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Abstract. Computational modeling of the cardiovascular system plays an increasingly important role

in biomedicine, as it allows for non-invasive investigations of the status-quo and studying the influence

of different treatment options available. The goal is to incorporate patient-specific datasets to obtain so-

called digital twins to increase relevance of virtual surgery and support clinical decision making. In this

context, aortic dissection is particularly challenging, since the overall system behavior strongly depends

on the interplay between tissue deformation and blood flow, giving rise to a fully coupled fluid-structure

interaction problem. To account for the complex physics, several additional modeling aspects such as

prestress, advanced constitutive models respecting fibre orientation and suitable boundary conditions for

the fluid and solid phases have to be considered. Within this study, these special techniques are applied

to a patient-specific dataset, for which first results are presented highlighting their relevance.

1 INTRODUCTION

Aortic dissection is a life-threatening condition, in which pathologically altered layers of the aorta rup-

ture and thereby allow for blood flow between individual layers of the media. The propagation of this

so-called false lumen is dominated by a complex interdependency of pulsating blood flow and tissue

deformation, which are in turn highly influenced by the position of the primary entry tear and geometric

configuration of the intimal flap. This part of the dissected aortic wall separates true and false lumina and

thereby plays a major role in the onset of dissection and overall disease progression. Consequently, the

multiple interacting fields composing the coupled problem must be considered to obtain results relevant

for management and treatment decisions in clinical application.

Despite the remarkable advancements in the field of computational biomechanics and haemodynamics

during the recent years (cf. for work related to aortic dissection [1–6]), numerical simulations of fluid-

structure interaction in patient-specific cardiovascular settings remain challenging. Nonetheless, several

advancements with regards to simulating aortic dissection with fluid-structure interaction are reported in

literature.

One of the first studies on computational modeling of aortic dissection by Qiao et al. [7] investigated the

effects of bypassing a DeBakey III aortic dissection, comparing the haemodynamic parameters and inti-

mal flap displacement before and after virtual surgical intervention using two alternative bypass strate-
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gies. The geometry was reconstructed using MRI data, yet simplified by excluding any branches and

extruding uniformly by 2 mm to generate the solid domain. Blood was considered as a Newtonian fluid

with parameters chosen in the physiological range, while a linear-elastic solid with an increased density

of 2000 kg/m3 and Young’s modulus of 800 kPa was employed. As for boundary conditions, realistic

inflow conditions were considered together with a reference pressure at the outlet, neglecting external

tissue response and intramural pressure. Flap displacements at peak systole of 1.3 mm were computed

and compared to a rigid wall simulation, yielding significant differences in the fluid pressure and veloci-

ties observed.

Another study was conducted by Alimohammadi et al. [8]. Therein, the patient-specific lumen geom-

etry of a 54 year old female was reconstructed from CT images and extended by a fixed 2.5 mm to

obtain a suitable geometric representation of the vessel wall. Blood flow was modeled combining the

Carreau-Yasuda rheological law with a shear-stress transport turbulence model, while Windkessel outlet

parameters were fit to match patient data and realistic inlet velocity profiles were prescribed. Regarding

the aortic tissue, an isotropic, incompressible, hyperelastic response of the tissue was chosen. The center

points of the outlets were fixed in the global horizontal directions and a uniform external pressure of

52.5 mmHg was applied, neglecting the elastic response of the surrounding tissue. Large differences in

flow distribution and oscillatory shear index (OSI) were reported, even though only small deformations

of the intimal flap > 0.8 mm were observed. Limited displacements of the false lumen might be caused

by the high shear-modulus of 360 kPa selected or simply result from the specific geometry. Nonetheless,

the authors state that critical differences and key features might not be captured accurately enough, when

neglecting the wall and flap movement in the modeling of aortic dissection.

In an attempt to consider for vessel wall deformation without the additional cost of solving a fluid-

structure interaction problem, Bonfanti et al. [9] introduced the so-called moving boundary method.

Therein, the vessel wall displacement normal to the outer lumen surface is linearly related to the fluid

pressure. The intimal flap, however, is in a first attempt kept rigid. For the fluid, a Carreu-Yasuda model

was considered under laminar flow conditions. At the aortic root, left and right common carotid arteries,

flow profiles were prescribed, while 3-element Windkessel models were used on the remaining outlets.

The approach is tested on a patient-specific case of Type B aortic dissection in comparison to fixed-mesh

flow simulations, where an improvement was documented. This approach was further improved upon

in [10, 11], introducing a deformable intimal flap. In analogy to the basic method, a membrane of zero

thickness is introduced, which deforms according to the same law as points on the external boundary,

i.e., dependent solely on the fluid pressure (and tuning parameters). Comparing full fluid-structure in-

teraction, fixed-wall flow simulations and the newly introduced method, pressure and flow rates of the

moving boundary method were closer to results obtained with fluid-structure interaction than the fluid

flow in a fixed domain.

Qiao et al. [12] presented the first study of aortic dissection which considered for fluid-structure interac-

tion with a two-phase non-Newtonian fluid model. A patient specific geometry was reconstructed from

CT images and a uniform wall thickness of 2 mm prescribed. Three-element Windkessel models were

applied at the outlets together with an inlet volumetric flow rate with parameters taken from literature.

The tissue was assumed to feature isotropic, linear elastic material behaviour and assigned an increased

density of 2000 kg/m3. The flap displacement at peak systole of ≤ 1 mm remained below the range to

be expected under physiological conditions. Nonetheless, important conclusions can be drawn from this

study with focus on haemodynamic parameters, since the multi-phase nature of blood is accounted for,

which consequently results in the main subject of investigation being the comparison of OSI and time-

2



R. Schussnig and T.P. Fries

averaged wall shear stress (TAWSS) as well as the deformation of the vessel wall during a cardiac cycle

with fixed-wall and single-phase non-Newtonian models. Relative differences in the wall shear stress

of up to ±50 % during the cardiac cycle between single-phase and two-phase non-Newtonian models

highlight potential for improving the modeling of blood flow and thrombus formation in the setting of

aortic dissection.

In [13], fluid-structure interaction simulations of aortic dissection were performed modeling blood as

an incompressible Newtonian fluid and the tissue as an isotropic, hyperelastic and quasi-incompressible

continuum. Patient-specific 4D MRI data is used to prescribe a parabolic velocity profile at the inlet,

matching measured volumetric flow rates and fit the parameters of three-element Windkessel models.

Also, Robin boundary conditions were included to account for external tissue support. A prestressing

algorithm was applied to compute a prestress-tensor S0 in the solid domain except for the flap, which is

assumed to be prestress-free in diastole. The anatomic model is generated from high resolution CTA data

aquired in mid-diastole and further processed manually, i.e., smoothed and extended, to obtain a fixed

wall and flap thickness of 2 mm. Flow rates, pressure differences and TAWSS in true and false lumen

and geometric quantities, such as cross-sectional area or diameter change, are reported. That contribu-

tion highlights the importance of flap stiffness by varying the elastic modulus of the flap region between

20 kPa and 800 kPa and validates computational results by comparing them with clinical data, showing

good agreement in large parts including the noteworthy large flap motion within the realistic range of

up to 13.4 mm for some parameter choices considered. The combination of an adequate geometric ap-

proximation, a monolithic fluid-structure interaction solver including realistic boundary conditions for

both fluid and solid sub-problems with patient-specific clinical datasets leads to one of the most holistic

approaches presented up to date.

All of these studies underline the fact that considering for the instationary fluid flow domain is especially

important in aortic dissection, since the dissection flap as a thin dissected membrane is highly mobile and

consequently greatly affects the flow division and pressure distribution in the true and false lumen. The

obtained results and the gained insights and conclusions may differ significantly when accounting for the

fully coupled multiphysics problem, i.e., properly incorporating effects of a deforming domain. This un-

derlines the importance of the constitutive modeling of the aortic tissue and that the dissection flap plays

an important role in the onset of aortic dissection. Thus, the focus within this contribution lies on tissue

mechanics to better predict vessel wall displacements and stress concentrations. A fibre-reinforced, in-

compressible hyperelastic continuum is considered [14], accounting for the highly nonlinear anisotropic

response of collagen fibres. Consequently, the orientation of fibres in the reconstructed geometry plays

a crucial role with respect to the overall system response. However, the dissection flap characteristic

for aortic dissection complicates the construction of local coordinate systems relevant for the fibre di-

rections. A new hybrid technique combining common approaches based on the solution of a simple

boundary value problem and geometric considerations result in a natural fibre orientation. Together with

an algorithm to incorporate effects of prestress present in the tissue at time of image acquisition, the

presented methodology leads to a fully coupled fluid-structure interaction simulation of aortic dissection

featuring suitable constitutive models.

2 MODELING ASPECTS

The modeling and simulation of patient-specific aortic dissection requires including several non-standard

modeling techniques, developed during the past decade of advancement in computational haemodynam-
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ics. Those well-established techniques need to be adapted to the present case, in order to, e.g., account

for fibre-reinforcement and its orientation in the tissue or prestress at image acquisition. The following

sections introduce the mechanical models and comment on their peculiarities.

2.1 Balance equations

Blood is considered an incompressible Newtonian fluid, which is a reasonable assumption balancing

computational cost and accuracy made in line with numerous studies in literature [1, 6]. Therefore,

balance of linear momentum and continuity equation are expressed using the fluid velocity v and pressure

p as primary variables in Arbitrary-Lagrangian-Eulerian (ALE) formulation, posed in the moving domain

Ω f (t) as

ρf

[

∂̂tv+∇v(v− v̂)
]

−∇ ·σf = 0

∇ ·v = 0

}

in Ωf(t)× (0,T ], (1)

with fluid density ρf, ∂̂tv denoting the ALE time-derivative of functions defined in the fluid domain

moving with velocity v̂ and fluid’s Cauchy stress tensor defined for Newtonian fluids as

σf =−pI+µf

[

∇v+(∇v)T
]

, (2)

with dynamic viscosity µf.

The focus of this study lies on modeling aortic tissue in the context of aortic dissection as a fibre-

reinforced (quasi-) incompressible continuum. Employing a classical continuum mechanics approach,

introduce the displacement ds, deformation gradient F and Jacobian J in the Lagrangian reference frame

ds = x(x̂, t)− x̂, F = I− ∇̂ds, J = detF, (3)

which are defined with respect to material point coordinates x̂ and their mapped counterparts x(x̂, t) in

the current configuration. This allows writing linear momentum balance in the solid sub-domain in terms

of displacement from reference to current configuration only

ρs
∂2

∂t2
ds − ∇̂ ·P = 0 in Ω̂s × (0,T ], (4)

denoting by ρs the solid density and introducing P, the first Piola-Kirchhoff stress tensor. Further, the

right Cauchy-Green strain tensor C = FTF enables writing the constitutive relation based on the strain

energy density Ψ defined according to [14]

Ψ =
µs

2
(Ī1 −3)+

κb

4

(

J2 −1− lnJ
)

+
k1

2k2
∑

i=4,6

[

exp
{

k2 [κĪ1 +(1−3κ)Īi −1]
2
}

−1
]

, (5)

using the invariants

Ī1 = J−2/3C : I and Īi = J−2/3C : (Mi ⊗Mi), i = 4,6, (6)
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and symmetric mean fibre directions Mi = [±sinα,cosα,0]T. Then, the system is finally closed via

P = FS and S = 2
∂Ψ

∂C
. (7)

The contributions to the strain energy density (5) are of neo-Hookean type, combined with an incom-

pressibility penalization and the highly anisotropic, nonlinear contribution of two symmetrically dis-

persed fibre families. Such complex constitutive modeling of aortic tissue has not yet been applied in

the context of patient-specific aortic dissection, but is expected to have a major influence on displace-

ments and stresses and therefore on the overall solution due to the large strains encountered in the present

setting.

2.2 Mesh construction

Geometry acquisition and constructing suitable discrete representations of the computational domain are

particularly cumbersome in the context of aortic dissection. Compared to standard lumen reconstruction,

the topology is found to be far more complex due to the thin dissection membrane separating true and

false lumina. The starting point for the presented finite element mesh is the fluid-structure interface

as a surface mesh in three-dimensional space thankfully provided by [13]. This surface mesh is based

on CTA scans of chest and abdomen of a 52-year old man with a residual Type B aortic dissection,

resulting in a voxel dataset of 512×513×1027, at a resolution of 0.63 mm×0.63 mm×0.70 mm. The

proximal intimal tear is located at the left subclavian artery and extends into both left and right iliac

arteries, where re-entry tears are present. Only the left subclavian artery is supplied by true and false

lumina, while the remaining branch vessels are supplied by the true lumen only. The whole aortic tree

is considered as depicted in Figure 1 (right), since cutting the true and false lumina would necessitate

additional assumptions regarding flow rates to construct suitable boundary conditions, thereby further

increasing complexity and decreasing stability.

A uniform wall-thickness of 2 mm is assumed, mapping points into averaged face-normal direction via

MeshMixer (Autodesk, Inc.) in two consecutive steps to further subdivide the swept volume into element

layers of 0.8 mm and 1.2 mm thickness, differentiating between medial and adventitial layers of aortic

tissue. The resulting volumetric mesh is shown in Figure 1 (left), indicating distinct tissue layers and

fluid volume by element colors. Finally, the volumetric elements in the flap region are identified, which

(i) have nodes on the fluid-structure interface and (ii) are not in the layer of n-th neighbors of elements

touching the external boundary, with n set accordingly.

2.3 Fibre orientation

Collagen fibres are main contributors to the overall stiffness of aortic tissue [5, 15] and thus heavily

influencing vessel wall deformation in response to haemodynamic forces acting on the fluid-structure

interface. However, representing the natural fibre distribution in a given patient-specific geometry is

non-trivial owing to the complex topology. Standard techniques solely based on the Laplace operator fail

quickly, as one would need to prescribe suitable boundary conditions also in the flap region. Constructing

meaningful local coordinate systems to orient the mean fibre directions is therefore done in a hybrid way,

combining approaches using weak solutions to a stationary and easily solvable boundary value problem

based on the Laplace equation with purely geometric considerations, as described in the following steps:
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Figure 1: Elements of adventitial (dark red), medial (pink) and fluid (grey) regions in cut arch (left) and frontal

view of mesh with and without tissue layers (right).

1. Compute the unit outward normal vector of the solid domain n̂s and extrapolate from the fluid-

structure interface Σ̂ into the solid domain Ω̂s to obtain the unit radial material orientation ê3.

2. Solve the Laplace equation

−∇̂ · ∇̂ϕ = 0 in Ω̂s with n̂ · ∇̂ϕ = 0 on Γ̂s,e ∪ Σ̂ and ϕ = ϕ̄ on Γ̂s,i ∪ Γ̂s,o, (8)

with suitably chosen Dirichlet data ϕ̄ on the in- and outlet faces of the solid domain, Γ̂s,i and Γ̂s,o,

and homogeneous Neumann conditions on Σ̂ and the external boundary Γ̂e.

3. Rotate the normalized flux vector q̂ = ∇̂ϕ/||∇̂ϕ||2 in the plane spanned by q̂ and n̂f by a minimal

angle, such that n̂f · q̂ = 0, i.e., they are perpendicular, resulting in the unit longitudinal vector ê2.

4. Compute the unit vector in circumferential direction ê1 orthogonal to q̂ and n̂f using ê1 = q̂× n̂f.

The final outcome features natural transitions of longitudinal and circumferential vectors also close to

bifurcations and in the flap region due to the smoothing properties of the Laplace operator and at the same

time normal vectors of high quality are ensured. Due to the symmetric distribution of collagen fibres

around the mean directions Mi, the radial unit vector ê3 in the flap region needs to be extrapolated from

one adjacent neighbor only to result in admissible local coordinate systems as showcased in Figure 2.
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Figure 2: View cutting the dissected descending aortic arch: element-local coordinate systems for fibre orientation.

2.4 Tissue prestress

Another major modeling aspect of the cardiovascular system stems from the fact that the initial con-

figuration as reconstructed from medical image data represents an equilibrium configuration of tissue

deformation and blood flow. At the time of image acquisition, the blood flow already exerts some load

onto the vessel wall. This results in a nonzero stress state, which has to be accounted for, especially,

when considering for nonlinear material behavior. The prestress present in the reconstructed geometry

under diastolic flow conditions is computed according to the following algorithm [16, 17]:

1. Compute the steady-state fluid traction tf = σfnf under (quasi-stationary) diastolic flow conditions

enforcing ds = 0, reducing the fluid-structure interaction problem to a pure fluid flow problem.

2. Until the convergence criterion ||ds||2 < ε is fulfilled, update the prestress Sn
0 in the stationary

counterpart of linear momentum balance (4)

−∇̂ · [F(S+Sn
0)] = 0 in Ω̂s with F(S+Sn

0) n̂s = tf on Σ̂, (9)

and suitable boundary conditions on ∂Ω̂s \ Σ̂, discussed in Section 2.5.

As a consequence, the computed prestress tensor S0 counteracts the diastolic fluid load as convergence

is reached, resulting in ds ≈ 0, i.e., negligible displacement, as can be seen in Figure 3.

2.5 Boundary and coupling conditions

Boundary conditions play a significant role in cardiovascular modeling, influencing relevant quantities of

clinical interest and have thus been the focus of several studies including, e.g., [8, 18]. Within this con-

tribution, the balance of linear momentum is supplied with homogenious Dirichlet boundary conditions

on the in- and outlet boundaries of the aortic wall,

d̂s = 0 on Γ̂s,i ∪ Γ̂s,o, (10)
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Figure 3: Initial and prestressed configurations of a selected cross-section: deformation in m (left) and Von Mises

stress criterion in Pa (right). The converged prestress S0 compensates displacements due to diastolic fluid tractions.

effectively pinning the branch vessels and inlet cross-section in place at the boundary of the domain of

interest and Robin boundary conditions of the form [18]

F(S+S0) n̂s =−ked̂s − ce
∂

∂t
d̂s − pen̂s on Γ̂e, (11)

to mimic external tissue effects on the solid phase via a combination of springs, dashpots and a con-

stant intramural pressure with parameters chosen appropriately. On the fluid-structure interface in the

deformed configuration Σ(t), the kinematic and kinetic coupling conditions are formulated as

∂

∂t
d̂s = v on Σ(t) and σfnf = J−1F(S+S0)FTnf on Σ(t). (12)

Additionally, the geometric coupling condition

d̂s = d̂f on Σ̂ (13)

ensures matching interface positions of fluid and solid phase at all times.

On the remaining boundaries, patient-specific flow data has to be taken into account. For this purpose,

volumetric flow data as provided by [13] with mean velocities depicted in Figure 4 is used to enforce fluid

velocity profiles on all in- and outlets. This choice is motivated by increased robustness using the current

implementation when comparing it to standard 3-element Windkessel models [19, 20] to match flow

splits to given data. Nonetheless, prescribing velocity profiles on in- and outlets via Dirichlet conditions

such as

v = v̄ on Γf,i ∪Γf,o (14)

is also admissible, noting that the focus of this study is on the solid constitutive modeling.
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Figure 4: Mean velocities computed from flow data provided by [13].

3 COMPUTATIONAL RESULTS

In this section, we report first results obtained with the presented methodology. All of the above in-

troduced algorithmic aspects have been included in a work-stream, which finally allows the numerical

simulation of realistic aortic dissection datasets. However, as the case for any study dealing with patient-

specific data, the set of parameters not identifiable in clinical practice increases with complexity. The

current state of the art relies mainly on population-based mean values and data obtained in rather small

patient cohorts and/or tissue samples, which results in the parameters set in the present study accord-

ing to Table 1. In the fully coupled fluid-structure interaction problem three consecutive pulse-waves of

0.78 s are carried out. Owing to the present configuration of arch geometry and position of primary entry

tear, the blood stream is found to be entering the false lumen, leading to recirculating flow in the entry

region. However, the majority of the blood stream is traveling through the true lumen. This is caused

by the false lumen having re-entry tears only at the level of the iliac bifurcations and of course by the

overall combination of boundary conditions and geometric configuration.

A maximum flap displacement of 2.8 mm is observed in the arch region at time t = 2.0 s as depicted

together with the accompanying velocity at selected cross-sections in Figure 5. The complex flap motion

is a consequence of the pressure difference in true and false lumina, recirculating flow and flap geometry.

4 CONCLUSION

Within this contribution, several important modeling aspects in the context of numerical modeling patient-

specific aortic dissection were discussed. A computational domain was constructed based on medical

image data, resulting in a multi-layered vessel wall. The tissue was considered as quasi-incompressible

hyperelastic, fibre-reinforced continuum, additionally incorporating prestress present at the time of CTA

acquisition. The setup of this computational pipeline now allows studying the solution’s sensitivity to

a change in the included parameters such as shear modulus, fluid viscosity, prescribed boundary con-

ditions and more. At this current state, data extraction from the computational model postprocessing

the results for validation with clinical data is needed. So, ongoing work focuses on (i) validation of the

computational model and then (ii) comparing different tissue models of varying complexity to highlight

9



R. Schussnig and T.P. Fries

Table 1: Material parameters taken from [13, 21–24], values in brackets indicate individual parameters for ele-

ments in flap, medial and adventitia regions in the format (flap and media/adventitia).

fluid density ρf 1060 kg/m3

dynamic viscosity µf 3.5 mPa s

solid density ρs 1200 kg/m3

bulk modulus κb 100 kPa

fibre parameters k1 1.4 kPa

k2 22.1
shear modulus µ (120/150) kPa

fibre direction α (±27.47/±52.88) ◦

fibre dispersion κ (0.12/0.25)

exterior tissue: stiffness ke 106 Pa/m

damping ce 107 Pa s/m

intramural pressure pe 7 ·103 Pa

Figure 5: Solution in cut arch region: maximum deformation in m (left) and accompanying velocity in m/s (right)

in selected cross-sections at time t = 2.0 s, as indicated by mean inlet velocity (top).
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the influence on dissection flap displacements and thereby a possibly substantial impact on the overall

solution including parameters of clinical relevance such as TAWSS, OSI or true and false lumina pressure

differences.
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