
IMT School for Advanced Studies, Lucca
Lucca, Italy

Exploiting Process Algebras and BPM Techniques for
Guaranteeing Success of Distributed Activities

PhD Program in PHD in System Science

Track in Computer Science and Systems Engineering (CSSE)

XXXIII Cycle

By

Sara Belluccini

2023

mailto:sara.belluccini@imtlucca.it

The dissertation of Sara Belluccini is approved.

PhD Program Coordinator: ¡coordinator¿, IMT School for Advanced
Studies Lucca

Advisor: Prof. Rocco De Nicola, IMT School For Advanced Studies of
Lucca

Co-Advisor: Prof. Francesco Tiezzi, University of Florence

The dissertation of Sara Belluccini has been reviewed by:

Maurice H. ter Beek, ISTI-CNR, Pisa

Andrea Burattin, Danmarks Tekniske Universitet

IMT School for Advanced Studies Lucca
2023

Contents

List of Figures x

List of Tables xii

Acknowledgements xiv

Abstract xv

1 Introduction 1
1.1 Research Objectives . 6
1.2 Contribution . 10
1.3 Thesis Structure . 11

2 Background Notions 12
2.1 mCRL2 Formal Specification Language 13

2.1.1 Equivalence and Model Checking 16
2.2 Business Process Model and Notation 19

2.2.1 PE-BPMN . 21
2.3 Process Mining . 27

2.3.1 Process Discovery Techniques 27

3 From Collaboration Models to Formal Specifications 30
3.1 A methodology for PE-BPMN Collaborations Verification . 32
3.2 From PE-BPMN to mCRL2 37

3.2.1 Control-flow Transformation 37
3.2.2 PETs Identification 41

vii

3.2.3 Data- and Message-flow Transformation 42
3.3 Verification . 50

3.3.1 Task Verification . 50
3.3.2 Participant Verification 51
3.3.3 Secret Sharing Verification 52
3.3.4 Additive Secret Sharing Verification 57
3.3.5 Function Secret Sharing Verification 58
3.3.6 Public Key Encryption Verification 58
3.3.7 Symmetric Key Encryption Verification 61
3.3.8 Reconstruction Verification 61
3.3.9 MPC Verification . 63
3.3.10 Deadlock Freedom 64

3.4 Tool Implementation . 64
3.5 Validation . 66

3.5.1 Experiments on Realistic PE-BPMN Models 68
3.5.2 Experiment on Synthesised Models 70

3.6 Related Work . 73

4 From Collaboration Logs to Formal Specifications 78
4.1 The nCRL2 Core Calculus 80
4.2 PALM Methodology . 84

4.2.1 Mining . 84
4.2.2 Aggregation . 97

4.3 PALM at Work . 99
4.4 Validation . 102
4.5 Related Work . 107

5 Concluding Remarks 110
5.1 Future Work . 113

A Proofs to Establish Semantic Correctness 115
A.1 Operational Correspondence Between mCRL2 and nCRL2

and Viceversa . 115
A.2 Operational Correspondence Between B and nCRL2 and

Viceversa . 120

viii

B PALM Details 123
B.1 Mining Tool-independent Specification 123
B.2 Aggregation . 128
B.3 Running Example . 129
B.4 Replicate Experiments . 130

ix

List of Figures

1 Top-down and bottom-up approaches. 7
2 Running example of a distributed activity represented us-

ing the BPMN standard . 9

3 LTS of Listing 2.2 . 16
4 Elements of the BPMN Notation. 19
5 Secret sharing. 21
6 Additive secret sharing. 22
7 Function secret sharing. 23
8 Public Key Encryption. 24
9 Symmetric key encryption. 24
10 Multiparty computation. 25
11 PE-BPMN model enhanced with data objects and secret

sharing. 26

12 Overview of the approach 34
13 Process trees of parties S and D from Figure 11. 39
14 Example of a task. 44
15 Example of intra-communication. 46
16 Example of inter-communication. 48
17 Screenshot Pleak’s verification selection 65
18 Screenshot Pleak’s verification result 65
19 PE-BPMN where the tasks and data involved in the viola-

tion of Figure 18 are highlighted. 66

x

20 PE-BPMN model with violation used to measure the scal-
ability of the approach. 72

21 Chart showing how the verification time for PE-BPMN
models in table 7 grows depending on the number of pools
being in parallel. 73

22 Chart showing how the translation time for PE-BPMN mod-
els in Table 7 grows depending on the number of pools
being in parallel. 75

23 Overview of the PALM methodology. 79
24 Running example . 84
25 Definition of function Tp (and related auxiliary functions). 96
26 Transformation steps required by the PALM validation. . . 104

xi

List of Tables

1 Correspondence between the PE-BPMN block-structures
and process tree elements. 38

2 Results of secret sharing and its specialisations, additive
and function, verification over PE-BPMN models. The rows
in red are models with a violation. 68

3 Results of public key and symmetric key encryption veri-
fication for PE-BPMN models. The rows in red are models
with a violation. 69

4 Results of reconstruction verification over the same PE-
BPMN models of Table 2. The rows in red are models that
contain a trace in which the secret is not reconstructed. . . 70

5 Results of MPC verification over PE-BPMN models. The
rows in red are the ones in which a path exists such that
the synchronisation is not satisfied. 70

6 Result of deadlock freedom verification. The red rows are
the ones with a deadlock. 71

7 Experiments over a set of synthesised models in which the
number of pools grows linearly. The starting model for
”pool with violation” is in Figure 20, while for ”pool without
violation”, we constructed the same model where, instead
of ”data1.1”, that is the share triggering the violation, a
data that is not a share is sent. 74

8 SOS nCRL2 . 82

xii

9 SOS block structure . 86
10 Excerpt of Travel Agency log 87
11 Excerpt of Airline log . 88
12 Results of the PALM Validation. 105

13 SOS mCRL2 . 116

xiii

Acknowledgements

Part of the work presented in this thesis has been previously
published in two co-authored papers. In particular, Chap-
ter 3 is based on [20], joint work with Rocco De Nicola, IMT
School For Advanced Studies of Lucca, Marlon Dumas, Uni-
versity of Tartu, Pille Pullonen, Cybernetica AS, Barbara Re
and Francesco Tiezzi, University of Camerino, in Proceed-
ings of the 8th International Conference on Formal Methods
in Software Engineering, IEEE/ACM, and on an extension of
this paper that is currently under review. Chapter 4 is based
on [18], a joint work with Rocco De Nicola, IMT School For
Advanced Studies of Lucca, Barbara Re and Francesco Tiezzi,
University of Camerino, for Integrated Formal Methods: 16th
International Conference, Springer.

xiv

Abstract

The communications and collaborations among activities, pro-
cesses, or systems, in general, are the base of complex sys-
tems defined as distributed systems. Given the increasing
complexity of their structure, interactions, and functionali-
ties, many research areas are interested in providing mod-
elling techniques and verification capabilities to guarantee
their correctness and satisfaction of properties. In particular,
the formal methods community provides robust verification
techniques to prove system properties. However, most ap-
proaches rely on manually designed formal models, making
the analysis process challenging because it requires an expert
in the field. On the other hand, the BPM community pro-
vides a widely used graphical notation (i.e., BPMN) to design
internal behaviour and interactions of complex distributed
systems that can be enhanced with additional features (e.g.,
privacy technologies). Furthermore, BPM uses process min-
ing techniques to automatically discover these models from
events observation. However, verifying properties and ex-
pected behaviour, especially in collaborations, still needs a
solid methodology.

This thesis aims at exploiting the features of the formal meth-
ods and BPM communities to provide approaches that en-
able formal verification over distributed systems. In this con-
text, we propose two approaches. The modelling-based ap-
proach starts from BPMN models and produces process al-
gebra specifications to enable formal verification of system
properties, including privacy-related ones. The process mining-
based approach starts from logs observations to automati-

xv

cally generate process algebra specifications to enable veri-
fication capabilities.

xvi

Chapter 1

Introduction

A distributed system consists of a collection of distinct processes that
communicate by exchanging messages [74]. A process in a distributed
system can be carried out by an organisation, a device, a single com-
ponent, a person, or any element of which we consider its single be-
haviour to reason over its interaction with other similar processes for per-
forming distributed activities. Examples of distributed systems can be
found in many different application domains: wireless sensor networks
measuring quality parameters of gases [81], distributed ledger technolo-
gies (e.g., the Bitcoin blockchain) supporting cryptocurrency transactions
[120], home systems to perform homecare monitoring through the re-
mote connection to the assisted people and their environment [66], and
many more.

Already in 1985, in the Journal of ”Communications of the ACM”,
Kleinrock wrote:

”Growth of distributed systems has attained unstoppable momen-
tum. If we better understood how to think about, analyze, and de-
sign distributed systems, we could direct their implementation with
more confidence.” [70]

After many years, this statement is not only still valid but it is even
more relevant due to the complexity of today’s distributed systems, such

1

as those used in Industry 4.0 [68, 94], healthcare [72, 121], energy [126,
33], marine sector [40, 80], business [135, 9], and so on. The behaviour
of a distributed system is not represented just by the activities of a sin-
gle organisation or system acting alone but introduces cooperation and
collaboration among more of them. This reveals the necessity of features
like compatibility of distributed behaviour or correctness of the privacy
measures put in place. Consequently, it is essential to design any dis-
tributed system properly, verify its overall behaviour and check that it
maintains the expected behavioural and security properties [137].

Given the task’s relevance, this thesis aims at answering the following
research question:

How can practitioners formally guarantee the success of dis-
tributed activities?

The Formal Methods (FM) research community has long been dedicated
to studying and advancing the task of formal verification.

FM is, in fact, defined as ”mathematics-based techniques for the spec-
ification, development, and (manual or automated) verification of soft-
ware and hardware systems” [52] The specification phase provides a
solid mathematical foundation to reason about systems by relying on
process algebras (e.g., CCS [87], CSP [61], ACP [21]), formal languages
(e.g., mCRL2 [55], Petri Nets [130]), and mathematical models (e.g., La-
belled Transition Systems [42], Finite State Automata [17], Büchi Au-
tomaton [117]) to describe systems as a combination of subsystems and
represent their interactions. In addition, verifying properties like dead-
lock, liveness or safety and comparing systems’ behaviour is based on
rigorous model checking techniques [17] and equivalence checking no-
tions [92].

The modelling activities based on the above formalisms require ex-
pert modellers to design the systems’ behaviour properly. Similarly, the
property specification and their verification typically demand expertise
in logical formalisms. This makes it hard for many practitioners from
business and industrial context to use those techniques.

2

These limitations at a high level of abstraction highlight, firstly, the
importance of having a system model that is both readable and easily
understandable from a practitioner’s perspective to support the formal
verification during the design phase of the distributed activities. Sec-
ondly, they highlight the importance of automatically generating the for-
mal specification of a system and its properties based on its behaviour
when it is already up and running. This requires extracting the sys-
tem behaviour from observations or event logs, which can be utilized to
generate formal specifications for verification purposes. In this way, the
model can capture the dynamic aspects of the system and derive formal
specifications that accurately represent the system’s properties.

The high-level modelling of distributed activities is an area of inter-
est for multiple research communities, particularly the Software Engi-
neering (SE) and Business Process Management (BPM) research commu-
nities. In the field of SE, various approaches have been developed, with
the most notable ones being defined by the OMG Systems Modeling Lan-
guage consortium 1. The Unified Modeling Language (UML)2 is a widely
recognized visual modelling language designed for defining, envision-
ing, constructing, and documenting object-based virtual systems and de-
vices [124]. UML provides different types of diagrams that can be used to
describe various functionalities or states of the system being modelled.
Another approach within software engineering is the Systems Modeling
Language (SysML)3, which is an extension of UML also defined by the
OMG. SysML is considered a general-purpose graphical modelling lan-
guage for specifying, analyzing, designing, and verifying complex sys-
tems that may encompass hardware, software, information, personnel,
procedures, and facilities [96]. While UML is primarily focused on soft-
ware solutions, SysML has been designed to model a broader range of
systems [85] by incorporating additional diagrams and modifying exist-
ing ones.

On the other hand, the BPM community deals with distributed sys-

1http://www.omg.org/
2http://www.omg.org/spec/UML/
3http://www.omgsysml.org/

3

tems focusing on the processes, the so-called business processes [79], that
regulate the activities undertaken by the involved participants. More
specifically, distributed systems are modelled as collaboration diagrams,
which are graphical models that can represent the internal behaviour of
different entities, and their interactions [46] through the usage of BPMN
(Business Process Management Notation) [95]. BPMN is an intuitive
standard that has acquired a clear predominance among the notations
proposed to model collaborative business processes.

Extensive research has been conducted by the communities to com-
pare and evaluate various modelling approaches in order to understand
their distinct characteristics and suitability for different purposes. In
[93], the authors conducted a comparative study of UML, BPMN, and
EPC (Event-driven Process Chain) [67]. The latter is another modelling
language defined by the BPM community for specifying temporal and
logical relationships between activities in a business process [85]. The
objective of this comparison was to assess the readability, understand-
ability, and usability of these languages. While EPC was recognized for
its effective use of colours, and UML, particularly through its activity dia-
gram, was praised for its simplicity, BPMN emerged as the most compre-
hensible language according to the majority of survey participants. This
was primarily attributed to BPMN’s representation capabilities, such as
pools and lanes, which enable the clear delineation of roles in a process
[93]. In [110], the authors aimed to model Multi-Robot Systems (MRS)
using both SysML and BPMN. SysML was selected for its requirement
diagram, which facilitates the definition of performance criteria, as well
as the block definition and internal block diagram, which describe the
main components of the system architecture. On the other hand, BPMN
was chosen to represent the detailed logic of the MRS system, as it ex-
tends the notations, semantics, and syntax of SysML and UML activity
diagrams [110]. In [90], the authors compared BPMN to OWL (Web On-
tology Language) and SysML, describing BPMN as being closer to a sim-
ulation language compared to OWL, and easier to learn in comparison to
SysML. They emphasised the practical usefulness of BPMN as a reason-
ing tool for modellers, aiding them in mastering the complexity of real

4

systems [90].

Considering the ease of use, understandability, and powerful rep-
resentation capabilities of BPMN, it has been selected as the high-level
modelling language for this thesis, serving as a valuable tool to address
the research question at hand. Moreover, distributed systems, in gen-
eral, and collaborative business processes, in particular, are often subject
to stringent security and privacy requirements [23, 104]. For example, in
a collaborative business process, each organisation should consider how
it handles private data internally and how it exchanges private data or
part of it with other organisations. To address these challenges, an ex-
tension of the standard notation, named PE-BPMN (Privacy-Enhancing
BPMN) [104, 105], has been introduced.

However, while PE-BPMN allows analysts to include the specifica-
tion of privacy mechanisms in their models, techniques are still missing
to verify that the resulting privacy-enhanced process models accomplish
the intended privacy properties and that their design is correct. For ex-
ample, methods and tools are missing for detecting privacy leakages, i.e.,
states where a peer in the collaborative process may unduly gain access
to private information.

In the field of automated generation of formal specifications, the FM
community has primarily focused on applying automata learning tech-
niques [4, 64, 10, 91, 134, 60, 59]. These techniques involve construct-
ing an automaton by providing inputs (such as traces) to a system and
observing the corresponding outputs. On the other hand, the SE com-
munity has focused on generating finite state machines or graph mod-
els to support program comprehension and test case generation [22, 51,
73, 118]. In this context, the SE community attempts to infer models
by analysing event logs. Although these techniques aim to syntheti-
cally reproduce a model from observations of system behaviour, the BPM
community, particularly through process mining techniques, has demon-
strated an active involvement in developing not only algorithms but also
effective tools for use in business environments [11, 32, 127, 114]. This in-
dicates a strong and practical application of process mining in real-world
scenarios.

5

Process mining techniques are used to automatically discover process
models from event data, shifting the focus from a process modelling to
a process-centric data-driven approach [130]. The goal of process min-
ing, indeed, is to extract process-related information by observing events
recorded by some enterprise system [130]. However, even if this kind of
technique allows to free the system modellers from the burden of explic-
itly modelling the behaviour of an existing system, there is still a lack of
methods to ensure system properties, especially when considering issues
specific to the collaboration level, i.e., those problems due to erroneous
or unexpected interactions among the system components.

Based on the chosen approaches, the objective of this thesis is to inves-
tigate the effective integration of techniques from the FM and BPM domains to
enable robust verification capabilities for ensuring the successful execution of
distributed activities.

1.1 Research Objectives

The integration of FM and BPM aims to enhance the capabilities of ver-
ifying the correctness of distributed activities by combining powerful
tools from both research communities. As highlighted above, the FM
community is renowned for providing robust verification techniques to
analyse complex behaviour and properties of distributed systems. How-
ever, the design phase of such systems still heavily relies on expert knowl-
edge, which restricts the wider adoption of these approaches. On the
other hand, BPM, with its widely adopted graphical notation and sup-
port, facilitates the design of distributed activities within the business
environment. Additionally, process mining techniques enable the auto-
matic discovery of process models by observing the behaviour of these
activities. Nevertheless, verifying the expected behaviour, particularly in
the context of collaborations between multiple entities, requires a solid
methodology. By integrating FM and BPM, the aim is to leverage the
strengths of each community to address the limitations and challenges
associated with verifying distributed activities. The goal is to combine

6

Figure 1: Top-down and bottom-up approaches.

the robust verification techniques of FM with the powerful design and
discovery capabilities of BPM, ultimately providing a comprehensive frame-
work for ensuring the correctness and success of distributed activities in
different phase.

To achieve this objective, we applied the following two approaches
(see Figure 1):

• Top-down approach. Starting from models of distributed systems
created using the BPMN standard notation, we automatically gen-
erate formal specifications that enable formal property verification.

• Bottom-up approach. Starting from logs of distributed systems’
executions, we automatically generate formal specifications of sys-
tems’ behaviour to enable their analysis.

In the context of combining different research communities to en-

7

hance the effectiveness of verifying distributed activities, a comprehen-
sive investigation of both top-down and bottom-up approaches was deemed
necessary. These approaches offer distinct advantages and find relevance
in various scenarios.

The top-down approach proves well-suited for capturing the overall
system design and comprehending high-level requirements, facilitating
early identification of critical aspects. For example, this approach has
been applied in the healthcare domain to model the patient care delivery
process, specifically mapping the critical patient pathway to identify bot-
tlenecks and potential causes of increased lead times and homecomings
[8]. A similar application has been seen in the security analysis of cyber-
physical systems, where a threat model that specifies MITM attacks is
formalised to drive a CPS into an undesired state [75]. The top-down
approach proves advantageous in supporting the design and verifica-
tion phases of processes or systems that are not yet implemented or lack
available data due to limitations in data collection or inherent difficulty.

That means if the system to be analysed is brand new, the top-down
approach is more suitable because it can be applied without waiting for
the first prototypical implementation of the system to be released. In
other words, the approach can already be applied during the design
phase of the new system. It allows verification of the correctness of the
designed models in terms of expected behaviour. For example, a correct
booking system design should ensure that the system will not send a
confirmation email if the added payment method is not accepted. In ad-
dition, considering privacy concerns, a correct system design using the
secret sharing technology should guarantee that no violation of the secret
is expected at design time.

On the other hand, the model-driven top-down approach is unsuit-
able when the system is all up and running. In this scenario, an event
data-based, bottom-up approach allows the engineer to understand and
analyse what the system is doing, identifying possible unexpected be-
haviour. The bottom-up approach can effectively test and validate pre-
existing components. By focusing on individual components and their
interactions, this approach mitigates the risk of non-compliance with

8

modelled requirements during execution of the actual implementation.
Possible applications can vary from the healthcare domain to check whether
clinical guidelines and protocols have been followed by inspecting real
event logs describing it, manufacturing field, to discover hidden rela-
tionships in a production process given its event logs or to analyse main-
tenance processes and activities, education domain and so on [113]. The
ability to derive models from running processes allows to validate the
design’s effectiveness, identify unexpected or inefficient behaviour and
verify expected properties on the system or process under test.

The two approaches will be applied in the following running exam-
ples to show the effectiveness of their capabilities in verifying the cor-
rectness of distributed activities.

Figure 2: Running example of a distributed activity represented using the
BPMN standard

The example in Figure 2, represented using a BPMN collaboration
diagram, describes the distributed activity of a Space Agency using a
service made available by a Data Centre to compute information about a
satellite collision, and a Data Centre, providing its computing power to
help in the computation.

Following, the control flow of the example is informally presented
(more details about BPMN elements are given in Section 2.2). The Space

9

Agency splits the satellite data into two separate shares (S1) and then
sends one of them to the Data Centre via a message called share. As
soon as the Space Agency sends the message, it computes a satellite col-
lision (S3) in parallel with the computation of either the weather info
(S4) or the satellite image (S5). When the Data Centre receives the data,
it executes some computation related to the collision (D2) and then sends
the result back to the Space Agency via a message called result. In the
end, the Space Agency receives and reconstructs (S7) the result. The fol-
lowing Chapters will present the results of the top-down and bottom-up
approaches applied to the running example.

1.2 Contribution

In this thesis, we provide an instantiation of the two-approach method-
ology previously discussed by resorting to an effective combination of
FM and BPM techniques.

Our instantiation of the bottom-up approach is inspired by process min-
ing techniques to automatically generate a formal specification, written
in mCRL2 language, from logs.

Our top-down approach instantiation is a model-driven technique that
translates BPMN models into mCRL2 specifications. In addition, our
model-driven technique also deals with PE-BPMN models, i.e. BPMN
models enriched with the specification of privacy-enhancing technolo-
gies. This allows to verify that the mechanisms used to manage privacy
have been used correctly at the design level. Notably, this is an important
novelty in considering PETs within the BPMN context; indeed, while sev-
eral formalisations of BPMN exist, there were no formalisation tailored
explicitly to PE-BPMN.

The common point between the two approaches is the use of the
mCRL2 language for specifying the distributed system’s behaviour at
the formal level. This enables reasoning on the properties of the system’s
behaviour, regardless of how it has been obtained, using the same set of
techniques and tools, taking advantage of the rich and powerful toolset
of mCRL2 for verifying system properties.

10

1.3 Thesis Structure

The rest of the thesis is structured into five chapters as follows:

• Chapter 2 - Background Notions: it describes all the background
notions necessary to understand the scope and contribution of the
thesis. Specifically, the chapter illustrates: the mCRL2 formal spec-
ification language used for the output of our top-down and bottom-
up approaches; the BPMN notation and its extension PE-BPMN,
used as starting point of the top-down approach; and process min-
ing techniques, from which we took inspiration to develop our
bottom-up approach.

• Chapter 3 - From Collaboration Models to Formal Specifications:
it presents the top-down approach used to verify (PE-)BPMN mod-
els by translating them into mCRL2 specifications.

• Chapter 4 - From Collaboration Logs to Formal Specifications: it
describes the bottom-up approach used to verify the behaviour of
existing systems by generating a mCRL2 specification from their
logs.

• Chapter 5 - Related Work: it contextualises our research contribu-
tion with respect to the related work about formal verification of
BPMN and PE-BPMN models and the automatic generation of for-
mal specifications from system observations.

• Chapter 6 - Conclusions and Future Work: it summarises the the-
sis contributions and presents future possibilities to further inte-
grate formal methods and business process management solutions
towards the successful verification of distributed activities.

11

Chapter 2

Background Notions

In this chapter, we will introduce all the background notions needed to
understand the research question and the approaches used to answer it.

A formal specification language is a tool to model and verify the be-
haviour of complex systems that, thanks to its intrinsic compositional na-
ture, is particularly effective on distributed systems. Moreover, allowing
property verification enables its usage in various fields, such as health,
business or natural environments.

First, we present basic notions of the formal language used to gener-
ate the models, that is mCRL2 [55, 27], a powerful language equipped
with a toolset for modelling, validation and verification of systems.

Among the process algebra options available, mCRL2 was chosen
primarily for its robust capability to handle data in the formalisation pro-
cess. M provides, in addition to data handling features, available also in
languages like PROMELA [62], the input language of the SPIN tool, the
ability to declare specific types for data objects and use advanced data
structures such as Sets or Bags. Another key advantage of mCRL2 is
its rich toolset, which includes model-checking functionalities and sup-
plementary features such as equivalence checking, LTS or trace visual-
isation, and other valuable features that enhance the verification phase
not supported by similar to tools like SPIN [133] or UPPAAL [128]. Fur-
thermore, the formal specification language and its associated toolset are

12

actively maintained, and the community supporting its development re-
mains highly active. Another reason for selecting mCRL2 is its support
for time, which holds the potential for future integration into top-down
and bottom-up generated models. Properties or formulas in mCRL2 are
expressed using the mu-calculus [83].

Since our work aims to combine techniques from the FM and the
BPM community, we will introduce the widely used notation for mod-
elling BPM processes, namely BPMN [95], which is helpful to enable
our model-driven approach, and the process mining discipline, its pro-
cedures and the main features from which the bottom-up approach is
inspired.

2.1 mCRL2 Formal Specification Language

The Micro Common Representation Language (mCRL2) is the successor of
µCRL, a specification language that extends ACP, adding notions like
data, time, and multi-actions [57, 55]. mCRL2 is a powerful language
that can be used to model and automatically analyse the behaviour of
distributed systems. Its strength is given by the combination of the lan-
guage with a toolset of verification methods that is still actively main-
tained (the last update was released in June 2022) [39]. mCRL2 is the
link between the two approaches enabling verification over models and
observed behaviour.

mCRL2 can be divided into data and process specification. Compo-
nents of a distributed system often exchange messages containing data
items among themselves and with the environment. We need a language
to describe data types and their elements to be used in behaviour.

In mCRL2, data specification is defined by the usage of keywords:

- sort are non-empty, possibly infinite sets used to define a new data
type. Data types that are commonly used have been predefined,
like Booleans, natural numbers, sets or lists

- map lists auxiliary functions over the defined and predefined sorts

- var express all the variables (name and type) used in equations

13

- eqn defines how the functions should operate

Listing 2.1 reports a data specification example defining a new data
type, called O, that contains an arbitrary number of elements of type Nat,
i.e. natural numbers. We specified that the union of two elements of type
O produces a data set of type O.

1 s o r t O = Nat ;
2 map
3 union : O # O −> Set (O) ;
4 var
5 o1 , o2 : O;
6 eqn
7 union (o1 , o2) = {o1} + {o2} ;

Listing 2.1: Example of data specification defining the data type O.

The process specification defines the behaviour of the system being
modelled. Since our work uses a fragment of the mCRL2 specification
language, we will present just the needed syntax. The complete syntax
can be found in [55].

Definition 2.1.1 (mCRL2 Process Specification Syntax). A process specifi-
cation in mCRL2 is a pair ⟨q, E⟩ where E is a set of process equations of the
form Q = q where q is a process expression defined by the following grammar.

q ::= (Process expression)
| α (action)
| .j∈JQj (Sequence operator)
| +j∈JQj (Choice operator)
| ||j∈JQj (Parallel Composition operator)
| sum q1, ..., qn : sortName . Q (Sum operator)
| c → q1 <> q2 (Conditional operator)
| ∇(V, q) (Allow operator)
| Γ(C, q) (Communication operator)
| τ(I, q) (Hiding operator)
| Q (Process equation call)

where α denotes an action either of the form a, with no parameter
(including the silent action tau), or of the form a(d1, . . . , dn), with data
expression parameters di; sortName identifies a sort, which can be pre-
defined or defined in a data specification; c is a condition over data pa-
rameters that returns true or false as result. V and I denotes sets of

14

actions; C denotes a set of communication expressions, each one defin-
ing the renaming of multi-actions (i.e. communicating actions that occur
simultaneously) to a single action and Q denotes a process identifier.

The process syntax denotes with .j∈JQj the sequence of processes,
with +j∈JQj the choice among processes, and with ||j∈JQj the inter-
leaving among processes. The sum operator sum q1, . . . , qn : sortName . Q
is a generalisation of the choice operator that permits to express in a con-
cise way the choice between a (possibly infinite) number of processes,
by instantiating in Q the placeholders q1, . . . , qn with values of type sort-
Name (e.g., sum n : Nat . a(n) is equivalent to the process a(0) + a(1) +

a(2) + . . .). The conditional operator c → q1 <> q2 represents the exe-
cution of a process based on a data condition (e.g. (semaphore = red) →
stop <> go); the else part can be omitted. The allow operator ∇(V, q)

(written as allow in the machine-readable input language of the mCRL2

tool) defines the set of actions V that the process Q can execute; all the
other actions, except for tau, are blocked. The communication operator
Γ(C,P) (written as comm in the mCRL2 toolset) permits synchronising
actions in Q according to the communication expressions C; for exam-
ple, comm({a|b -> c}, (a || b)) says that the parallel actions a and b must
communicate, resulting in a c action. The hide operator τ(I, q) (written
as hide in the input language of the mCRL2 tool) hides those actions
produced by Q that are in I , i.e. it turns these actions into tau actions.
Finally, Q permits to call a process definition of the form Q = q, where Q

is a unique process identifier.
In the mCRL2 tool, process specification is defined by the usage of

the following keywords:

- act contains the declaration of the actions used in the specifications,

- proc lists the process declarations,

- init is necessary for every mCRL2 specification, and it states which
process the specification is actually representing.

Listing 2.2 contains an example of a vending machine process specifica-
tions where inserting a coin makes it possible to select coffee or cappuc-
cino and, after that, the quantity of sugar (from 0 to 4).

15

Figure 3: LTS of Listing 2.2

1 a c t
2 coin , co f fee , cappuccino ; sugar : Nat ;
3 proc
4 VM = coin . (c o f f e e + cappuccino) . S .VM;
5 S = sum n : Nat . (n<5)−>sugar (n) ;
6 i n i t VM;

Listing 2.2: Example of process specification

The semantics of a process specifications in mCRL2 is defined through
SOS rules (Structural Operational Semantics) represented as labelled tran-
sition system (LTS), which consists of a set of states, a set of labels and
transition relations representing the evolution steps of the specification.
The SOS rules related to the above syntax can be found in Appendix A.

The mCRL2 specification language is supported by a toolset that pro-
vides equivalence and model checking functionalities.

2.1.1 Equivalence and Model Checking

Equivalence checking consists in comparing the behaviour of processes.
For example, it can be used to check if the implementation of a system is
consistent with respect to its abstract specification. Most of the equiva-
lences are defined for LTS models.

16

mCRL2 supports different types of equivalences [43]: strong bisimilar-
ity, weak bisimilarity, trace equivalence, weak trace equivalence, branch-
ing bisimilarity, strong simulation or divergence preserving branching
bisimilarity.

The strongest relationship between models is bisimilarity and states
that systems are equivalent if they can simulate each other at each step.
Similarly, weak bisimilarity allows the execution of some silent action (tau)
while simulating each other. For example, imagine a new LTS equal to
the one in Figure 3 but with a new arrow executing the tau action after
coin and before the branch coffee and cappuccino. Then the two LTSs
are related by a weak bisimilarity equivalence. Trace equivalence indi-
cates that two models can perform identical finite transition (or traces)
sequences. As for weak bisimilarity, weak trace equivalence allows silent
actions while still satisfying the relation. The definition of all the equiva-
lences can be found in [57].

These notions will be used in Chapter 4 to compare the models gen-
erated from the logs using the bottom-up approach with the ones gener-
ated by commonly-used process mining approaches.

Model checking instead focus on verifying the properties of the sys-
tem. The properties to be checked are specified in a first-order modal
µ-calculus logic extended with data-dependent formulas. The µ-calculus
logic is composed by action formulas, regular formulas and state formulas
[83]. Following, we present part of its syntax that will be used to ex-
press properties over the generated formal specifications (the complete
grammar can be found in [57]).

A state formula uses as underlining modal logic to express verifi-
cation properties the Hennessy-Miner logic extended with fixed point
modalities [57]:

ϕ ::= true | false | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ⟨a⟩ϕ | [a]ϕ | µX.ϕ | νX.ϕ | X

The formula true is true for each process state, and false is never
true. ¬ϕ (written as ! in the mCRL2 toolset) is the negation of ϕ, ϕ1 ∧ ϕ2

(written as && in the mCRL2 toolset) is valid when both ϕ1 and ϕ2 hold,

17

and ϕ1 ∨ ϕ2 (|| in the mCRL2 toolset) is valid when at least one formula
hold. ⟨a⟩ϕ holds whenever it is true that if an action a can be performed,
immediately after ϕ is valid. For example, taking into account the LTS in
Figure 3 the property ⟨coin⟩⟨coffee⟩true means that the process VM can
do the action coin followed by an action coffee.

µX.ϕ is the minimal fixed point (mu in the mCRL2 toolset) that is
valid for all those states in the smallest set X that satisfies the equation
X = ϕ; this is useful to define liveness properties stating that something
good will happen within a finite number of steps. Finally, νX.ϕ (nu in
the mCRL2 toolset) is valid for the states in the largest set X that satisfies
X = ϕ, which is helpful to define safety properties stating that something
bad will never happen.

The µ-calculus uses regular formulas to express more than one action
inside a single modality, which means that ⟨a⟩ϕ and [a]ϕ is actually ⟨α⟩ϕ
and [α]ϕ. To understand regular formulas, we start by defining action
formulas. An action formula defines a set of actions:

α ::= true | false | ∀ d : Data.α | ∃ d : Data.α | ᾱ | α ∩ α | α ∪ α

where true and false represent respectively the set of all actions and the
empty set, which means that ⟨true⟩⟨coffee⟩true express that any action
followed by an action coffee can be performed while [true]false that no
action can be performed. ∩ (&& in the mCRL2 toolset) denotes set in-
tersection and ∪ (|| in the mCRL2 toolset) denotes set union of actions,
i.e. ⟨coin⟩⟨coffee||cappuccino⟩true means that after the action coin an ac-
tion between coffee or cappuccino can be performed. ᾱ (! in the mCRL2

toolset) denotes the complement of set action α. Finally, ∀ (forall in the
mCRL2 toolset) and ∃ (exists in the mCRL2 toolset) are, respectively,
the universal and existential quantifiers meaning that the formula holds
if α holds for all values from the domain Data substituted for d in α, or α
only needs to hold for some value in Data substituted for d.

Regular formulas extend the action formulas to allow the use of se-
quences of actions in modalities [57], their syntax is as follows:

R ::= nil | α | R.R | R+R | R∗ | R+

18

where nil represents an empty sequence of actions, α is an action for-
mula, R.R denotes the concatenation of actions meaning that ⟨coin.coffee⟩true
it is equal to ⟨coin⟩⟨coffee⟩true, while R + R denotes the union of se-
quence of actions, i.e. [coffee.coin + cappuccino.coin]false means that
none of the sequences can happen. R∗ is the transitive and reflexive clo-
sure of R and denotes that zero or more repetitions of the sequences in R
can be performed. For example, true∗ means that any action, also none,
can happen. Similarly, R+ represents the transitive closure denoting one
or more repetitions of the sequence R.

2.2 Business Process Model and Notation

The OMG standard BPMN [95] is currently acquiring a clear predomi-
nance among the notations proposed to model business processes. The
BPMN elements presented in Figure 4 are the one supported by our top-
down approach. They refer to BPMN collaboration diagrams, which fo-
cus on both intra- and inter-organisational aspects of business processes.

Figure 4: Elements of the BPMN Notation.

A BPMN collaboration diagram consists of a set of processes, each per-
formed by an independent party. They are executed in parallel and syn-
chronise via message exchanges (dashed arcs). Each process in a BPMN

19

collaboration is enclosed in a pool (denoted as a rectangle). A process
consists of tasks (rounded rectangles), events (circles) and gateways (di-
amonds), connected via sequence flows (directed arcs).

A task represents a logical unit of work. An event represents some-
thing triggered by the environment (e.g., start or end of process, incom-
ing/outgoing message). Each task may be associated (via directed dotted
arcs) with one or more input or output data objects. The intended mean-
ing is that it reads the current state of each input object at its execution,
and when it completes it writes into the output data objects.

A gateway is used to capture a non-deterministic choice (XOR gate-
way, marked by a “×”), or a deterministic choice (event-based gateway,
marked by a pentagon marker inside a double line circle), or a parallel
execution/synchronisation of multiple branches (AND gateway, marked
with a “+”). A sequence flow indicates that the source element must be ex-
ecuted before the target element.

Considering collaborative business processes, like the running exam-
ple in Figure 2, each organisation needs to consider how it handles pri-
vate data internally and exchanges it with other organisations. Privacy
requirements are critical in various types of processes, for example in
healthcare processes where patient records are exchanged between peers,
or in financial processes, where sensitive financial data moves across or-
ganisations with different access rights. For example, in Figure 2 the
Space Agency could want to keep the data secret from the Data Centre
that is computing it.

To address the challenges of designing collaborative systems that meet
strict privacy requirements, existing modelling languages for collabora-
tive systems need to be extended to capture privacy aspects [41]. Ac-
cordingly, several studies have proposed extensions of BPMN, to capture
private data exchanges [108, 112]. In this work, we consider one such ex-
tension, namely PE-BPMN [104, 105].

20

2.2.1 PE-BPMN

PE-BPMN [104, 105] is a conservative extension of BPMN that allows
designers to annotate tasks with stereotypes corresponding to different
types of privacy-enhancing technologies (PETs).

PE-BPMN notation allows the designing of various privacy-enhancing
technologies, such as secure communication or differential privacy. The
privacy techniques supported by PE-BPMN are based on the classifica-
tion of technologies in [41] that focus on the privacy and data protection
goals that the use of the technologies has. Following, we present the sub-
set of PETs consider in our work: secret sharing, encryption and multi-party
computation

Secret sharing. This PET splits a secret into several shares that will be
then distributed to a set of participants. The secret can be reconstructed
by a participant if it has a sufficient number of shares [104]. To integrate
secret sharing in a BPMN model, a task can be enanched with SSSharing,
SSComputation, and SSReconstruction stereotypes, and related attributes,
as reported in Figure 5.

Figure 5: Secret sharing.

An SSSharing task takes in input a single data object, and generates
the shares as data objects in output. This kind of task gives the possibility
to define how many shares are needed to reconstruct the secret via the
threshold attribute, and makes explicit how many computation parties
will participate in the computation. Notice that the threshold has to be

21

less than or equal to the number of computation parties, which has to be
less than or equal to the number of outputs.

SSComputation indicates a task executing a computation over the share:
it takes in input a share as a data object, and produces a share stored in
a data object in output after the computation execution. For this stereo-
typed task we can set the group id attribute, which identifies all the tasks
running the same computation over different shares.

Finally, SSReconstruction indicates a task able to reconstruct the secret
from multiple shares: it takes a set of data objects as input, and produces
as output the result of the reconstruction. The number of input elements
should be greater than or equal to the threshold value set in the SSSshar-
ing stereotyped task.

Besides the standard secret sharing, it is possible to use two speciali-
sations: additive secret sharing (Figure 6) and function secret sharing (Figure
7). In the additive secret sharing, the number of shares or computation

Figure 6: Additive secret sharing.

shares needed to reconstruct the secret is equal to the number of shares
created when the secret has been split. Thus, differently from the stan-
dard secret sharing, the AddSSSharing task does not specify the threshold
and the number of computation parties.

This type of task works in combination with the AddSSComputation
and AddSSReconstruction tasks, which keep the same attributes of SSCom-
putation and SSReconstruction, respectively.

22

Instead, in function secret sharing the secrets, as well as the shares,
are expressed in the form of functions [104]. The number of shares is
fixed to two, and as a consequence also the threshold to reconstruct the
secret is fixed to two.
A FunSSSharing task produces two additive shares from a data object.
A FunSSComputation task takes in input a share and an evaluation point
(i.e., the value over which the function is executed), and generates in out-
put a share. Also in this case the group id attribute is used to identify all
the tasks running the same computation over different shares. A Fun-
SSReconstruction task takes the two input shares and gives in output the
result of the reconstruction.

Figure 7: Function secret sharing.

Encryption. This PET uses a key to cipher the data objects to protect.
The data objects can be deciphered only by using the correct key. We
consider two main types of encryption: public key and symmetric key en-
cryption.

The public key encryption in Figure 8 uses a public key to cipher the
secret data, and a private key to decipher it. The keys are two essential
elements of the model: the one used to cipher the data is annotated with
the stereotype PKPublic, while the one used to decipher the ciphertext,
i.e. ciphered data, is annotated with PKPrivate.
A PKEncrypt task ciphers the input data with the key, and produces in
output the ciphertext. A PKComputation task executes some computa-

23

Figure 8: Public Key Encryption.

tion over the input ciphertext, and produces another ciphertext as result.
A PKDecrypt task uses the key to decrypt the ciphertext, and gives the
corresponding plaintext back.

Figure 9: Symmetric key encryption.

In the symmetric key encryption, shown in Figure 9, we lose the concept
of the public and private key. Instead, we use one key to both cipher and
decipher the input data object and ciphertext respectively. The stereo-
types used to implement it are SKEncrypt, SKComputation and SKDecrypt.
All the attributes of the stereotyped tasks are the same of the tasks for
public key encryption.

Multi-party computation (MPC). This PET, shown in Figure 10, allows
a set of parties to compute a function over their inputs while keeping
these inputs private [41]. MPC requires the collaboration of multiple in-

24

dependent participants of the same group during the computation [104],
which means that the execution is synchronous.

Figure 10: Multiparty computation.

To consider how PE-BPMN works in practice, we enhanced the model
in Figure 2 with data objects and secret sharing PET stereotypes. The for-
malisation in Chapter (3) equates intermediate throw and catch events
with their corresponding tasks, which means that we can substitute them
with ”send data”, ”receive data”, ”send results”, and ”receive results”
tasks. Notably, this replacement does not affect the behaviour of event-
based gateway. In fact, the BPMN notation allows to connect receiving
tasks to the event-based gateway (see [95, Section 10.5.6]); this fits well
with the replacement of intermediate events with tasks we perform in
our approach.

The resulting PE-BPMN model is shown in Figure 11, where for the
sake of readability we omitted the tasks’ attributes (we clarify how they
are set up below).

The SSSharing stereotype annotates the task S1, setting the value of
the threshold and computation parties to 2. S1 generates share1 and
share2, and sends the latter one to the Data Centre party via the share

message. This will use it for the computation during the execution of the
task D2, and will send back the result of the computation in the message
result. The Space Agency takes part in the computation through the task
S3. Notably, tasks S3 and D2, which are annotated with the stereotype
SSComputation, take part to the same group id. In the end, task S7, which
has the SSReconstruction stereotype, puts together the shares result1 and

25

Figure 11: PE-BPMN model enhanced with data objects and secret sharing.

result2 to obtain the reconstructed result.

The Data Centre party will never receive share1 or result1, while the
Space Agency has the right to access both the secrets because it is the
party that generated the shares via the task S1 and also is the party in
charge of reconstructing the result.

Pleak is a modelling and analysis environment for privacy-enhanced
systems. It gives the possibility to model privacy-enhanced systems and
provides privacy audit features, like sensitive or guessing advantage anal-
ysis [98, 125, 47].

Pleak already provided some means to verify PE-BPMN models. For
example, check that each task with privacy stereotypes has the right in-
puts and outputs. By enabling formal verification through the top-down
approach, we demonstrate more complex properties highlighted in Sec-
tion 3.1, like the possibility of reconstructing protected data (violating
the defined PET) or analysing branching.

26

2.3 Process Mining

Process Mining is a discipline combining data mining, computational in-
telligence and process modelling and analysis [2]. Process mining aims
at extracting useful information from event logs for discovering, moni-
toring and improving real processes [3]. It is an evidence-based approach
and ensures a close correspondence between modelled and observed be-
haviour, given that the model’s definition is based on actual process exe-
cution traces.

The underlining element of process mining are the event logs. An
event log is a set of cases, while a case is a sequence of events with at-
tributes that indicate activity name, time, cost, used resource, etc. Event
logs are usually formatted using the eXtensible Event Stream (XES) stan-
dard format [58].

Process mining consists of three different techniques: discovery, to
produce a model from an event log without using any a priori infor-
mation, conformance, used to check if the model is correct concerning the
log, and enhancement, to improve existing process model using informa-
tion about the actual process recorded in some event log.

Our work takes inspiration from a process discovery technique to
provide an automatic way of generating models while enabling formal
verification capabilities. Following, we present some of the best process
discovery techniques used later to validate our bottom-up approach.

2.3.1 Process Discovery Techniques

Process discovery techniques are algorithms able to produce models from
an event log automatically. This method can be used to study the control-
flow perspective of a process in an offline setting, i.e. when a case is al-
ready completed. Over the years, several mining algorithms have been
developed [14], which differ in the kind and quality of the output.

The Schimm algorithm [115] is the algorithm from which our bottom-
up approach is inspired. For this reason, we will present it followed by
the three mining algorithms used to validate the obtained results, that
are: the Structured Heuristics Miner [12] first discovers models that are

27

possibly unstructured and unsound and then transforms them into struc-
tured and sound ones; the Inductive Miner [77] extracts block-structured
process models, called process trees, by splitting the logs into smaller
pieces and combining them with tree operators; and, finally, the Split
Miner [13] aims at identifying a combination of split gateways to capture
behaviours like concurrency or casual relations while filtering the graphs
derived by the event logs.

Schimm algorithm [115]. This algorithm aims to mine exact workflow
models. Exact means that the model respect completeness (all tasks and
dependencies present in the log are maintained), specificity (the model
does not introduce additional tasks) and minimality (minimal number
of elements to describe the workflow) [115]. This technique depends
strongly on which type of log is given in input. It has to be an event
log where, for each activity in a trace, the start and complete time are
always declared; otherwise, it cannot spot parallel execution. Another
characteristic is that it does not consider measures like the frequency of
an event, meaning that the generated model repeats every single action
recorded in the log. Taking into account infrequent behaviour can be
problematic if the aim is to highlight the process capabilities. Still, it
could be a strength when the goal is to identify unexpected executions.
Moreover, the log has to be complete and noise-free; otherwise, errors
will be included in the model.

The output structure is a block-oriented metamodel. This kind of model
is well-formed, safe and sound (no deadlocks, always has the option to
complete). This model uses operators (Sequence, Parallel, Alternative
and Loop) to combine blocks and define the control flow. The composi-
tional capability of process algebra makes it easy to reproduce the block
structure behaviour.

Structured Heuristic Miner [12]. This is an improved version of the
heuristic miner presented in [136]. This algorithm aims to find BPMN
models providing the right tradeoff between accuracy, soundness and
structured models, often more understandable than unstructured ones.

28

The accuracy tries to maximise the three main criteria used in process
mining to measure models, i.e. fitness, models ability to reproduce the
traces of the log, precision, behaviour shown by the model but not in-
cluded in the log, and generalisation, capability of producing a trace that
is not in the log but is part of the process.

The structured heuristic miner first discovers a model using the heuris-
tic algorithm capable of producing unstructured and unsound models,
then transforms it into a structured and sound one. However, there are
cases where the heuristic phase leads to an imprecise or spaghetti-like
model, and the structuring phase cannot fully structure the model and
repair its unsoundness.

Inductive Miner [77]. It aims to discover models based on the Pareto
principle, which states that 20% of the model is enough to represent 80%
of the total behaviour of the system [78]. This technique can filter log
infrequent behaviour while providing a sound model. This is based, as the
Schimm algorithm, on block-structured models called process trees. In
a process tree, the leaf represents activities, while non-leaf nodes contain
operators that define the relationships among their children.

This algorithm can improve the model’s fitness and is an excellent
choice to abstract from the log to capture the overall behaviour. For ex-
ample, it can be applied for the identification of social networks that do
not require a high precision value, while is not suitable to find deadlocks
or spot unexpected system behaviour.

Split Miner [13]. It is one of the newest algorithms developed in the
field of process discovery. It tries to generate sound models with low
branching complexity in a faster way and tries to have a high and bal-
anced fitness, precision and generalisation value [13].

The output is a sound BPMN model with no deadlock, satisfying op-
tion to complete (every task has a path from the start to the end point)
and proper completion (no branches are active at the end of the execu-
tion). This last property is not guaranteed in the case of cyclic process
models, because they may generate more than one instance of execution.

29

Chapter 3

From Collaboration Models
to Formal Specifications

This chapter presents the top-down approach that bridges the gap between
BPM and FM by defining a formalisation of the BPMN models to enable
formal verification. Verification is essential when dealing with models
enhanced with data that need to consider how this data is handled inter-
nally and especially among different organisations.

To this end, we consider collaborative systems that meet strict privacy
requirements designed through standards that extend existing modelling
languages to capture privacy aspects [41]. Accordingly, the thesis con-
siders PE-BPMN [104, 105], an extension of BPMN designed to capture
privacy-enhancing mechanisms in collaborative business processes.

While PE-BPMN allows analysts to specify privacy mechanisms and
does some analysis, some techniques still need to be added to verify that
the resulting privacy-enhanced process models fulfil the intended pri-
vacy properties. In particular, methods and tools are missing for detect-
ing privacy leakages in privacy-enhanced collaborative processes [5], i.e.,
states where a peer in the collaborative process may unduly gain access
to private information.

Our top-down approach provides a verification methodology for PE-

30

BPMN models to detect different types of privacy leakages that may oc-
cur during the execution of PE-BPMN models due to mistakes in the
design phase or the incorrect usage of privacy-enhancing technologies.
Of course, since PE-BPMN is a conservative extension of BPMN, the ap-
proach we propose also works with standard BPMN models for verifying
more traditional properties of business processes (e.g., absence of dead-
lock)

The privacy-enhancing technologies considered, also presented in Sec-
tion 2.2.1, are the secret sharing technology and two of its specialisations,
additive and function secret sharing. Secret sharing allows a secret to be
divided between different parts so that the secret can be reconstructed
by combining all or some of the parts. This technology is used to ex-
change and store highly sensitive information. In this setting, it is crucial
to ensure that the parties cannot reconstruct the secret without having
the right to do so.

Another privacy-enhancing technology is encryption. PE-BPMN sup-
ports the specification of processes that use both public-key and symmetric-
key encryption. In this approach, a secret is encoded using a key and can
be decrypted only using the same or a corresponding key. In this thesis,
we address the problem of checking that no party gets access to the secret
key without authorisation.

Furthermore, the thesis considers the problem of verifying the cor-
rect design of multi-party computations, which allows independent par-
ties to collaboratively compute a function on the data they hold while
keeping these data private by checking that the computation is executed
synchronously.

To allow these verification capabilities, we rely on a formalisation of
PE-BPMN in terms of the process algebra mCRL2 [27]. We use a pro-
cess algebraic approach to take advantage of its intrinsic compositional
nature. This approach is particularly effective in collaboration models, as
the behaviour of the distributed parties can be specified separately and
then composed to capture the overall collaboration behaviour.

The choice to use mCRL2 is motivated by: (i) the suitability of the

31

operators and features provided by this formalism to capture control-
flow, messages-flow, and data aspects of PE-BPMN models; and (ii) the
availability of the advanced model checking capabilities in the mCRL2

toolset as discussed in Section 2.1.
To validate the feasibility and applicability of the proposed approach,

we have implemented it as a tool that takes as input a PE-BPMN model,
computes its corresponding mCRL2 specification, and checks for data
leakages or errors in the design of the privacy features. The tool allows
users to choose which privacy-related properties to verify on the PE-
BPMN model specification. The verification output includes an example
pathway illustrating each detected privacy leakage or misconfiguration.

We have integrated this verification prototype as a plugin within the
Pleak privacy analysis toolset [98, 125, 47]. We have captured and anal-
ysed several realistic collaborative business processes using this plugin.

The rest of the Chapter is organised as follows: Section 3.1 provides
a general description of the methodology, Section 3.2 explains the for-
malisation from PE-BPMN to mCRL2 formal specification, Section 3.3
shows in detail the verification capability provided and how they are em-
bedded in the formal specification, Section 3.4 and Section 3.5 presents
the tool implementation and the validation activities executed respec-
tively. Finally, Section 3.6 discusses some related work about the cur-
rent BPMN formalisation and verification of privacy-related properties
methodology.

3.1 A methodology for PE-BPMN Collaborations
Verification

In this section, we provide an overview of the approach we use to verify
PET-related properties over PE-BPMN models.

The input model of our verification methodology is a PE-BPMN col-
laboration diagram. To simplify the formal treatment, we make two as-
sumptions on the input model:

32

(i) the model is well-structured [69] (also known as block-structured), im-
posing gateways in each process to form single-entry-single-exit
fragments

(ii) each task can send/receive at most one message

The first assumption is not overly restrictive, as it has been shown in
previous works that a large class of process models can be re-written as
block-structured process models [100].

The second assumption comes without loss of generality, as it is al-
ways possible to safely transform a complex task with multiple outgo-
ing/incoming message flows in a sequence of separate tasks, each of
which with at most one message flow, with exactly the same meaning.
This simplification is also aligned with generally accepted modelling guide-
lines [86, 34]. In fact, it helps to avoid misunderstandings in the execu-
tion order among the send/receive actions performed within a task, thus
allowing the designer to get a clear understanding of what is happening
in the model execution.

The methodology, represented in Figure 12, consists of four steps:

1. Control-flow transformation,

2. PETs identification,

3. Data- and message-flow transformation,

4. Verification.

In the first step, the process in each pool of the PE-BPMN model is
transformed into a process algebra specification. This step focus on the
control-flow perspective of the model, i.e. we abstract from PETs, data
objects and message flows. The data-abstracted structure of each process
is represented as a process tree, which is an intermediate representation
that can be then easily transformed into a mCRL2 process specification.

In the second step, we extract information concerning PET stereotype
annotations from the PE-BPMN model. This information allows us to
properly deal with PETs in the subsequent steps.

33

Figure 12: Overview of the approach

34

In the third step, the specification of each task is enhanced to cap-
ture interactions with data objects and exchange of messages, while each
data and message communication is encoded via a buffer. The generated
terms for processes and data handling are then combined via parallel
composition, resulting in an overall data-aware specification of the col-
laboration.

The fourth step focus on verifying a set of privacy-related properties
chosen by the user against the mCRL2 specification. For each of them,
we obtain a violation or no-violation answer and, in the former case, a
counterexample is generated.

Given a collaboration specification, the properties that the user can
verify are as follows.

• Task verification. Can a task read a set of data? In other words, is
there a path in the model execution leading to a state where the
content of the considered data objects is part of the task’s knowl-
edge?

• Participant verification. Can a participant read a set of data? In other
words, is there a reachable state in which the participant has knowl-
edge of every element in the set of data?

• Secret sharing/Additive secret sharing/Function secret sharing ver-
ification. Can a participant get to know a number of secret shares or
computed shares greater than or equal to the threshold number set to re-
construct it without having the right to do it? In other words, is there a
path leading to a state where the participant that has not created the
shares (no SSSharing/AddSSSharing/FunSSSharing task) nor re-
constructed them (no SSReconstruction/AddReconstruction/Fun-
Reconstruction task) has knowledge of a number n of shares or
computed shares enough to reconstruct the secret (i.e., n ≥ t, where
t is the threshold)?

• Private key/Symmetric key encryption verification. Can a partici-
pant get to know the cipher and its decoding key without being qualified to
have it? In other words, is there a path leading to a state where the

35

participant that has not created the cipher (no PKEncrypt/SKEn-
crypt task) nor decrypted it (no PKDecrypt/SKDecrypt task) reads
the cipher and its decoding key?

• Reconstruction verification. In a secret sharing scenario, can a task
with the right to reconstruct the secret not have enough or computed
shares to reconstruct it? In other words, in a model with secret shar-
ing/additive secret sharing/function secret sharing can a path exist
such that it leads to a state where a task enhanced with the SSRe-
construction/AddSSRecontruction/FunSSReconstruction stereotype
has a number of shares or computed shares less than the threshold
number to reconstruct the initial secret?

• MPC Verification. Can a group of MPC tasks not be executed syn-
chronously? In other words, is there a path where the execution of a
task cannot start until the execution of another task ends, while the
two tasks are in the same MPC group?

• Deadlock freedom. Is there a participant in the collaboration who is
not able to finish its execution? In other words, is there a path leading
to a state where not all the end events have been executed?

In the case of task and participant verification, if the property is satis-
fied it means that no violation occurred in the model; for all the other
types of verification, instead, the satisfaction of the property means that
a violation exists.

Notably, when the property to verify is selected by the user, we gen-
erate the mCRL2 elements corresponding to the chosen property and
we embed it inside the specification, by adding maps, variables and new
processes depending on the encoding of the property. After the verifica-
tion, the specification is cleaned from this verification-oriented informa-
tion in order to be possibly enhanced again with new information for the
verification of another property.

36

3.2 From PE-BPMN to mCRL2

This section illustrates how to transform a PE-BPMN collaboration model
into a mCRL2 specification. This transformation results from the execu-
tion of the first three steps of the methodology presented above, which
are detailed in Sections 3.2.1, 3.2.2 and 3.2.3, respectively.

3.2.1 Control-flow Transformation

This step aims at generating a coarse-grained specification that consider
only the control-flow structure of the PE-BPMN model. To simplify the
formal definition of the transformation, as well as its implementation, we
resort to a tree-based representation of PE-BPMN models. In particular,
we have defined a structure, called process tree, which is a variant of the
RPST (Refined Process Structure Tree) introduced in [132, 101].

Definition 3.2.1 (Process Trees). The syntax of process trees is as follows.

t ::= start(id) | end(id) | task(id) | seq(t1, ..., tn)

| xor(t1, ..., tn) | and(t1, ..., tn) | ebg(t1, ...tn) | while(t)

where id denotes a unique element identifier1.

The correspondence between the graphical representation of a PE-
BPMN model and its process tree representation is straightforward, as
shown in Table 1. Since the formalism equates throw and catch events
with tasks, their notation is not present in Table 1.

The generation of the process tree corresponding to a process of a PE-
BPMN collaboration is significantly simplified by the well-structuredness
assumption. We refer to the literature about RPST, in particular to [101],
for details on the procedure for the generation of the tree-based repre-
sentation.

For the sake of presentation, in the examples included in this section,
we use the name of the organisation for identifying start and end ele-
ments (since every process has just one start and one end), and we use

1Notably, although these identifiers are not explicitly reported in the graphical repre-
sentation of BPMN models, they are reported in the XML representations of the models, as
prescribed by the BPMN standard.

37

PE-BPMN Element Process tree
start(id)

end(id)

task(id)

seq(t1, . . . , tN)

xor(t1, . . . , tN)

ebg(t1, ..., tN)

and(t1, . . . , tN)

while(t1)

t1 . . . tN

Table 1: Correspondence between the PE-BPMN block-structures and pro-
cess tree elements.

the task name for identifying tasks.

Let us consider the collaboration model in Figure 11. The process
trees corresponding to the processes of the two parties, which are graph-
ically depicted in Figure 13, are as follows:

S : seq(start(S), task(S1), task(S2), and(task(S3), xor(task(S4),

task(S5))), task(S6), task(S7), end(S))

D : seq(start(D), task(D1), task(D2), task(D3), end(D)

38

seq

start(S) task(S1) task(S2) and

task(S3) xor

task(S4) task(S5)

task(S6) task(S7) end(S)

seq

start(D) task(D1) task(D2) task(D3) end(D)

Figure 13: Process trees of parties S and D from Figure 11.

We can notice that there is a direct correspondence between tree nodes
and (blocks of) elements in the PE-BPMN model. Notably, while the chil-
dren order does not matter for and and xor nodes, it is relevant for seq

nodes (as one may expect, the execution order is from left to right).
We can now formalise the control-flow transformation step by means

of the translation function T : P → M, where P is the set of process trees
and M the set of mCRL2 terms.

Definition 3.2.2 (Translation function). Function T is inductively defined as
follows:

T (start(id)) = start id({ })

T (end(id)) = end id({ })

T (task(id)) = id({ })

T (seq(t1, . . . , tn)) = T (t1). · · · .T (tn)

T (xor(t1, . . . , tn)) = tau.T (t1) + · · ·+ tau.T (tn)

T (ebg(t1, . . . , tn)) = T (t1) + · · ·+ T (tn)

T (and(t1, . . . , tn)) = T (t1) || · · · || T (tn)

T (while(t)) =K with K = tau + tau.T (t).K K fresh

We comment on salient points. Start, end and task elements are trans-
lated into visible actions with empty knowledge. The knowledge of tasks

39

will be enriched during the data/message flow transformation step for
those tasks that exchange information at some stage of the process.

Sequence and parallel blocks are expressed by means of sequential and
interleaving operators, respectively. Both exclusive and event-based blocks
use the choice operator: in the former case the non-deterministic selec-
tion is internal, due to the use of the tau action (i.e., silent action) as pre-
fix, while in the latter case the selection is driven by the initial actions of
the block branches. The while block is rendered as a call of a recursive
process, identified by a fresh identifier. At each call, the process non-
deterministically decides whether to stop the loop or to execute the body
and restart.

For example, the processes included in the PE-BPMN collaboration
model in Figure 11 are transformed into the following data-abstracted
process specifications:

start S({ }) . S1({ }) . S2({ }) .(S3({ }) || (tau.S4({ }) + tau.S5({ }))) .
S6({ }) . S7({ }) . end S({ })

start D({ }) . D1({ }) . D2({ }) . D3({ }) . end D({ })

Although the transformation introduced above produces legal mCRL2

specifications, unfortunately, not all of them are accepted as input by the
mCRL2 supporting tools.

Indeed, the interleaving operator can only be used on the outer level
of a specification (see [84] for more details). Anyway, this limitation can
easily be overcome by applying the Tp function defined later in Section
4.2, in order to move all nested parallel compositions to the outer level.

As a matter of example, the term a.(b||c).d will be transformed in the
equivalent term hide({t′}, allow({a, b, c, d, t′}, comm({t|t->t′}, (a.t.b.t.d
|| t.c.t)))), where the original order imposed by the process is preserved
by means of actions t used as synchronisation points, which produce ac-
tions t′ that are hidden.

40

3.2.2 PETs Identification

The identification of PETs is essential to correctly replicate the behaviour
of the tasks associated to them. As shown in Figure 12, this step of the
methodology produces two kinds of information: data sort definitions
and a function mapping BPMN elements to PET stereotypes.

The sort definitions are necessary, in the data transformation step, to
enrich the mCRL2 specification with technical details for recognising
those elements that are part of privacy technologies and, hence, prop-
erly dealing with them. This specification enhancement together with
the mapping function give us, in the verification step, the possibility to
define functions to check if PETs are violated or not.

Definition 3.2.3 (Sort definitions). Given a PE-BPMN collaboration model,
the sort definitions produced in the PETs identification step are as follows:

sort Data = struct node(value : Name)?is node |
pnode(pvalue : Privacy)?is pnode |
eps | vnull

Name = struct data1 | . . . | datan
Privacy = struct pair(frt : PName, snd : Nat)

Pname = struct pname1(Name)?is pname1

| . . . |
pnamem(Name)?is pnamem

where data1 . . . datan are the names of the data objects that are specified in
the PE-BPMN collaboration model, and pname1 . . . pnamem are the privacy
features used in the PE-BPMN collaboration model.

Data is a structured sort, whose elements are explicitly characterised
as follows.

• node represents a data object with no-privacy features. Its pro-
jection function, value, allows to extract the name of the data ob-
ject, which is an element of the sort Name. As an example, given
the PE-BPMN collaboration model in Figure 11, the data object
names datai belonging to the sort Name are satellite data, share1,

41

share2, atmospheric info,. . . . The recogniser function, is node, re-
turns true if it is applied to a node term.

• pnode represents a data object enhanced with a privacy feature and
its projection function, pvalue, extracts a data of sort Privacy. A
term of the Privacy sort denotes a pair(frt, snd), where frt is an el-
ement of sort PName and snd its a natural number. PName is the
sort that represents the privacy features in the specification. As an
example, in the PE-BPMN collaboration model in Figure 11 the pri-
vacy features pnamej belonging to the sort PName are SSSharing,
SSComputation, and SSReconstruction. The natural number in
the pair corresponds to an id, whose meaning changes on the basis
of the PName associated to it.

• eps represents the non-presence of data.

• vnull represents the data with value null.

Definition 3.2.4 (Mapping function). Given a PE-BPMN collaboration model,
the mapping function pet generated in the PETs identification step is a partial
function from task identifiers and data object names to PETs stereotypes as spec-
ified in the PETs annotations of the model.

For example, in the PE-BPMN collaboration model in Figure 11, the
function pet is defined as follows2: pet(S1) = SSSharing, pet(S3) =

SSComputation, pet(S7) = SSReconstruction, pet(D2) = SSComputation,
and pet is undefined for all other identifiers.

3.2.3 Data- and Message-flow Transformation

In the previous steps of the proposed methodology, we described how
to formalise the control flow of each process involved in the collabora-
tion model, and the data definitions necessary for bringing the mCRL2

specification to fruition.

2As usual, for the sake of presentation, we use here task names in place of task identi-
fiers.

42

In this step, we show how all pieces of the puzzle fall into place. First,
we combine the data-abstracted process specifications together, then we
enrich the specification in order to deal with data and message handling.

Definition 3.2.5 (Collaboration building). Given a collaboration involving
n parties, let t1, . . . , tn be the process trees generated from each of them, then
the overall specification can be defined as:

sort Data = struct node(value : Name)?is node | . . .
Name = struct data1 | . . .
. . .

Kparty 1 = T (t1); ... Kparty n = T (tn);
init (Kparty 1 || ... || Kparty n)

where Kparty 1, . . . ,Kparty n are fresh identifiers, and init is a mCRL2 key-
word that defines the initial behaviour.

For example, the PE-BPMN collaboration model in Figure 11 is trans-
formed into the following mCRL2 term providing an overall specifica-
tion of the control flow of the model:

sort Data = . . .
KS = start S({ }) . S1({ }) end S({ })
KD = start D({ }) . D1({ }) end D({ })
init (KS || KD)

Let us focus now on the transformation of data and message flows. In
PE-BPMN the exchange of data is asynchronous and can take place either
intra-pool, via data-object connections between tasks of the same process,
or inter-pool, via message flows connecting tasks of separate processes.

Both forms of communication rely on buffers and a non-blocking
sending task. They differ, instead, on the behaviour of the receiving task:
in the inter-pool interaction, the receive is blocking if the buffer is empty,
while in the intra-pool one, the execution of the receiving task can con-
tinue as an empty message will be received. These two behaviours are
captured through two buffer specifications.

In addition, a task can have incoming data-objects that are not pro-
duced by other tasks; the information they bring is called prior knowledge.
This information is hence directly inserted inside the task specification.

43

Therefore, the PE-BPMN model is analysed to extract all information
concerning communication, which is then used to enrich the mCRL2

specifications produced in the previous step. We illustrate below how
the task specifications are enhanced with data information and how the
two kinds of buffers are defined.

Definition 3.2.6 (Data-aware specification of tasks). Given a task with id as
identifier, j incoming data links/message flows, r outgoing data links/message
flows, and data e′1, ..., e

′
p as prior knowledge, its mCRL2 specification becomes

the following one:

sum e11, ..., e1k1 :Data.i1(e11, ..., e1k1).

... .

sum ej1, ..., ejkj :Data.ij(ej1, ..., ejkj).

id({e′1, ..., e′p, e11, ..., e1k1 , ..., ej1, ..., ejkj}).
o1(e

′′
11, ..., e

′′
1h1

).or(e
′′
r1, ..., e

′′
rhr

)

where the sort Data is defined in Def. 3.2.3.

Using the . operator among incoming/outgoing message flows we
impose an arbitrary order among how a task is receiving/sending the
data that is not given in the PE-BPMN model. This decision does not
really affect the behaviour of the specification, as we will see later, be-
cause the result of this interactions are going to be hidden in the final
specification.

Figure 14: Example of a task.

As an example, let us consider the task in Figure 14; its data-aware
translation is as follows:

sum e1 : Data.i(e1).
A
(
{node(data2), node(data3), e1}

)
.

o(e1, node(data2))

44

where: e1 is a placeholder for a data parameter of type Data to be
received through the input action i (i.e. data1); the input parameters are
data objects coming from other tasks. The knowledge of the task then
consists of the data that is received (i.e., e1 placeholder for data1) and the
prior knowledge data (i.e., data2 and data3) which are data objects that
the task is not receiving from another task; and the output data (i.e., e1
and data2) is transmitted via action o.

Every communication between two tasks internal to a pool is realised
by means of a dedicated buffer.

Definition 3.2.7 (Intra-communication buffer). The intra-communication
buffer is a process of the following form:

B(d1, ..., dn : Data) = sum e1, ..., en : Data. i(e1, ..., en).B(e1, ..., en)
+ o(d1, ..., dn).B(vnull, ..., vnull)

where B is a fresh name for a process with n parameters, i the input channel for
writing in the buffer and o the output channel for reading from it.

Notably, the buffer is defined as a recursive process in order to deal
with more than one communication in case of loops in the model. Every
intra-communication buffer is put in parallel with the other processes at
top level of the specification, and is initialised as B(eps, ..., eps), where
eps represents the empty parameter.

This is indeed a non-blocking buffer: if no data is written in the buffer,
it provides a null output (vnull). Notice that, for the sake of simplicity,
we have used a 1-position buffer that, each time it receives new data, it
rewrites the current one.

Definition 3.2.8 (Intra-communication protocol). In a collaboration with k
participants, let task(id1) and task(id2) be tasks in the same pool such that
the former is sending a set of data D = {d1, . . . , dn} to the latter. Then, the
mCRL2 processes corresponding to the tasks and to the intra-communication
buffer are defined as follows:

K1 = id1({d1, . . . , dn}).o1(d1, . . . , dn)
K2 = sum e1, . . . , en : Data.i2({e1, . . . , en}).id2({e1, . . . , en})
B(d1, . . . , dn : Data) = sum e1, . . . , en : Data.i(e1, ..., en).B(e1, ..., en)

+ ob(d1, ..., dn).B(vnull, ..., vnull)

45

Then the communication between these elements is specified as follows:

init hide({sr}, allow({sr, id1, id2} ∪Act,

comm({o1|i2->sr}, P1||P2||...||Pk||B(eps, . . . , eps))))

where sr it is an action used to represent the result of the communication and
P1, P2, . . . , Pk are the processes representing the parties in the collaboration.

According to the above definition, for every communication we will
have a buffer process B that is part of the initial behaviour of the specifi-
cation, in order to receive at any time in the execution a set of data.

A communication function (o1|i2->sr) between the output channel
of the sending task (o1) and the input channel of the receiving task (i2)
is generated, and their synchronisation is forced by allowing only the
execution of the communication function.

Finally, since we are not interested in observing the sr synchronisa-
tion actions, they will be transformed into tau actions using an enclosing
hide operator.

Figure 15: Example of intra-communication.

Let us now consider the minimal example in Figure 15 showing the
role of the buffer. The communication between task A and task B is spec-
ified as follows:

KP = KA.KB

KA = A({node(data1), node(data2)}).
oA(node(data1), node(data2))

BAB(d1, d2) = sum e1, e2 :Data.iAB(e1, e2).BAB(e1, e2)
+ oAB(d1, d2).BAB(vnull, vnull)

KB = sum e1, e2 :Data.iB(e1, e2).B({e1, e2})

46

init hide({sr}, allow({sr,A,B},
comm({oA|iAB → sr, oAB |iB → sr},

KP || BAB(eps, eps))))

Also every communication between two tasks not in the same pool has
its own buffer.

Definition 3.2.9 (Inter-communication buffer). A buffer for an inter-communication
between two tasks is defined as follows:

B(d1, ..., dn :Data) = sum e1, . . . , en : Data.

i(e1, . . . , en).B(e1, ..., en)

+ (!empty(d1)& . . .& !empty(dn))

→ o(d1, ..., dn).B(eps1, ..., epsn))

where empty is a function that, given a parameter of type Data, returns true
when the parameter is empty (i.e., it is equal to eps), false otherwise. The buffer
is initialised again with empty data.

This is a blocking buffer, because when it is empty the output along
o is not provided (due to the condition operator Cond → P , meaning “if
Cond then do process P”), hence the receiving task has to wait.

Definition 3.2.10 (Inter-communication protocol). In a collaboration with
k participants, let task(id1) and task(id2) be two tasks in different pools such
that the former is sending a set of data D = {d1, . . . , dn} to the latter. Then,
the corresponding mCRL2 processes are defined as in Def. 3.2.8, but using
Def. 3.2.9 for the inter-communication buffer specification.

Hence, the only difference between ”intra” and ”inter” communica-
tion is the definition of the buffer. As an example, the communication
between task A and task B in Figure 16 is specified as follows:

KA = A({data1}).oA(data1)
Bm(d1) = sum e1 :Data.iAB(e1).Bm(e1)

+ (!empty(d1)) → oAB(d1).Bm(eps))
KB = sum e1 :Data.iB(e1).B({e1})

init hide({sr}, allow({sr,A,B},
comm({oA|iAB → sr, oAB |iB → sr},

KA || KB || Bm(eps))))

47

Figure 16: Example of inter-communication.

We conclude by illustrating the specification derived from our run-
ning example model (Figure 11) at the end of the three methodological
steps introduced in this section. An excerpt of this specification is re-
ported in Listing 3.1 where, for the sake of readability, we use the names
of tasks and data objects inside the PE-BPMN model to define the ac-
tions of process tasks and data parameters, in place of the correspond-
ing IDs. We describe below the specification blocks that compose the
mCRL2 specification.

• sort contains data type definitions. In this case, PName reflects the
fact that the PE-BPMN model uses secret sharing PETs stereotypes.

• map contains functions definitions. The function named empty is
used by buffers (Def. 3.2.7 and 3.2.9) to check if they received or not
a value for a data object. This function takes as input a parameter of
type Data and gives as output a parameter of type Bool (Bool is a
predefined sort in mCRL2 and contains the values true and false).

• var defines the variable types used in eqn.

• eqn contains equations describing the behaviour of functions in
map. In the example, the function empty returns true, if the input
parameter is equal to eps, otherwise false.

• act defines the action types. The actions of type Collection are the
PE-BPMN tasks, like S1 and S2, while the Data ones are used to
send/receive data parameters, like i2 and o2, or to force the com-
munication among the processes, like sr1.

48

• proc contains the processes. Among them, there are pools defini-
tion (S and D), tasks (P12, P21,. . .), intra and inter-communication
buffers (P3, P1,. . .). Notably, at this stage the data objects are of
type node, i.e. they do not reflect the privacy properties that will be
associated later.

• init states the specification’s initial process (P3(eps)||P1(vnull)||...)
over which are applied the hide, allow and comm operators.

1 s o r t
2 PName = s t r u c t ssshar ing (Name) ? i s s s s h a r i n g | sscomputation (Name) ?

is sscomputat ion ;
3 Privacy = s t r u c t pa i r (f r t : PName, snd : Nat) ;
4 C o l l e c t i o n = Set (Data) ;
5 Data = s t r u c t node (value :Name) ? is node | eps | vnul l |pnode (pvalue : Privacy) ?

is pnode ;
6 Name = s t r u c t s a t e l l i t e data | share1 | share2 | . . . ;
7 map
8 empty : Data−>Bool ;
9 var

10 d2 : Data ;
11 eqn
12 (d2==eps) −> empty (d2) = true ;
13 (d2 != eps) −> empty (d2) = f a l s e ;
14 a c t
15 StartEvent D , Star tEvent S , S1 , S2 , D1 , . . . : C o l l e c t i o n ;
16 sr4 , sr2 , sr3 , sr5 , o2 , i , o0 , i1 , o3 , i2 , o1 , i0 , . . . : Data ;
17 proc
18 %Inter-communication buffer to send "share2" from S2 to D1
19 P3 (d17 : Data) = ((sum d18 : Data . i 2 (d18) . P3 (d18)) +(!empty (d17))

−>(o2 (d17) . P3 (eps))) ;
20 %Intra-communication buffer to send "share2" from S1 to S2
21 P1 (d14 : Data) = ((sum d15 : Data . i 0 (d15) . P1 (d15)) + (o0 (d14) . P1 (vnul l))) ;
22 %Space Agency pool
23 S = ((P11 . P12 . P13 . t0 . ((tau . P14) +(tau . P15)) . t 0 . P16 . P17 . P18) | | (t 0 . P19 . t0)) ;
24 %Create share or S1 task
25 P12 = S1 ({node (share2) , node (share1) , node (s a t e l l i t e d a t a) }) .
26 o13 (node (share1)) . o1 (node (share2)) ;
27 %Compute satellite collision or S3 task
28 P19 = sum d12 : Data . i 1 3 (d12) . S3 ({d12 , node (r e s u l t 1) }) . o7 (node (r e s u l t 1)) ;
29 %Start event of the S party
30 P11 = S t a r t E v e n t S ({}) ;
31 %Send share or S2 task
32 P13 = sum d9 : Data . i 1 (d9) . S2 ({d9}) . o3 (d9) ;
33 %Data Center pool
34 D=(P20 . P21 . P22 . P23 . P24) ;
35 %Receive data or D1 task
36 P21 = sum d9 : Data . i 3 (d9) . D1({d9}) . t18 ([d9]) . o11 (d9) ;
37 P20 = StartEvent D ({}) ;
38
39 i n i t hide ({ sr4 , sr2 , sr3 , sr5 , . . . } , allow ({ sr4 , sr2 , sr3 , sr5 , S1 , S2 , D1 , . . . } ,
40 comm ({o2 | i 3−>sr5 , o0 | i 1−>sr3 , . . . } ,P3 (eps) | |P1 (vnul l) | | S | |D| | . . .))) ;

Listing 3.1: mCRL2 specification of the example in Figure 11.

49

3.3 Verification

Once the collaboration specification is generated, the user can choose
the verification to execute on the model. In Section 3.1, we listed all the
properties supported by our approach; here we will see in detail how the
specification is enhanced to verify each of them.

3.3.1 Task Verification

This verification focuses on discovering if a task T knows the values of
a chosen set of data objects existing in the model. To this aim, we define
the following formula.

Definition 3.3.1 (Task Formula). Given a task T with a knowledge set of
dimension m and a set of data D = {d1, ..., dn}, the property does T know
about D? is expressed as:

< true∗.exists e1, ..., em−n : Data.T ({e1, ..., em−n, d1, ..., dn}) > true

The formula < f > true corresponds to the diamond modality, which
is satisfied whenever there exists a path where the formula f is satisfied.
true∗ means that any sequence of actions can be performed before T .
exists e1, ..., em−n : Data defines placeholders for parameters of type
Data, which are used to simulate the value of the other elements inside
the knowledge of the action task T .

As an example of task verification, let us consider again our running
example in Figure 11. It could be interesting to check if the task S6 gets
to know result2, since it is essential for the reconstruction task. For this
verification, the following formula is automatically generated:

< true∗.S6({node(result2)}) > true

The verification’s result is true, meaning that task S6 knows the data.
One of the possible paths leading to the point in which the formula is
satisfied is also automatically generated:
(StartEventD,[]) → (StartEventS ,[]) → (S1,[share1, share2, satellite data])
→ (S2,[share2]), (S3,[share1, result1]) → (S4,[atmospheric info, weather])→
(D1,[share2]) → (D2,[share2, result2]) → (D3,[result2]) → (S6,[result2]).

50

3.3.2 Participant Verification

This verification focus on checking if a participant P in the collaboration
knows a selected set of data objects D. Instead of directly expressing this
property as a µ-calculus formula, we define a new mCRL2 function that
encodes this property inside the collabaoration specification.

Definition 3.3.2 (Contain function). Given two parameters c1 and c2 of type
Collection, the CONTAIN function returns true if c2 is in c1, otherwise false.

1 s o r t C o l l e c t i o n = S e t (Data) ;
2 map
3 CONTAIN : C o l l e c t i o n # C o l l e c t i o n → Boo l ;
4 var
5 c1 , c2 : C o l l e c t i o n ;
6 eqn
7 ((c1 * c2) == c2) −> CONTAIN(c1 , c2) = t r u e ;
8 ((c1 * c2) != c2) −> CONTAIN(c1 , c2) = f a l s e ;

Listing 3.2: CONTAIN function.

In the listing above, the mCRL2 operator ∗ stands for the intersection between
sets. Therefore, the CONTAIN function returns true only if the intersection
between c1 and c2 is equal to c2, so if every element of c2 is in c1.

To exploit this function, we need to collect all the data objects that a
participant produces and receives during its execution.

Definition 3.3.3 (Participant memory). Given a party P in a collaboration,
its knowledge (i.e. the set of elements of type Data that are gained by the execu-
tion of its tasks) is stored in a process defined as follows:

M(c : Collection) = sum c1 : Collection. t(c1).M(c+ c1)

where t is an action that will synchronise with other t actions added in the task
processes of the same participant, and c1, i.e. the new collection of data received,
will extend the current knowledge c of the memory. In particular, if Ai denotes
the set of receiving processes (sum e1...ej : Data.i1(e1, ..., ej). . . . sum e1...ek :
Data.in(e1, ..., ek).) and Ao denotes the set of sending actions (o1(. . .) . . . om(. . .))
as defined in Def. 3.2.6, the new specification for each task T ∈ P , with party
memory M as in Def. 3.3.3, will be:

Ai.n(c).t(c).Ao

where t is forced to synchronise using the allow and comm operator as follows:

51

allow({sr}, comm({t|t → sr}, . . .)

We can extend the above definition to make it check the CONTAIN

function in the following way.

Definition 3.3.4 (Memory in participant verification).

M(c : Collection) = sum c1 : Collection. t(c1).(!CONTAIN(c+ c1, D))

→ M(c+ c1) <> CONTAIN.delta

where D is the data objects set to be checked. If the function call CONTAIN(c+
c1, D) returns true, then the CONTAIN action is executed, and the process
stops; otherwise, the process starts again but with the collection updated with
the new data objects.

At this point, the verification is reduced to a reachability problem of the
CONTAIN action. If the party knows the set of data D we also provide
the trace leading to that state.

Given the example in Figure 2 we can check if party D gets to know
result1 and share1, since this would lead to a case in which the secret
sharing is violated. The specification will be updated accordingly.

1 proc
2 . . .
3 P26 (d39 : C o l l e c t i o n) = sum d40 : C o l l e c t i o n . t18 (d40) .
4 (!CONTAIN(d39+d40 ,{ share1 , r e s u l t 1 }))−>P26 (d39+d40)<>CONTAIN. d e l t a
5 . . .

Listing 3.3: mCRL2 specification specialisation for participant verification.

In this example the result of the verification is false, meaning that
the CONTAIN function is not satisfied and party D does not know about
share1 and result1. Checking for the previous formula thus does not
ensure that the secret sharing protocol is not violated. We will show how
to check that property in the following subsection.

3.3.3 Secret Sharing Verification

This form of verification aims at checking if the secret-sharing technol-
ogy implemented using the SSSharing, SSComputation, and SSRecon-
struction stereotypes is violated in the model or not.

52

Since the tasks associated with the mentioned PETs enhance the data
objects with privacy features, e.g. the task with SSSharing stereotype
produces a secret that must not be revealed, we need to reflect this char-
acteristic on the data objects. To this aim we resort to the following def-
inition that, in its own turn, makes use of the mapping function defined
in Def. 3.2.4.

Definition 3.3.5 (Secret sharing data generation). Given a task with iden-
tifier id and the set D of data object names, composed by Di and Do that are
respectively the set of input and output data object names, we define the func-
tion Tpet, generating the PET-aware data object specifications, as follows:

Tpet(id,D) =

{pnode(pair(sssharing(d)), n)) | d ∈ Do}
if pet(id) = SSSharing

{pnode(pair(sscomputation(d), n)) | d ∈ Do}
if pet(id) = SSComputation

where n is a fresh natural number used to identify all the shares created from
the task id in case it has the SSSharing stereotype, or identifies the group id
coming from the task that has generated the object in case of SSComputation
stereotype.

Listing 3.4 shows how the function Tpet is used to generate PET-aware
data objects on the example in Figure 11. It transforms node objects into
pnode by associating the corresponding Pname and id value.

From the example, we can notice that share1 and share2 have the
same id, i.e. 2, since they belong to the same secret sharing task; it hap-
pens the same with result1 and result2, since they are generated from
tasks in the same computation group.

1 proc
2 . . .
3 %secret share task
4 P12 = S1 ({pnode (pa i r (ssshar ing (share2) , 2)) ,
5 pnode (pa i r (ssshar ing (share1) , 2)) , node (s a t e l l i t e data) }) .
6 o13 (pnode (pa i r (ssshar ing (share1) , 2))) .
7 o1 (pnode (pa i r (ssshar ing (share2) , 2))) ;
8 %compute satellite collision task
9 P19 = sum d12 : Data . i 1 3 (d12) . S3 ({d12 , pnode (pa i r (sscomputation (r e s u l t 1) , 0)) })

10 . o7 (pnode (pa i r (sscomputation (r e s u l t 1) , 0))) ;
11 %help compute satellite collision task
12 P22 = sum d9 : Data . i 1 1 (d9) . D2({d9 , pnode (pa i r (sscomputation (r e s u l t 2) , 0)) })

53

13 . t20 ({d9 , pnode (pa i r (sscomputation (r e s u l 2 1) , 0)) })
14 . o9 (pnode (pa i r (sscomputation (share2) , 0))) ;
15 . . .

Listing 3.4: Specification excerpt with secret sharing data generation.

At last, we define a new sort named Dlist and the function union

that, given two objects of type Dlist, concatenates their elements without
allowing any repetition (Listing 3.5). Dlist and union are essential to
execute the following verification functions.

1 s o r t D l i s t = L i s t (Data) ;
2 map
3 union : D l i s t # D l i s t −>D l i s t ;
4 var
5 l0 , l 1 : D l i s t ;
6 eqn
7 (head (l 1) in l 0) −> union (l 0 l d 1) = union (l0 , t a i l (l 1)) ;
8 (! (head (l 1) in l 0)) −> union (l0 , l 1) = union (l0< | head (l 1) , t a i l (l 1)) ;
9 (l 0 == []) −> union (l0 , l 1) = l 1 ;

10 (l 1 == []) −> union (l0 , l 1) = l 0 ;

Listing 3.5: Dlist data type.

Secret sharing technology violation occurs when a participant has:

1. n or more shares of the same secret, i.e. output of the same SSSharing
task. To this aim, we introduce in the specification the definition of
the sslist function (Listing 3.6), which collects all the shares belong-
ing to the specific SSSharing task (through the id) in a new list of
Data.

1 map
2 s s l i s t : Nat # D l i s t # D l i s t → D l i s t ;
3 var
4 l1 , l 2 : D l i s t ;
5 n : Nat ;
6 eqn
7 %sslist function
8 is pnode (head (l 1)) && i s s s s h a r i n g (f r t (pvalue (head (l 1))))
9 && snd (pvalue (head (l 1))) == n −> s s l i s t (n , l1 , l 2)

10 = s s l i s t (n , t a i l (l 1) , l2< | head (l 1)) ;
11

12 ! i s pnode (head (l 1)) | | ! i s s s s h a r i n g (f r t (pvalue (head (l 1))))
13 | | snd (pvalue (head (l 1))) != id −> s s l i s t (n , l1 , l 2)
14 = s s l i s t (n , t a i l (l 1) , l 2) ;
15

16 (l 1 == []) −> s s l i s t (n , l1 , l 2) = l 2 ;

Listing 3.6: Function to collect secret shares.

54

2. n or more outputs of the same computation group, i.e. outputs of
SSComputation tasks with the same group identifier. Again, we
need to insert in the specification a function definition (Listing 3.7).
The difference between function sslist and sscomp is given by the
data types they are checking: SSSharing and SSComputation, re-
spectively.

1 map
2 sscomp : Nat# D l i s t # D l i s t → D l i s t ;
3 var
4 l1 , l 2 : D l i s t ;
5 n : Nat ;
6 eqn
7 %sscomp function
8 is pnode (head (l 1)) && is sscomputat ion (f r t (pvalue (head (l 1))))
9 && snd (pvalue (head (l 1))) ==id−> sscomp (n , l1 , l 2)

10 = sscomp (n , t a i l (l 1) , l2< | l 1) ;
11

12 ! i s pnode (head (l 1)) | | ! i s s s c o m p u t a t i o n (f r t (pvalue (head (l 1))))
13 | | snd (pvalue (head (l 1))) != n −> sscomp (n , l1 , l 2)
14 = scomp (n , t a i l (l 1) , l 2) ;
15

16 (l 1 == []) −> sscomp (n , l1 , l 2) = l 2 ;

Listing 3.7: Function to collect secret data computations.

We define in Listing 3.8 the function sssharingviolation, which re-
turns true if the size of list l is greater than a particular number th, other-
wise false, where th is the threshold number that indicates the minimum
amount of shares to reconstruct a secret, while l is a list of shares coming
from the computation of sslist or sscomp.

1 map
2 s s s h a r i n g v i o l a t i o n : Nat # D l i s t → Bool ;
3 var
4 l : D l i s t ;
5 th : Nat ;
6 eqn
7 (# l>=th) −> s s s h a r i n g v i o l a t i o n (th , l) = t rue ;
8 (# l<th) −> s s s h a r i n g v i o l a t i o n (th , l) = f a l s e ;

Listing 3.8: Function to detect secret sharing technology violation.

These conditions are checked only on those parties that observe the no-
creation and no-reconstruction properties, which means no SSSharing task
with id number equal to the one currently checked nor SSReconstruction

task exist in the party under consideration.

55

Since the verification must be done on all the data objects passing
through a specific party, we will enrich its Memory process to check the
violation property.

Definition 3.3.6 (Memory in stereotype verification). Given a participant
memory (as defined in Def. 3.3.3) it can be updated to check n violation functions
in the following way:

M(l : Dlist) = sum l1 : Dlist. t(l1).(⟨insert check⟩1) → V LT (l2).delta

<> (⟨insert check⟩2) → V LT (l′2).delta

<> ...

<> (⟨insert check⟩n) → V LT (l′′2).delta

<> M(union(l, l1))

M is a process that collects objects of type Dlist, ⟨insert checki⟩ is a placeholder
for the i-th function to be checked, V LT is an action of type Dlist used to
express that a violation occurred, and l2, l

′
2, l

′′
2 are the data objects involved in

the violation.

If a party does not have a SSReconstruction task (no-reconstruction
property), it cannot know a number of computed shares greater than
the threshold. We check that by enhancing the memory in stereotype
verification (Def. 3.3.6) with the following function call.

sssharingviolation(th, sscomp(n1, union(l, l1), []))

→ V LT (th, sscomp(n1, union(l, l1), []))

<>

<> sssharingviolation(th, sscomp(nn, union(l, l1), []))

→ V LT (th, sscomp(nn, union(l, l1), []))

We call this function for every computed shares such that n1 ̸= n2 ̸=
. . . ̸= nn.

Moreover, the following checks are added in case a party does not
have a SSSharing task (no-creation property) or, if it has, the identifier
n of the shares it generates is different from the checked ones, i.e. n ̸=
n1, . . . , n ̸= nm.

56

sssharingviolation(th, sslist(n1, union(l, l1), []))

→ V LT (th, sslist(n1, union(l, l1), []))

<>

<> sssharingviolation(th, sslist(nm, union(l, l1), []))

→ V LT (th, sslist(nm, union(l, l1), []))

Listing 3.9 shows the enhancement of the memory process for our
running example. Since the party D respects the no-creation and no-
reconstruction properties, its memory will be updated to check the secret
sharing violation function on sslist and sscomp. This cannot happen for
the party S, since it does not satisfy both properties.

1 proc
2 . . .
3 %Data center memory process
4 P31 (d57 : D l i s t) = (sum d58 : D l i s t . t24 (d58)
5 . (s s s h a r i n g v i o l a t i o n (2 , sscomp (0 , union (d57 , d58) , [])))
6 −>(VIOLATION(sscomp (0 , union (d57 , d58) , [])) . d e l t a)
7 <>(s s s h a r i n g v i o l a t i o n (2 , s s l i s t (2 , union (d57 , d58) , [])))
8 −>(VIOLATION(s s l i s t (2 , union (d57 , d58) , [])) . d e l t a)
9 <>P31 (union (d57 , d58))) ;

10 . . .

Listing 3.9: Embedding of secret sharing violation checking in the running
example specification.

As last step, a formula verifying the existence of the V LT action is
generated to execute the verification.

< true ∗ .exists d : Dlist.V LT (d) > true (3.1)

In this case, the verification of the formula returns the result false, mean-
ing that no violation occurs.

3.3.4 Additive Secret Sharing Verification

Additive secret sharing is a specialisation of secret sharing and differs
from it just for the threshold value. Given a secret x dived in n shares, the
threshold must be equal to n to reconstruct the secret. It is implemented
using the stereotypes AddSSsharing, AddSSComputation and AddSSRecon-
struction.

57

Apart from the stereotypes used and the threshold value derived
from the number of shares, the secret sharing, the additive secret shar-
ing and the function secret sharing, as we will see later, share the same
logic for detecting a violation.

This allows to use the same Tpet function for generating PET-aware
data objects and, as consequence, we can apply the same violation func-
tions as above (Listings 3.6, 3.7 and 3.8), and we can enhance the par-
ticipant memory by following the same no-creation and no-reconstruction
properties and, finally, we can verify the same V LT formula over the
specification to get the verification result.

3.3.5 Function Secret Sharing Verification

Function secret sharing, like additive secret sharing, is another speciali-
sation of secret sharing and is implemented by using the following stereo-
types: FunSSsharing, FunSScomputation and FunSSreconstruction. This
technology produces a fixed number of shares, equal to 2, which is also
the threshold variable’s constant value resulting in the specification.

The PETs mapping and verification enhancement follow the same
rules for secret sharing and additive secret sharing violation verification.

3.3.6 Public Key Encryption Verification

This type of verification focus on checking that the public key encryption
technology, implemented using the stereotypes PKEncrypt, PKComputa-
tion and PKDecrypt, is not violated in the model.

Tasks having the above PETs associated enhance data objects with a
privacy feature that differs from the one defined for secret sharing tasks.
Moreover, in models with public key encryption technology, tasks are
not the only elements with associated stereotypes, data objects can have
PKPublic or PKPrivate stereotypes associated.

Definition 3.3.7 (Encryption data generation). Given a task with identifier
id and the set D of data object names, composed by Di and Do that are respec-
tively the set of input and output data object names, we define the function Tpet,
generating the PET-aware data object specifications for encryption verification,

58

as follows:

Tpet(id,D) =

{pnode(pair(cipher(d)), n) | d ∈ Do}
if pet(id) = PKEncrypt

or pet(id) = PKComputation

{pnode(pair(decodingkey(d)), n) | d ∈ Di}
if pet(d) = PKPrivate

and pet(id) = PKEncrypt

where n is a fresh natural number that identifies the key pair (public and
private key) used to encrypt the data object.

The public key encryption technology is violated when a participant
has:

• the ciphertext (the corresponding specification enhancement is in
Listing 3.10);

1 map
2 hascipher : D l i s t # Nat −> Data ;
3 var
4 l : D l i s t ;
5 n : Nat ;
6 eqn
7 %has cipher function
8 is pnode (head (l)) && i s c i p h e r (f r t (pvalue (head (l))))
9 && snd (pvalue (head (l))) == n −> hascipher (l , n) = head (l) ;

10

11 ! (is pnode (head (l))) | | ! (i s c i p h e r (f r t (pvalue (head (l)))))
12 | | snd (pvalue (head (l))) != n−> hascipher (l , n) = hascipher (t a i l (l) , n) ;
13

14 (l == []) −> hascipher (l , n) =eps ;

Listing 3.10: Function to detect the ciphertext with the given id value.

• the decoding key (the corresponding specification enhancement is
in Listing 3.11).

1 map
2 haskey : D l i s t # Nat −> Data ;
3 var
4 l : D l i s t ;
5 n : Nat ;
6 eqn
7 %has decoding key function
8 is pnode (head (l)) && is decondingkey (f r t (pvalue (head (l))))
9 && snd (pvalue (head (l))) == n−> haskey (l , n) = head (l) ;

10

59

11 ! (is pnode (head (l))) | | ! (is decondingkey (f r t (pvalue (head (l)))))
12 | | snd (pvalue (head (m))) != n −> haskey (l , n) = haskey (t a i l (l) ,n) ;
13

14 (l == []) −>haskey (l , n) =eps ;

Listing 3.11: Function to detect the decoding key with the given id value.

The hascipher function (Listing 3.10) verifies if a data parameter of type
cipher with identifier n exists in the list of data parameters. If it does, that
element is returned; otherwise, eps, i.e. the empty element, is returned.
The haskey function (Listing 3.11) is similar, but it verifies if the data
object is of type decodingkey.

The encryption is violated when a participant receives both data given
by the hascipher and haskey functions (Listing 3.12).

1 map
2 e n c r y p t i o n v i o l a t i o n : Data # Data −> Bool ;
3 var
4 d1 , d2 : Data ;
5 eqn
6 %encryption violation function
7 (d1 != eps && d2 != eps) −>e n c r y p t i o n v i o l a t i o n (d1 , d2) = true ;
8

9 (d1==eps | | d2 == eps) −> e n c r y p t i o n v i o l a t i o n (d1 , d2) = f a l s e ;

Listing 3.12: Function to detect encryption violation.

These conditions are checked only on those participants that satisfy the
no-encryption and no-decryption properties, which means that they are nei-
ther creating the ciphertext nor decrypting it. As for the secret sharing
technology, we will enhance the memory of the chosen participant (Def.
3.3.6) with the following functions call:

encryptionviolation(haskey(union(l, l1), n1), hascipher(union(l, l1), n1))

→ V LT ([haskey(union(l, l1), n1)] + +[hascipher(union(l, l1), n1)])

<>

<> encryptionviolation(haskey(union(l, l1), nm), hascipher(union(l, l1), nm))

→ V LT ([haskey(union(l, l1), nm)]) + +[hascipher(union(l, l1), nm)])

The encriptionviolation function is called for each pair of haskey and
hascipher functions computed over the same identifier n. If the result is

60

true, the V LT action is executed, since a violation exists. Otherwise, it
continues with the subsequent checks until the process starts again and
receives new data objects.

3.3.7 Symmetric Key Encryption Verification

Symmetric key encryption is another specialisation for encryption. Three
stereotypes implement it: SKEncrypt, SKComputation and SKDecrypt.

In this case, there is no pair of keys used to encrypt/decrypt, since
the key used to encrypt the data object is the same used to decrypt it. We
depict this feature on the data object as follows.

Definition 3.3.8 (Symmetric data generation). Given a task with identifier
id and the set D of data object names, composed by Di and Do that are respec-
tively the set of input and output data object names, we define the function Tpet,
generating the PET-aware data object specifications for symmetric key encryp-
tion, as follows:

Tpet(id,D) =

{pnode(pair(cipher(d)), n) | d ∈ Do}
if pet(id) = SKEncrypt

or pet(id) = SKComputation

{pnode(pair(decodingkey(d)), n) | d ∈ Di}
if pet(d) = Key

and pet(id) = SKEncrypt

where n is a fresh natural number that identifies the key used to encrypt the
data object.

As for additive and function secret sharing, public key encryption
and symmetric key encryption also share the same logic for the violation
verification. Then we can reuse the functions in Listings 3.10, 3.11 and
3.12.

3.3.8 Reconstruction Verification

This property is related to the correct design of the secret sharing proto-
cols. The technology implementation is correct if it is always possible to
reconstruct the secret. Otherwise, there is an error.

61

The mapping of the data objects follows the one already defined in
Def. 3.3.5, while the function to identify the violation is different (Listing
3.13).

1 map
2 l i s t 2 b a g : D l i s t # Bag (Nat) −> Bag (Nat) ;
3 i s r e n c o s t r u c t ed : Bag (Nat) # Nat −> Bool ;
4 var
5 l : D l i s t ;
6 b : Bag (Nat) ;
7 th : Nat ;
8 eqn
9 %List of data to bag of shares and computed shares function

10 is pnode (head (l)) && (i s s s s h a r i n g (f r t (pvalue (head (l))))
11 | | i s sscomputat ion (f r t (pvalue (head (l))))) −> l i s t 2 b a g (l , b)
12 = l i s t 2 b a g (t a i l (l) , b+{snd (pvalue (head (l))) : 1}) ;
13

14 ! i s pnode (head (l)) | | ! i s s s s h a r i n g (f r t (pvalue (head (l))))
15 | | ! i s s s c o m p u t a t i o n (f r t (pvalue (head (l)))) −> l i s t 2 b a g (l , b)
16 = l i s t 2 b a g (t a i l (l) , b) ;
17

18 (l == []) −> l i s t 2 b a g (l , b) = b ;
19 %recon s t r u c tion function
20 (e x i s t s n : Nat . n in b && count (n , b) >= th)
21 −> i s r e n c o s t r u c t ed (b , th) = true ;
22

23 (! (e x i s t s n : Nat . n in b && count (n , b) >= th))
24 −> i s r e n c o s t r u c t ed (b , th) = f a l s e ;

Listing 3.13: Functions for reconstruction checking.

The list2bag function (Listing 3.13) is gathering together the shares and
computation shares with the same identifier, taking into account their
multiplicity. Then, is reconstructed checks the multiplicity: if it is greater
than the threshold it returns true, otherwise false. This function has to
be checked when the reconstruction is taking place, i.e. when the task
marked with the SSReconstruction, AddSSReconstruction or FunSSRecon-
struction stereotype is performed.

Definition 3.3.9 (Reconstruction task enhanced with reconstruction ver-
ification). Given a task process with identifier id, a set of input processes I , a
knowledge base K and a set of output actions O, such that pet(id) = SSRecon-
struction, the task can be enhanced to check reconstruction as follows:

I.id(K).O.(is reconstructed(list2bag(K, {0 : 0}), th))
→ NOV LT.delta <> V LT.delta

where {0 : 0} initialises the bag containers.

62

If there exists a path that leads to the V LT action, then there is a trace
in which the reconstruction is not possible. A PE-BPMN model without
a reconstruction task does not need to compute any of these functions to
return that a violation occurs.

Listing 3.14 shows how the task with the SSReconstruction stereo-
type in Figure 11 is enhanced to execute the verification.

1 proc
2 . . .
3 P17 = sum d4 : Data . i 7 (d4) . sum d8 : Data . i 1 5 (d8) . S7 ({d4 , d8 , recon s t r u c t ed}) .
4 (i s r e c o n s t r u c t ed (l i s t 2 b a g ([d4 , d8 , recon s t r u c t ed] ,{0 : 0}) , 2))
5 −>(NOVLT. d e l t a)<>(VLT () . d e l t a) ;
6 . . .

Listing 3.14: Task specification of the running example enhanced for
reconstruction verification.

The formula (3.1) is used again to execute the verification. In the exam-
ple, the secret is always reconstructed, as no V LT action is found.

3.3.9 MPC Verification

Similarly to the reconstruction verification, the MPC verification is re-
lated to checking the correct PETs usage. Tasks with the MPC stereotype
and the same group id must be executed synchronously. If there is an ex-
ecution in which one cannot start until the other one ends, or just one of
them is executed, there is an error in the implementation of the protocol.

In this case, the focus is not on the data objects and their privacy fea-
tures. Hence, it is not necessary the Tpet function to associate privacy
features to data objects. Instead, we need to modify the MPC processes’
definition to force synchronisation among the tasks.

Definition 3.3.10 (MPC tasks). Given a task with identifier id such that
pet(id) = MPC, and let m be the number of tasks with its same group identi-
fier n. We can enhance their process task specifications as follows:

allow({ sr }, comm({ s1| . . . |sm → sr},
T1 = I.s1.id1(k).O . . . Tm = I.sm.idm(k).O))

where I is the set of input processes, O the set of output actions, and s is a fresh
action added to all the tasks with the same MPC identification number.

63

The idea is to force the communication among the MPC tasks. Sup-
pose the synchronisation cannot take place, then the specification will be
deadlocked. If a deadlock exists in the model, the MPC synchronisation
property is violated. Using the mCRL2 toolset, we can also derive the
traces that lead to the deadlock. If the model that we are analysing al-
ready has a deadlock point, then we have a false positive, but we can
avoid that by using the verification that we present below.

3.3.10 Deadlock Freedom

Deadlock freedom has always been an important property to be checked
on systems. For BPMN collaboration models, being free from deadlock
roughly means that every participant in the collaboration can terminate
its execution. Instead, the mCRL2 toolset has a different way to define
the deadlock of a specification, which corresponds to the property of
never-ending. In mCRL2, deadlocks are states with no outgoing tran-
sitions [83].

Since mCRL2 deals with infinite-state model-checking [27] we need
a workaround. Using the mCRL2 tool for detecting deadlock (i.e., the
option “-D”), we retrieve all the traces that are considered deadlocked,
and then we traverse every path to check if it contains the end events
of all participants in the collaboration. If a deadlock with the BPMN
meaning is detected, we can also return a counterexample to show where
the deadlock is occurring.

By applying this verification to our running example, we obtain a list
of traces, all of which containing both the end actions, meaning that no
deadlock exists in the PE-BPMN model.

3.4 Tool Implementation

This section presents how the approach illustrated in the previous sec-
tions is supported in practice. The tool is an open-source software that
uses the Java library jBPT [123] to generate the process trees in the control-
flow transformation step. It can be redistributed and eventually modi-

64

fied under the terms of the GPL2 License. The source code as well as the
user guide are publicly available, and they can be retrieved on-line3.

The tool can be executed locally via a Java stand-alone application
we made available4. It needs mCRL2 installed on the machine to carry
out the verification. The application allows the user to load a PE-BPMN
model to be verified in the .bpmn format. The graphical interface permits
to select the verification and reports the verification results in a textual
format. At the end of each analysis it is possible to find all the files gener-
ated by the tool in the “result FSAT” folder, allowing the user to possibly
exploit other tools provided by mCRL2.

The tool has been also integrated in Pleak5 [47] as a plug-in. Pleak
is a modelling and analysis environment for privacy-enhanced systems.
It gives the possibility to model privacy enhanced systems and provides
privacy audit features, like sensitive or guessing advantage analysis.

Figure 17 and 18 shows a screenshot taken from Pleak showing the
view that opens while selecting the PET detection button in the PE-BPMN
editor. The green buttons allow the user to select the properties he/she
wants to verify, as discussed in Section 3.1. Once a selection is done, the

Figure 17: Screenshot Pleak’s ver-
ification selection Figure 18: Screenshot Pleak’s ver-

ification result

3https://github.com/SaraBellucciniIMT/leakDetectionAnalyzer
4https://github.com/SaraBellucciniIMT/leakDetectionAnalyzer/

blob/master/leakdetect_v3.1(22012021).jar
5https://pleak.io/home/

65

https://github.com/SaraBellucciniIMT/leakDetectionAnalyzer
 https://github.com/SaraBellucciniIMT/leakDetectionAnalyzer/blob/master/leakdetect_v3.1(22012021).jar
 https://github.com/SaraBellucciniIMT/leakDetectionAnalyzer/blob/master/leakdetect_v3.1(22012021).jar
https://pleak.io/home/

“analysis question” box shows a description of the property to support
the understanding of the results. The “Results” box contains the verifi-
cation results. In case of a property violation, the tool provides the path
leading to the corresponding state.

In case of a violation, to further support the user in solving the is-
sue, the “Highlight process run on model” button gives the possibility
to show the corresponding counterexample, which will be displayed di-
rectly on the model by colouring the tasks and data objects involved in
the violation (see the grey and red-coloured elements in Figure 19).

Figure 19: PE-BPMN where the tasks and data involved in the violation of
Figure 18 are highlighted.

3.5 Validation

In this section, we discuss the validation we performed to assess the cor-
rectness, performance, and scalability of the tool.

By correctness we mean the ability to obtain a specification that re-
produces the behaviour of the PE-BPMN model in input, ensuring that
the results obtained for the specification are valid also for the model. By

66

performance we mean the ability to compute the specification and the ver-
ification results in a reasonable time, allowing to gain real benefit from
their application. By scalability we mean the ability of the tool to handle
the verification of PE-BPMN models of increasing size. This validation
shows the potentiality but also the limitation of the approach.

The evaluation we have performed has been then structured over two
main parts. The first one refers to pseudo-real models inspired by pos-
sible real case studies and corner cases to test the most likely cases. The
models are available on GitHub6. The reason for using existing reposito-
ries of PE-BPMN models is to assess the feasibility of the tool, showing
that it can also process real(istic) models designed by third-parties, with-
out knowing a priori the quality of the designed models.

The second one extensively validated the proposed verification ap-
proach by running a scalability analysis via ad-hoc designed and syn-
thetically generated models. The rationale for using synthetic models
was to do a scalability analysis on models on which we have complete
control and show the tool capabilities in extreme scenarios.

The parameters that we take into account in both evaluations are:
the number of pools (#pool), the numbers of elements represented as processes
like tasks and intermediate message events (#task), the number of data ex-
changes among the elements, either in the same participant or not (#data
exc.), the time needed to transform the collaboration into a mCRL2 specifica-
tion (T. time) and the time to execute the verification over it (V. time), the
time measure is in milliseconds.

#pool, #task and #data exc. suggest the size of the model and, conse-
quently, the size of the specification generated from it. T. time measures
the performance of our methodology that consists of generating the spec-
ification. While the V. time parameter actually depends on the mCRL2

toolset, but we need to measure it because the verification part makes
this methodology important and reveals the quality of the specification.

All the experiments have been performed on a dedicated machine
running Windows 10 Pro 64 bits, equipped with a processor Intel(R)

6https://github.com/SaraBellucciniIMT/leakDetectionAnalyzer/
tree/master/pe-bpmn%20models

67

https://github.com/SaraBellucciniIMT/leakDetectionAnalyzer/tree/master/pe-bpmn%20models
https://github.com/SaraBellucciniIMT/leakDetectionAnalyzer/tree/master/pe-bpmn%20models

Core(TM) i7-5500U CPU, and 8 GB of RAM (but only 256MB allocated
to the Java heap).

3.5.1 Experiments on Realistic PE-BPMN Models

Tables 2, 3, 4, 5 and 6 show a first experiment performed on a set of
pseudo-real PE-BPMN models modelled with the Pleak tool. Since ev-
ery model is unique, and it is not easy to correlate them, we postpone
the scalability validation to the next Section 3.5.2 while focusing on the
correctness of the approach and glimpsing some hints about the perfor-
mance evaluation.

Model #pool #task #data exc. T. time (ms) V. time (ms)
Model10 2 15 12 206 666
Model11 2 13 8 89 755
Model12 2 8 3 12 262
Model13 2 8 3 12 264
Model14 3 30 28 103 40762
Model15 3 18 12 20 566
Model16 2 19 16 18 3833
Model17 1 4 1 4 268
Model26 2 9 6 22 319
Model27 2 9 6 23 342
Model6 2 14 10 20 518
Model8 2 17 14 14 1409
Model9 4 26 18 53 12473
Model1 2 14 11 8 500
Model2 2 14 9 15 1021
Model3 3 30 28 26 168357
Model4 2 14 9 11 651
Model5 2 7 3 4 344
Model7 4 31 22 63 153849

Table 2: Results of secret sharing and its specialisations, additive and func-
tion, verification over PE-BPMN models. The rows in red are models with
a violation.

For every table, we use the red row to highlight when there is a vio-

68

lation, which means that secret sharing (Table 2) or encryption (Table 3)
are violated, the reconstruction of the secret is not always possible (Ta-
ble 4), there exists a case in which the synchronisation among MPC task
does not happen (Table 5), or there exists a deadlock in the model (Table
6). The reconstruction property is checked over the same models of the
secret-sharing verification, while the deadlock property applies to the
overall sets of models used in precedence.

Model #pool #task #data exc. T. time (ms) V. time (ms)
Model22 2 18 12 188 5557
Model23 4 16 9 26 1775
Model24 2 7 3 11 412
Model25 2 8 3 20 366
Model34 3 27 9 99 58252
Model18 2 8 3 16 526
Model19 2 8 3 7 428
Model20 2 8 3 6 652
Model21 2 8 3 9 393
Model33 3 27 9 25 10726

Table 3: Results of public key and symmetric key encryption verification for
PE-BPMN models. The rows in red are models with a violation.

In terms of correctness, we obtained the expected results for all the
verification types, since the correct results are known a priori. Regarding
performance, all the conducted experiments demonstrate that the transla-
tion time remains unaffected despite an increase in the model’s dimen-
sion. On the contrary, we can notice that in Table 2 even if Model14 and
Model7 have similar characteristics, the verification time of the model
with violation is longer than the safe one. In contrast, in Table 3 with
Model34 and Model33, we obtain an opposite trend.

This contrasting result can probably be explained by the generation of
the counterexample path and the number of data exchanges executed by
the models under analysis. Since the communications (or data exchange)
greatly contributes to the growth of the state space and the computation
of the counterexample needs to inspect it, we notice this behaviour that

69

Model T. time
(ms)

V. time
(ms) Model T. time

(ms)
V. time
(ms)

Model10 221 636 Model6 12 497
Model11 112 0 Model8 13 462
Model12 21 460 Model9 30 10117
Model13 10 0 Model1 10 463
Model14 74 1734 Model2 15 0
Model15 18 1018 Model3 35 0
Model16 16 643 Model4 17 0
Model17 4 449 Model5 5 0
Model26 19 682 Model7 34 17498
Model27 17 2848

Table 4: Results of reconstruction verification over the same PE-BPMN
models of Table 2. The rows in red are models that contain a trace in which
the secret is not reconstructed.

Model #pool #task #data exc. T. time (ms) V. time (ms)
Model28 2 8 3 165 308
Model29 2 7 0 27 582
Model30 2 8 0 17 432
Model31 2 12 0 37 671
Model32 2 12 4 30 440

Table 5: Results of MPC verification over PE-BPMN models. The rows in
red are the ones in which a path exists such that the synchronisation is not
satisfied.

will be confirmed in the validation over synthesised models.

3.5.2 Experiment on Synthesised Models

To measure the performance and scalability of the approach, we decided
to apply our methodology on two models, one containing a violation
of the technology and one that preserves it, in which we grow linearly
the number of pools it contains, i.e. increasing the parallelism inside the
specification, which is the most critical point for techniques based on a
process algebra.

70

Model T. time
(ms)

V. time
(ms) Model T. time

(ms)
V. time
(ms)

Model22 274 525 Model12 6 385
Model23 30 372 Model13 6 608
Model24 10 520 Model14 16 1624
Model25 10 404 Model15 12 427
Model34 81 3741 Model16 13 691
Model18 13 387 Model17 5 451
Model19 7 394 Model26 12 1478
Model20 7 694 Model27 15 552
Model21 7 359 Model6 8 922
Model33 28 4214 Model8 10 578
Model28 7 383 Model9 36 2186
Model29 8 340 Model1 8 672
Model30 5 522 Model2 43 1158
Model31 14 528 Model3 16 1957
Model32 12 440 Model4 9 711
Model10 11 421 Model5 4 560
Model11 13 916 Model7 30 715

Table 6: Result of deadlock freedom verification. The red rows are the ones
with a deadlock.

Even if the verification time is not entirely dependent on our contribu-
tions, since we use tools available in the mCRL2 toolset, we decided to
make it part of the validations because it is an essential point highlight-
ing the importance of the methodology. Moreover, another metric that
has been considered is the Extended Cyclomatic Metric which measures
the complexity of the model’s behaviour [76]. The measurement is done
using the RePROSitory tool [38].

Figure 20 shows the model with the violation, which is pool2 partic-
ipant receives both secret shares data1.2 and data1.1 and is then able to
reconstruct the secret even if it has no right to do so.

As we can notice the violation point has been inserted after the last
communication (“Check info” task) to consider the worst-case scenario.
To increase the parallelism, we add at each verification round a new pool

71

Figure 20: PE-BPMN model with violation used to measure the scalability
of the approach.

P . The process of P is the sequence of an intermediate message event and
a task, and operates as a medium to send data1.2. P will receive data1.2
from pool1 (new message flow between “Send share” and the message
event in P), and then P will send it to pool2 (message flow between the
task in P and the message event in pool2). Every new pool will increase
the number of parties that data1.2 must traverse before going from pool1
to pool2.

The model used in the non-violation scenario is the same as in Figure
20 but, instead of sending the share named data1.1, a data object without
privacy features is sent. We use the same technique as explained for the
model with a violation to increase the number of pools.

As we can see from the results in Table 7, both for models with and
without violation the verification time increases quadratically with re-
spect to the number of pools. For example, (#pool=15, verif. time(min) =
16), (#pool=16, verif. time(min) = 38) and (#pool=17, verif. time(min) =
88); this trend is also highlighted in the chart of Figure 21. On the other
hand, the translation time seems to increase more or less linearly with

72

the complexity of the model, as shown in Figure 22.
Comparing the analysis on the two types of models, we can see that

it is always the case that the one with a violation takes more time to
get an answer with respect to the same model without it, confirming
the fact that the counterexample generation affects the verification time
when the property is not satisfied. We fixed a threshold of 2 hours for
the verification time. The results shows that our solution achieves a quite
good scalability, as we can analyse 17 pools in parallel.

Figure 21: Chart showing how the verification time for PE-BPMN models
in table 7 grows depending on the number of pools being in parallel.

3.6 Related Work

In this section, we discuss the most relevant attempts in formalising BPMN
models without and with data, and we compare our work with other ver-
ification approaches.

On Formalising BPMN. Several formalisations have been proposed in
order to disambiguate the semi-formal semantics of BPMN. The most

73

Model #pool #task #data
exc.

Extended
cyclomatic

T. time
(ms)

V. time
(ms)

MODELS WITH VIOLATION
pool vlt1 2 13 9 11 3 322.5
pool vlt2 3 17 11 14 5.5 404.5
pool vlt3 4 21 13 17 7 522.5
pool vlt4 5 25 15 20 6 604.5
pool vlt5 6 29 17 23 9 725
pool vlt6 7 33 19 26 7 1269
pool vlt7 8 37 21 29 11.5 2627
pool vlt8 9 41 23 32 13 5921.5
pool vlt9 10 45 25 35 8.5 13920
pool vlt10 11 49 27 38 15 33290
pool vlt11 12 53 29 41 12 80468
pool vlt12 13 57 31 44 14 188920.5
pool vlt13 14 61 33 47 17.5 440131.5
pool vlt14 15 65 35 50 23 983674
pool vlt15 16 69 37 53 21 2299189.5
pool vlt16 17 73 39 56 26 5307371

MODELS WITHOUT VIOLATION
pool 1 2 13 8 11 4 250.5
pool 2 3 17 10 14 7.5 596
pool 3 4 21 12 17 6 408
pool 4 5 25 14 20 7 438.5
pool 5 6 29 16 23 10.5 600
pool 6 7 33 18 26 8 1073
pool 7 8 37 20 29 9 2176
pool 8 9 41 22 32 11 4918.5
pool 9 10 45 24 35 10 11631
pool 10 11 49 26 38 11 27149
pool 11 12 53 28 41 14 66339
pool 12 13 57 30 44 13 149742
pool 13 14 61 32 47 14 351630
pool 14 15 65 34 50 16 799768
pool 15 16 69 36 53 17 1863411
pool 16 17 73 38 56 18 4331327

Table 7: Experiments over a set of synthesised models in which the number
of pools grows linearly. The starting model for ”pool with violation” is in
Figure 20, while for ”pool without violation”, we constructed the same model
where, instead of ”data1.1”, that is the share triggering the violation, a data
that is not a share is sent. 74

Figure 22: Chart showing how the translation time for PE-BPMN models in
Table 7 grows depending on the number of pools being in parallel.

common formalisations of BPMN are given via mappings to various for-
malisms focusing on core elements of the notation, such as Petri Nets
[huai˙towards˙2010, 44, 71, 106, 15], and process calculi [103, 138, 102,
36, 99]. Some approach also translate processes into a model checker in-
put language, e.g. [82] verify BPMN by translating it (via a Petri Net
intermediate model) into the model checker input language TLA+. Oth-
ers formalise BPMN directly into First-Order Logic [63] and then rely
on a TLA+ implementation to carry out the formal verification. All these
translation works abstract from data objects since TLA+ cannot deal with
data and, consequently, are unsuitable for verifying security flows.

Considering process algebras, in [103] a translation to COWS is pro-
posed in order to reason about qualitative and quantitative behaviour of
the business process. However, the support for specifying and handling
data is missing in the verification method. In [138] a formalisation from
BPMN to CSP is proposed, and also in this case data objects are not con-
sidered and the refinement ordering used as verification method makes

75

it difficult to construct behavioural properties like the one for verifying
a sssharing violation. This kind of formalisations are influenced by the
constructs of the used language and the features of the related verifica-
tion techniques. None of these approaches supports the management of
data, which represents a barrier on the verification of data related prop-
erties.

Focusing on BPMN with data, only few formalisations are available
in the literature (e.g., [24, 48]). In [24] the authors propose a semantic
framework for BPMN with data. This approach is based on BPMN 1.0
and has a one-process view, while our focus is on the communication
among multiple processes, as we are interested in exchange of data in-
cluding secrets among multiple collaboration parties. In [48], instead,
BPMN models with data objects are formalised in terms of rewriting
logic. Also in this case, collaboration scenarios are not considered, while
they are of main importance in our approach. A recent work [37] pro-
vides a formal semantics of multi-instance collaborations taking into ac-
count the interplay between control features, messages and data. The
formalisation is based on a BNF syntax of BPMN. This formalisation has
driven the implementation of an animator tool that provides the visu-
alization of the execution of the given model. However, a verification
method is missing.

On Verification for Leakage Detection. Much effort has been devoted
to the formalisation and verification of business processes (e.g., [89, 54,
50, 119]). Nevertheless, less attention has been paid to the security per-
spective over data of the models. Considering privacy issues and data
leakage detection, some attempts have already been made using Petri
Nets [5], process graphs [116] and also session types [30] to detect if a
leakage exists and where. Unfortunately, these approaches are coarse-
grained verification techniques that do not consider more advanced fea-
tures, like the notion of data, instead of tokens, and they do not take into
account and make difficult to represent security policies, like PETs.

In [6] the authors focus on solving the problem of data privacy by
implementing, at design time, GDPR (General Data Protection Regula-
tion) patterns without introducing new BPMN elements, but neither a

76

way to apply verification nor validation is proposed. Regarding GDPR,
in [16] the authors propose a systematic approach to operationalise it; in
this respect, our proposal could be used in the last step to automatise the
way of evaluating the solution, if PETs are used. In [111], an extension of
BPMN with security policies expressed as queries is proposed, together
with a way to analyse them. In this case, however, the user should learn
two languages: the one for modelling, using the new elements, and the
one to apply verification, to manually write the queries. In addition, the
framework is not able to give a counterexample of a violation, which is
an important hint to correct errors occurring at design time as fast as
possible.

Moreover, the state of the art [25, 53, 7, 49, 29] highlights an increas-
ing interest in enhancing business processes with privacy technologies,
which consequently calls for methodologies to verify them.

77

Chapter 4

From Collaboration Logs to
Formal Specifications

This chapter presents the bottom-up approach that bridges the gap between
FM and BPM communities by taking inspiration from the process min-
ing field for automatically generating formal models representing the be-
haviour of existing systems by analysing observations that the systems
produced, i.e. logs, thus enabling formal verification.

Most of the approaches available in the BPM literature consider only
the point of view of a single organisation. They do not provide tech-
niques to derive a specification of a distributed scenario compositionally.
On the other hand, FM usually defines its models manually, making it
challenging to apply FM techniques in the business environment.

To overcome these issues, we rely on techniques from the process al-
gebra community to exploit their inherent compositionality and compre-
hensive analytical tools and on process mining to generate models auto-
matically.

The PALM Methodology - (Process ALgebraic Mining), and its re-
lated software tool, aims at obtaining process algebraic specifications
from system logs via a mining algorithm. The main phases of the method-
ology are shown in Figure 23.

The starting point is given by logs taken from components of real

78

Figure 23: Overview of the PALM methodology.

world systems; those can be, e.g., logs of an industrial process as well
as of a client-server network. In the mining step logs are analysed to
generate a formal specification for each of them, together with a mapping
associating sending/receiving action and with the exchanged messages.

The individual specifications can be exploited for verifying properties
of the individual systems, e.g., by means of model checking techniques.
But, more importantly, if the logs originate from components of a dis-
tributed system, the individual specifications can be combined, in the
aggregation step, to obtain a formal model of the global system, which
again can be analysed to consider issues originated by erroneous or un-
expected interactions among the components.

The PALM methodology is implemented as a software tool that in-
puts one or more event logs and outputs the specification for each log.
Additionally, in case of multiple logs belonging to a distributed system,
PALM also outputs the global specification of the system. The inputs
are logs expressed in the standard XES format, while the output is a cus-
tomised mCRL2 specification.

Experiments have validated the methodology with both custom-made
and real event logs.

The rest of the chapter provides a formalisation of the specification
language used to model the output of the methodology (Section 4.1),

79

presents the PALM methodology and the developed tool (Section 4.2),
describes how the methodology and related tool can be used (Section
4.3) and reports on the empirical validation of the approach (Section 4.4).
Finally a reviews of related works is given (Section 4.5). All the proofs
related to the formal propositions can be found in Appendix A.

4.1 The nCRL2 Core Calculus

PALM uses a fragment of the mCRL2 specification language. We for-
malise in this section such language, which we call nCRL2 (nano mCRL2),
and we show that the nano calculus respects the original semantics of
mCRL2, enabling us to use the toolset available for mCRL2 on the spec-
ifications we generate with our methodology.
In Appendix A we report part of the semantics of mCRL2, and we pro-
vide the proofs of the propositions stated in this section.

In Def. 4.1.1 we formalise the syntax of nCRL2, where we use the
following countable sets:

• The set A of basic actions (ranged over by a)

• The set P of process variables (ranged over by P)

Definition 4.1.1 (nCRL2 Process Specification Syntax). A process specifi-
cation in nCRL2 is a pair ⟨p,E⟩ where E is a set of process equations of the
form P = p and p is a process expression defined by the following grammar

p ::= (Process expression)
τ (Silent action)

| a (Basic action)
| p+ p (Choice operator)
| p.p (Sequence operator)
| p||p (Parallel Composition operator)
| allow(V, p) (Allow operator)
| comm(C, p) (Communication operator)
| hide(I, p) (Hiding operator)
| P (Process equation call)

80

where V, I ⊆ A and C is a set of allowed communications of the form a1| . . . |an →
c where n > 1 and a1, . . . , an, c ∈ A. For each P in the process specification,
there exists a unique definition P = p ∈ E. We identify process expressions up
to commutativity and associativity of choice and parallel compositions.

A process specification ⟨p,E⟩ can be written in the following format suit-
able as input for the mCRL2 toolset:

1 a c t
2 a1 , a2 , . . . , an ;
3 proc
4 P1 = p1 ; . . . ; Pm= pm ;
5 i n i t p ;

where {a1, . . . , an} is the set of actions in ⟨p,E⟩, and {P1 = p1, . . . , Pm =

pm} = E.

Definition 4.1.2 (nCRL2 Process Specification Semantics). The semantics
of a process specification ⟨p,E⟩ is a LTS (S,L,→) as follow:

• The set of states S (ranged over by s) contains process specifications and
one special termination state, denoted by✓.

• The set of labels L (ranged over by α) is generated by the following gram-
mar:

α ::= τ | a | α1|α2

• The transitions relation → ⊆ S ×L× S is inductively defined by the op-
erational rules in Table 8 Notice that we do not need symmetric versions
of rules CH1, CH2, PAR1, PAR2 and PARC2 because, as already men-
tioned in Def. 4.1.1, we identify process expressions up to commutativity
and associativity of choice and parallel operators. We will write s1

α−→ s2
to indicate that (s1, α, s2) ∈→ and, to improve the readability of the oper-
ational rules, we omit the set of process equations when they play no role
in a rule, e.g. writing ⟨p,E⟩ α−→ ⟨p′, E⟩ as p

α−→ p′, or ⟨p,E⟩ α−→ ✓ as
p

α−→ ✓

Where the communication function (γC) used by the comm operator
and the hiding function (θI) used by the hide operator are defined as
follows.

81

ACTn

α
α−→✓ CHn

1
p

α−→✓
p+q

α−→✓

CHn
2

p
α−→p′

p+q
α−→p′

SQn
1

p
α−→✓

p.q
α−→q

SQn
2

p
α−→p′

p.q
α−→p′.q

RECn
1

p
α−→✓

⟨P,E∪{P=p}⟩
α−→✓

RECn
2

p
α−→p′

⟨P,E∪{P=p}⟩
α−→⟨p′,E∪{P=p}⟩

PARn
1

p
α−→✓

p||q
α−→q

PARn
2

p
α−→p′

p||q
α−→p′||q

PARCn
1

p
α−→✓ q

β−→✓
p||q

α|β−−→✓

PARCn
2

p
α−→p′ q

β−→✓
p||q

α|β−−→p′
PARCn

4
p

α−→p′ q
β−→q′

p||q
α|β−−→p′||q′

ALLn
1

p
α−→✓ α∈V ∪{τ}
allow(V,p)

α−→✓ ALLn
2

p
α−→p′ α∈V ∪{τ}

allow(V,p)
α−→allow(V,p′)

COMn
1

p
α−→✓

comm(C,p)
γC (α)−−−−→✓

COMn
2

p
α−→p′

comm(C,p)
γC (α)−−−−→comm(C,p′)

HDn
1

p
α−→✓

hide(I,p)
θI (α)−−−→✓

HDn
2

p
α−→p′

hide(I,p)
θI (α)−−−→hide(I,p′)

Table 8: SOS nCRL2

Definition 4.1.3 (γC and θI).

γC1∪C2
(α) = γC1

(γC2
(α))

γ{a1|...|an→b}(α) =

{
b|γ{a1|...|an→b}(β) if actions ai occur in α ∀ 1 ≤ i ≤ n

α otherwise

where β = α \ (a1| . . . |an).
θI(τ) = τ

θI(a) =

{
τ if a ∈ I

a otherwise

θI(α1|α2) = θI(α1)|θI(α2)

82

nCRL2 is a language defined to simplify the vast syntax of mCRL2

that, even though it allows to express a lot of different behaviours, con-
tains components that are not exploited by the methodology that we are
presenting. For this reason, we defined the reduction function that en-
ables the mapping of a mCRL2 process term into a nCRL2 process term
without altering its semantics.

Definition 4.1.4 (Reduction function). It is a function that given a mCRL2
process term defines its correspondent nCRL2 process term removing all that
elements that are not considered in nCRL2 syntax, like time and data parame-
ters. ϕ : mCR2proc ∪ {✓} → nCRL2 proc ∪ {✓}

ϕ(✓) = ✓ ϕ(τ) = τ ϕ(a) = a ϕ(α1|α2) = ϕ(α1)|ϕ(α2)

ϕ(a(d1 . . . dn)) = undef ϕ(p+ q) = ϕ(p) + ϕ(q) ϕ(p.q) = ϕ(p).ϕ(q)

ϕ(t >> p) = ϕ(p) ϕ(p||q) = ϕ(p)||ϕ(q) ϕ(P) = P

ϕ(P (t1 . . . tn)) = undef ϕ(ΓC(p)) = comm(C, ϕ(p))

ϕ(τI(p)) = hide(I, ϕ(p)) ϕ(∇V (p)) = allow(V, ϕ(p))

The correspondence between the two languages is defined by the fol-
lowing propositions.

Proposition 1 (Operational correspondence from nCRL2 to mCRL2).
Let p be a nCRL2 process

if p α−→ p′ then ∃ u such that p α−→u q and ϕ(q) = p′

Proposition 2 (Operational correspondence from mCRL2 to nCRL2).
Let p be a nCRL2 process and u ∈ R>0

if p α−→u p′ then p
α−→ q and ϕ(p′) = q

For the sake of readability the proofs of Propositions 1 and 2 are re-
ported in A.1.

Running example. We illustrate our approach by using, throughout the
chapter, a simple travel scenario that is graphically represented, in stan-
dard BPMN notation, in Figure 24. The running example includes three
participants: the customer, the travel agency and the airline.

83

In the scenario, a customer sends a flight booking to a travel agent
and, upon booking confirmation from the agent, pays and waits for pay-
ment confirmation. The travel agent manages in parallel reception of the
payment and ordering the flight ticket to an airline company. The airline
company evaluates the ticket order and either confirms the payment or
refunds the customer.

Cu
st

om
er

Customer

Book Travel Booking
confirmed Pay Travel

Payment
confirmation

received

Tr
av

el
 A

ge
nc

y

Booking received

Payment
received

Confirm Booking

Order ticket

Ai
rl

in
e

Ticket Order
Received

Confirm
payment

Payment refund

pa
ym

en
t_

co
nfi

rm
at

io
n

tr
av

el

payment

or
de

r

co
nfi

rm
at

io
n

Figure 24: Running example

4.2 PALM Methodology

In this section, we illustrate the PALM methodology outlined in Fig-
ure 23. In particular, we describe the mining and the aggregation steps.

4.2.1 Mining

The mining step is the key part of the PALM methodology since it per-
mits passing from raw data stored in a system log to a formal specifica-
tion suitable for analysis. This step consists of three phases:

1. parsing log data;

84

2. mining tool-independent specification;

3. transformation into nCRL2 specification.

Preliminaries.

Before going into the details of each phase, we describe the specifica-
tion language used for describing the intermediate models produced as
output in the second phase. Indeed, although we have fully instanti-
ated our proposal for generating nCRL2 specifications, we kept the min-
ing process independent from the final target language, by resorting to
a tool-independent description of the model’s structure. This specification
language is based on the typical block structure operators of workflow
models, and relies on the operators defined by Schimm [115].

Definition 4.2.1 (Block structure syntax).

B := a | S{Bi}i∈I | P{Bi}i∈I | C{Bi}i∈I | L{B}

A block structure B is built from task actions a by exploiting opera-
tors for sequential composition (S), imposing an ordered execution of its
arguments; parallel composition (P), imposing an interleaved execution of
its arguments; exclusive choice (C), imposing the selection of one block
out of its arguments; and loop (L), producing an iterative execution of its
argument.

Given the above syntax we define the semantics of the block structure
language as follows.

Definition 4.2.2 (Block structure semantics). We define the semantics of a
block structure language as a LTS TS = (S,Act,→, so) where:

• S is the set of state in the transition system, that are blocks bi ∈ B and
one special termination state, denoted by✓

• Act are the set of labels, i.e. basic actions a plus the silent action τ .

• → is the transition relation that is inductively defined through operational
rules.

• s0 is the initial state.

85

op1
a

a−→✓

Sop1
B1

a−→B′
1

S{B1,...,Bn}
a−→S{B′

1,...,Bn}
n ≥ 1

Sop2
B1

a−→✓
S{B1,...,Bn}

a−→S{B2,...,Bn}
n > 1

Sop3
B

a−→✓
S{B}

a−→✓

Pop1
Bj

a−→B′
j

P{B1,...,Bj ,...,Bn}
a−→P{B1,...,B′

j ,...Bn}
1 ≤ j ≤ n

Pop2
Bj

a−→✓
P{B1,...,Bj ,...,Bn}

a−→P{B1,...,Bn}\{Bj}
n > 1

Pop3
B

a−→✓
P{B}

a−→✓

Cop1
Bj

a−→B′
j

C{B1,...,Bj ,...,Bn}
a−→B′

j

Cop2
Bj

a−→✓
C{B1,...,Bj ,...,Bn}

a−→✓

Lop1
L{B}

τ−→✓

Lop2
B

a−→B′

L{B}
a−→S{B′,L{B}}

Table 9: SOS block structure

Parsing log data.

Mining algorithms input an event log and output a model. As already
mentioned in Section 2.3, logs are collections of event-based data organ-
ised as cases. An event has a name and a lifecycle attribute referring to a
state of the transactional lifecycle model of the activity instance produc-
ing the event.

In this thesis, we refer to a simplified version of the lifecycle, indicat-

86

ing when an event started and ended using the values ‘start’ and ‘com-
plete’, respectively.

We assume that events with the same name and the same attribute
of the lifecycle correspond to different executions of the same (unique)
system activity.

In the parsing phase of our mining process, each case of the log is
transformed into a trace of event names, where the events are ordered
according to their completion defined by the ‘complete’ value of the Life-
cycle attribute.

In the (excerpt of the) log in Table 10, concerned with the execu-
tion of the Travel Agency component of our running example, since the
event ‘Confirm booking’ starts after the event ‘Booking received’ has
completed, the corresponding trace will include the subtrace ‘Booking
received, Confirm booking’.

Case Event name Lifecycle
75 Booking received start
75 Booking received complete
75 Confirm Booking start
75 Confirm Booking complete
75 Payment received start
75 Order ticket start
75 Payment received complete
75 Order ticket complete
....

Table 10: Excerpt of Travel Agency log

In this phase, for each trace in the log, we compute a happened-before
relation, which is used in the next phase. This relation takes into account
the chronological order of events and considers only direct dependencies
that are given by the lifecycle of the events (and not by the order in the
log). This means that an event e is in happened-before relation with an
event e′ (written e < e′) if the completion of e is followed by the starting
of e′.

In Table 10, the happened-before relation of case 75 is {Booking re-

87

Case Event name Lifecycle
93 Ticket Order Received start
93 Ticket Order Received complete
93 Payment refund start
93 Payment refund complete
56 Ticket Order Received start
56 Ticket Order Received complete
56 Confirm payment start
56 Confirm payment complete
....

Table 11: Excerpt of Airline log

ceived < Confirm Booking, Confirm Booking < Payment received, Con-
firm Booking < Order ticket}. Instead, in Table 11, the happened-before
relation of case 93 is {Ticket Order Received < Payment refund}, while
for case 56 it is {Ticket Order Received < Confirm payment}.

Mining tool-independent specification.

This phase is inspired by the algorithm proposed by Schimm [115]. It
consists of seven steps, which manipulate the set of traces in the log to
generate the intermediate model described above. The algorithms devel-
oped in the thesis retain the name associated with Schimm because the
fundamental idea of the algorithm remains closely related to his work.
This association helps to establish a conceptual link between the algo-
rithms while acknowledging the modifications made to suit our specific
objectives. In particular, the step referred to as ”mining tool-independent
specification,” which closely resembles Schimm’s algorithm, utilises the
same block structure but incorporates a specific semantics tailored to our
requirements instead of relying solely on textual descriptions. Addi-
tionally, we introduced a definition of loops necessary for identifying
repeated activities and their related patterns within event logs. We also
introduced a related metric that quantifies the weight of the loop, which
can be leveraged to reduce the state space of the specification. Further-
more, we applied further minimisation techniques to obtain a more com-

88

pact specification It is important to note that the transformation into an
nCRL2 specification and the aggregation steps to obtain the overall spec-
ification are not directly related to Schimm’s work. Lastly, we provided
an implementation of the technique, which is available on GitHub, while
Schimm’s implementation is not accessible.

Definition 4.2.3 (Loop). Let E be an event log, ρ ∈ E a trace, and hbρ the
happened-before relation of ρ; every loop in ρ starting from event e is identified
by a non-empty set of the form Le = {ρ′ ⊆ ρ | first(ρ′) = e , (last(ρ′) < e) ∈
hbρ}, where ⊆ denotes the subtrace relation, and first(·) and last(·) denote the
first and last event of a trace, respectively.

According to the above definition, a loop is identified in a trace ρ

when this contains at least a subtrace ρ′ such that its last event happened
before the first one. Notably, more than one subtrace starting with the
same event can have this characteristic, depending on the structure of
the body of the loop; hence, all these subtraces are collected together in a
set, which will be then analysed to define the structure corresponding to
the body of the loop.

The steps of our mining algorithm are the following:
1st step - Search for loops in: traces, out: traces and sets of subtraces. All

traces retrieved from the log file are analysed in order to identify possible
loops. When a subtrace is identified as part of a loop, because its last
event is in happened-before relation with the first one (see Def. 4.2.3),
the subtrace is replaced by a reference to the loop and stored in the loop
set (as in Def. 4.2.3) to be analysed later.
For example, given the log trace abcdcdf , after this step we obtain ab0f ,
where 0 is a reference to the loop set {cd}. From now on, until step 7,
we will deal with loop references as events; hence, the happened-before
relation of each trace with references will be updated accordingly.

2nd step - Creation of clusters in: traces, out: traces. Traces with the
same event names and happened-before relations are grouped to form a
cluster. This clustering permits reducing the number of traces to process
in the following steps, without affecting the structure of the produced
model.

89

For example, given the two traces abcd and acbd with the same happened-
before relation {a < b, a < c, c < d, b < d}, they are unified in the same
cluster.

3rd step - Identification and removal of pseudo-dependencies in:
traces and happened-before relation, out: traces. This step aims at identifying
clustered traces that contain pseudo-dependencies, i.e. precedence de-
pendencies between events that are invalidated by other traces. Specifi-
cally, given a trace ρ1 with two events with a dependency of precedence
in the happened-before relation of the trace, there should not exist an-
other trace ρ2 with the same event names in which there is not a relation
of precedence between the two events in its happened-before relation. If
such other trace ρ2 exists, then ρ1 contains a pseudo-dependency and,
hence, ρ1 is removed from the set of trace to be passed to the next step.
For example, let us consider a trace corresponding to another case of the
log in Table 10 such that its happened-before relation contains the depen-
dency Payment received < Order ticket; this is a pseudo-dependency be-
cause the trace corresponding to the case 75 provides the proof that this
is not a real dependency; thus it will be discarded.

4th step - Model for each cluster in: traces, out: set of coarse block struc-
ture cluster. For every cluster of traces we compute the set P of paths that
can be generated by following the happened-before relation. A path is a
sequence of events e1,. . . ,en, denoted by e1 → . . . → en. Notably, a path
does not represent a trace, but an ordered sequence of events where each
event is in happened-before relation with the next one. Now, every event
e will correspond to a basic action in our block structure representation.
Every path p ∈ P , with p = e1 → . . . → en, is rendered as a sequence
block S{e1, . . . , en} (denoted by S{p} for short). Thus, a set of paths
{p1, . . . , pn} is rendered as a parallel block that embeds the sequence
blocks corresponding to the included paths, i.e. P{S{p1}, ..., S{pn}}.

Example 1. From the cluster:

{Booking received, Confirm Booking, Payment received, Order ticket}

obtained by the case 75 in Table 10, with happened-before relation:

90

⟨ Booking received < Confirm Booking, Confirm Booking < Payment received,
Confirm Booking< Order ticket⟩

we will obtain the set of paths:

P = {Booking received → Confirm Booking → Payment received, Booking
received → Confirm Booking → Order ticket }.

The set P will result in the following block structure:

P{S{Booking received, Confirm Booking, Payment received}, S{Booking
received,Confirm Booking,Order ticket}}.

5th step - Unify all block structures in: set of coarse block structures,
out: (single) coarse block structure. All blocks B1,. . . ,Bn obtained in the
previous step are gathered in a single block using the choice operator:
C{B1, ..., Bn}.

6th step - Restructuring the model input: coarse block structure, out-
put: block structure. The structure obtained from the previous step does
not yet represent a model of the system behaviour; it is still defined in
terms of events rather than actions.
For example, the same event name may appear many times in the model,
since it has been generated starting from different cases in the log, but it
has to correspond to a single action of the model; such events should be
merged into a single one. To this aim, we apply the following transfor-
mation rules (the symbol ⇝ represents a unidirectional transformation
from a block structure term to another) up to commutativity of parallel
and choice operators:

S{B}⇝ B C{B}⇝ B P{B}⇝ B

P{S{e, e1, . . . , en}, . . . , S{e, e′1, . . . , e′m}}⇝ S{e, P{S{e1, . . . , en}, . . . , S{e′1, . . . , e′m}}}

P{S{e1, . . . , en, e}, . . . , S{e′1, . . . , e′m, e}}⇝ S{P{S{e1, . . . , en}, . . . , S{e′1, . . . , e′m}}, e}

C{S{e, e1, . . . , en}, . . . , S{e, e′1, . . . , e′m}}⇝ S{e, C{S{e1, . . . , en}, . . . , S{e′1, . . . , e′m}}}

C{S{e1, . . . , en, e}, . . . , S{e′1, . . . , e′m, e}}⇝ S{C{S{e1, . . . , en}, . . . , S{e′1, . . . , e′m}}, e}

The rules are syntax driven; in the case in which more than one rule can
be applied, an arbitrary order is defined.

Example 2. By applying these rules to the block

91

C{P{S{Booking received, Confirm Booking, Payment received}, S{Booking
received,Confirm Booking,Order ticket}}}

we obtain the block:

S{Booking received, Confirm Booking, P{Payment received,Order ticket}}

7th step - Replacing loop references in: loop sets, out: block structure.
In this step, we rerun the algorithm over the traces in the loop sets until
no loop block exists in the traces. In this way, we obtain a block structure
B for each loop set; the term L{B} will then replace all occurrences of
the corresponding reference.
For example, the trace shown in the first step results in the block S{a, b, 0, f},
that after this step becomes S{a, b, L{S{c, d}}, f}.

The technical details concerning each step of the mining algorithm
can be found in Appendix B, which provides comments on the source
code of the implementation [97], complete results of the running example
in Figure 24 and how to run the experiments executed in Section 4.4.

Transformation into nCRL2 specification.

The previous phase gives as output a block structure specification that is
independent from a specific analysis tool. This choice makes the mining
process flexible to be extended to produce specifications written in dif-
ferent languages, to exploit different process-algebraic techniques and
tools.

Here, to demonstrate feasibility and effectiveness of our proposal,
we have targeted the methodology to nCRL2 specifications, i.e. a for-
mal specification language that guarantees operational correspondence
to mCRL2 (as shown in Section 4.1). To obtain a nCRL2 specification,
we defined a function T : B → ⟨p,E⟩ where B is the set of block struc-
tures and ⟨p,E⟩ is a nCRL2 process specification. Intuitively, the trans-
formation function inputs a block structure and outputs a pair composed
of a nCRL2 process and a related set of process definitions.

Formally, function T is defined inductively on the syntax of block
structures as follows:

92

T (✓) = ✓
T (τ) = ⟨τ, ∅⟩
T (a) = ⟨a, ∅⟩
T (S{Bi}i∈I) = ⟨.i∈IT (Bi), E⟩
T (C{Bi}i∈I) = ⟨+i∈IT (Bi), E⟩
T (P{Bi}i∈I) = ⟨||i∈IT (Bi), E⟩
T (L{B}) = ⟨K, {K = (T (B).K + T (B))} ∪ E⟩ with K fresh

A valid termination (✓) is a special process that has been added to the
syntax of processes in order to identify a good termination; this definition
is valid both for the block structure and the nCRL2 language.

τ and visible actions are straightforwardly transformed respectively
into τ and nCRL2 actions, without producing any process definition.
Each composition structure operator, except for the loop one, is rendered
in terms of the corresponding nCRL2 operator: S as ., C as +, and P

as ||. Thus, a sequential composition of blocks is transformed into a
pair, where the first element is a sequential composition of the processes
resulting from the transformation of each inner block, and the second
element is the set given by the union of the process definitions result-
ing from the transformation of each inner block. The transformation of
choice and parallel composition are similar.
Instead, a loop structure is rendered as a pair whose first element is a
process call with a fresh identifier K and whose second element is the
union of the recursive definition of K with the process definitions re-
sulting from the transformation of the inner block. The definition of K
is given in terms of the process resulting from the transformation of the
block occurring as body of the loop; it ensures the execution of at least
one iteration of the body.

The correspondence between a block structure and the nCRL2 pro-
cess is stated as follows, where we mark the operational semantics of
nCRL2 as ⇝ to diversify it from the operational semantic of the block
structure

Proposition 3 (Operational correspondence from Block Structure to nCRL2).
Given a block structure B it holds that

if B a−→ B′ then T (B)
a
⇝ T (B′′) and T (B′) = T (B′′)

93

Proposition 4 (Operational correspondence from nCRL2 to Block Struc-
ture). Given a block structure B it holds that

if T (B)
a
⇝ T (B′) then B

a−→ B′′ and T (B′) = T (B′′)

The complete demonstration of Propositions 3 and 4 is in Appendix
A.2. A pair ⟨P, {K1 = P1, . . . ,Kn = Pn}⟩ produced by T corresponds to
the following nCRL2 specification (we use notation act(·) to indicate the
actions occurring within a term of a specification):

1 a c t
2 act(P) , act(P1) , . . . , act(Pn) ;
3 proc
4 K=P ; K1=P1 ; . . . ; Kn=Pn ;
5 i n i t K ;

Example 3. If we apply the T function to the block structure resulting from
the log in Table 10 (since the example does not contain loops, for the sake of
readability we omit the second element of the pair generated from T), we obtain:

T (S{Booking received,Confirm Booking,P{Payment received,Order Ticket}})
= Booking received.Confirm Booking.(Payment received || Order Ticket)

From the block structure resulting from the log in Table 11 we obtain:

T (S{Ticket Order Received,C{Payment Refund,Confirm payment}})
=Ticket Order Received.(Payment refund + Confirm payment)

Using the transformation function T we have obtained an nCRL2 pro-
cess specification well defined from the process algebraic point of view,
i.e. it respects the syntax of the nCRL2 language given in Section 4.1.
However, in this actual form, the specification cannot be used as input
for the analysis tools provided by the mCRL2 toolset. Indeed, these tools
require the mCRL2 specification and, consequently, the nCRL2 specifi-
cation, also to respect the pCRL format [107], where parallel, communi-
cation, renaming and hiding operators must be positioned at top level.

Therefore, we have defined another function, Tp, to transform a pro-
cess specification produced by T (possibly with parallel operator at any
level of nesting, and not using communication, renaming and hiding op-
erators) into an equivalent one in the pCRL format. Formally, Tp takes as

94

input a pair ⟨P,D⟩ and returns a tuple ⟨P ′, D′, CommSet,AllowSet,HideSet⟩,
where P ′ and D′ are a process and a set of process definitions where the
parallel operator is moved at top level, while CommSet, AllowSet and
HideSet are sets of communication expressions, allowed actions and hid-
den actions, respectively. Intuitively, to move nested parallel processes
to the top level, the Tp function uses additional synchronisation actions
that permit to properly activate the moved processes and to signal their
termination. These added actions are forced to communicate and the ac-
tions resulting from their synchronisations are hidden.

For the sake of presentation, to avoid dealing with projections and
other technicalities concerning tuples, we provide in Figure 25 a simpli-
fied definition of Tp in which we do not explicitly represent the sets of
communication expressions, allowed actions and hidden actions; such
sets are indeed populated (in a programming style) by means of func-
tions addComm, addAllow and addHide, respectively. The sets CommSet

and HideSet are instantiated to ∅, while the set AllowSet is instantiated
to the set of all actions of the process and the process definitions to be
transformed. We use t, ti and th to denote the synchronisation actions.
In case of process definitions, it is not sufficient to move the parallel op-
erator at top level of the process occurring as body; the operator has to
be removed by expanding the term according to the interleaving seman-
tics of the operator (like CCS’s expansion law [88, Sec. 3.3]). Specifically,
a process definition K = P is transformed into K = Td(P), where the
auxiliary function Td is defined as follows:

Td(a) = a Td(.i∈IPi) = .i∈ITd(Pi) Td(+i∈IPi) = +i∈ITd(Pi)

Td(||i∈IPi) = +s∈(
⋃

i∈I seq(Td(Pi)))s Td(K) = K

with function seq(P) returning the set of all sequences of actions/calls of
P .

With Tseq , each process in the parallel block is surrounded by a pair of
synchronisation actions (t and t) that can communicate only after that the
sequence preceding the parallel process has been executed. For example,
a.(b||c) turns into allow({t′, a, b, c}, comm({t|t → t′}, a.t.b.t||t.c.t)). With
Tch we surround each process in the choice with a pair of synchronisa-

95

Tp(a) = a
Tp(.i∈IPi) = Tseq(.i∈ITp(Pi))
Tp(+i∈IPi) = Tch(+i∈ITp(Pi))
Tp(||i∈IPi) = ||i∈ITp(Pi)

Tp(K) = K
Tseq(.i∈{1,...,n}Pi) =

Tseq
(
(.i∈{1,...,j−1}Pi).t.Q1.t.(.h∈{j+1,...,n}Ph)

)
||

||m∈M\{1}t.Qm.t

with addComm(t(|t)|M |−1 → t′),

addAllow(t′), addHide(t′)

if ∃j ∈ I :

Pj= ||m∈MQm

∧ t and t′ fresh

.i∈{1,...,n}Pi otherwise

Tch(+i∈IPi) =

Tch
(
(+i∈I\{j}ti.Pi.ti) + t.Q1.t

)
||

||m∈M\{1}((+h∈I\{j}th.th) + t.Qm.t)

with addComm({t(|t)|M |−1 → t′}
∪ {ti(|ti)|M |−1 → t′ | i ∈ I \ {j}}),

addAllow(t′), addHide(t′)

if ∃j ∈ I :

Pj= ||m∈MQm

∧ t fresh
∧ ∀i∈I\{j}ti fresh

+i∈IPi otherwise

Figure 25: Definition of function Tp (and related auxiliary functions).

tion actions that are then used in the new parallel process to give the
same possibility of executing a choice among processes in each process
inside it. For example, a+(b||c) turns into allow({t′, a, b, c}, comm({t|t →
t′, t1|t1 → t′}, t.a.t+ t1.b.t1||t.t+ t1.c.t1)).

Example 4. If we apply function Tp to ⟨P, ∅⟩, where P is the first nCRL2
process produced in Example 3 (the second one does not contain the parallel op-
erator). We obtain Tp(⟨P, ∅⟩) = ⟨Tp(P), ∅, CommSet,AllowSet,HideSet⟩,
where:

96

Tp(P) = Tseq(Tp(Booking received).Tp(Confirm Booking).
(Tp(Payment received) || Tp(Order Ticket)))

= Booking received.Confirm Booking.t.Payment received.t || t.Order Ticket.t

AllowSet = {t′, Booking received, Confirm Booking, Payment received,
Order Ticket}

CommSet = {t|t → t′} HideSet = {t′}

Thus, a tuple ⟨P, {K1 = P1, . . . ,Kn = Pn, CommSet,AllowSet,HideSet⟩
produced by Tp corresponds to the following nCRL2 specification:

1 a c t
2 act(AllowSet) , act(CommSet) ;
3 proc
4 K=P ; K1=P1 ; . . . ; Kn=Pn ;
5 i n i t hide (HideSet , allow (AllowSet ,comm(CommSet ,K))) ;

4.2.2 Aggregation

In this step, the specifications obtained from the logs of components of
a distributed system can be combined to obtain an aggregate specifica-
tion of the overall system. This allows one to focus analysis on the over-
all behaviour of a system resulting from the message-based interactions
among its components. This step takes advantage of the parallel compo-
sition operators that enable channel-based communication, to obtain the
specification of the full system.

To enable the aggregation step, it is necessary to extract from the
logs the information concerning message exchanges. This information is
specified in the events stored in XES logs by specific attributes indicating
input and output messages. Below, we report the XES code correspond-
ing to an event associated to the ‘Booking received’ task, which receives
a ‘travel’ message:

<event>
<s t r i n g key=”concept:name ” value=”Booking rece ived”/>
<s t r i n g key=” input message ” value=” t r a v e l”/>
<s t r i n g key=” l i f e c y c l e : t r a n s i t i o n ” value=” s t a r t ”/>
<date key=” time:timestamp ” value =”2020 −07−01T01:03 :10+01:00”/>

</event>

Information about message exchanges is extracted from the logs dur-
ing the parsing phase, and is made available to the aggregation step in

97

terms of two partial functions: Minp (resp. Mout) takes as input an event
name and returns the name of the received (resp. sent) message, if any.

We define how an aggregate specification is obtained below; we use
notation cod(·) to indicate the codomain of a function.

Definition 4.2.4 (Aggregation). Let ⟨Pi, Di, CommSeti, AllowSeti, HideSeti⟩,
with i ∈ I = {1, . . . n}, be specification tuples obtained at the mining step, and
Minp and Mout be input and output message functions; the sets defining their
aggregate specification are as follows:

• Acti = act(Pi) ∪ act(Di), with i ∈ I ;

• Actagg =
⋃

i∈I(Acti ∪ act(CommSeti)) ∪ cod(Minp) ∪ cod(Mout);

• CommSetagg =
⋃

i∈I CommSeti ∪
{a1|a2 → m | a1 ∈ Acti, a2 ∈ Actj , i ̸= j, Minp(a1) =

Mout(a2) = m};

• AllowSetagg =
⋃

i∈I AllowSeti ∪ cod(Minp) ∪ cod(Mout) \
{a1, a2 | a1 ∈ Acti, a2 ∈ Actj , i ̸= j, Minp(a1) = Mout(a2)};

• HideSetagg =
⋃

i∈I HideSeti.

Hence, the corresponding aggregate specification is:

1 a c t
2 Actagg

3 proc
4 K1=P1 ; . . . ; Kn=Pn ; D1 ; . . . ; Dn

5 i n i t hide (HideSetagg , allow (AllowSetagg ,comm(CommSetagg ,K1 | | . . . | |Kn))) ;

Every time two events correspond to a message exchange between two
tasks, the communication is described as a synchronisation of actions,
which results in an action named with the message name.

We conclude with a simple example aiming at clarifying the aggrega-
tion step; a richer example based on the running scenario is provided in
the next section.

Example 5. Let us consider a simple collaborating scenario where one partici-
pant sends a message m1 to another one and then waits for a series of messages
m2; on the other side, after receiving the message m1, the participant decides
either to perform an internal activity and stop, or to perform a different internal

98

activity and send a series of messages m2. This behaviour is captured by the
mining step in terms of the following specification tuples:

⟨a.K1, {K1 = (b.K1 + b)}, ∅, {a, b}, ∅⟩
⟨c.(d+ (e.K2)), {K2 = (f.K2 + f)}, ∅, {c, d, e, f}, ∅⟩

and the functions providing the messages information extracted from the logs
are defined by the following cases:

Mout(a) = m1, Mout(f) = m2, Minp(c) = m1, and Minp(b) = m2.

Now, the sets defining the corresponding aggregate specification are defined as
follows:

Actagg= {a, b} ∪ {c, d, e, f} ∪ {m1,m2}
CommSetagg= {a|c → m1, f |b → m2}
AllowSetagg= Actagg \ {a, c, f, b} = {d, e,m1,m2}
HideSetagg= ∅

The resulting aggregate specification is as follows:
1 a c t
2 a, b, c, d, e, f,m1,m2

3 proc
4 K3=a.K1 ; K4=c.(d + (e.K2)) ; K1 = (b.K1 + b) ; K2 = (f.K2 + f)
5 i n i t allow ({d, e,m1,m2} ,comm({a|c → m1, f |b → m2} ,K3 | |K4)) ;

where the hide command is omitted since the hiding set is empty.

4.3 PALM at Work

The PALM methodology introduced in the previous section has been im-
plemented as a command-line Java tool, called PALM as well, whose
source and binary code is available on GitHub [97].

The PALM tool enables us to analyse both the specification resulting
from a single event log and the aggregate specification resulting from
multiple logs. To support the analysis of the produced specifications,
the tool provides an interface for some of the most used mCRL2 tools
(mcrl22lps, lps2lts, etc.). It also provides additional functionalities to
support the validation illustrated in Section 4.4, such as the computa-
tion of the fitness measure to analyse the quality of the obtained specifi-
cations, and the transformation into the nCRL2 language of the models

99

produced by other process mining algorithms, to compare their outcome
with the specifications produced by PALM.

In addition, to keep the state space of the produced specifications
manageable for the analysis, the tool allows users to set a loop threshold
parameter, which is used during the generation of the nCRL2 specifica-
tion to decide whether to unfold a loop or to represent it as a process defi-
nition. Such a decision is taken by comparing the value of this parameter
with the frequency value computed for each loop in the block structure
specification. The loop frequency measures the weight of a loop consid-
ering how many times this loop appears in the log and its length. This
value ranges between 0 to 100, where 100 means that the loop has high
relevance in the log, i.e. every trace in the log is produced by the loop,
while 0 means that the loop’s events do not appear in the log. Thus, if t
is the frequency threshold chosen by the user, the PALM tool will write
as recursive processes only those loops that have frequency greater than
or equal to t, while all the other loops are unfolded according to their
frequency. We defined loop frequency in PALM as follows.

Definition 4.3.1 (Loop frequency). Given a loop l and a set {ci}i∈I of cases
of a log, the frequency of the loop is computed as follows:

floop(l, {ci}i∈I) =

(∑
i∈I floop(l, ci)

ncases
+

ncases × 100

|I|

)
/2

where l is the loop, ncases is the number of cases in {ci}i∈I in which l is present.
The frequency over a single case is computed as follows:

floop(l, c) = occ(l, c)× |l| / |c| × 100

where occ(l, c) returns the number of occurrences of the loop l in c, while |c|
(resp. |l|) returns the length of c (resp. l).

We conclude the section with the application of the PALM methodol-
ogy and its tool to our running example.

Example 6. Consider the running example in Figure 2. To apply the bottom-
up approach to this running example, synthetically generated event logs corre-
sponding to each participant (i.e., Space Agency, Data Centre) were necessary.
Since the example involves a collaboration scenario, the aggregation capability
of the PALM tools was then used to generate the overall specification as follows.

100

1 a c t
2 S1 , S2 , S3 , S4 , S5 , S6 , S7 , D1 , D2 , D3 , t0 , t , s h a r e , r e s u l t ;
3 p r o c
4 S=(S1 . S2 . t0 . S3 . t0 . S6 . S7) | | (t0 . S4+S5 . t0) ;
5 D=D1 . D2 . D3 ;
6 i n i t
7 h i d e ({ t } ,
8 a l l o w ({ t , s h a r e , r e s u l t , S1 , S3 , S4 , S5 , S7 , D2} ,
9 comm({ t0 | t0−>t , S2 |D1−>s h a r e , D3 | S6−>r e s u l t } ,

10 S | |D))) ;

Listing 4.1: nCRL2 aggregated specification of the running example in
Figure 2.

The specification allows checking properties related to the overall
specification, such as deadlock freedom1, which is satisfied, or other spe-
cific properties of the model, e.g. it should always be possible to ac-
cess the Data Centre help for computation of satellite collision [true ∗
.D2.true∗]true, that results in a satisfied property for the specification.

Example 7. Let us now consider an example where the collaboration condition
is not satisfied. The example starts with the nCRL2 process specifications ob-
tained (separately) from the event logs corresponding to each participant of our
running example (i.e., Customer, Travel agency and Airline). They correspond
to processes P0, P1 and P2 in Listing 4.2 (their full nCRL2 specifications are
reported in [19]).

When these specifications are analysed with mCRL2 tools, the individual
process behaves as expected (e.g., no deadlock occurs - all states of the LTS cor-
responding to the specification have outgoing transitions). However, since they
are specifications of components of a single distributed system, it is important to
check also their aggregate specification in Listing 4.2.

1 a c t
2 Confirmpayment , BookTrave l , B o o k i n g r e c e i v e d , P a y m e n t r e c e i v e d , Paymentrefund ,
3 B o o k i n g c o n f i r m e d , Conf irmBooking , c o n f i r m a t i o n , O r d e r t i c k e t ,
4 T i c k e t O r d e r R e c e i v e d , PayTrave l , t , P a y m e n t c o n f i r m a t i o n r e c e i v e d , payment ,
5 p a y m e n t c o n f i r m a t i o n , t0 , o r d e r , t r a v e l ;
6 p r o c
7 P0=(T i c k e t O r d e r R e c e i v e d . (Paymentre fund+Conf irmpayment)) ;
8 P1=(B o o k T r a v e l . B o o k i n g c o n f i r m e d . PayTrave l . P a y m e n t c o n f i r m a t i o n r e c e i v e d) ;
9 P2 = ((B o o k i n g r e c e i v e d . Conf i rmBook ing . t0 . P a y m e n t r e c e i v e d . t0)

10 | | (t0 . O r d e r t i c k e t . t0)) ;

1In the deadlock checking, the mCRL2 tool is not able to distinguish between a correct
termination and an actual deadlock. Anyway, since the Terminate action is appended to
each correct termination, we can solve this issue by resorting to the model checking of the
logical formula [!Terminate∗] < true > true.

101

11 i n i t
12 h i d e ({ t } , a l l o w ({ Paymentre fund , c o n f i r m a t i o n , t , payment , p a y m e n t c o n f i r m a t i o n ,
13 o r d e r , t r a v e l } ,
14 comm({ B o o k i n g r e c e i v e d | B o o k T r a v e l−>t r a v e l ,
15 Confirmpayment | P a y m e n t c o n f i r m a t i o n r e c e i v e d−>p a y m e n t c o n f i r m a t i o n ,
16 O r d e r t i c k e t | T i c k e t O r d e r R e c e i v e d−>o r d e r ,
17 PayTrave l | P a y m e n t r e c e i v e d−>payment ,
18 B o o k i n g c o n f i r m e d | Conf i rmBook ing−>c o n f i r m a t i o n , t0 | t0−>t } ,
19 P0 | |P1 | |P2))) ;

Listing 4.2: nCRL2 aggregate specification of the running example.

The fact that the Customer will wait forever to receive the payment confirmation
if the Airlane has to refund the payment (see Figure 24) is observable only having
the overall specification, since when analysed separately there is no communica-
tion between the participants. Using one of the mCRL2 checking functionality,
we detect a deadlock. Interestingly, the tool, in case of deadlock, offers a coun-
terexample trace, i.e. the ordered sequence of actions that leads to the deadlocked
state. In our example, it reports a trace where the customer has paid for the
travel, the order is sent by the travel agency to the airline company, but the lat-
ter takes the “Payment refund” choice and the customer process waits forever
the “payment confirmation” message.

4.4 Validation

In this section, we report the results of the experiments we carried out
to empirically validate the PALM methodology and the related tool, con-
sidering both logs synthetically generated using PLG2 [28] and logs from
real scenarios [1].

Validation Overview.

In the validation we compare the results of the experiments conducted
with PALM against those obtained by using three well-known process
mining discovery algorithms presented in Section 2.3, i.e. Inductive Miner
(IM), Structured Heuristic Miner (S-HM), and Split Miner (SM), sup-
ported by the TKDE Benchmark tool discussed in [14]. We consider these
algorithms since they perform quite well in terms of mining time and,
also, perform better than others in terms of quality measures [14].

Our comparison is based on a revised version of the fitness quality
measure used in process mining to evaluate discovery algorithms [26,

102

109]. Like the original fitness measure, also our notion aims at measuring
the proportion of behaviour in the event log that is in accordance with
the model but does this differently by taking advantage from the model
checking technique enabled by our process algebraic specifications. For
this reason, we refer to it as model checking-based fitness.

In this work, we focus on fitness since it is the measure most consid-
ered in the literature; we leave as future investigation the introduction of
other quality measures from the process mining field, namely precision,
to quantify how much a process model overapproximates the behaviour
seen in an event log [122], and generalisation, to assesses the extent to
which the resulting model will be able to reproduce future behavior of
the process [26].

Definition 4.4.1 (Model Checking-based fitness). Let C be the set of cases of
a log and S be an nCRL2 specification, the Model Checking-based fitness (MC-
fitness) measures the ability of the specification S to satisfy the formulas fc such
that c = [e1, ..., en] ∈ C and fc =< tau∗.e1.tau

∗. · · · .tau∗.en.tau
∗ > true.

The MC-fitness is computed as follows:

MC-fitness(C, S) = |{fc | c ∈ C , S |= fc}| / |C|

where S |= fc indicates that the formula fc is satisfied by the specification S.

Notably, fc is a formula describing the case of a log, where each case
event is surrounded by an unbounded number of silent actions. Formu-
las are verified using mCRL2 model checker. The values of MC-fitness
range from 0 to 1, with 1 meaning that every formula can be satisfied,
and 0 that none of them can.

Validation has been also enriched by checking equivalence of pro-
cess models resulting from the PALM technique and those obtained from
the three process mining algorithms. The considered equivalences are
those supported by the mCRL2 tool: strong bisimilarity, weak bisimi-
larity, trace equivalence, weak trace equivalence, branching bisimilarity,
strong simulation and divergence preserving branching bisimilarity [65].
This part of the validation is interesting because it permits to detect those
situations where two techniques have similar fitness values but yield dif-

103

ferent models from the behavioural point of view (i.e., they are not equiv-
alent up to any equivalence relation).

Validation Set-up.

Figure 26 describes the preparatory steps needed for comparing two dif-
ferent kinds of models, i.e. a process algebra specification with a BPMN
model.

X
E
S

nCRL2
spec MCFitnessmining

IM
sHM
SM

BPMN
model

PALM

TKDE

Petri
Net

RG

ProM

L
P
SmCRL2

spec Equivalence

Figure 26: Transformation steps required by the PALM validation.

To make such comparison, we resort to a common specification model,
that is LPS (Linear Process Specifications) and transform the BPMN mod-
els, obtained by executing the three considered process mining algo-
rithms via the TKDE tool [14] according to the following steps.

We then use ProM [45], a well-established framework that supports
a wide variety of process mining techniques; in particular we use two of
its plug-ins, namely “Convert BPMN diagram to Petri net” and

“Construct reachability graph of a Petri net”. The BPMN models are
first transformed into Petri Nets, and then their Reachability Graph (RGs)
are obtained. From the RG it is straightforward to obtain mCRL2 specifi-
cations (Definition 4.4.2) below. mCRL2 specifications are given as input
to the appropriate mCRL2 tool to be transformed into LPS, which can be
used to calculate the MC-fitness and run conformance checking.

Definition 4.4.2 (From Reachability Graph to mCRL2). Let ⟨E,M⟩ be a
reachability graph, where E is the set of edges of the form < v, l, v′ > with
v, v′ ∈ V , l ∈ L, while M ⊆ V is the initial marking representing the initial
distribution of tokens. V is the set of vertices and L is the set of labels. The
corresponding mCRL2 specification is as follows:

104

Model
Name

Discovery
Algorithm

Mining
Time (s)

MC
Fitness Equiv.

log1

PALM
90
50
0

⩽ 1 1 -
⩽ 1 1 -
⩽ 1 1 -

IM 59,2 1 weak-trace
sHM 88,2 1 weak-trace
SM 12,4 1 weak-trace

log2

PALM
90
50
0

⩽ 1 1 -
⩽ 1 1 -
⩽ 1 1 -

IM 101,2 1 branching-bisim
sHM 163,4 1 none
SM 24,4 0.78 none

log3

PALM
90
50
0

⩽ 1 0,87 -
⩽ 1 0,87 -
⩽ 1 0,87 -

IM 127,4 0,99 none
sHM 129 0,99 none
SM 23,8 0.99 none

Model
Name

Discovery
Algorithm

Mining
Time (s)

MC
Fitness Equiv.

rlog1

PALM
90
50
0

9,5 0,5 -
4,96 0,5 -
⩽ 1 0,6 -

IM 21 1 none
sHM 73,2 0 none
SM 42,6 N.C. N.C.

rlog2

PALM
90
50
0

⩽ 1 0,4 -
⩽ 1 0,4 -
⩽ 1 0,4 -

IM 16,4 N.C. N.C.
sHM 154 0 none
SM 59,6 N.C. N.C.

rlog3

PALM
90
50
0

⩽ 1 0,66 -
⩽ 1 0,66 -

3 N.C. -
IM 23,2 1 none

sHM 41 0 none
SM 22,7 N.C. N.C.

rlog4

PALM
90
50
0

⩽ 1 0,85 -
⩽ 1 0,85 -
⩽ 1 0,85 -

IM 6,4 1 none
sHM 43,8 0,8 none
SM 53,6 0,7 none

rlog5

PALM
90
50
0

⩽ 1 0,71 -
⩽ 1 0,85 -
⩽ 1 0,85 -

IM 6,4 N.C. N.C.
sHM 56,4 0,71 none
SM 23,0 0,42 none

rlog6

PALM
90
50
0

⩽ 1 0,77 -
⩽ 1 0,83 -
⩽ 1 N.C -

IM 27,6 1 none
sHM 70 0 none
SM 18,8 0,22 none

Table 12: Results of the PALM Validation.

1 a c t
2 L
3 proc
4 {Kv = l1.Kv1

+ · · · + lk.Kvk
| < v, l1, v1 >, . . . , < v, lk, vk > ∈ E}

5 ∪ {Kv =d e l t a | ̸ ∃ < v, l, v′ >∈ E}
6 i n i t | |{Kv | v ∈ M} ;

where delta is the special mCRL2 process that cannot perform anything, and
||{Ki}i∈{1,...,n} denotes the term K1|| . . . ||Kn.

105

Validation Results.

Table 12 summarises the validation that we ran over three synthetically
generated event logs (whose generating models are publicly available in
[97]) and six real-life event logs.

All the synthetic logs (log1, log2, log3) are built out of 1000 cases that
mix parallel and choice behaviours. Specifically, log1 is generated by a
BPMN model with two XOR gateways (split and join) and with six tasks,
while log2 is generated by a model with four gateways (XOR and AND
with split and join) and nine tasks. Differently, log3 is generated by a
model with eight gateways (six XOR, two AND split and join), fourteen
tasks and also includes two loops.

The real-life logs (rlog1, rlog2, rlog3, rlog4, rlog5, rlog6) refer to ac-
tivities of daily living performed by several individuals and collected by
using sensors. The logs can be retrieved online [97] as an extraction of
what data.4tu makes available2.

All logs are given as input to PALM and to the other discovery al-
gorithms. For each of them, we register the mining time to generate the
specification (in seconds), and the value of the MC-fitness. We also calcu-
late if there exists an equivalence relation between the model generated
by PALM and the ones generated by IM, sHM and SM. In the discovery
algorithm column, for the rows related to PALM, we also specify the loop
frequency values (defined in Def. 4.3.1), i.e. 90, 50 and 0. The symbol −
used in the Table 12 means that the value of that cell does not need to be
computed, while the value N.C. means that we tried to calculate it but a
timeout expired.

According to our experimentation, PALM behaves quite well with the
synthetic logs. In particular, the application of the PALM methodology to
log1 returns an MC-fitness equal to 1. When comparing the three models
generated by PALM (with different threshold) and those obtained from
the same log by the other algorithms, we can observe that weak-trace
equivalence is satisfied. This means that all resulting models can pro-
duce the same cases, possibly with a different number of silent actions.

2https://data.4tu.nl/repository/uuid:01eaba9f-d3ed-4e04-9945-b8b302764176

106

https://data.4tu.nl/repository/uuid:01eaba9f-d3ed-4e04-9945-b8b302764176

Considering log2, the comparison does not change much, apart from the
observed equivalence. In this case, even if we obtain the same value for
the MC-fitness, the models are not equivalent up to any of the consid-
ered relations. This is because the generated models can reproduce cases
not included in the current log. For log3, instead, we do not have a per-
fect MC-fitness value; this is probably due to the difficulty to properly
identify those situations where there is a choice between performing a
task and skipping it, this is due to the minimisation applied during the
model generation.

The experiments with real logs confirm that there is no equivalence
relation according to which the four models are equivalent, but we have
quite different results for fitness. Since fitness values are so different from
each other, it is straightforward that no equivalence exists between the
generated models. Hence, let us focus more on the fitness results.

PALM generates from logs rlog1 and rlog2 two specifications with a
value of fitness not high, which anyway is in line with the other discov-
ery algorithms (actually, the sHM algorithm generates a model that is
not able to reproduce any case in the log). Logs rlog3 and rlog6 show
the importance of the loop frequency threshold parameter for real logs,
where the number of loops causes a state-space explosion. Unfolding the
‘less important’ loops, i.e. the loops with a low loop frequency, allows us
to complete the analysis over specifications which could not be treated
in the standard way. For logs rlog4 and rlog5, our mining tool performs
better than the others, as the specifications generated by PALM are able
to reproduce most of the cases in the logs, while in rlog1, rlog3 and rlog6
IM outperforms PALM and the other algorithms in terms of MC fitness.
In terms of time for generating the models, PALM always outperforms
all the other algorithms.

4.5 Related Work

In the literature, there is other work that pursuits the goal of generating
models from a set of observations. Such research topic is investigated
by both the process mining community and the engineering and formal

107

methods community.

On Process Mining. PALM differentiate itself from different process
discovery techniques available in the literature, e.g. [131, 12, 136, 13,
77] for the following aspects. It focuses on collaborative systems, while
the mentioned techniques primarily concentrate on single organizations
and organizational improvement. PALM specifically targets collabora-
tive systems, it is designed to handle scenarios where multiple organiza-
tions collaborate, communicate, and share information to achieve com-
mon goals. It handles distribution and communication aspects. Unlike
other techniques that use specification languages like Petri Nets or Pro-
cess Trees, PALM is specifically developed to address the challenges of
distribution and communication aspects in collaborative systems while
other languages often struggle to represent distributed behaviour effec-
tively. It is effective in composing distributed behavior, PALM’s method-
ology aims at capturing and representing distributed behaviour in col-
laborative systems. It can discover process algebraic specifications tai-
lored to such scenarios, making it suitable for handling complex collab-
oration scenarios. Finally, PALM provides a way to verify collaboration
properties using formal methods. As an exception, in [35] BPMN col-
laborations are discovered; however, differently from [35] the PALM ap-
proach defines a specific process mining algorithm capable of discover-
ing process algebraic specifications of collaborative systems.

On Formal Methods and Software Engineering The FM community
focuses on mathematics-based techniques for the specification, develop-
ment, and (manual or automated) verification of software and hardware
systems [52]. In contrast, SE mainly focus on generating finite-state ma-
chines or graph models. In [22], for example, a communicating finite
state machine is generated from a log of system executions enhanced
with time vectors. Although model checking facilities over the models
are available via the McScM tool, an automatic way to compose the mod-
els generated from different logs is not provided. In [73], message se-
quence graphs are mined from logs of distributed systems; these models
are used for program comprehension, since they provides an higher-level
view of the system behavior and no verification technique is mentioned

108

to analyse the obtained models. The authors of [118] exploit an idea close
to our work, presenting an algorithm to construct the overall model of a
system by composing models of its components. The main difference
with respect to our work is that they infer a model by analisying a list
of log messages, knowing a priori the architecture dependencies among
the components of the distributed system. The output of this inference
process is a FSM. The work focuses on the scalability problem of large
systems, while no mention to possible verification techniques is given.
Other techniques, like the one proposed in [51], focus on building deci-
sion trees from message logs to detect possible failures in the system.

On FM side a closely related line of research with this work concerns
automata learning; the aim is to construct an automaton by providing
inputs to a system and observing the corresponding outputs [129]. In
this context, there are two types of learning: active and passive. In the
former one (see, e.g., [4, 64, 10]), experiments are carried out over the sys-
tem, while the latter one (see, e.g., [91, 134, 60, 59]) is based on generated
runs (i.e., logs). Our approach differs from the ones proposed by the au-
tomata learning community for the input and the output of the process:
we consider as input logs instead of automaton or traces, and we produce
as output a process algebraic specification (in particular, a customised
mCRL2 specification) instead of automata (FSM, state diagrams, I/O au-
tomata, etc.). Tailoring of the automata learning techniques to process
algebraic specification mining certainly deserves an in-depth investiga-
tion.

109

Chapter 5

Concluding Remarks

This thesis proposes two approaches, namely the top-down and bottom-
up approach, that, by combining formal methods and business process
management techniques, aim at enabling verification capabilities on dis-
tributed activities taking advantage of the well-studied verification ca-
pabilities of FM and the powerful process mining techniques to discover
models automatically.

As demonstrated in Chapters 3 and 4, a combination of Formal Meth-
ods (FM) and Business Process Management (BPM) techniques proves
effective in enabling formal verification of existing models, facilitating
the verification of properties—such as privacy-related ones. A top-down
approach allows to support and verify activities at a design level. Addi-
tionally, employing a bottom-up approach aids in verifying operational
processes to identify and rectify misconfigurations or unexpected events
occurring within distributed activities, particularly in cases involving in-
tercommunications between such activities.

On the one hand, we deal with the challenge of verifying already ex-
isting models, like BPMN or PE-BPMN models, to support the design
phase of distributed systems by allowing correctness verification tech-
niques on the models’ behaviour or the implementation of specific fea-
tures on them. In particular, the top-down approach in Section 3 proposes
a method for verifying BPMN collaborations enhanced with privacy-

110

enhancing technology measures. The proposed method detects situa-
tions where privacy-enhancing technologies are misused, which may lead
to unauthorised access to private data. In addition, the method supports
the verification of other properties, such as the reconstruction of a shared
secret, the parallel execution of multi-party computations, and deadlock
freedom to provide proof of design correctness. The method is based on
a formalisation of PE-BPMN collaborations in terms of mCRL2 specifi-
cations, where PETs and properties to check are embedded as part of the
specification. The proposed approach has been implemented as a tool
available as a stand-alone application and a plug-in in the Pleak toolset
for business process privacy analysis.

On the other hand, we deal with the problem of verifying proper-
ties of already up-and-running distributed activities and with the diffi-
culty of designing models that allow us to detect their real behaviour
and execute verification of properties to identify unexpected anomalies
or misbehaviours. The bottom-up approach in Section 4 tackles this prob-
lem by proposing a methodology, called PALM, which is a technique to
automatically generate the model of a system behaviour from a set of
observations. In particular, taking as input event logs of a distributed
system, it can produce, in a compositional way, a formal specification
of the system’s overall behaviour in the nCRL2 language, i.e. a frag-
ment of the mCRL2 language. This enables us to take advantage of the
mCRL2 toolset for formal verification, enabling the detection of issues
that may arise in a distributed scenario where multiple organisations in-
teract to reach a common goal. The methodology is validated empirically
using custom-made and real event logs and through a complete demon-
stration that validates the semantic correctness of the approach by pro-
viding a formal proof based on operational correspondence between the
languages used in the methodology, i.e. block structure, nCRL2 and
mCRL2.

Summing up, both approaches use mCRL2 as modelling language
to verify distributed activities in two typical phases: designing new dis-
tributed activities or validating existing ones. In the context of analysing
the applicability of top-down and bottom-up approaches in the verifica-

111

tion of distributed activities, it becomes evident that the bottom-up can
suffer from performance issues due to the size of logs, while top-down
approaches usually have to deal with models less complex, especially
when are directly designed by the modeller. Conversely, the bottom-up
approach is necessary to capture the actual behaviour of individual com-
ponents and the system as a whole, as the modelled representation may
only sometimes align with reality. Throughout the investigation, several
lessons were learned:

• The analysis process can be time-consuming for large logs or mod-
els, which may discourage its usage.

• Embedded properties are essential to verify abnormal behaviour
or behaviour that deviates from the expected model (e.g. privacy-
enhancing technologies properties). This allows for efficiently iden-
tifying violations and deviations from the desired properties.

• Providing counterexamples to identify where a particular property
is violated proves valuable, as it enables immediate problem iden-
tification and the implementation of necessary corrective measures.

These insights emphasise the importance of considering the trade-offs
between top-down and bottom-up approaches in verifying distributed
activities. The top-down approach offers advantages in managing log
size and complexity while dealing with design properties, while the bottom-
up approach provides a more accurate representation of the actual sys-
tem behaviour. Moreover, combining the top-down and bottom-up ap-
proaches provides a more robust framework for verifying distributed ac-
tivities, allowing for a thorough examination of both the system-level de-
sign and the individual components’ functionality and compliance. This
holistic approach could enhance the accuracy and effectiveness of the
verification process, leading to improved system performance and relia-
bility in a wide range of domains and applications.

112

5.1 Future Work

Combining FM and BPM can effectively enable verification for distributed
activities. Still, many aspects can be improved for both approaches.

We aim to tackle the current limitations of the top-down approach.
First, we intend to improve the transformation of loops that are now lim-
ited to mimic the behaviour of while loops in programming languages
by discriminating between the forwards and roll-back part of the loop.
Moreover, currently, the generated specification allows handling only
single-instance models and does not support dynamic instantiation of
processes, meaning that a specific workflow related to a participant can
be instantiated just through the start event once. At the same time, it
is useful to manage multi-instance and dynamic instantiation of pro-
cesses, especially when modelling scenarios involving services compo-
nents (e.g., in SaaS applications) that can be instantiated at any time, de-
pending on the needs. Considering possible extensions, the top-down
approach could capture other privacy-related properties that can be de-
fined on PE-BPMN models, such as anonymity, i.e., the ability of a partici-
pant to make an element non-identifiable to other participants, or unlink-
ability, i.e., the impossibility of a participant to understand if two data ob-
jects are related. Moreover, the proposed transformation from PE-BPMN
collaborations is currently restricted to collaborations where each party’s
process is block-structured. Since the class of block-structured BPMN
process models is relatively expressive [100], lifting this restriction would
be desirable. A challenge here is how to lift this restriction while still tak-
ing advantage of the compositionality of the process algebraic approach
to obtain manageable formal specifications. Finally, a potential area of
interest for further investigation is the potential inclusion of self-loops
on the end state in order to enhance the existing workaround employed
for verifying deadlock freedom. By introducing self-loops, it may be pos-
sible to avoid the reachability checking while using a specific deadlock
formula available in mCRL2.

While the main challenges of the top-down approaches focus on for-
malising properties and verifying them, on the bottom-up approach, we

113

aim first to investigate how to improve our mining algorithm’s capabil-
ity of detecting the choice between performing an action and skipping
it to improve the generated model. It could be interesting to extend the
target language of the PALM methodology with data and time features
to develop richer specifications and extend the verification capabilities to
the data dimension as done in the top-down approach. Of course, this
kind of information must be present in the input logs. In particular, since
many distributed systems also implement privacy properties, it could be
interesting to extend the approach and make it able to discover PETs or
other privacy-related features automatically.

It is also important to extend our validation experiments, including
equivalence checking to other process mining algorithms to constantly
measure the capability of the proposed one and improve the replica-
tion of the validation experiments, which currently is only partially sup-
ported by the application, by integrating the TDKE Benchmark and the
ProM plug-ins to generate the BPMN models and consequently the Petri
Nets and Reachability graphs. The validation can be extended to con-
sider further measurements, like alignments that provide a fine-granular
approach to detecting deviations on the level of individual events and
task execution [31].

114

Appendix A

Proofs to Establish
Semantic Correctness

A.1 Operational Correspondence Between mCRL2
and nCRL2 and Viceversa

Definition A.1.1 (mCRL2 Process Specification Semantics). The seman-
tics of a process specification ⟨q, E⟩ is a LTS (S,L,→) as follows:

• The set of states S (ranged over by s) contains process specifications and
one special termination state, denoted by✓.

• The set of labels L (ranged over by α) is generated by the following gram-
mar:

α ::= τ | a | α1|α2

• The transitions relation → ⊆ S × L × S is inductively defined by the
following operational rules in table 13. Also, in this case, there is no
need for a symmetric version of rules since mCRL2 identifies process
expressions up to commutativity and associativity of choice and parallel
operator. We will write s1

α−→ s2 to indicate that (s1, α, s2) ∈→ and, to
improve the readability of the operational rules, we omit the set of process
equations when they play no role in a rule, e.g. writing ⟨q, E⟩ α−→ ⟨q′, E⟩
as q α−→ q′, or ⟨q, E⟩ α−→ ✓ as α−→ ✓

115

• s0 is the initial state.

Following we report part of the mCRL2 syntax and semantics useful
to understand the proofs and the complete demonstration of the Propo-
sitions 1 and 2 validity.

ACT
α

JαK−−→u✓
CH1

p
α−→u✓

p+q
α−→u✓

CH2
p

α−→up
′

p+q
α−→up′

SQ1
p

α−→u✓

p.q
α−→utu>>q

SQ2
p

α−→up
′

p.q
α−→up′.q

REC1
Q=q∈E q

α−→u✓

⟨Q,E⟩
α−→u✓

REC2
Q=q∈E q

α−→uq
′

⟨Q,E⟩
α−→uq′

PAR1
p

α−→u✓,q⇝u

p||q
α−→ut>>uq

PAR2
p

α−→up
′,q⇝u

p||q
α−→up′||t>>uq

PARC1
p

α−→u✓ q
ᾱ−→u✓

p||q
α|ᾱ−−→u✓

PARC2
p

α−→up
′ q

ᾱ−→u✓

p||q
α|ᾱ−−→up′

PARCn
4

p
α−→up

′ q
ᾱ−→uq

′

p||q
α|ᾱ−−→up′||q′

BI1 q
α−→u✓

t>>q
α−→u✓

u > JtK BI2 q
α−→uq

′

t>>q
α−→uq′

u > JtK

BI3 p⇝u

t>>p⇝u
BI4 t>>p⇝u

u < JtK

ALL1
p

α−→u✓

∇V (p)
α−→u✓

α ∈ V ∪ {τ} ALL2
p

α−→up
′

∇V (p)
α−→u∇V (p′)

COM1
p

α−→u✓

ΓC(p)
γC (α)−−−−→u✓

COM2
p

α−→up
′

ΓC(p)
γC (α)−−−−→uΓC(p′)

HD1
p

α−→u✓

τI(p)
θI (α)−−−→u✓

HD2
p

α−→up
′

τI(p)
θI (α)−−−→uτI(p′)

Table 13: SOS mCRL2

For the complete list of structural operational semantics rules of mCRL2

refer to [56]. Following we show the proofs related to Propositions 1 and
2.

116

Proof. The proof for Proposition 1 is done by induction on the depth of
inference. First of all we show that the proof is satisfied for the base case,
i.e. for the axioms ACTn and ACT. By case analysis on the value of α:

• α = τ : τ τ−→ ✓, then ∃ u s.t. τ τ−→u and as expected ϕ(✓) =✓.

• α = a : a a−→ ✓, then ∃ u s.t. a a−→u ✓ and as expected ϕ(✓) =✓

• α = α1|α2 : α1|α2
α1|α2−−−−→ ✓, then ∃ u s.t. α1|α2

α1|α2−−−−→u ✓ and as
expected ϕ(✓) =✓

Then Proposition 1 holds for the base case.
Since for an inference of length n the proposition holds by induction, we
need to prove that it holds for n + 1. The proof is done by case analysis
on each operator of the nCRL2 syntax.

⋆ CHn
1 : p + q

α−→ ✓ based on the premises this is valid if p α−→ ✓,
since this is done on a shorter derivation we can apply the induc-
tive hypothesis and we obtain that ∃ u s.t. p

α−→u ✓ and applying
CH1 we obtain p+ q

α−→u ✓ and ϕ(✓) = ✓ as expected.

⋆ CHn
2 : p+q

α−→ p′ this is valid if p α−→ p′, by applying the inductive
hypothesis ∃ u s.t. p α−→u p′ and applying CH2 we obtain p+q

α−→u p′

and ϕ(p′) = p′ as expected

⋆ SQn
1 : p.q

α−→ q given the premises this is valid if p α−→ ✓, since
this is done on a shorter derivation we can apply the inductive hy-
pothesis and we obtain that ∃ u s.t. p α−→u ✓ and applying SQ1 we
obtain p.q

α−→u tu >> q and ϕ(tu >> q) = q as we expected.

⋆ SQn
2 : p.q α−→ p′.q this is valid if p α−→ p′, by applying the inductive

inductive hypothesis ∃ u s.t. p α−→u p′ and applying SQ2 we obtain
p.q

α−→u p′.q and ϕ(p′.q) = p′.q as expected

⋆ RECn
1 : ⟨P,E⟩ α−→ ✓ this is valid if P = p ∈ E p

α−→ ✓ by in-
ductive hypothesis ∃ u s.t. q α−→u ✓ and applying REC1 we obtain
P

α−→u ✓ and ϕ(✓) = ✓ as expected

⋆ RECn
2: ⟨P,E⟩ α−→ ⟨p′, E⟩ this is valid if P = p ∈ E p

α−→ p′ by
inductive hypothesis ∃ u s.t. q α−→u q′ and applying REC2 P

α−→u q′

and ϕ(q′) = p′ as expected

117

⋆ PARn
1: p||q α−→ q this is valid if p α−→ ✓ by inductive hypothesis ∃ u

s.t. p
α−→u ✓ and applying PAR1 we obtain p||q α−→u t >>u q and

ϕ(t >>u q) = q as expected

⋆ PARn
2: p||q α−→ p′||q this is valid if p α−→ p′ by inductive hypothesis

∃ u s.t. p α−→u p′ and applying PAR2 we obtain p||q α−→u p′||t >>u q
and ϕ(p′||t >>u q) = p′||q as expected

⋆ PARCn
1: p||q α|β−−→ ✓ this is valid if p α−→ ✓q

β−→ ✓ by inductive

hypothesis ∃ u s.t. p α−→u ✓q
β−→u ✓ and applying PARC1 we obtain

p||q α|β−−→u ✓ and ϕ(✓) = ✓ as expected

⋆ PARCn
2: p||q α|β−−→ p′ this is valid if p α−→ p′ and q

β−→ ✓ by inductive

hypothesis ∃ u s.t. p α−→u p′q
β−→u ✓ and applying PARC2 we obtain

p||q α|β−−→u p′ and ϕ(p′) = p′ as expected

⋆ PARCn
4: p||q α|β−−→u p′||q′ this is valid if p

α−→ p′ and q
β−→ q′ by

inductive hypothesis ∃ u s.t. p α−→u p′ q
β−→u q′ and applying PARC4

we obtain p||q α|β−−→ p′||q′ and ϕ(p′||q′) = p′||q′ as expected

⋆ ALLn
1: allow(V, p)

α−→ ✓ this is valid if p α−→ ✓, by inductive hy-
pothesis ∃ u s.t. p α−→u ✓ and applying ALL1 we obtain ∇V (p)

α−→u

✓ and ϕ(✓) = ✓ as expected

⋆ ALLn
2: allow(V, p)

α−→ allow(V, p′) this is valid if p
α−→ p′, by in-

ductive hypothesis ∃ u s.t. p α−→u p′ and applying ALL2 we obtain
∇V (p)

α−→u p′ and ϕ(p′) = p′ as expected

⋆ COMn
1, COMn

2, HDn
1 and HDn

2, these cases are omitted because
they are similar to ALLn

1 and ALLn
2

Proof. The proof for Proposition 2, like the one for Proposition 1, is done
by induction on the depth of inference.
First of all we show that the proof is satisfied for the base case, i.e. for the
axioms ACT and ACTn. By case analysis on the value of α:

• α = τ : τ τ−→u ✓, then τ
τ−→ and as expected ϕ(✓) = ✓.

118

• α = a : a a−→u ✓, then a
a−→ ✓ and as expected ϕ(✓) =✓

• α = α1|α2 : α1|α2
α1|α2−−−−→u ✓, then α1|α2

α1|α2−−−−→ ✓ and as expected
ϕ(✓) =✓

Then Proposition 2 holds for the base case. Since for an inference of
length n the proposition holds by induction, we need to prove they holds
for n + 1. The proof is done by case analysis on each operator of the
mCRL2 syntax such that p ∈ mCRL2.

⋆ CH1 : p + q
α−→u ✓ based on the premises this is valid if p α−→u ✓,

since this is done on a shorter derivation we can apply the induc-
tive hypothesis and we obtain that p α−→ ✓ and applying CHn

1 we
obtain p+ q

α−→ ✓ and ϕ(✓) = ✓ as expected.

⋆ CH2 : p+q
α−→u p′ this is valid if p α−→u p′, by applying the inductive

hypothesis p
α−→ p′ and applying CHn

2 we obtain p + q
α−→ p′ and

ϕ(p′) = p′ as expected

⋆ SQ1 : p.q α−→u tu >> q given the premises this is valid if p α−→u ✓,
since this is done on a shorter derivation we can apply the induc-
tive hypothesis and we obtain that p α−→ ✓ and applying SQn

1 we
obtain p.q

α−→u q and ϕ(tu >> q) = q as we expected.

⋆ SQ2 : p.q α−→u p′.q this is valid if p α−→u p′, by applying the inductive
inductive hypothesis p

α−→ p′ and applying SQn
2 we obtain p.q

α−→
p′.q and ϕ(p′.q) = p′.q as expected

⋆ REC1 : ⟨Q,E⟩ α−→u ✓ this is valid if Q = q ∈ E and q
α−→u ✓ by

inductive hypothesis q
α−→ ✓ with Q = q ∈ E and applying RECn

1

we obtain ⟨Q,E⟩ α−→ ✓ and ϕ(✓) = ✓ as expected

⋆ REC2: ⟨Q,E⟩ α−→u q′ this is valid if Q = q ∈ E and q
α−→u q′ by

inductive hypothesis q
α−→ q′ with Q = q ∈ E and applying RECn

2

⟨Q,E⟩ α−→ q′ and ϕ(q′) = q′ as expected

⋆ PAR1: p||q α−→u t >>u q this is valid if p
α−→u ✓ by inductive

hypothesis p
α−→ ✓ and applying PARn

1 we obtain p||q α−→ q and
ϕ(t >>u q) = q as expected

119

⋆ PAR2: p||q α−→u p′||t >>u q this is valid if p α−→u p′ by inductive
hypothesis p

α−→ p′ and applying PARn
2 we obtain p||q α−→ p′ and

ϕ(p′||t >>u q) = p′||q as expected

⋆ PAR3 and PAR4, these cases are omitted because they are symmet-
ric with respect to the cases of rules PARn

1 and PARn
2

⋆ PARC1: p||q α|β−−→u ✓ this is valid if p
α−→u ✓ and q

α−→u ✓ by
inductive hypothesis p α−→ ✓ and q

α−→ ✓ and applying PARCn
1 we

obtain p||q α|β−−→ ✓ and ϕ(✓) = ✓ as expected

⋆ PARC2: p||q α|β−−→u p′ this is valid if p α−→u p′ and q
α−→u ✓ by in-

ductive hypothesis p
α−→ p′ and q

α−→ ✓ and applying PARCn
2 we

obtain p||q α|β−−→ p′ and ϕ(p′) = p′ as expected

⋆ PARC4: p||q α|β−−→u p′||q′ this is valid if p
α−→u p′ and q

β−→ q′ by

inductive hypothesis ∃ u s.t. p
α−→ p′ and q

β−→ q′ and applying

PARCn
4 we obtain p||q α|β−−→ p′||q′ and ϕ(p′||q′) = p′||q′

⋆ ALL1: allow(V, p)
α−→u ✓ this is valid if p

α−→u ✓, by inductive
hypothesis p α−→ ✓ and applying ALLn

1 we obtain ∇V (p)
α−→ ✓ and

ϕ(✓) = ✓ as expected

⋆ ALL2: allow(V, p) α−→u allow(V, p′) this is valid if p α−→u p′, by induc-
tive hypothesis p α−→ p′ and applying ALLn

2 we obtain ∇V (p)
α−→ p′

and ϕ(p′) = p′ as expected

⋆ COM1, COM2, HD1 and HD2, these case are omitted because they
are similar to ALL1 and ALL2

A.2 Operational Correspondence Between B and
nCRL2 and Viceversa

Proof. The proof for Proposition 3 is done by induction on the depth of
the inference. First of all we show that the proof is satisfied for the base
case, i.e. for the axiom op1. Base case:

120

⋆ op1 a
a−→ ✓, then T (a)

a
⇝ T (✓) and T (✓) = T (✓)

⋆ Lop1 L{B} τ−→ ✓ then
RECN

1

CHN
3

T (τ)
a
⇝ T (✓)

T (B).P + T (τ)
a
⇝ T (✓)

P
a
⇝ T (✓) , and T (✓) =

T (✓)

Then Proposition 3 holds for the base case. Since for an inference of
length n the proposition holds by induction, we need to prove that it
hols also for n + 1. The proof is done by case analysis on each operator
of the block structure.

⋆ Sop1 : S{B1, ..., Bn}
a−→ S{B′

1, ..., Bn} based on the premises this
is valid if B1

a−→ B′
1 with n ≥ 1, since this is done on a shorter

derivation we can apply the inductive hypothesis and we obtain
T (B1)

a
⇝ T (B′′

1) and applying SQn
2 we obtain: T (S{B1 . . . Bn}) =

T (B1).T (B2) . . . T (Bn)
a
⇝ T (B′′

1).T (B2) . . . T (Bn) and
T (B′

1).T (B2) . . . T (Bn) = T (B′′
1).T (B2) . . . T (Bn)

⋆ Sop2 : S{B1, ..., Bn}
a−→ S{B2, ..., Bn} based on the premises this

is valid if B1
a−→ ✓ with n > 1, since this is done on a shorter

derivation we can apply the inductive hypothesis and we obtain
T (B1)

a
⇝ T (✓) and applying SQn

1 we obtain: T (S{B1 . . . Bn}) =
T (B1).T (B2) . . . T (Bn)

a
⇝ T (B2).T (B3) . . . T (Bn) and

T (B2).T (B3) . . . T (Bn) = T (B2).trans(B3) . . . T (Bn)

⋆ Sop3 : S{B} a−→ ✓ based on the premises this is valid if B a−→ ✓,
since this is done on a shorter derivation we can apply the induc-
tive hypothesis and we obtain T (B)

a
⇝ T (✓) and applying SQn

1

we obtain T (B)
a
⇝ T (✓) and T (✓) = T (✓)

⋆ Pop1 : P{B1, . . . , Bj , . . . , Bn}
a−→ P{B1, . . . , B

′
j , . . . , Bn} based on

the premises this is valid if Bj
a−→ B′

j with 1 ≤ j ≤ n, by applying
the inductive hypothesis T (Bj)

a
⇝ T (B′′

j) and applying PARn
2 we

obtain: T (P{B1|| . . . ||Bj || . . . ||Bn}) =
T (B1)|| . . . ||T (Bj)|| . . . ||T (Bn)

a
⇝ T (B1)|| . . . ||T (B′′

j)|| . . . ||T (Bn) and
T (B1)|| . . . ||T (B′

j)|| . . . ||T (Bn) = T (B1)|| . . . ||T (B′′
j)|| . . . ||T (Bn)

⋆ Pop2 : P{B1, . . . , Bj , . . . , Bn}
a−→ P{B1, . . . , Bn} based on the premises

this is valid if Bj
a−→ ✓ with n > 1, by applying the inductive hy-

121

pothesis T (Bj)
a
⇝ T (✓) and applying PARn

1 we obtain
T (P{B1|| . . . ||Bj || . . . ||Bn}) =
T (B1)|| . . . ||T (Bj)|| . . . ||T (Bn)

a
⇝ T (B1)|| . . . ||T (Bn)\{Bj} and

T (B1)|| . . . ||T (Bn)\{Bj} = T (B1)|| . . . ||T (Bn)\{Bj}

⋆ Pop3 P{B1, . . . , Bj , . . . , Bn}
a−→ ✓ based on the premises this is

valid if Bj
a−→ ✓ , by applying the inductive hypothesis T (Bj)

a
⇝

T (✓) and applying PARn
1 we obtain T (P{B}) = T (B)

a
⇝ T (✓)

and T (✓) = T (✓)

⋆ Cop1 C{B1, . . . , Bj , . . . , Bn}
a−→ B′

j based on the premises this is
valid if Bj

a−→ B′
j , by applying the inductive hypothesis T (Bj)

a
⇝

T (B′′
j) and applying CHn

2 we obtain T (C{B1, . . . , Bj , . . . , Bn}) =
T (B1) + · · ·+ T (Bj) + · · ·+ T (Bn)

a
⇝ T (B′′

j) and T (B′
j) = T (B′′

j)

⋆ Cop2 C{B1, . . . , Bj , . . . , Bn}
a−→ ✓ based on the premises this is

valid if Bj
a−→ ✓′, by applying the inductive hypothesis T (Bj)

a
⇝

T (✓) and applying CHn
1 we obtain T (C{B1, . . . , Bj , . . . , Bn}) =

T (B1) + · · ·+ T (Bj) + · · ·+ T (Bn)
a
⇝ T (✓) and T (✓) = T (✓)

⋆ Lop2 : L{B} a−→ S{B′, L{B}} based on the premises this is valid if
B

a−→ B′ by applying the inductive hypothesis T (B)
a
⇝ T (B′′) and

applying a sequence of nCRL2 semantic rules we obtain

RECN
2

CHN
2

SQN
2

T (B)
a
⇝ T (B′′)

T (B).P
a
⇝ T (B′′).P

T (B).P + T (τ)
a
⇝ T (B′′).P

P
a
⇝ T (B′′).P , and

T (S{B′, L{B}}) = T (B′).T (L{B}) = T (B′′).P

Proof. The proof for Proposition 4 should be done by induction on the
depth of the inference exploiting the case analysis for each operator. Since
for each case, the proof is symmetric to the proof of Proposition 3 we omit
it.

122

Appendix B

PALM Details

B.1 Mining Tool-independent Specification

Following, we report part of the code implementing the PALM method-
ology.

The mining algorithm is computed by the SchimmAlgorithm object
while it is instantiated. Every method in the function represents a step of
the algorithm except for unifyAllBlockStructure that aggregates two steps
that are 4th step - model for each cluster and 5th step - unify all block
structures.

1 publ ic SchimmAlgorithm (EventLog log) {
2 //Set conta in ing a l l the loops found in t h i s eventlog
3 t h i s . loops = new HashSet<LoopSet>() ;
4 t h i s . log = log ;
5 //1 s t − search f o r loops
6 searchForLoops () ;
7 //2nd step − c r e a t i o n of c l u s t e r s
8 Set<Trace> c l u s t e r = c r e a t i o n O f C l u s t e r s () ;
9 //3rd step − i d e n t i f i c a t i o n and removal of pseudo−dependencies

10 c l u s t e r = identificationAndRemovalOfPseudoDependencies (c l u s t e r) ;
11 //4 th step − model f o r each c l u s t e r && 5 th step unify a l l block s t r u c t u r e
12 BlockSt ruc ture b l o c k S t r u c t u r e = u n i f y A l l B l o c k S t r u c t u r e (c l u s t e r)
13 //6 th step − r e s t r u c t u r i n g the model
14 b l o c k S t r u c t u r e = restructuringTheModel (b l o c k S t r u c t u r e) ;
15 //7 th step − r e p l a c i n g loop r e f e r e n c e s
16 t h i s . modelToTransf = replacingLoopReference (b l o c k S t r u c t u r e) ;
17 }

Listing B.1: SchimmAlgorithm class constructor

123

The first step executed in the computation is the search for loops
method. This method detects all the loops in the event log, substitut-
ing them with their process reference. For each detected loop l={t =

⟨e1...ei...ej ...en⟩ s.t. ej > ei ⇒ l = ei...ej} and for each instance of l
in t we need to substitute the reference to the process l in t updating
the happened-before relation of t in the following way ei−1 > ei and
ej > ej+1, if there is more than one instance of l next to each other, just
one reference will be inserted.

1 p r i v a t e void searchForLoops () {
2 f o r (Trace t : log) {
3 f o r (i n t i = 0 ; i < t . length () ; i ++) {
4 Event e = t . getEvent (i) ;
5 Set<Event> incomingEventsofE = t . getPreEventHB (e) ;
6 Trace tmp = t . getSubTraceFrom (i , t . length ()) ;
7 f o r (i n t j = 1 ; j < tmp . length () ; j ++) {
8 Event e i = tmp . getEvent (j) ;
9 i f (incomingEventsofE . conta ins (e i)) {

10 // counts the number of loop ’ s occurrences i n s i d e the t r a c e
11 i n t occ = 0 ;
12 // I f e x i s t s , r e t r i e v e a loop already in loops
13 LoopSet loopSet = retr iveLoop (e , e i) ;
14 Trace loopTrace ;
15 i n t lenght = 0 ;
16 do {
17 //The t r a c e t h a t i s a loop
18 loopTrace = t . getSubTrace (e , e i) ;
19 lenght = loopTrace . length () ;
20 //Set the happened−before r e l a t i o n of the t r a c e in the loop
21 loopTrace . setHBrel (t . getSubHBrel (loopTrace)) ;
22 loopSet . addLoop (loopTrace) ;
23 loops . add (loopSet) ;
24 // Remove an i n s t a n c e of the loop t r a c e
25 i n t s t a r t i n d e x = t . removeSubTrace (loopTrace) ;
26 occ += 1 ;
27 i f (! (((s t a r t i n d e x − 1) < 0) && (s t a r t i n d e x + 1) >= t . length ())) {
28 i f (! t . getEvent (s t a r t i n d e x − 1) . equals (loopSet . getName ())){
29 t . add (s t a r t i n d e x , loopSet . getName ()) ;
30 i f (s t a r t i n d e x > 0)
31 t . addPreHBRelation (t . getEvent (s t a r t i n d e x − 1) ,

loopSet . getName ()) ;
32 i f ((s t a r t i n d e x + 1) < t . length ())

t . addPostHBRelation (t . getEvent (s t a r t i n d e x + 1) ,
loopSet . getName ()) ;

33 } e l s e { i f (s t a r t i n d e x < t . length ())
34 t . addPostHBRelation (t . getEvent (s t a r t i n d e x) , loopSet . getName ()) ;
35 }} while (! (loopTrace = t . getSubTrace (e , e i)) . isEmpty ()) ;
36 //S e t s how many time the loop i s repeated in t h i s t r a c e
37 loopSet . s e t R e p e t i t i o n (occ) ;
38 //Update frequency of the loop i n t the t r a c e
39 t . addLoopWithFrequency (loopSet . getName () . getName () , lenght , occ) ;
40 break ;}}}}}

Listing B.2: searchForLoop() method

124

From line 27 until line 32, we update the happened-before relation of
the loop reference as follows: if a reference to this loop does not exist
immediately on the left of the trace, then it is added to the trace and
updates the happened-before relation with ei > e and e > ej , otherwise
update the post relation of the reference with the element immediately at
its right.

In Listing B.3, all the traces with the same alphabet and the same
happened-before relation are grouped in one trace. The set of these traces
creates the cluster that will be analysed later.

p r i v a t e Set<Trace> c r e a t i o n O f C l u s t e r s () {
Set<Trace> c l u s t e r = new HashSet<Trace >() ;
f o r (Trace t : log) {
Map<Event , Set<Event>> hbt = t . getHBRel () ;
boolean a l r e a d y E x i s t = f a l s e ;
f o r (Trace c : c l u s t e r) {

//Check i f a t r a c e in the c l u s t e r has the hb− r e l a t i o n equal to the
t r a c e t

i f (c . equalHB (hbt)) {
a l r e a d y E x i s t = true ;
break ;

}
}
i f (! a l r e a d y E x i s t)

c l u s t e r . add (t) ;
}
re turn c l u s t e r ;}

Listing B.3: Creation of cluster method

Now that the cluster has been computed, we can identify and remove
the traces that contain the pseudo-dependencies.
In lines 11-16, we check if the current trace has a relation of precedence
s.t. ei > ej or ej > ei, then in every trace with the same alphabet this
relation should exist; otherwise, the current trace contains a pseudo-
dependency and needs to be removed.
In lines 17-21, we check the opposite scenario, that is, if there is not a re-
lation of precedence between ei and ej in the current trace, then the same
should be the case for all the other traces with the same alphabet in the
cluster, the traces found with that relation are removed from the cluster.

1 p r i v a t e Set<Trace> identificationAndRemovalOfPseudoDependencie
2 (Set<Trace> c l u s t e r){
3 Set<Trace> clusterToRemove = new HashSet<Trace >() ;
4 f o r (Trace t1 : c l u s t e r) {
5 i f (! S e t s . d i f f e r e n c e (c l u s t e r , clusterToRemove) . conta ins (t1))

125

6 continue ;
7 f o r (i n t i = 0 ; i < t 1 . length () ; i ++) {
8 Event e i = t1 . getEvent (i) ;
9 f o r (i n t j = i + 1 ; j < t 1 . length () ; j ++) {

10 Event e j = t1 . getEvent (j) ;
11 i f (t 1 . c o n t a i n s R e l a t i o n (ei , e j) | | t 1 . c o n t a i n s R e l a t i o n (e j , e j)) {
12 f o r (Trace t2 : S e t s . d i f f e r e n c e (c l u s t e r , clusterToRemove)) {
13 i f (! t 2 . equals (t1) && t2 . getAlphabet () . equals (t1 . getAlphabet ()) &&

! t2 . c o n t a i n s R e l a t i o n (ei , e j) && ! t2 . c o n t a i n s R e l a t i o n (e j , e j)) {
14 clusterToRemove . add (t1) ;
15 }
16 }
17 } e l s e i f (! t 1 . c o n t a i n s R e l a t i o n (ei , e j) && ! t1 . c o n t a i n s R e l a t i o n (e j ,

e j)) {
18 f o r (Trace t2 : S e t s . d i f f e r e n c e (c l u s t e r , clusterToRemove)) {
19 i f (! t 2 . equals (t1) && t2 . getAlphabet () . equals (t1 . getAlphabet ()) &&

(t2 . c o n t a i n s R e l a t i o n (ei , e j) | | t 2 . c o n t a i n s R e l a t i o n (e j , e j))) {
20 clusterToRemove . add (t2) ;
21 }}}}}}
22 i f (! clusterToRemove . isEmpty ())
23 c l u s t e r . removeAll (clusterToRemove) ;
24 re turn c l u s t e r ;
25 }

Listing B.4: Identification and removal of pseudo-dependencies

The first coarse block structure can be constructed when all the pseudo
dependencies have been removed. This method contains the 4th and 5th
steps of the algorithm. First, compute the model of each cluster and then
put them together using the choice operator if needed, i.e. if there is more
than one model.

1 p r i v a t e B lockSt ruc ture u n i f y A l l B l o c k S t r u c t u r e (Set<Trace> c l u s t e r) {
2 BlockSt ruc ture [] r e a l F i n a l P a t h = new BlockSt ruc ture [c l u s t e r . s i z e ()] ;
3 i n t i = 0 ;
4 f o r (Trace c : c l u s t e r) {
5 //The model of c l u s t e r c i s computed
6 BlockSt ruc ture p = modelForEachCluster (c) ;
7 r e a l F i n a l P a t h [i] = p ;
8 i ++;
9 }

10 i f (r e a l F i n a l P a t h . length == 1)
11 re turn r e a l F i n a l P a t h [0] ;
12 e l s e
13 re turn new BlockSt ruc ture (r e a l F i n a l P a t h , Operator .CHOICE) ;
14 }

Listing B.5: Unifiy all block structure method

In line 6 of Listing B.5 the method to construct a block structure from
a single cluster (4th step - model for each cluster) is called. Every path
obtained from the cluster is represented as a sequence block. All the
paths are then combined into a parallel block structure.

126

1 p r i v a t e B lockSt ruc ture modelForEachCluster (Trace t) {
2 Lis t<Lis t<Event>> path = t . computePaths () ;
3 BlockSt ruc ture [] t o P u t I n P a r a l l e l = new BlockSt ruc ture [path . s i z e ()] ;
4 i n t i = 0 ;
5 f o r (L i s t<Event> l i s t : path) {
6 BlockSt ruc ture [] tmp = new BlockSt ruc ture [l i s t . s i z e ()] ;
7 f o r (i n t j = 0 ; j < l i s t . s i z e () ; j ++)
8 tmp [j] = new BlockSt ruc ture (l i s t . get (j)) ;
9 t o P u t I n P a r a l l e l [i] = new BlockSt ruc ture (tmp , Operator .SEQUENCE) ;

10 i ++;
11 }
12 i f (t o P u t I n P a r a l l e l . length < 2)
13 re turn t o P u t I n P a r a l l e l [0] ;
14 e l s e
15 re turn new BlockSt ruc ture (t o P u t I n P a r a l l e l , Operator .PARALLEL) ;
16 }

Listing B.6: Model for each cluster

At the end of the unify method, we have a coarse block structure that
does not represent the real behaviour yet. In the restructuring method,
we have implemented the set of rules that we apply to obtain the final
block structure.

1 p r i v a t e B lockSt ruc ture restructuringTheModel (B lockSt ruc ture b) {
2 BlockSt ruc ture newBlock = n u l l ;
3 i f (b . hasEvent ())
4 re turn b ;
5 e l s e i f ((b . getOp () . equals (Operator .CHOICE) | |

b . getOp () . equals (Operator .PARALLEL) | |
b . getOp () . equals (Operator .SEQUENCE)) && b . s i z e () == 1) {

6 // S{B}−>B , C{B}−>B , P{B}−> B
7 newBlock = TransformationRule . removeOperator (b) ;
8 } e l s e i f (b . blockWithSamrOperator ()) {
9 // Op{B1 . . . Op{e1 . . en } . . .Bm} −> Op{B1 . . . , e1 , . . . , en , . . . Bm}

10 newBlock = TransformationRule . i d e n t i t y (b) ;
11 } e l s e i f ((b . getOp () . equals (Operator .PARALLEL) | |

b . getOp () . equals (Operator .CHOICE)) && b . getFirstRowOp () != n u l l &&
b . getFirstRowOp () . equals (Operator .SEQUENCE)) {

12 i n t number = 0 ;
13 // Commutative of p a r a l l e l and choice operator
14 i f ((number = howManyBlock (b , LEFT)) != 0)
15 newBlock = TransformationRule . mergeSide (b , LEFT , number) ;
16 e l s e i f ((number = howManyBlock (b , RIGHT)) != 0)
17 newBlock = TransformationRule . mergeSide (b , RIGHT, number) ;
18 }
19 i f (newBlock == n u l l) {
20 newBlock = new BlockSt ruc ture (b . getOp ()) ;
21 f o r (i n t i = 0 ; i < b . s i z e () ; i ++)
22 newBlock . addBlockAtPosit ion (restructuringTheModel (b . getBlock (i)) , i) ;
23 }
24 i f (! b . equals (newBlock))
25 b = restructuringTheModel (newBlock) ;
26 re turn b ;}

Listing B.7: Restructuring the model method

127

At the start of this computation, we substituted the subtraces gener-
ating loops with a reference. Now it is time to substitute that reference
with the result of the algorithm applied over the subtrace (Listing B.8).

1 p r i v a t e B lockSt ruc ture replacingLoopReference (B lockSt ruc ture b) {
2 i f (loops . isEmpty ())
3 re turn b ;
4 Map<Event , B lockStructure> loopNametoLoopBS = new HashMap<Event ,

B lockStructure >() ;
5 f o r (LoopSet l : loops) {
6 SchimmAlgorithm alg = new SchimmAlgorithm (l . getLoop ()) ;
7 BlockSt ruc ture bl = new BlockSt ruc ture (Operator .LOOP) ;
8 bl . addBlockAtPosit ion (a lg . getFinalModel () , 0) ;
9 bl . s e t R e p e t i t i o n (l . g e t R e p e t i t i o n ()) ;

10 bl . setFrequency (log . getFrequencyLoop (l)) ;
11 loopNametoLoopBS . put (l . getName () , b l) ;
12 }
13 //Method to s u b s t i t u t e the loop r e f e r e n c e with the corresponding block

s t r u c t u r e
14 re turn rep laceReferences (loopNametoLoopBS , b) ;
15 }

Listing B.8: Replacing loop reference method

At last, we generated a block structure for a single event log that can
be retrieved using the getFinalModel() method of the SchimmAlgorithm
class.

B.2 Aggregation

We can use the aggregate function to analyse more than one event log
and generate an overall system specification.

This method applies to a list of mCRL2 specification objects, mean-
ing we use the algorithm explained above for all the event log separately.
Once we have mCRL2 object for each event log, we can unify their ac-
tions and messages, and the allow, hide and communication sets. Every
initial process is added to a common init set that will be represented as
the parallel composition of initial processes.

1 publ ic s t a t i c S t r i n g mergeMCRL2(L is t<MCRL2> m c r l 2 l i s t) {
2 MCRL2 unicspec = new MCRL2() ;
3 m c r l 2 l i s t . forEach (l −> {
4 unicspec . addActSet (l . getActSet ()) ;
5 i f (l . getAllowedAction () . isEmpty ())
6 unicspec . addAllowedAction (l . getActSet ()) ;
7 e l s e
8 //Union of act , comm, allow and hide s e t s

128

9 unicspec . addAllowedAction (l . getAllowedAction ()) ;
10 unicspec . addHideAction (l . getHideAction ()) ;
11 unicspec . addCommFunction (l . getCommFunction ()) ;
12 unicspec . a d d I n i t S e t (l . g e t I n i t S e t ()) ;
13 unicspec . appendMessage (l . getMessage ()) ;
14 unicspec . addProcSpec (l . getProcspec ()) ;
15 }) ;
16 //A communication funct ion among events with the same message i s generated
17 f o r (Entry<Event , Col l ec t ion<Event>> m :

unicspec . getMessage () . asMap () . en t r y Se t ()) {
18 Event [] a = new Event [m. getValue () . s i z e ()] ;
19 unicspec . addCommFunction (m. getValue () . toArray (a) , m. getKey ()) ;
20 unicspec . addActSet (m. getKey ()) ;
21 unicspec . addAllowedAction (m. getKey ()) ;
22 f o r (Event e : a)
23 unicspec . removedAllowedAction (e) ;
24 }
25 re turn genera teMcr l2F i le (unicspec) ;
26 }

Listing B.9: Aggregation

B.3 Running Example

The following listings report each mCRL2 specification obtained from
the event logs corresponding to each participant of the running example
in Figure 24.

1 a c t
2 BookTravel , PayTravel , Paymentconfirmationreceived , Bookingconfirmed ;
3 proc
4 P0=(BookTravel . Bookingconfirmed . PayTravel . Paymentconfirmationreceived) ;
5 i n i t P0 ;

Listing B.10: mCRL2 specification generated from the Customer log.

1 a c t
2 Confirmpayment , TicketOrderReceived , Paymentrefund ;
3 proc
4 P1=(TicketOrderReceived . (Paymentrefund+Confirmpayment)) ;
5 i n i t P1 ;

Listing B.11: mCRL2 specification generated from the Airline log.

1 a c t
2 Ordert icket , t , Bookingreceived , Paymentreceived , t0 , ConfirmBooking ;
3 proc
4 P2 = ((Bookingreceived . ConfirmBooking . t0 . Paymentreceived . t0)
5 | | (t 0 . O r d e r t i c k e t . t 0)) ;

129

6 i n i t hide ({ t } ,
7 allow ({ Ordert icket , t , Bookingreceived , Paymentreceived , ConfirmBooking} ,

comm({ t 0 | t 0−>t } ,
8 P2))) ;

Listing B.12: mCRL2 specification generated from the Travel agency log.

Next follows the specification of the aggregated logs.

1 a c t
2 Confirmpayment , BookTravel , Bookingreceived , Paymentreceived , Paymentrefund ,
3 Bookingconfirmed , ConfirmBooking , confirmation , Ordert icket ,
4 TicketOrderReceived , PayTravel , t , Paymentconfirmationreceived , payment ,
5 payment confirmation , t0 , order , t r a v e l ;
6 proc
7 P0=(TicketOrderReceived . (Paymentrefund+Confirmpayment)) ;
8 P1=(BookTravel . Bookingconfirmed . PayTravel . Paymentconfirmationreceived) ;
9 P2 = ((Bookingreceived . ConfirmBooking . t0 . Paymentreceived . t0)

10 | | (t 0 . O r d e r t i c k e t . t 0)) ;
11 i n i t
12 hide ({ t } , allow ({Paymentrefund , confirmation , t , payment , payment confirmation ,
13 order , t r a v e l } ,
14 comm({ Bookingreceived | BookTravel−>t r a v e l ,
15 Confirmpayment | Paymentconfirmationreceived−>payment confirmation ,
16 O r d e r t i c k e t | TicketOrderReceived−>order ,
17 PayTravel | Paymentreceived−>payment ,
18 Bookingconfirmed | ConfirmBooking−>confirmation , t0 | t 0−>t } ,
19 P0 | |P1 | |P2))) ;

Listing B.13: mCRL2 aggregate specification of the running example.

B.4 Replicate Experiments

The tool is equipped with a way to replicate part of the experiments pre-
sented in Section 4.4. The execution of PALM generates a mCRL2 speci-
fication measuring the execution time and its MC-fitness value, given the
same log is able to check which type of equivalence exists between the
specification and the coverability graph, then transformed in a mCRL2

specification as well, obtained from the other algorithms.
Still, the integration on how to generate the coverability graph needs

to be included, given an event log applying the IM, sHM and SM algo-
rithms. For the moment, to replicate this step, the user should follow
these steps:

• Download and extract the logs.zip archive from the GitHub repos-
itory.

130

• Execute the TKDE benchmark tool using this line on the terminal.

j ava − j a r tkde\ benchmark\ v2 . 0 . j a r −ext ” .\ logs − f o l d e r ”
−miners 0 8 2 −metr ics 0

The output will be a BPMN model for each log in the folder and
algorithm used, and the csv file contains the execution time.

• For each BPMN generated, use the plug-ins in the ProM framework
in the following order:

1. ”Convert BPMN diagram to Petri net”

2. ”Construct coverability graph of a Petri Net”

• The result will be a file ”.sg” containing the coverability graph.
Download the file inside the folder corresponding to its eventlog
inside the ”logs” folder and rename it as namelog namealgorithm.sg
(example: log1 IM.sg).

• Execute the PALM tool and select ”[3] Repeat experiments”, and
wait for the ”result.csv” to be generated.

131

Bibliography

[1] 4TU. https://data.4tu.nl/repository/collection:
event_logs_real.

[2] van der Aalst. Process Mining: Data Science in Action. Springer,
2016.

[3] van der Aalst et al. “Process Mining Manifesto”. In: Business Pro-
cess Management Workshops. Vol. 99. LNBIP. Springer, 2011, pp. 169–
194.

[4] Fides Aarts and Frits Vaandrager. “Learning I/O automata”. In:
International Conference on Concurrency Theory. Springer. 2010, pp. 71–
85.

[5] Rafael Accorsi, Andreas Lehmann, and Niels Lohmann. “Infor-
mation leak detection in business process models: Theory, appli-
cation, and tool support”. In: Information Systems 47 (2015), pp. 244–
257.

[6] Simone Agostinelli et al. “Achieving GDPR Compliance of BPMN
Process Models”. In: Information Systems Engineering in Responsible
Information Systems - CAiSE Forum 2019, Rome, Italy, June 3-7, 2019,
Proceedings. 2019, pp. 10–22.

[7] Amir Shayan Ahmadian, Daniel Strüber, and Jan Jürjens. “Privacy-
enhanced system design modeling based on privacy features”. In:
Proceedings of the 34th ACM/SIGAPP Symposium on Applied Com-
puting. 2019, pp. 1492–1499.

[8] Najla Omrane Aissaoui et al. “A BPMN-VSM based process anal-
ysis to improve the efficiency of multidisciplinary outpatient clin-
ics”. In: Production Planning & Control (2022), pp. 1–31.

132

https://data.4tu.nl/repository/collection:event_logs_real
https://data.4tu.nl/repository/collection:event_logs_real

[9] Bader K AlNuaimi, Mohammed Al Mazrouei, and Fauzia Jabeen.
“Enablers of green business process management in the oil and
gas sector”. In: International Journal of Productivity and Performance
Management 69.8 (2020), pp. 1671–1694.

[10] Dana Angluin. “Learning regular sets from queries and coun-
terexamples”. In: Information and computation 75.2 (1987), pp. 87–
106.

[11] Apromore. See the difference between perception and reality. 2023.
URL: https://apromore.com/.

[12] Adriano Augusto et al. “Automated discovery of structured pro-
cess models from event logs”. In: Data & Knowledge Engineering
117 (2018), pp. 373–392.

[13] Adriano Augusto et al. “Split miner: Discovering accurate and
simple business process models from event logs”. In: (2017), pp. 1–
10.

[14] Adriano et al. Augusto. “Automated discovery of process models
from event logs: Review and benchmark”. In: IEEE transactions on
knowledge and data engineering 31.4 (2018), pp. 686–705.

[15] Ahmed Awad, Gero Decker, and Niels Lohmann. “Diagnosing
and Repairing Data Anomalies in Process Models”. In: Business
Process Management Workshops. Springer, 2010, pp. 5–16.

[16] Vanessa Ayala-Rivera and Liliana Pasquale. “The Grace Period
Has Ended: An Approach to Operationalize GDPR Requirements”.
In: 26th IEEE International Requirements Engineering Conference, RE
2018, Banff, AB, Canada, August 20-24, 2018. 2018, pp. 136–146.

[17] Christel Baier and Joost-Pieter Katoen. Principles of model checking.
MIT press, 2008.

[18] Sara Belluccini et al. “PALM: A Technique for Process ALgebraic
Specification Mining”. In: International Conference on Integrated For-
mal Methods. Springer. 2020, pp. 397–418.

[19] Sara Belluccini et al. PALM: a technique for Process ALgebraic spec-
ification Mining (Technical Report). Tech. rep. Available at https:
//github.com/SaraBellucciniIMT/PALM. IMT.

[20] Sara Belluccini et al. “Verification of Privacy-Enhanced Collabora-
tions”. In: Proceedings of the 8th International Conference on Formal
Methods in Software Engineering. 2020, pp. 141–152.

133

https://apromore.com/
https://github.com/SaraBellucciniIMT/PALM
https://github.com/SaraBellucciniIMT/PALM

[21] Jan A Bergstra and Jan Willem Klop. “Process algebra for syn-
chronous communication”. In: Information and control 60.1/3 (1984),
pp. 109–137.

[22] Ivan et al. Beschastnikh. “Inferring models of concurrent systems
from logs of their behavior with CSight”. In: Proceedings of the
36th International Conference on Software Engineering. IEEE, 2014,
pp. 468–479.

[23] Chiara Bodei et al. “Techniques for security checking: non-interference
vs control flow analysis”. In: ENTCS 62 (2002), pp. 211–228.

[24] Egon Börger and Bernhard Thalheim. “A method for verifiable
and validatable business process modeling”. In: Advances in Soft-
ware Engineering. Vol. 5316. LNCS. Springer, 2008, pp. 59–115.

[25] Achim D Brucker and Sakine Yalman. “Confidentiality Enhanced
Life-Cycle Assessment”. In: International Conference on Business Pro-
cess Management. Springer. 2021, pp. 434–446.

[26] Joos CAM Buijs, Boudewijn F Van Dongen, and Wil MP van Der
Aalst. “On the role of fitness, precision, generalization and sim-
plicity in process discovery”. In: On the Move to Meaningful In-
ternet Systems: OTM 2012: Confederated International Conferences:
CoopIS, DOA-SVI, and ODBASE 2012, Rome, Italy, September 10-14,
2012. Proceedings, Part I. Springer. 2012, pp. 305–322.

[27] Olav Bunte et al. “The mCRL2 toolset for analysing concurrent
systems: improvements in expressivity and usability”. In: Tools
and Algorithms for the Construction and Analysis of Systems: 25th
International Conference, TACAS 2019, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2019,
Prague, Czech Republic, April 6–11, 2019, Proceedings, Part II 25.
Springer. 2019, pp. 21–39.

[28] Andrea Burattin. “PLG2: Multiperspective Process Randomiza-
tion with Online and Offline Simulations.” In: BPM (Demos). 2016,
pp. 1–6.

[29] Antonello Calabró, Said Daoudagh, and Eda Marchetti. “Integrat-
ing access control and business process for GDPR compliance: A
preliminary study.” In: ITASEC. 2019.

134

[30] Sara Capecchi et al. “Session Types for Access and Information
Flow Control”. In: CONCUR 2010 - Concurrency Theory, 21th In-
ternational Conference, Paris, France, August 31-September 3, 2010.
Proceedings. Springer, 2010, pp. 237–252.

[31] Josep Carmona et al. “Conformance checking”. In: Switzerland:
Springer.[Google Scholar] 56 (2018).

[32] Celonis. Process Mining. 2023. URL: https://www.celonis.
com/process-mining/.

[33] Ying Chen et al. “Dynamic task offloading for mobile edge com-
puting with hybrid energy supply”. In: Tsinghua Science and Tech-
nology 28.3 (2022), pp. 421–432.

[34] Flavio Corradini et al. “A Guidelines framework for understand-
able BPMN models”. In: Data Knowl. Eng. 113 (2018), pp. 129–154.

[35] Flavio Corradini et al. “A Technique for Collaboration Discov-
ery”. In: Enterprise, Business-Process and Information Systems Mod-
eling: 23rd International Conference, BPMDS 2022 and 27th Interna-
tional Conference, EMMSAD 2022, Held at CAiSE 2022, Leuven, Bel-
gium, June 6–7, 2022, Proceedings. Springer. 2022, pp. 63–78.

[36] Flavio Corradini et al. “BProVe: a formal verification framework
for business process models”. In: 2017 32nd IEEE/ACM Interna-
tional Conference on Automated Software Engineering (ASE). IEEE
Computer Society, 2017, pp. 217–228.

[37] Flavio Corradini et al. “Formalising and animating multiple in-
stances in BPMN collaborations”. In: Information Systems 103 (2022),
p. 101459.

[38] Flavio Corradini et al. “RePROSitory: a Repository platform for
sharing business PROcess models and logS.” In: ITBPM@ BPM.
2021, pp. 13–18.

[39] Sjoerd Cranen et al. “An overview of the mCRL2 toolset and its
recent advances”. In: International Conference on Tools and Algo-
rithms for the Construction and Analysis of Systems. Vol. LNTCS,
7795. Springer. 2013, pp. 199–213.

[40] Fabio D’Agostino et al. “Development of a multiphysics real-time
simulator for model-based design of a DC shipboard microgrid”.
In: Energies 13.14 (2020), p. 3580.

135

https://www.celonis.com/process-mining/
https://www.celonis.com/process-mining/

[41] George Danezis et al. “Privacy and data protection by design-
from policy to engineering”. In: arXiv preprint arXiv:1501.03726
(2015).

[42] Rocco De Nicola. “A gentle introduction to process algebras”. In:
Notes 7 (2014).

[43] Rocco De Nicola. “Behavioral equivalences”. In: (2011). Ed. by
David Padua, pp. 120–127.

[44] Remco M. Dijkman, Marlon Dumas, and Chun Ouyang. “Seman-
tics and analysis of business process models in BPMN”. In: Infor-
mation and Software Technology 50.12 (2008), pp. 1281–1294.

[45] Boudewijn et al. Dongen. “The ProM framework: A new era in
process mining tool support”. In: PETRI NETS. Springer. 2005,
pp. 444–454.

[46] Marlon Dumas et al. Fundamentals of business process management.
Vol. 1. Springer, 2013.

[47] Marlon Dumas et al. “Multi-level privacy analysis of business
processes: the Pleak toolset”. In: International Journal on Software
Tools for Technology Transfer (2021), pp. 1–21.

[48] Nissreen A. S. El-Saber and Artur Boronat. “BPMN Formalization
and Verification using Maude”. In: Proceedings of the 2014 Work-
shop on Behaviour Modelling - Foundations and Applications, BM-FA
2014, York, United Kingdom, July 22-22, 2014. 2014, pp. 1–12.

[49] Intidhar Essefi, Hanene Boussi Rahmouni, and Mohamed Fethi
Ladeb. “Integrated privacy decision in BPMN clinical care path-
ways models using DMN”. In: Procedia Computer Science 196 (2022),
pp. 509–516.

[50] Michael Fellman and Andrea Zasada. “State of the Art of Busi-
ness Process Compliance Approaches: A Survey”. In: Information
Systems. 2014.

[51] Qiang et al. Fu. “Contextual analysis of program logs for under-
standing system behaviors”. In: 2013 10th Working Conference on
Mining Software Repositories (MSR). IEEE. 2013, pp. 397–400.

[52] Hubert Garavel, Maurice H ter Beek, and Jaco van de Pol. “The
2020 expert survey on formal methods”. In: Formal Methods for In-
dustrial Critical Systems: 25th International Conference, FMICS 2020,
Vienna, Austria, September 2–3, 2020, Proceedings 25. Springer. 2020,
pp. 3–69.

136

[53] Michael Glöckner et al. “Privacy preserving BPMS for collabora-
tive BPaaS”. In: 2017 Federated Conference on Computer Science and
Information Systems (FedCSIS). IEEE. 2017, pp. 925–934.

[54] Heerko Groefsema and Doina Bucur. “A survey of formal busi-
ness process verification: From soundness to variability”. In: Busi-
ness Modeling and Software Design. 2013, pp. 198–203.

[55] Jan Friso Groote and M Mousavi. Modeling and analysis of commu-
nicating systems. MIT press, 2014.

[56] Jan Friso Groote and M Mousavi. Modelling and analysis of commu-
nicating systems. Technische Universiteit Eindhoven, 2013.

[57] Jan Friso Groote et al. “The formal specification language mCRL2”.
In: Dagstuhl Seminar Proceedings. Schloss Dagstuhl-Leibniz-Zentrum
für Informatik. 2007.

[58] Christian W Günther and Eric Verbeek. “XES standard defini-
tion”. In: Fluxicon Lab. (2014).

[59] Christian A Hammerschmidt, Radu State, and Sicco Verwer. “Hu-
man in the Loop: Interactive Passive Automata Learning via Evidence-
Driven State-Merging Algorithms”. In: arXiv preprint arXiv:1707.09430
(2017).

[60] Christian Albert Hammerschmidt et al. “Interpreting Finite Au-
tomata for Sequential Data”. In: arXiv preprint arXiv:1611.07100
(2016).

[61] Charles Antony Richard Hoare. “Communicating sequential pro-
cesses”. In: Communications of the ACM 21.8 (1978), pp. 666–677.

[62] Gerard J Holzmann. “Design and validation of protocols: a tuto-
rial”. In: Computer networks and ISDN systems 25.9 (1993), pp. 981–
1017.

[63] Sara Houhou et al. “A first-order logic semantics for communication-
parametric BPMN collaborations”. In: International Conference on
Business Process Management. Springer. 2019, pp. 52–68.

[64] Malte Isberner, Falk Howar, and Bernhard Steffen. “The TTT al-
gorithm: a redundancy-free approach to active automata learn-
ing”. In: Runtime Verification: 5th International Conference, RV 2014,
Toronto, ON, Canada, September 22-25, 2014. Proceedings 5. Springer.
2014, pp. 307–322.

137

[65] David N Jansen et al. “An O (m log n) algorithm for branch-
ing bisimilarity on labelled transition systems”. In: Tools and Al-
gorithms for the Construction and Analysis of Systems: 26th Interna-
tional Conference, TACAS 2020, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2020, Dublin,
Ireland, April 25–30, 2020, Proceedings, Part II. Vol. 12079. LNTCS.
Springer. 2020, pp. 3–20.

[66] Dionisis Kandris et al. “Applications of wireless sensor networks:
an up-to-date survey”. In: Applied System Innovation 3.1 (2020),
p. 14.

[67] Gerhard Keller, August-Wilhelm Scheer, and Markus Nüttgens.
Semantische Prozeßmodellierung auf der Grundlage” Ereignisgesteuerter
Prozeßketten (EPK)”. Inst. für Wirtschaftsinformatik, 1992.

[68] Abdul Ghaffar Khan et al. “A journey of WEB and Blockchain to-
wards the Industry 4.0: An Overview”. In: 2019 International Con-
ference on Innovative Computing (ICIC). IEEE. 2019, pp. 1–7.

[69] Bartek Kiepuszewski, Arthur Harry Maria ter Hofstede, and Christoph
J. Bussler. “On structured workflow modelling”. In: Springer, 2000,
pp. 431–445.

[70] Leonard Kleinrock. “Distributed systems”. In: Communications of
the ACM 28.11 (1985), pp. 1200–1213.

[71] Ryszard Koniewski, Andrzej Dzielinski, and Krzysztof Amborski.
“Use of Petri Nets and Business Processes Management Notation
in Modelling and Simulation of Multimodal Logistics Chains”.
In: 20th European Conference on Modeling and Simulation. Warsaw:
IEEE, 2006, pp. 28–31.

[72] Adarsh Kumar et al. “A novel smart healthcare design, simu-
lation, and implementation using healthcare 4.0 processes”. In:
IEEE Access 8 (2020), pp. 118433–118471.

[73] Sandeep Kumar et al. “Mining message sequence graphs”. In:
Proceedings of the 33rd International Conference on Software Engineer-
ing. 2011, pp. 91–100.

[74] Leslie Lamport. “Time, clocks, and the ordering of events in a dis-
tributed system”. In: Concurrency: the Works of Leslie Lamport. 2019,
pp. 179–196.

138

[75] Ruggero Lanotte et al. “A formal approach to physics-based at-
tacks in cyber-physical systems”. In: ACM Transactions on Privacy
and Security (TOPS) 23.1 (2020), pp. 1–41.

[76] Kristian Bisgaard Lassen and Wil MP van der Aalst. “Complexity
metrics for workflow nets”. In: Information and Software Technology
51.3 (2009), pp. 610–626.

[77] Sander et al. Leemans. “Discovering block-structured process mod-
els from event logs:a constructive approach”. In: PETRI NETS.
Springer. 2013, pp. 311–329.

[78] Sander JJ Leemans, Dirk Fahland, and Wil MP van der Aalst.
“Discovering block-structured process models from event logs
containing infrequent behaviour”. In: International conference on
business process management. Vol. 7927. LNTCS. Springer. 2013, pp. 66–
78.

[79] Ann Lindsay, Denise Downs, and Ken Lunn. “Business processes–
attempts to find a definition”. In: Inf. Softw. Technol. 45.15 (2003),
pp. 1015–1019.

[80] Slawomir Mandra et al. “Iterative learning control for a class of
multivariable distributed systems with experimental validation”.
In: IEEE Transactions on Control Systems Technology 29.3 (2020), pp. 949–
960.

[81] Samer Mansour et al. “Wireless sensor network-based air quality
monitoring system”. In: 2014 international conference on computing,
networking and communications (ICNC). IEEE. 2014, pp. 545–550.

[82] Cristian Masalagiu et al. “A rigorous methodology for specifica-
tion and verification of business processes”. In: Formal Aspects of
Computing 21.5 (2009), pp. 495–510.

[83] mCRL2 - analysing system behaviour. URL: https://www.mcrl2.
org/.

[84] mcrl22lps. URL: https://www.mcrl2.org/web/user_manual/
tools/release/mcrl22lps.html.

[85] Jan Mendling, Gustaf Neumann, and Markus Nüttgens. “Yet an-
other event-driven process chain”. In: Business Process Manage-
ment: 3rd International Conference, BPM 2005, Nancy, France, Septem-
ber 5-8, 2005. Proceedings 3. Springer. 2005, pp. 428–433.

139

https://www.mcrl2.org/
https://www.mcrl2.org/
https://www.mcrl2.org/web/user_manual/tools/release/mcrl22lps.html
https://www.mcrl2.org/web/user_manual/tools/release/mcrl22lps.html

[86] Jan Mendling, Hajo A. Reijers, and van der Aalst. “Seven process
modeling guidelines”. In: Information and Software Technology 52.2
(2010), pp. 127–136.

[87] R. Milner. A calculus of communicating systems. Springer, 1980.

[88] R. Milner. Communication and Concurrency. Prentice-Hal, 1989.

[89] Shoichi Morimoto. “A Survey of Formal Verification for Business
Process Modeling”. In: Computational Science. Vol. 5102. LNCS.
Springer, 2008, pp. 514–522.

[90] Behrouz Alizadeh Mousavi et al. “A survey of model-based sys-
tem engineering methods to analyse complex supply chains: A
case study in semiconductor supply chain”. In: IFAC-PapersOnLine
52.13 (2019), pp. 1254–1259.

[91] Kevin P Murphy et al. “Passively learning finite automata”. In:
Citeseer. 1995.

[92] Rocco De Nicola. “Process Algebras”. In: Encyclopedia of Parallel
Computing. Ed. by David A. Padua. Springer, 2011, pp. 1624–1636.

[93] Marcin Nizioł et al. “Characteristic and comparison of UML, BPMN
and EPC based on process models of a training company”. In: An-
nals of Computer Science and Information Systems 26 (2021), pp. 193–
200.

[94] Olumide Emmanuel Oluyisola et al. “Designing and developing
smart production planning and control systems in the industry
4.0 era: a methodology and case study”. In: Journal of Intelligent
Manufacturing 33.1 (2022), pp. 311–332.

[95] OMG. Business Process Model and Notation (BPMN 2.0). 2011. URL:
https://www.omg.org/spec/BPMN/2.0/.

[96] OMG. WHAT IS SYSML? 2023. URL: https://www.omgsysml.
org/what-is-sysml.htm.

[97] PALM github repository. https://github.com/SaraBellucciniIMT/
PALM.

[98] PLEAK - Privacy Leakage Analysis Tools. URL: https://pleak.
io/home.

[99] Andrea Polini, Andrea Polzonetti, and Barbara Re. “Formal Meth-
ods to Improve Public Administration Business Processes”. In:
RAIRO - Theor. Inf. and Applic. 46.2 (2012), pp. 203–229.

140

https://www.omg.org/spec/BPMN/2.0/
https://www.omgsysml.org/what-is-sysml.htm
https://www.omgsysml.org/what-is-sysml.htm
https://github.com/SaraBellucciniIMT/PALM
https://github.com/SaraBellucciniIMT/PALM
https://pleak.io/home
https://pleak.io/home

[100] Artem Polyvyanyy, Luciano Garcia-Banuelos, and Marlon Du-
mas. “Structuring acyclic process models”. In: Information Systems
37.6 (2012), pp. 518–538.

[101] Artem Polyvyanyy, Jussi Vanhatalo, and Hagen Völzer. “Simpli-
fied computation and generalization of the refined process struc-
ture tree”. In: International Workshop on Web Services and Formal
Methods. Vol. 6551. LNPSE. Springer. 2010, pp. 25–41.

[102] Davide Prandi, Paola Quaglia, and Nicola Zannone. “Formal Anal-
ysis of BPMN Via a Translation into COWS”. In: Coordination Mod-
els and Languages. Springer, 2008, pp. 249–263.

[103] Davide Prandi, Paola Quaglia, and Nicola Zannone. “Formal Anal-
ysis of BPMN Via a Translation into COWS”. In: COORDINA-
TION. Vol. 5052. LNCS. 2008, pp. 249–263.

[104] Pille Pullonen, Raimundas Matulevičius, and Dan Bogdanov. “PE-
BPMN: privacy-enhanced business process model and notation”.
In: BPM. Vol. 10445. LNCS. Springer, 2017, pp. 40–56.

[105] Pille Pullonen et al. “Privacy-enhanced BPMN: enabling data pri-
vacy analysis in business processes models”. In: Software and Sys-
tems Modeling 18.6 (2019), pp. 3235–3264.

[106] Mohamed Ramadan, Hicham G. Elmongui, and Riham Hassan.
“BPMN formalisation using coloured petri nets”. In: International
Conference on Software Engineering & Applications. 2011.

[107] Michel Reniers et al. “Completeness of timed µCRL”. In: Funda-
menta Informaticae 50.3-4 (2002), pp. 361–402.

[108] Alfonso Rodriguez, Eduardo Fernandez-Medina, and Mario Pi-
attini. “A BPMN extension for the modeling of security require-
ments in business processes”. In: IEICE transactions on information
and systems 90.4 (2007), pp. 745–752.

[109] Anne et al. Rozinat. “Towards an evaluation framework for pro-
cess mining algorithms”. In: BPM Center Report BPM-07-06 123
(2007), p. 20.

[110] Ahmed Sadik and Christian Goerick. “Multi-Robot System Archi-
tecture Design in SysML and BPMN”. In: ().

[111] Mattia Salnitri, Fabiano Dalpiaz, and Paolo Giorgini. “Designing
secure business processes with SecBPMN”. In: Software and Sys-
tems Modeling 16.3 (2017), pp. 737–757.

141

[112] Koh Song Sang and Bo Zhou. “BPMN security extensions for health-
care process”. In: CIT/IUCC/DASC/PICom. IEEE. 2015, pp. 2340–
2345.

[113] Cleiton dos Santos Garcia et al. “Process mining techniques and
applications–A systematic mapping study”. In: Expert Systems with
Applications 133 (2019), pp. 260–295.

[114] SAP. A Comprehensive Guide to Process Mining: How to Make Better
Decisions Faster. 2023. URL: https://www.signavio.com/
downloads/white-papers/comprehensive-guide-to-
process-mining/.

[115] Guido Schimm. “Mining exact models of concurrent workflows”.
In: Computers in Industry 53.3 (2004), pp. 265–281.

[116] Alexander Seeliger et al. “Process compliance checking using taint
flow analysis”. In: ICIS. Association for Information Systems, 2016.

[117] Laixiang Shan, Xiaomin Du, and Zheng Qin. “Efficient approach
of translating LTL formulae into Büchi automata”. In: Frontiers of
Computer Science 9 (2015), pp. 511–523.

[118] Donghwan et al. Shin. “Scalable Inference of System-level Models
from Component Logs”. In: arXiv preprint arXiv:1908.02329 (2019).

[119] Alireza Souri, Nima Jafari Navimipour, and Amir Masoud Rah-
mani. “Formal verification approaches and standards in the cloud
computing: a comprehensive and systematic review”. In: Com-
puter Standards & Interfaces 58 (2018), pp. 1–22.

[120] Ali Sunyaev. “Distributed ledger technology”. In: Internet Com-
puting. Springer, 2020, pp. 265–299.

[121] Sudeep Tanwar, Karan Parekh, and Richard Evans. “Blockchain-
based electronic healthcare record system for healthcare 4.0 ap-
plications”. In: Journal of Information Security and Applications 50
(2020), p. 102407.

[122] Niek Tax et al. “The imprecisions of precision measures in process
mining”. In: Information Processing Letters 135 (2018), pp. 1–8.

[123] The jBPT library. URL: https://github.com/jbpt/codebase.

[124] Raj Gaurang Tiwari et al. “Exploiting UML diagrams for test case
generation: a review”. In: 2021 2nd international conference on in-
telligent engineering and management (ICIEM). IEEE. 2021, pp. 457–
460.

142

https://www.signavio.com/downloads/white-papers/comprehensive-guide-to-process-mining/
https://www.signavio.com/downloads/white-papers/comprehensive-guide-to-process-mining/
https://www.signavio.com/downloads/white-papers/comprehensive-guide-to-process-mining/
https://github.com/jbpt/codebase

[125] Aivo Toots et al. “Business Process Privacy Analysis in Pleak”. In:
FASE. Vol. 11424. LNCS. Springer, 2019, pp. 306–312.

[126] Wayes Tushar et al. “Peer-to-peer energy systems for connected
communities: A review of recent advances and emerging chal-
lenges”. In: Applied Energy 282 (2021), p. 116131.

[127] UiPath. Evolve your processes,discover better outcomes. 2023. URL:
https://www.uipath.com/product/process-mining.

[128] UPPAAL. URL: https://uppaal.org/.
[129] Frits W. Vaandrager. “Model learning”. In: Commun. ACM 60.2

(2017), pp. 86–95.
[130] Wil Van Der Aalst. Process mining: data science in action. Vol. 2.

Springer, 2016.
[131] Wil Van der Aalst, Ton Weijters, and Laura Maruster. “Workflow

mining: Discovering process models from event logs”. In: TKDE
9 (2004), pp. 1128–1142.

[132] Jussi Vanhatalo, Hagen Völzer, and Jana Koehler. “The refined
process structure tree”. In: Data & Knowledge Engineering 68.9 (2009),
pp. 793–818.

[133] Verifying Multi-threaded Software with Spin. URL: https://spinroot.
com/.

[134] Sicco Verwer and Christian A Hammerschmidt. “Flexfringe: a pas-
sive automaton learning package”. In: 2017 IEEE international con-
ference on software maintenance and evolution (ICSME). IEEE. 2017,
pp. 638–642.

[135] Wattana Viriyasitavat et al. “Blockchain-based business process
management (BPM) framework for service composition in indus-
try 4.0”. In: Journal of Intelligent Manufacturing 31.7 (2020), pp. 1737–
1748.

[136] Weijters and Ribeiro. “Flexible heuristics miner”. In: CIDM. IEEE.
2011, pp. 310–317.

[137] John A. Wise, V. David Hopkin, and Paul Stager. Verification and
validation of complex systems: Human factors issues. Vol. 110. Springer
Science & Business Media, 2013.

[138] Peter Y. H. Wong and Jeremy Gibbons. “Formalisations and appli-
cations of BPMN”. In: Sci. Comput. Program. 76.8 (2011), pp. 633–
650.

143

https://www.uipath.com/product/process-mining
https://uppaal.org/
https://spinroot.com/
https://spinroot.com/

	List of Figures
	List of Tables
	Acknowledgements
	Abstract
	1 Introduction
	1.1 Research Objectives
	1.2 Contribution
	1.3 Thesis Structure

	2 Background Notions
	2.1 mCRL2 Formal Specification Language
	2.1.1 Equivalence and Model Checking

	2.2 Business Process Model and Notation
	2.2.1 PE-BPMN

	2.3 Process Mining
	2.3.1 Process Discovery Techniques

	3 From Collaboration Models to Formal Specifications
	3.1 A methodology for PE-BPMN Collaborations Verification
	3.2 From PE-BPMN to mCRL2
	3.2.1 Control-flow Transformation
	3.2.2 PETs Identification
	3.2.3 Data- and Message-flow Transformation

	3.3 Verification
	3.3.1 Task Verification
	3.3.2 Participant Verification
	3.3.3 Secret Sharing Verification
	3.3.4 Additive Secret Sharing Verification
	3.3.5 Function Secret Sharing Verification
	3.3.6 Public Key Encryption Verification
	3.3.7 Symmetric Key Encryption Verification
	3.3.8 Reconstruction Verification
	3.3.9 MPC Verification
	3.3.10 Deadlock Freedom

	3.4 Tool Implementation
	3.5 Validation
	3.5.1 Experiments on Realistic PE-BPMN Models
	3.5.2 Experiment on Synthesised Models

	3.6 Related Work

	4 From Collaboration Logs to Formal Specifications
	4.1 The nCRL2 Core Calculus
	4.2 PALM Methodology
	4.2.1 Mining
	4.2.2 Aggregation

	4.3 PALM at Work
	4.4 Validation
	4.5 Related Work

	5 Concluding Remarks
	5.1 Future Work

	A Proofs to Establish Semantic Correctness
	A.1 Operational Correspondence Between mCRL2 and nCRL2 and Viceversa
	A.2 Operational Correspondence Between B and nCRL2 and Viceversa

	B PALM Details
	B.1 Mining Tool-independent Specification
	B.2 Aggregation
	B.3 Running Example
	B.4 Replicate Experiments

