

+
(
∇un)⊤

∇µn
⟩
+

⟨
∇ · w, pn ⟩

+ ⟨w,hn+1
⟩ΓN (26)

or all w ∈ [Xu
h ]d , with w|ΓD = 0. Notice that this equation, along with the PPE and the viscosity projection,

re linear algebraic systems, so that there is no need to iterate in order to find the solution. The overall first-order
lgorithm can be summarised as follows:

1. Initialisation:
Compute the initial viscosity from Eq. (25), then the initial pressure from Eq. (24).

2. Convection–diffusion steps:
For each of the d velocity components, solve the convection–diffusion problem of finding un+1

i ∈ Xu
h , with

un+1
i |ΓD = gn+1

i , such that⟨
w, ρun

· ∇un+1
i +

ρ

∆t
un+1

i

⟩
+

⟨
∇w,µn

∇un+1
i

⟩
=

⟨
∂w

∂xi
, pn

⟩
+

⟨
w, f n+1

i +
ρ

∆t
un

i +
∂un

∂xi
· ∇µn

⟩
+ ⟨w, hn+1

i ⟩ΓN

∀ w ∈ Xu
h , with w|ΓD = 0. (27)

3. Viscosity projection:
Find µn+1

∈ Xµ

h such that⟨
υ,µn+1⟩

=
⟨
υ, η(γ̇ (∇sun+1))

⟩
∀ υ ∈ Xµ

h . (28)

4. Pressure BC projection (only if ΓN ̸= ∅):
Project ζ n+1

:= µn+1
∇un+1

: (n ⊗ n − I) − n · hn+1 such that the resulting quantity ζ̂ n+1 is continuous on
ΓN (cf. Section 3.3).

5. Pressure Poisson step:
Find pn+1

∈ X p
h , with pn+1

|ΓN = ζ̂ n+1, such that⟨
∇q,∇ pn+1⟩

=
⟨
∇q, fn+1

− (ρ∇un+1)un+1
+ 2(∇un+1)⊤∇µn+1⟩

+
⟨
n × ∇q, µn+1

∇ × un+1⟩
ΓD

−
⟨
q,n · (∂t g)|t=tn+1

⟩
ΓD

∀ q ∈ X p
h , with q|ΓN = 0. (29)
otice that the pressure Poisson step is fully implicit, which is crucial for accuracy and stability.

7
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4.1. Matrix problem

Let us denote by un
k the vector of nodal values of the kth velocity component at the nth time step — and ana-

ogously for pn and µn . The main steps of the first-order marching scheme we just described can be written in
atrix form as[ ρ

∆t
Mu

+ C(un) + K u(µn)
]

un+1
k = f n+1

+
ρ

∆t
Muun

k +
[
Ak(un)

]
µn

+ Bk pn, k = 1, . . . , d

Mµµn+1
= r (un+1),

K p pn+1
= gn+1

+

[
S(un+1) + 2

d∑
k=1

Ãk(un+1)

]
µn+1

−

d∑
k=1

[
C̃k(un+1)

]
un+1

k ,

where vectors f and g appropriately include the effects of body forces and BCs, and the remaining matrices are
iven as

Mµ

i j =

⟨
ψ
µ

i , ψ
µ

j

⟩
, Mu

i j =
⟨
ψu

i , ψ
u
j

⟩
,

K p
i j =

⟨
∇ψ

p
i ,∇ψ

p
j

⟩
, K u

i j (µ) =
⟨
∇ψu

i , µ∇ψu
j

⟩
,

C̃k
i j (u) =

⟨
∂ψ

p
i

∂xk
, ρu · ∇ψu

j

⟩
, Ci j (u) =

⟨
ψu

i , ρu · ∇ψu
j

⟩
,

Ãk
i j (u) =

⟨
∂ψ

p
i

∂xk
,
∂u
∂xk

· ∇ψ
µ

j

⟩
, Ak

i j (uh) =

⟨
ψu

i ,
∂u
∂xk

· ∇ψ
µ

j

⟩
,

Si j (u) =

⟨
n × ∇ψ

p
i , ψ

µ

j ∇ × u
⟩
ΓD
, Bk

i j =

⟨
∂ψu

i

∂xk
, ψ

p
j

⟩
.

Therefore, all we need to solve are d scalar convection–diffusion problems, one scalar mass matrix and one
Poisson problem per time step. Also note that not only are the velocity components decoupled, but their system
matrices are all identical. This simplifies computations and reduces assembly costs.

Remark 2. While the mass and diffusion matrices Mu and K u are symmetric, the convective matrix C is not.
Therefore, when using iterative solvers, it may be advantageous to treat the convective term in a fully explicit
manner so that the overall velocity–velocity matrix is symmetric.

4.2. Improving the conservation of mass

It is obvious that when the explicit incompressibility condition is replaced by the PPE, in the discrete case the
resulting velocity will not be exactly divergence-free, which is in principle not an issue. Yet, as observed by Liu
et al. [7], in problems with highly non-smooth solutions one can considerably improve stability by performing a
standard Leray projection, as done in classical pressure correction methods [1,2]. After computing the velocity field
u from Eq. (27), we can solve the Poisson problem

−∆ϕ = ∇ · u in Ω , (30)
∂ϕ

∂n
= 0 on ΓD, (31)

ϕ = 0 on ΓN , (32)

hen it is simple to verify that the modified velocity û := u + ∇ϕ satisfies

∇ · û = 0 in Ω ,

û · n = u · n on ΓD,

û · s = u · s on ΓN ,

or any tangential vector s on ΓN . In other words, we end up with one velocity field u which is not divergence-free
ˆ
but satisfies the Dirichlet BCs fully, and another field u which is divergence-free but only partially satisfies the

8
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prescribed BCs. As discussed by Guermond et al. [2], both velocity fields are expected to converge with the same
rates, such that from an accuracy standpoint there is no objective reason to pick one over the other. The reason
for performing the projection here is to keep divergence errors from potentially building up in time due to spatial
discretisation errors (see Ref. [7] for details). Also notice that when using standard Lagrangian finite element spaces
for ϕ, the resulting û will be discontinuous. Therefore, the modified velocity has to be further projected onto a
continuous space before it can be used in subsequent steps. This requires the additional solution of d scalar mass
matrix problems, and renders the resulting projected velocity only weakly divergence-free.

Remark 3. One key difference between the present framework and standard pressure correction methods is that
here the projection step does not induce any artificial pressure boundary conditions, since we compute the pressure
directly via the PPE, instead of using ϕ to update it.

In light of the shortcomings related to the Leray projection, we use an approach that offers a compromise between
the two variants discussed so far. As noted by Liu [5], if we apply the Leray projection always to the previous
velocity un and use the modified velocity ûn only in the acceleration term of the momentum equation, we can
eliminate the computational overhead due to the projection. More precisely, for the temporally first-order scheme
we write

∂t u|t=tn+1 ≈
1
∆t

(
un+1

− ûn) ,
which leads to

ρ

∆t

[
un+1

−
(
un

+ ∇ϕn)]
+ ∇ pn

+ rn+1,n
= fn+1,

here in rn+1,n we group the nonlinear terms, for simplicity of presentation. We can combine pn and ϕn approp-
iately to yield

ρ

∆t

(
un+1

− un)
+ ∇ p̂n

+ rn+1,n
= fn+1,

ith

p̂n
:= pn

−
ρ

∆t
ϕn. (33)

otice that this circumvents the need for projecting ûn onto a continuous space, since the acceleration term has
o spatial derivatives. We can further eliminate the additional Poisson step by combining Eqs. (30)–(32) with the
riginal PPE (8)–(13) into a Poisson problem for the modified pressure p̂:

−∆ p̂n
=

[
∇ ×

(
∇ × un)]

· ∇µn
− ∇ ·

[
2∇

sun
∇µn

− (ρ∇un)un]
− ∇ · fn

−
ρ

∆t
∇ · un, (34)

with the same boundary conditions as in the original PPE, since ϕ has zero Dirichlet (32) and Neumann (31) BCs. It
is also worth remarking that, since ϕ is zero for the exact solution, the quantity p̂ is still a consistent approximation
for the pressure. Therefore, the only modification needed with respect to the basic algorithm (27)–(29) is to add to
the right-hand side of the PPE the term (−ρ/∆t)∇ · un+1, which at the matrix level becomes

−
ρ

∆t

d∑
k=1

(Bk)⊤un+1
k .

his technique is sometimes referred to as divergence damping [9,13], as it can be seen as penalising the PPE
ith large values of the velocity divergence. This simple approach considerably improves the conservation of mass

nd temporal stability of the overall scheme. In the next subsection we present the generalisation to higher-order,
otentially adaptive temporal discretisations.

.3. Higher-order schemes with variable time step

It can be desirable, especially when using higher-order finite element spaces, to also increase the temporal order
n n+1 n
f discretisation, and in particular allowing for variable time steps ∆t = t − t for efficiency. This can be

9
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Table 1
Backward differentiation and extrapolation coefficients of order m = 2 [26].

j 0 1 2

αm
j

2∆tn
+∆tn−1

∆tn (∆tn+∆tn−1)
−

∆tn
+∆tn−1

∆tn∆tn−1
∆tn

∆tn−1(∆tn+∆tn−1)

βm
j − 1 +

∆tn

∆tn−1 −
∆tn

∆tn−1

attained by using a combination of higher-order backward differentiation (BDF) schemes

∂t u|t=tn+1 ≈ αm
0 un+1

+

m∑
j=1

αm
j ûn+1− j ,

and suitable extrapolation formulas

un+1
≈ u⋆ :=

m∑
j=1

βm
j un+1− j (35)

of order m, with coefficients αm
j and βm

j given in Table 1 for m = 2 [26]. Again, a modified pressure is defined
similar to (33) as

p̂⋆ := p⋆ + ρ

m∑
j=1

αm
j ϕ

n+1− j , (36)

incorporating both the extrapolated pressure p⋆ and Leray-projection contributions to past velocities. Let us write
the right-hand side of the final PPE (24) at time tn+1 as

l(un+1, µn+1, q) =
⟨
∇q, fn+1

− (ρ∇un+1)un+1
+ 2(∇un+1)⊤∇µn+1⟩

+
⟨
n × ∇q, µn+1

∇ × un+1⟩
ΓD

−

⟨
q,n ·

m∑
j=0

αm
j un+1− j

⟩
ΓD

,

ith a BDF formula applied to (n · ∂t u)|ΓD . We can insert definition (36) and linearly combine PPEs, similarly as
n Eq. (34), to obtain an equation for the modified pressure p̂⋆ to be used in the next time step:

⟨
∇q,∇ p̂⋆

⟩
=

⟨
∇q,∇

⎛⎝p⋆ + ρ

m∑
j=1

αm
j ϕ

n+1− j

⎞⎠⟩

=

m∑
j=1

βm
j l(un+1− j , µn+1− j , q) +

⟨
q, ρ

m∑
j=1

αm
j ∇ · un+1− j

⟩
.

(37)

The final higher-order scheme is initialised by first computing the initial viscosity from Eq. (25) and then the
nitial pressure from Eq. (24). The resulting algorithm reads

1. Initialisation:
Use lower-order schemes with increasing order (m̂ = 1, 2, . . . ,m) until having all the quantities required to
proceed with the mth-order scheme.

2. Convection–diffusion steps:
For each of the d velocity components, solve the convection–diffusion problem of finding un+1

i ∈ Xu
h , with

un+1
i |ΓD = gn+1

i , such that for all w ∈ Xu
h , with w|ΓD = 0, there holds⟨

w, ρu⋆ · ∇un+1
i + ραm

0 un+1
i

⟩
+

⟨
∇w,µ⋆∇un+1

i

⟩
=

⟨
∂w

∂xi
, p̂⋆

⟩
+

⟨
w, f n+1

i + ρ

m∑
j=1

(
αm

j un+1− j
i

)
+
∂u⋆

∂xi
· ∇µ⋆

⟩
+ ⟨w, hn+1

i ⟩ΓN . (38)
10
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3. Viscosity projection:
Find µn+1

∈ Xµ

h such that⟨
υ,µn+1⟩

=
⟨
υ, η(γ̇ (∇sun+1))

⟩
∀ υ ∈ Xµ

h . (39)

4. Time-step update:
If using adaptive stepping, compute ∆tn and update the coefficients αm

j and βm
j .

5. Pressure BC projection (only if ΓN ̸= ∅):
Project ζ ⋆ :=

∑m
j=1

[
βm

j

(
µn+2− j

∇un+2− j
: (n ⊗ n − I) − n · hn+2− j

)]
such that the resulting quantity ζ̂ ⋆ is

continuous on ΓN .
6. Pressure Poisson step

Update the modified pressure for the next time step by finding p̂⋆ ∈ X p
h , with p̂⋆|ΓN = ζ̂ ⋆, such that

⟨
∇q,∇ p̂⋆

⟩
=

m∑
j=1

βm
j l(un+2− j , µn+2− j , q) +

⟨
q, ρ

m∑
j=1

αm
j ∇ · un+2− j

⟩
∀ q ∈ X p

h , with q|ΓN = 0. (40)

4.4. Comparison with projection schemes

It is important to state that the method we just presented – as well as its homogeneous Newtonian version
proposed by Liu [5] – is not a projection or pressure correction method, but a PPE-based one. These two classes
of methods are closely related [5], but exhibit important differences. In projection methods, incompressibility is
enforced by projecting the velocity prediction onto a divergence-free space, and as a by-product one gets a scalar
quantity used to update the pressure. In PPE-based schemes, incompressibility is implicitly enforced through the
solution of an appropriate Poisson problem for the pressure, which reduces computational cost by eliminating
a number of steps in the algorithm. Another important practical difference is that rotational pressure correction
schemes require LBB-compatible velocity–pressure spaces [15], which is not the case for PPE-based methods [8].
The price we pay for having a Poisson problem for the pressure itself (rather than for the pressure correction)
is having to deal with a considerably more complex right-hand side with third-order velocity derivatives. Hence,
the most challenging aspect of dealing with a PPE-based system is circumventing its higher-order regularity
requirements to allow standard finite element discretisations, as shown in Section 3.

5. Different versions of the splitting scheme and their solution

After the initialisation phase, steps (39)–(40) in the higher-order scheme require the solution of a scalar L2

projection, d convection–diffusion equations, a projection on each segment of the Neumann boundary, and a final
scalar Poisson solve to retrieve the modified pressure p̂⋆. The proposed scheme allows the decoupling of velocity
components independent of extrapolation or time integration order, rendering the application of state-of-the-art
parallel algebraic multigrid (AMG) methods even more effective. Depending on the linearisation of convective
and viscous terms in the momentum equation, several possibilities arise. One may choose to

(i) linearise the viscosity via µ⋆ and the convective term via (∇un+1)u⋆,
(ii) proceed as in (i) and additionally use (∇u⋆)⊤∇µ⋆, or

(iii) linearise the viscous term as in (ii), but treat convection explicitly via (∇u⋆)u⋆.

These choices may in fact have several implications. While the presented scheme (39)–(40) – which corresponds to
(ii) – decouples velocity components as opposed to (i), it also treats part of the viscous contribution explicitly,
possibly implying time-step restrictions. Strategy (iii) enables, additionally to the decoupling of the velocity
components, the use of the conjugate gradient (CG) method, since the resulting system matrix will be symmetric
and positive definite. Variants (i) and (ii), on the other hand, are not symmetric and are therefore tackled with a
flexible generalised minimal residual method (FGMRES) herein. One may further improve efficiency by lumping
the coefficient matrix in the viscosity projection step (39). This virtually eliminates the added cost due to introducing
the viscosity as an additional unknown, without jeopardising stability or accuracy. The methods proposed here were
11
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implemented in deal.II [27], interfacing Trilinos’ ML package [28] in order to apply a single AMG V-cycle as a
preconditioner in each iteration of the linear solver.

Another variant of our split-step scheme arises from considering the stress-divergence form of the viscous forces,
with (2µ∇

su − pI)n = t as natural BC on ΓN . In that case, the strong (8) and weak (24) forms of the PPE remain
the same, and we only need to change the pressure Dirichlet BC (13) to

p = µ∇u : (2n ⊗ n − I)− t · n on ΓN × [0, T ], (41)

and the weak form of the momentum equation to

⟨w, ρ∂t u + (ρ∇u)u⟩ +
⟨
µ∇w,∇u + (∇u)⊤

⟩
− ⟨∇ · w, p⟩ = ⟨w, f⟩ + ⟨w, t⟩ΓN , (42)

where t corresponds to prescribed normal tractions. In order to decouple the velocity components in the split-step
scheme, we must treat the term ⟨∇w, (µ∇u)⊤⟩ explicitly. Although we herein focus on the (generalised) Laplacian
form due to its more appropriate natural BCs for open outlets, the stress-divergence formulation should be used
whenever interface forces play a role, as in fluid–structure interaction and two-phase flow applications. It may
also improve mass conservation in stabilised methods based on relaxation of incompressibility. In fact, using the
stress-divergence form in combination with the PPE gives the heat equation

∂tφ − ∇ · (2ν∇φ) = 0 (43)

for the divergence φ, i.e., we get twice as much diffusion as in the Laplacian case (18). This suggests that, at
the discrete level, the stress-divergence formulation might indeed result in improved incompressibility and stability,
although this is not what our numerical experiments indicate (cf. Fig. 7). For a theoretical and numerical comparison
between these two forms of the Navier–Stokes equations, we refer the reader to [29,30].

Unless when otherwise stated, we use the (generalised Laplacian) variant (ii) with full (i.e., not lumped) viscosity
projection in our tests. A numerical study comparing multiple variants and different discretisation orders with respect
to temporal stability and solver performance is conducted in Section 6.2. There, numerical evidence points to
variant (ii) being a worthwhile compromise between fast solution and temporal stability, resulting in a standard
CFL condition as observed in the Newtonian case [5].

6. Numerical examples

In this section, we assess the accuracy and stability of our new time-splitting framework by tackling simple
problems with analytical solutions, as well as some classical benchmarks. One of the advantages of the present
approach is the possibility to use finite element pressure–velocity pairs that are not LBB-compatible (see Remark
4 below). We consider first-order simplicial and tensor-product-based elements, denoted respectively as P1 P1
and Q1 Q1, and also quadrilateral/hexahedral Taylor–Hood elements (Q2 Q1). The space chosen for the viscosity
pproximation is the same as the pressure space in each case.

emark 4. While the formal numerical analysis for H 1-conforming finite element spaces (equal-order or not) is
till an open question even for the Newtonian case, there is strong numerical evidence indicating the good stability
roperties of PPE-based schemes [7–13].

.1. Manufactured solutions

Let us start by tackling simple examples with manufactured solutions and a pure Dirichlet boundary, that is,
N = ∅. While in most numerical examples we apply the divergence damping introduced in Section 4.2, here this

erm is dropped in order to yield a clearer convergence study. In the square domain Ω = (0, H )2, H = 1, we
onsider solutions of the type

p = 2 sin(2 − 2x1) f (t), u =

{
f (t) sin(2x2) sin2(x1)

− f (t) sin(2x1) sin2(x2)

}
,

nder a prototypical shear-thinning rheological law given by[ 2]−1/4

η(γ̇ ) = 1 + (10γ̇ ) ,

12
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Fig. 1. Manufactured solution: spatial convergence study for different element types.

chosen for simplicity. We “ramp up” the solution considering different functions f (t), and the resulting boundary
ata g and body force f are computed accordingly. First, in order to test the spatial accuracy of our method, we
hoose

f (t) = 1 − e−2t ,

o that the solution tends to a steady state as t → ∞. Starting with a coarse mesh containing four identical square
lements, several levels of uniform spatial refinement are applied. The spatial approximation errors are computed
hrough the relative norms

∥p − ph∥T :=

(
∥p − ph∥L2(Ω)

∥p∥L2(Ω)

) ⏐⏐⏐⏐
t=T

and ∥∇u − ∇uh∥T :=

(
∥∇u − ∇uh∥L2(Ω)

∥∇u∥L2(Ω)

) ⏐⏐⏐⏐
t=T
,

nd the spatial mesh size is denoted by h. The final time is selected as T = 10, at which point we have
− f ≈ 2×10−9. We use the first-order temporal discretisation (BDF1) with a fixed time-step size ∆t = 10−2. Since
e are considering a solution with negligible time residual at t = T , the temporal error should not contaminate

he spatial order of accuracy, even when using a large (but still stable) step size and a low-order stepping scheme.
he results of the spatial convergence study are shown in Fig. 1. As expected, the Q1 Q1 pair yields linear spatial
onvergence, whereas the Taylor–Hood elements converge quadratically.

In order to assess the temporal accuracy of the first- and second-order stepping schemes, we now use a periodic
unction f (t) = sin2(t) in the interval t ∈ [0, 10] and consider the maximum error in the space–time domain

Q := Ω×(0, T ], that is, using the L∞(Q) norm. In this case we use the finest spatial mesh considered in the previous
tudy, and refine the time step uniformly by halving it from ∆t = 0.16 all the way down to ∆t = 0.00125. The
rst-order temporal scheme is combined with the Q1 Q1 elements, whereas for the second-order stepping scheme
BDF2) we use the Q2 Q1 elements. The results are shown in Fig. 2, where the expected orders of convergence are
erified. It is worth noting that in these examples the CFL number has ranged from 0.1 to almost 15, which speaks
o the good stability properties of the methods used here.

Another relevant test regards how lumping the coefficient matrix Mµ in the viscosity projection affects the
ccuracy of the approximation. The comparison between the standard and lumped versions of the first-order splitting
cheme with Q2 Q1 elements is shown in Fig. 3. The pressure approximation is virtually unaffected, whereas the
elocity convergence experiences a mild slope degradation at the finest levels. This indicates that using a lumped
rojection can be a simple way to improve efficiency in practice.
13
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Fig. 2. Manufactured solution: temporal convergence study for different types of discretisation.

Fig. 3. Manufactured solution: impact on the spatial accuracy due to lumping the viscosity projection.

.2. Lid-driven cavity flow

To assess the temporal stability of the various possible linearisation approaches, the well-established regularised
id-driven cavity problem [31] in two spatial dimensions is considered. In the domain Ω = (0, L)2, the lid at x2 = L

moves horizontally with a velocity u1 = Uξ (t)χ (x1) given by

ξ (t) =

{
sin2 (

π t
2τ

)
for t ≤ τ,

(44)

1 otherwise,

14
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Fig. 4. Cavity flow benchmark: distributed computational mesh with 64 × 64 Q2 Q1 elements.

χ (x1) =

⎧⎪⎨⎪⎩
1 − cos4

(
πx1
2l

)
for x ≤ l,

1 − cos4
(
π
2l (x1 − L)

)
for x1 ≥ L − l,

1 otherwise,
(45)

ith τ = 1.0 s and the regularisation width l = L/10 resolving the ambiguity at the upper corner nodes. No-slip
onditions are enforced on the remainder of the boundary. We use the popular Carreau model [32]

η (γ̇ ) = µ∞ + (µ0 − µ∞)
[
1 + (λγ̇ )2

] n−1
2 , (46)

ith parameters µ∞ = 1.0 mPa·s, µ0 = 100 mPa·s, λ = 10 s, n = 0.25 and fluid density ρ = 1.0 kg/m3.
Furthermore, considering L = 1.0 m and U = 10 m/s leads to a Reynolds number of Re = ρU L/µ∞ ≈ 104.
Rather coarse, uniform meshes of 128 × 128 equal-order Q1 Q1 elements and 64 × 64 Q2 Q1 elements are used,
esulting in the same number of velocity nodes. The mesh is deliberately not tailored for boundary layers, so that
he schemes can be tested in the presence of possibly large gradients. This numerical test is designed to challenge
ur solvers, featuring both high Reynolds numbers and having the viscosity vary by two orders of magnitude. Both
onfigurations are subdivided into four subdomains, as depicted in Fig. 4 for the Q2 Q1 case. A quasi-stationary
olution as shown in Fig. 5 is recovered, showcasing here exemplarily one obtained using Q2 Q1 elements and step
izes chosen such that the maximum element CFL number is approximately 5 according to the definition

CFLe = max
i

{
|ui |∆t

hi

}
, i = 1, . . . , d, (47)

with hi being the element length in direction xi divided by the polynomial degree of the velocity space. We also
define the element Reynolds number Ree as

Ree = max
i

{
ρ|ui |hi

µ∞

}
, i = 1, . . . , d. (48)

We start by comparing the first-order schemes under different linearisation approaches. We plot the iteration
ounts Nµ of the viscosity projection step, Np of the PPE system, and either Nu (when considering the coupled

system) or N̄ui (when solving for individual velocity components, if admissible). A CG scheme is used for all solves,
except in the velocity system when the asymmetric diffusive or convective term is treated implicitly, in which cases
an FGMRES solver is considered. A relative convergence criterion is defined, stopping linear iterations when the

6
residual has decreased by a factor of 10 .
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Fig. 5. Quasi-stationary cavity flow solution: selected streamlines coloured by velocity norm in m/s (left), and pressure p in N/m2 and
caled velocity components 0.05u1 and 0.1u2 in m/s (right).

Fig. 6. Discretisation of the lid-driven cavity problem via BDF1 and Q1 Q1 elements: local Re and CFL numbers and iteration counts of
PPE (Np) and viscosity projection (Nµ) on the left; comparison of semi-implicit variants of the convective term (∇u)u and coupling viscous
erm (∇u)⊤∇µ on the right.

As can be seen in Fig. 6, all schemes remain stable under a standard CFL condition. The element CFL number
eaches ≈ 10 at t = 1.0 s, indicating good stability properties, while the element Reynolds number remains below
0. Iteration counts in the projection and PPE steps are very low for all considered variants, indicating the good
erformance of the AMG-preconditioned CG solver.

Concerning the velocity system(s), we observe that treating the convective velocity semi-implicitly (keeping it
n the left-hand side) increases temporal stability, while increasing the iteration count in the FGMRES solver as
he CFL number increases. This is well known from literature and therefore expected. However, considering the
ariant (∇u⋆)u with semi-implicit viscous terms coupling the velocity components leads to sudden divergence in this
pecific setting and is thus considered less suitable. Linearising the asymmetric viscous contribution ⟨w, (∇u)⊤∇µ⟩

and shifting it to the right-hand side does not seem to cause any further restriction on the time-step size, but
allows a decoupled solution of velocity components, hence those variants are indicated by “decoupled”. Conversely,

“coupled” simply refers to schemes that do not allow solving the velocity components individually. Moreover,
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Fig. 7. Discretisation of the lid-driven cavity problem via BDF1 and Q1 Q1 elements: influence of lumping the mass matrix (in the viscosity
projection) using the Laplacian form (left); and comparison of Laplacian and stress-divergence forms (right).

variants with fully explicit convection may be of interest, using (∇u⋆)u⋆ or [(∇u)u]⋆ (the superscripted star indicates
xtrapolation, cf. Section 4.3). In the current example, these variants show least temporal stability, but allow the use
f a CG solver, thus yielding very low iteration counts.

The influence on stability when lumping the mass matrix in the viscosity projection step is negligible, as seen
n Fig. 7. In the present example, stability is not impaired and almost identical iteration counts for all variants are
ttained. Thus, depending on the problem at hand, this scalar mass-matrix solve may be spared completely and
eplaced by a simple vector scaling.

Considering the stress-divergence form of the momentum equation, one may again derive coupled or decoupled
ariants by semi-implicitly treating the viscous stress terms. In the tests in Fig. 7, only the most stable variant
f the convective term using (∇u)u⋆ is considered, while the viscous term is treated such that individual velocity
omponents are decoupled or not. All variants are stable and yield low iteration counts for small CFLe, but at
FLe ≈ 8.5 the decoupled version of the stress-divergence form diverges, which does not happen with the decoupled
aplacian variant. This behaviour may be linked to the linearisations needed in order to decouple the components:

n the Laplacian form, ⟨w, (∇u)⊤∇µ⟩ is treated explicitly as opposed to ⟨∇w, (µ∇u)⊤⟩ in the stress-divergence
orm; depending on the problem settings, the relative magnitude of these terms will differ, rendering one or the
ther formulation more stable.

When using a second-order temporal discretisation, i.e., BDF2 combined with linear extrapolation, the same
rends are observed up to a maximum local CFL number of around 9 — by design just below the maximum CFL
umber reached in this problem. With BDF2, the semi-implicit schemes need smaller time-step sizes compared to
heir linear counterparts, but the semi-implicit viscous term does not decrease temporal stability noticeably (see
ig. 8). The scheme with explicit convection does perform rather well until CFLe ≈ 2, but solution quality is
lready noticeably degraded before divergence due to temporal instability. The effects when applying mass lumping
r using the stress-divergence form are similar to those already reported for BDF1 and are thus omitted.

When a second-order temporal scheme combined with Q2 Q1 elements is employed, the observed trends do not
iffer from previous settings, as seen in Fig. 9. It is worth noting, however, that this finite element pair is stable in
he inf–sup sense, which was not the case for the previously considered Q1 Q1 interpolation. Summing up, these
umerical tests indicate that a standard CFL condition is sufficient for temporal stability. Schemes with first order in
ime show better stability properties, while higher-order schemes result in smaller, yet still reasonable time-step sizes.

emi-implicit treatment of both the convective and viscous terms have not led to further stability issues, but fully
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Fig. 8. Discretisation of the lid-driven cavity problem via BDF2 and Q1 Q1 elements: local Re and CFL numbers and iteration counts of
PPE (Np) and viscosity projection (Nµ) on the left; comparison of semi-implicit variants of the convective term (∇u)u and coupling viscous
erm (∇u)⊤∇µ on the right.

xplicit schemes restricted the time-step size further. Lumping the mass matrix in the viscosity projection step has
een found to smooth sharp gradients in viscosity and not alter stability properties in the current example. Looking
t the decoupled variants, the stress-divergence form has led to divergence of the solver somewhat earlier than when
mploying the Laplacian form. Neither form seems to be clearly superior, though, since the slight differences are
lso likely influenced by the problem settings. As also observed by Liu [5], the velocity–pressure finite element
airing does not exhibit any LBB-like restriction, which is a major advantage of the method in comparison to
tandard rotational projection schemes. However, an in-depth theoretical analysis regarding these schemes is still a
elevant open problem. The numerical evidence presented herein strongly indicates favourable stability properties,
ut further analysis lies beyond the scope of this contribution.

.3. Carreau fluid past a backward-facing step

We now consider another problem with less smooth solution, namely, the classical backward-facing step
enchmark [33,34]. The popular setup proposed by Choi and Barakat [33] considers the Carreau rheological model
46) with the hemodynamic parameters ρ = 1060 kg/m3, µ∞ = 3.5 mPa·s, µ0 = 250 mPa·s, n = 0.25 and λ = 50
. The geometric dimensions (cf. Fig. 10) are L2 = 2L1 = 20H , s = 0.9423H and H = 5.2 mm. In order to
ompare our results to the stationary solutions reported by Choi and Barakat [33], we use a parabolic inlet profile
ith flow rate Q(t) ramped up smoothly from zero to Qmax as

Q(t)
Qmax

=

{
sin2 (

π t
2τ

)
for t ∈ [0, τ ],

1 for t ∈ [τ, T ],

ith τ = 0.3 s and T = 2 s. For the outlet we set the usual zero pseudo-traction condition (µ∇u − pI)n = 0. Choi
nd Barakat [33] considered various values for the Reynolds number, which they define as Re = 2ρQmax/µ∞.

For this example we employ a first-order method in both space and time, using triangular elements for the
patial discretisation. The mesh is structured, with the element length equal to H/40 in the horizontal direction.
he elements above and below the step’s corner have a vertical length equal to H/40 and s/40, respectively. This

esults in a total of 160,000 elements and 81,281 nodes. The time-step size is set as ∆t = 5 × 10−4 s for all cases.
he comparison between our results and the reference solution, in terms of the reattachment length r , is depicted

n Fig. 11. The results are in general in very good agreement. For Re = 300 there is a 5% difference, which might
18
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Fig. 9. Discretisation of the lid-driven cavity problem via BDF2 and Q2 Q1 elements: local Re and CFL numbers and iteration counts of
PPE (Np) and viscosity projection (Nµ) on the left; comparison of semi-implicit variants of the convective term (∇u)u and coupling viscous
erm (∇u)⊤∇µ on the right.

Fig. 10. Backward-facing step benchmark: problem setup.

indicate the need for some refinement close to the re-circulation zone (mind that we are not using any convective
stabilisation such as streamline upwind Petrov–Galerkin [35]).

6.4. Carreau fluid flow through idealised aneurysm

As a final numerical example inspired by challenging hemodynamic applications, we consider the pulsatile flow
of a shear-thinning fluid through a three-dimensional idealised (prototypical) aneurysm. Thus, fluid parameters are
chosen in the physiologically relevant range, with ρ = 1000 kg/m3, µ0 = 50 mPa·s, µ∞ = 5.0 mPa·s, n = 0.25 and

= 10 s in the Carreau model (46). To generate a suitable mesh, we start off with a straight circular cylinder with
entral axis from (x1, x2, x3) = (0, 0, 0) to (0.2, 0, 0), resulting in a length of L = 0.2 m between in- and outlet
ircular cross-sections of radius R = 0.01 m. This simple geometry is easily meshed and afterwards manipulated
y transforming the radial coordinate of each nodal point according to

r =

[
1 + 2 sin10

(πx1

L

)]
r̃ .

ollowing this simple construction, the final mesh consisting of ≈ 4.9 × 105 elements and featuring boundary
layers can be seen in Fig. 12. The discretised geometry is distributed across 14 processors. Another advantage of
the proposed scheme, which makes heavy use of decoupling components and time-splitting, is highlighted here:

6
a monolithic approach solving for all unknowns simultaneously would result in ≈ 12.9 × 10 DoFs using Q2 Q1
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Fig. 11. Backward-facing step benchmark: reattachment length versus Reynolds number.

Fig. 12. Prototypical aneurysm mesh featuring boundary layers, distributed to 14 processors.

lements or ≈ 2.5 × 106 DoFs using stabilised Q1 Q1 interpolation. However, the largest systems solved at a time
n the present approach using Q1 Q1 elements and decoupling the velocity components features only ≈ 5.0 × 105

oFs, which is simply the number of mesh nodes. The time-step size in the second-order-accurate (BDF2 and linear
xtrapolation) method is chosen such that the maximum CFLe (47) stays below 0.3. We prescribe the inlet velocity
rofile as

u =

⎛⎝u I

0
0

⎞⎠ , u I =

(
1 −

r2

R2

)
ξ (t)χ (t),

ith
χ (t) = 1 − 0.3 cos(π t/τ ),
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Fig. 13. Prototypical aneurysm example: maximum inlet velocity u I , time-step size ∆t and element CFL number (left); corresponding elem-
ent Reynolds number and iteration counts in the boundary projection step (Nζ ), the PPE (Np), the viscosity projection (Nµ) and the mean
velocity iteration count in momentum balance equations (N̄ui ) on the right.

Fig. 14. Prototypical aneurysm example: pressure (left) and viscosity (right) at selected apex points A = (L/2, R, 0), B = (L/2, R/
√

2,
R/

√
2), and at the outlet centre C = (L , 0, 0).

and ξ (t) as defined in 6.3, with τ = 0.5 s, resulting in time-step sizes around 5×10−4 s. Then, the resulting Reynolds
number considering the inlet diameter and mean inlet velocity is 2600, and the maximum element Reynolds number
(48) is Ree ≈ 450. These quantities, namely the maximum inlet velocity, time-step size, maximum element CFL
and Reynolds numbers are depicted in Fig. 13 together with the iteration counts for each of the linear solves. There,
Np and Nµ again stand for the number of iterations in the AMG-preconditioned CG-solves on the linear systems
rising from the PPE and viscosity-projection-step, whereas N̄ui is the mean number of iterations needed in the
olves for the velocity components. Additionally, the iteration count Nζ in the pressure boundary projection step is
ncluded for completeness, despite being negligible in terms of computational cost (<1% computational time).

As expected, the projection solves show excellent convergence behaviour, while Np is mildly solution-dependent
ue to variations in the right-hand side of the linear system. The values of N̄ui are remarkably low, but
ependent on the time-step size and (element) Reynolds number, which is why the settings for the FGMRES-
olver were conservatively set. We report the pressure and viscosity components of the solution at the apex point

A = (L/2, R, 0), another apex point B = (L/2, R/
√

2, R/
√

2) and the outlet centre point C in Fig. 14. Inspecting
the pressure curves, one observes a periodic solution with the mean outlet pressure being zero due to an inherent
scaling in the zero pseudo-traction condition enforced. At the selected points, the viscosity is also reaching a periodic
solution. With decreasing inlet velocity, strong recirculating flow is observed accompanied by rapid fluctuations in
shear rate and, thus, viscosity. Moreover, the obtained solution is rotationally symmetric and reaches a periodic state.
This behaviour is shown at t ≈ 5.37 s in Fig. 15, indicated by selected streamlines coloured by velocity norm and
fluid pressure. The importance of taking non-Newtonian behaviour into account becomes even more evident when
inspecting local variations of viscosity as shown in Figs. 16 and 17. The viscosity is shown at two distinct points
in time — strong variations with respect to both time and space are present, covering the whole range (µ∞, µ0] at

time instants t ≈ 5.37 s and t = 5.83 s due to strong recirculation.
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d
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Fig. 15. Solution at t = 5.37 s showing complex flow patterns via streamlines coloured by velocity norm (left) and pressure in cut domain
(right). Main flow direction from right to left.

Fig. 16. Cut viscosity contours at t = 5.83 s resulting from complex recirculation pattern and large variation in the shear rate. Main flow
irection from right to left.

Fig. 17. Velocity vectors coloured by |u| and viscosity in close-up of expansion in the slice at x2 = 0 at time t = 5.37 s. Main flow
irection from right to left.
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Fig. 18. Scaled element Reynolds and CFL numbers (left) and iteration counts Nu,p for the velocity–pressure system with Q2 Q1 or Q1 Q1
lements compared to the PPE-based approach (right).

.5. Computational performance study

Finally, we aim to compare the presented PPE-based approach to existing methods in a slightly simpler setting
han in the previous example: we choose T = 1 s, a fixed time-step size of ∆t = 10−3 s and a computational

esh with 2.1 × 105 elements for Q1 Q1 interpolation and a mesh featuring the same amount of velocity DoFs for
Q2 Q1 interpolation; all other parameters are the same as in Section 6.4. For the comparison, let us consider coupled
elocity–pressure formulations with block-systems of the form(

A B
B̃ C

) (
un+1

pn+1

)
=

(
f
g

)
,

solved using an FGMRES method [36] with a block-triangular right preconditioner [37]

P−1
=

(
A B
0 S

)−1

=

(
A−1 0
0 I

) (
I −B
0 I

) (
I 0
0 S−1

)
,

ith the Schur complement matrix S = C − B̃ A−1 B. The velocity–velocity block in the coupled system can be
nterpreted as a sum of reaction, diffusion and convection terms [38]. Then, when using Q2 Q1 elements, we can
se the grad–div preconditioner and approximate the inverse Schur complement by [39]

S−1
≈ M−1

µ,γ + L−1
p ,

hile adding grad–div stabilisation, i.e., ⟨∇ · w, γ∇ · un+1
⟩ with a parameter γ = O(1) [40]. For equal-order discr-

tisations, on the other hand, γ = O(he) is the consistent choice for convective flows [40], rendering the grad–
iv preconditioner ineffective for equal-order pairs. Thus, we use the pressure–convection diffusion preconditioner
PCD) [41], taking

S−1
≈ M−1

µ,γ +
(
C − L p

)−1
− M−1

p Fp L−1
p .

ere, all the inverses appearing in the preconditioner are realised by single AMG V-cycles. In both cases, Mµ,γ

ccounts for varying viscosity and also for grad–div stabilisation when using the grad–div preconditioner. For further
etails, the reader is referred to [37–39,41–44]. These preconditioners for the coupled velocity–pressure systems
re well established and widely used, and our main idea is to provide a simple understanding of the achievable
erformance based on black-box AMG methods and physics-based block-preconditioners. In order to enable the
qual-order discretisation, we employ our recently introduced boundary vorticity stabilisation (BVS) [18,44], which
an be seen as a simple modification of the classical PSPG method to increase parameter-robustness and eliminate
purious pressure boundary layers.

For a fair comparison, all the schemes are implemented in deal.II [27], using AMG methods provided by Trilinos’
−5
L package [28]. All linear systems are solved until a residual reduction of 10 is achieved, taking the solution
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Table 2
Number of mean AMG V-cycles per time-step (top row) needed to solve the coupled velocity–pressure systems
using Q2 Q1 or stabilised Q1 Q1 elements or systems arising in the split-step scheme. Relative computational
effort (bottom row) and absolute solver timings using 12 cores for Q2 Q1 interpolation and 10 cores otherwise
being the fastest possible settings.

Q2 Q1, grad–div Stabilised Q1 Q1, PCD Q1 Q1, split-step

Mean AMG V-cycles 65.06 (144%) 125.29 (278%) 45.12 (100%)
Linear system solve time 9186 s (253%) 8196 s (226%) 3633 s (100%)

from the last time-step as initial guess. In Fig. 18, the resulting iteration counts for the coupled velocity–pressure
system, Nu,p, are compared with the sum of the individual velocity component solves, denoted by Σi Nui , and
he iteration count Np in the PPE. In this numerical test, the element CFL number stays below 1, whereas the
lement Reynolds number is ≈ 600. Initial iteration counts at the start of the simulation are slightly higher due to
he relative convergence criterion chosen but are found rather robust with respect to the Reynolds number, where
he grad–div preconditioner slightly outperforms the PCD in terms of iteration count. As before, we see very low
teration counts Nui in the PPE-based approach, being basically independent of the Reynolds number. To reduce
he ambiguity stemming from the specific implementations, we compare the number of AMG V-cycles needed to
olve the linear systems and ignore the effort put into matrix assembly, solver setup and the actual linear solver
sed, since they are roughly equal or act in favour of the non-PPE solvers. Assume further that all appearing mass
atrices can be lumped in the Schur complement approximation, resulting in two (A−1 and L−1

p ) and three (A−1

nd twice L−1
p ) AMG V-cycles per FGMRES iteration using the grad–div or PCD preconditioners, respectively,

nd one AMG V-cycle per iteration in each of the three velocity components and the pressure Poisson system of
he split-step scheme. We skip the viscosity projection in the comparison, since the mass matrix may be lumped,
s already discussed. The resulting mean AMG V-cycles per time-step are listed in Table 2, showing the increased
erformance using the time-splitting method. Note here that the mean number of multigrid cycles per system solve
oes not capture the full picture: looking at the timings displayed in the second row of Table 2, it can be seen
hat even though a bigger number of AMG V-cycles per application of the PCD preconditioner is performed, its
erformance is better than expected. The grad–div preconditioner needs fewer AMG applications per outer Krylov
teration, but the denser sparsity pattern and increased cost when solving the velocity–velocity block with grad–div
erm (see [39]) render it more expensive. Additionally, the ratio of velocity to pressure DoFs is higher for Q2 Q1
nterpolation, pushing the optimal DoF count per processor for velocity and pressure sub-problems further apart.
he timings underline the expected heavy influence of the actual linear system sizes rather than the overall DoF
ount on the total time spent in the linear solver. To sum up, the split-step scheme can be more effective than
lock-triangular preconditioners, especially when the approximation of the Schur complement is difficult in high
eynolds number settings.

In a last remark, we note that coupled solvers may, when suitably tailored or used in other scenarios, be at least
ompetitive with respect to the presented split-step scheme — this is a matter of ongoing investigation. Moreover,
hen comparing the present scheme to a fully implicit nonlinear coupled solver, an additional speed-up by a factor
f 2 to 3 can be expected depending on the problem and solver settings used (see [44]).

Despite the simplified setup, this example involves important aspects of challenging problems in hemodynamics
nd may serve as a reference solution. As demonstrated, applying the presented methods, substantial increases in
omputational efficiency can be attained. This ultimately renders even large datasets, as, e.g., present in patient-
pecific simulations amenable for desktop computers. Moreover, decoupling into individual solution components
ombined with the apparent simplicity of the present operators and resulting linear systems allows “easy” parallel
omputing on clusters utilising black-box solvers and preconditioners.

. Concluding remarks

This work has presented a family of split-step methods for the approximation of incompressible flows of
eneralised Newtonian fluids. Although representing one of the simplest classes of non-Newtonian models, quasi-
ewtonian fluids impose several difficulties for standard residual-based stabilisation and projection methods. By
wapping the divergence-free constraint with an appropriate Poisson equation for the pressure with consistent
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boundary conditions, we end up with a system that enforces incompressibility without the need for the usual
Helmholtz–Leray decomposition. In comparison to its original (Newtonian) version, the most challenging aspect of
the present formulation is constructing a weak form suitable for standard Lagrangian finite elements. Furthermore,
we have shown how to treat the nonlinearities in order to yield an efficient decoupling of the velocity components,
whilst maintaining the desired temporal accuracy. Various numerical examples in different geometries and flow
regimes have been presented to showcase the accuracy, stability and efficiency of the present approach. In
comparison to other (only recently introduced) split-step methods for fluids with variable viscosity [16], ours has the
advantages of substantially reducing the overall number of substeps and also allowing the use of equal-order finite
element pairs for the discretisation of velocity and pressure. Ongoing work includes extending the present approach
to fluids with pressure-dependent viscosity [45], as well as to a partitioned fluid–structure-interaction framework.
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