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Abstract

Autonomous driving in urban environments requires safe con-
trol policies that account for the non-determinism of moving
obstacles, for instance, the intention of other vehicles while
crossing an uncontrolled intersection. This thesis addresses
the aforementioned problem by proposing a stochastic model
predictive control (SMPC) approach. In this approach, we
consider robust collision avoidance as a constraint to guar-
antee safety and a stochastic performance index that will in-
crease the quality of the closed-loop tracking by ignoring the
unlikely obstacle configurations that could occur. We com-
pute the probabilities associated with different obstacle tra-
jectories by training a classifier on a realistic dataset gener-
ated by the microscopic traffic simulator SUMO and show the
benefits of the proposed stochastic MPC formulation in a sim-
ulated real intersection. This thesis is divided into two parts:
first, discuss the formulation of the existing control algorithm
and our proposed approach, and second, the scenario predic-
tion of the obstacle vehicles.

xvii



Chapter 1

Introduction

1.1 Background and Motivation

Autonomous driving is one of the areas that has gone through a lot of
evolution in the last few decades, still achieving fully automated reliable
driving is expected to require further significant research efforts [1, 2,
3]. The timeline of autonomous vehicles started in 1926 with the intro-
duction of radio controlled car named ‘Linriccan Wonder’. In the 1980s
a vision-guided driverless Mercedes Benz van achieved 63km/hr speed
on a road without traffic. The actual start of autonomous driving tech-
nology started with the development of the driverless autonomous car
by the Defense Advanced Research Projects Agency (DARPA). It is the
arm of the USA Department of Defence that is responsible for advancing
military technology and was financially supporting this research in the
name of the DARPA Grand Challenge. When it comes to commercializ-
ing this technology Google was one of the first companies that took the
initiative.

According to the Society of Automotive Engineers (SAE) Interna-
tional, there are six levels of automation.

• Level 0 : No Automation

• Level 1 : With few autonomous features such as automatic braking
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Figure 1: Mercedes’s Drive Pilot

but need human intervention at all the time

• Level 2 : It will take safety actions, still the driver needs to be alert
at the steering wheels and pedals of the car. The features include
cruise control/autopilot and lane centering

• Level 3 : In this, the car can handle dynamic driving which means
it can do the steering, braking, and lane changing but still needs a
driver when it signals for intervention

• Level 4 : The level that needs less human intervention, as it drives
safely without human input except in unmapped area as well as
during bad weather

• Level 5 : It doesn’t have a brake pedal or steering wheel. This type
of car can drive in all conditions and doesn’t need a driver at all

We currently have Mercedes’s Drive Pilot as the world’s first certified
Level 3 Automation system, which is already available in Germany.

The architecture of self-driving vehicles [4] is mainly divided into
two parts 1) Perception and 2) Decision making as shown in Figure 2.

1. Perception This system is responsible for estimating the state of the
ego as well as creating a representation of the surroundings with
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Figure 2: Architecture of a typical Self-driving vehicle. TSD is Traffic Sig-
nalization Detection and MOT, Moving Objects Tracking [4]

the help of data from the onboard sensors such as Light Detection
and Radar (LIDAR), Radio Detection and Ranging (RADAR), cam-
era, Global Positioning System (GPS), Inertial Measurement Unit
(IMU), odometer, etc and the prior knowledge of sensor models,
traffic rules, road networks, etc.

2. Decision making It is responsible for navigating the vehicle from
starting to the target position defined by the user taking into ac-
count the input from the perception system.
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In this thesis, we focus on the Obstacle Avoider and Controller part
within the Decision-making system.

1.2 Challenges and Existing Solutions

As fascinating as it is the concept of higher-level automation (Above level
2), is as challenging as it gets. One of the main challenges is navigating
through an uncertain environment that includes pedestrians, other non-
automated obstacle vehicles, etc. Various types of sensors are nowadays
able to provide reliable information about the current obstacle positions,
see, e.g., [5]. However, in order to drive safely and effectively, the control
algorithm needs to take future obstacle positions into account. This poses
two challenges: on the one hand how to obtain such information; and on
the other hand, how to exploit it in order to issue safe control commands.

Several approaches have been proposed for modeling pedestrians
and surrounding vehicles; see, e.g., the overview in [6]. In particular,
interacting multiple-model (IMM) filters that predict the intention and
future states of surrounding vehicles were suggested in [7, 8].

A similar approach was taken in [9], where, in addition, hidden Markov
models (HMMs) were used to recognize vehicle maneuvers and proba-
bilistic trajectories generated with the help of variational Gaussian mix-
ture models.

A multimodal hierarchical Inverse Reinforcement Learning (IRL) ap-
proach was instead in [10] to learn joint driving pattern-intention-motion
models and use them to probabilistically predict continuous motions. A
simpler but effective and computationally inexpensive approach that re-
tains the ability to predict multimodal distributions was proposed in [11].
In [12], the authors proposed a general semantic-based intention and
motion prediction based on deep neural networks; similar approaches
were also proposed in [13] and [14] to predict lane change maneuvers. A
human-like decision model for unsignalized intersection was suggested
in [15] by an intention-aware prediction of other vehicles via convolu-
tional neural networks with multiple object tracking combined with a
Kalman filter. In [16], recurrent neural networks in long short-term mem-
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ory (LSTM) form was used to predict the future driving lane of the vehi-
cle. A hybrid approach using a neural classifier for maneuver classifica-
tion and an LTSM memory for trajectory prediction was analyzed in [17].
For lane-change maneuver prediction, a combination of support vector
machines and neural networks was considered in [18], while random
forests and conditional random fields method were suggested in [19] for
a T-intersection.

Assuming that a model estimating the future positions of the sur-
rounding obstacles is available, this can be naturally exploited for plan-
ning the motion of the ego vehicle by using model predictive control
(MPC) techniques [20, 21], as collision avoidance can then be formulated
as an explicit constraint. Indeed, MPC has gained considerable atten-
tion in the last years in automotive control, especially for its ability to
handle constraints on system variables, not only in academic research
but also in industrial practice; see, e.g., [22] for a documented use of
MPC in high-volume production. Regarding motion planning, MPC en-
ables tracking reference paths at desired speeds while ensuring collision
avoidance, thanks to the introduction of explicit constraints that keep the
predicted distance between the ego vehicle and obstacles above a pre-
scribed safety margin; see, e.g., [23], in which an MPC formulation was
used for path planning in a dynamic environment by modeling the sur-
rounding obstacle vehicles as polygons, and [24] for an MPC formulation
using spatial-based models.

To handle uncertainty in the prediction, stochastic MPC formulations [25]
can be introduced, in particular, scenario-based approaches [26]; see,
e.g., [27, 28, 29] for applications of stochastic MPC in automotive con-
trol. In [30], the authors proposed the use of stochastic MPC based on
Gaussian mixture models to get a multimodal prediction of the trajecto-
ries of the surrounding vehicles. MPC approaches tailored to collision
avoidance with pedestrians were proposed in [31, 32], while a generic
MPC framework providing rigorous safety guarantees in uncertain en-
vironments was analyzed in [33, 34].

Alternative approaches for safe path planning were proposed in [35,
36]. A stochastic scenario-based MPC approach was adopted in [37] by
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relying on partially observable Markov decision process models. More
recently, [38] employed what the authors called branch MPC, which uses
ideas similar to [32], and leverages neuroscience studies to model human
decision-making and predict the obstacle vehicle intentions.

1.3 Scope and Contribution of the thesis

In this thesis, we endeavor to handle the uncertain obstacles in autonomous
driving by considering approaches that are best suitable for each inten-
tion prediction of the obstacles and planning of the respective trajectory
of the ego. First, we employ i) a stochastic MPC formulation with robust
collision-avoidance constraints for commanding the longitudinal accel-
eration and steering rate of the ego vehicle, focusing on the case of un-
controlled intersections ii) Second, a classifier that is trained on a realistic
dataset generated by the microscopic traffic simulator SUMO (Simula-
tion of Urban Mobility) [39] estimates the probabilities associated with
different future scenarios, which are crucial for closed-loop performance
and predicts the intention of incoming vehicles to drive straight ahead,
turn left, or turn right. iii) Third, using a realistic simulation setting, we
compare the proposed approach against alternative MPC formulations,
namely deterministic prescient MPC, in which future obstacle positions
are known exactly, and robust MPC, in which probabilities are not taken
into account.

1.4 Structure

Chapter 2 - Problem Definition

This chapter elaborates on the problem we address in this thesis as well
as the overview of the vehicle model. We formulate the cost function
and constraints we are trying to optimize. And we briefly explain the
keywords that might be useful to understand the problem formulation.
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Chapter 3 - Model Predictive control algorithms

This chapter introduces several MPC approaches that can be used to
solve the problem we defined in Chapter 2. Firstly, we introduce the
framework for the ideal case where the exact obstacle waypoints are
known prior and which is further called the prescient model predic-
tive control (PMPC). The other two approaches give a control algorithm
that takes into account uncertainty. The first approach is robust MPC.
We elaborate on the framework and its shortcomings. The second ap-
proach is the stochastic MPC which is the base of our control approach.
This chapter gives a detailed insight into our proposed scenario-based
stochastic model predictive control and the corresponding problem for-
mulation.

Chapter 4 - Obstacle Model and Scenario Prediction

This chapter gives a background on different learning methods and the
relevant basic information that is necessary for the reader. It focuses
mainly on supervised learning to have an understanding of the classi-
fiers that we have used in this thesis. It elaborates on the features chosen
for the classifier and its comparison with other classifiers as well as the
characteristics of the chosen classifier.

Chapter 5 - Simulation of Urban Mobility

This chapter gives an overview of the SUMO Traffic simulator and a brief
glimpse into Traci the interface which facilitated the connection of Mat-
Lab and SUMO. It describes in detail the type of vehicles and other rele-
vant driving parameters which we have used for simulating several ob-
stacle scenarios to train and test the classifier.

Chapter 6 - Simulation Results

This chapter gives the simulation results of several ego-obstacle interac-
tion scenarios and compares our control algorithm output with Robust
based and Prescient Model Predictive control.
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Chapter 7 - Conclusion & Future work

This chapter elaborates conclusions we have reached in this thesis and
the research and work that needs to be continued.
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Chapter 2

Problem Definition

As we have addressed in the previous chapter, we focus on predicting the
intentions of obstacle vehicles and implement a control algorithm that
takes into account the predicted intentions to navigate the ego vehicle
along the given reference path by avoiding possible collisions.

In this chapter, a detailed description of the ego vehicle model as well
as the constraints associated with the control problem formulation are
discussed.

2.1 Mathematical preliminaries

4-step Runge Kutta method

To solve an ordinary differential equation (ODE) there are several meth-
ods available. In this thesis, we considered Runge-Kutta as the method
to solve an ODE.

Consider a first order ordinary differential equation

dy(t)

dt
= f(y(t), t), y(t0) = y0, (2.1)

where, y is the unknown function of time t that requires to be approx-
imated, the function f and the initial values t0 and y0 are given [40].

Consider a step size h > 0 and define:

9



yn+1 =yn +
1

6
(k1 + 2k2 + 2k3 + k4)h, (2.2a)

tn+1 =tn + h (2.2b)

for n = 0, 1, . . . (2.2c)

where, (2.2d)

k1 =f(tn, yn), (2.2e)

k2 =f(tn +
h

2
, yn + h

k1
2
), (2.2f)

k3 =f(tn +
h

2
, yn + h

k2
2
), (2.2g)

k4 =f(tn + h, yn + hk3). (2.2h)

Where, yn+1 is the RK4 approximation of y(tn+1) and k1, k2, k3, k4 are
the slopes computed at the beginning, midpoint(both k2 and k3) and end
of the interval respectively.

Optimization Problem

An optimization problem [41] is generally formulated as

infz f(z) (2.3a)

subj.to z ∈ S ⊆ Z, (2.3b)

where the vector z collects the decision variables, Z is the optimiza-
tion problem domain, and S ⊆ Z is the set of feasible or admissible
decisions. The function f : Z → R assigns to each decision z a cost
f(z) ∈ R. Throughout this section, we will consider a shorter version of
equation (2.3) given by in equation (2.4).

inf
z∈S⊆Z

f(z). (2.4)

Solving equation (2.4) means to compute least possible cost f∗ which
is given by:-
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f∗ = inf
z∈S⊆Z

f(z).

The value f∗ is the optimal value of the equation (2.4), i.e.,

f(z) ≥ f(z∗) = f∗ ∀ z ∈ S, ∃ z∗ ∈ S

If f∗ = −∞ we say the problem is unbounded below. If the set S is
empty then the problem is infeasible and set f∗ = +∞ by convention. If
S = Z the problem is unconstrained. To find the optimal solution, that
is to find z∗ ∈ S with f(z∗) = f∗. If such z∗ exists, then we rewrite
problem (2.4) as (2.5)

f∗ = min
z∈S

f(z) (2.5)

and z∗ is called an optimizer, global optimizer or optimal solution. The
set of all optimal solutions are referred by

argminz∈S f(z) = {z ∈ S : f(z) = f∗}.
A problem of determining whether the set of feasible decisions is

empty and, if not, to find a point that is feasible, is called a feasibility
problem.

Convexity

A set S ∈ Rs is convex if
λz1 + (1− λ)z2 ∈ S for all z1 ∈ S, z2 ∈ S and λ ∈ [0, 1].

A function f : S → R is convex if S is convex and

f(λz1 + (1− λ)z2 ≤ λf(z1) + (1− λ)f(z2) for all z1 ∈ S, z2 ∈ S and
λ ∈ [0, 1].

A function f : S → R is strictly convex if S is convex and f(λz1 +

(1−λ)z2 < λf(z1)+(1−λ)f(z2) for all z1 ∈ S, z2 ∈ S and λ ∈ (0, 1).

A twice differentiable function f : S → R is strongly convex if the
Hessian ∇2f(z) > 0 for all z ∈ S.

A function f : S → R is concave if S is convex and −f is convex.
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Convex Optimization Problem

A standard optimization is given by equation (2.6)

infz f(z) (2.6a)

subj.to gi(z) ≤ 0 for i = 1, . . . ,m (2.6b)

hj(z) = 0 for j = 1, . . . , p (2.6c)

z ∈ Z, (2.6d)

where f, g1 . . . , gm, h1, . . . , hp are real-valued functions defined over
Rs, i.e., f : Rs → R, gi : Rs → R, hi : Rs → R. The domain Z is the
intersection of the domains of the cost and constraint functions:

Z = {z ∈ Rs : z ∈ dom f, z ∈ dom gi, i = 1, . . . ,m, z ∈ dom hj , j = 1, . . . , p}.
(2.7)

The problem (2.6) is unconstrained if m = p = 0. The inequalities
gi(z) ≤ 0 are called inequality constraints and the equations hi(z) = 0 are
called equality constraints. A point z̄ ∈ Rs is feasible for problem (2.6) if: (i)
it belongs to Z, (ii) it satisfies all inequality and equality constraints, i.e.,
gi(z̄) ≤ 0, i = 1, . . . ,m, hj(z̄) = 0, j = 1, . . . , p. The set of feasible vectors
is

S = {z ∈ Rs : z ∈ Z, gi(z) ≤ 0, i = 1, . . . ,m, hj(z) = 0, j = 1, . . . , p}.
(2.8)

Let f∗ be the optimal value of the problem (2.6). An optimizer, if it
exists, is a feasible vector z∗ with f(z∗) = f∗.

A feasible point z̄ is locally optimal for problem (2.6) if there exists an
R > 0 such that

12



f(z̄) = infz f(z) (2.9a)

subj.to gi(z) ≤ 0 for i = 1, . . . ,m (2.9b)

hj(z) = 0 for j = 1, . . . , p (2.9c)

∥z − z̄∥ ≤ R (2.9d)

z ∈ Z, (2.9e)

Where, z̄ is the minimizer of f(z) in a feasible neighborhood of z̄ de-
fined by ∥z − z̄∥ ≤ R. The point z̄ is called a local optimizer or local
minimizer.

The standard optimization problem (2.6) is said to be convex if the
cost function f is convex on Z and S is a convex set. A fundamental
property of convex optimization problems is that local optimizers are
also global optimizers.

It is difficult to determine whether the feasible set S of the optimiza-
tion problem (2.6) is convex or not except in special cases. For instance,
if the functions g1(z), . . . , gm(z) are convex and all the hi(z) (if any) are
affine in z, then the feasible set S in (2.8) is an intersection of convex sets
and is therefore convex. Moreover, there are nonconvex problems that
can be transformed into convex problems through a change of variables
and manipulations of cost and constraints.

Polytope and Polyhedron

A Polyhedron P in Rn denotes the intersection of a finite set of closed
half spaces in Rn:

P = {x ∈ Rn : Ax ≤ b},

where Ax ≤ b is a system of inequalities, namely a
′

ix ≤ bi, i =

1, . . . ,m, where a
′

1, . . . , a
′

m are the rows of A, and b1, . . . , bm are the com-
ponents of b.

A Polytope is a bounded polyhedron as shown in Figure3.
A linear inequality c

′
z ≤ c0 is said to be valid for P if it is satisfied for

all points z ∈ P . A face of P is any nonempty set of the form
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Figure 3: Example of a Polytope

F = P ∩ {z ∈ Rs : c
′
z ≤ c0},

where c
′
z ≤ c0 is a valid inequality for P i.e., this inequality holds for

all points in P . All faces of P satisfying F ∩P are called proper faces and
have dimension less than dim(P ). The faces of dimension 0, 1, dim(P )−2

and dim(P )− 1 are vertices, edges, ridges and facets, respectively.

2.2 Kinematic Bicycle model

To model the lateral motion of the ego vehicle we consider the kinematic
bicycle model as shown in figure 4 with the front axle of the vehicle as
the desired point which assumes to have a planar motion [42]. In a bicy-
cle model, the two left and right front wheels are represented by A and
similarly, B represents both the rear wheels as one. The corresponding
model is given by the equation (2.10).
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Figure 4: Kinematic Bicycle model (2.10)

ẋ = v cos(θ + δ) (2.10a)

ẏ = v sin(θ + δ) (2.10b)

θ̇ =
v

L
sin(δ) (2.10c)

v̇ = a (2.10d)

δ̇ = ω (2.10e)

where (x, y) are the coordinates of the location of the center of the
front axle of the ego vehicle in the fixed absolute frame and θ its orien-
tation with respect to global x axis, v the longitudinal speed, and δ the
steering angle. Throughout this thesis, we denote the state vector of the
model as X = [x y θ v δ]′ and U = [a ω]′ as the input vector, where a is
the longitudinal acceleration and ω the steering rate.

The prediction model for MPC is obtained by discretizing (2.10) us-
ing an explicit Runge-Kutta 4 method with time-discretization Ts, ob-
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taining the following discrete-time nonlinear model

Xt+1 = f(Xt, Ut) (2.11)

where t denotes the sample step.

2.3 Problem Definition

Our challenge is to decide which mode of input can be obtained from
the obstacle intention prediction model and how to incorporate it into
a control algorithm. In this section, we describe a high-level problem
formulation.

To formulate a path-following problem with dynamic collision avoid-
ance the crucial component is the position (xo, yo) of the dynamic ob-
stacle. Hence we need a formulation that integrates this uncertain ele-
ment. The collision avoidance can be considered as a constraint to our
optimization problem where the Euclidean distance between the posi-
tion (x, y) of the ego vehicle and the obstacle vehicle should be greater
than the minimum collision distance dmin as described in equation (2.12).
As for the cost function, we need to penalize the state X and the input
U of the ego vehicle with respect to the given reference Xr and Ur as
in equation (2.13). Thus we obtain a nonlinear non-convex optimization
problem considering also the vehicle model.

(x− xo)2 + (y − yo)2 ≥ d2min (2.12)

∥X −Xr∥2 + ∥U − Ur∥2 (2.13)

To obtain the obstacle position (xo(t), yo(t)) at each time instant t we
need to assign a model or trajectory for each possible scenario it might
take. And a prediction model to acquire the possible intentions of the
same. For the implementation of the intention prediction model of the
obstacle vehicles, we rely on supervised learning as a specific machine
learning technique. A detailed description of the method is explained in
Chapter 4. There are several approaches to include the uncertainty in the
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obstacle position (xo(t), yo(t)) at each time instant t in the problem and
it is described in detail in the upcoming Chapter 3.

Apart from the vehicle model we need to define the road bounds to
find a realistic control input for our problem. Here we consider a poly-
tope with reference waypoints of ego vehicle (xr(t), yr(t), θr(t)) as the
center at each time instant t. And with a width, Wr and length Lr that de-
pends on the road profile and are chosen small enough to guarantee that
the ego vehicle remains within the road. Thus we get the equation (2.14).

At(Xt −Xr
t ) ≤ Bt (2.14)

where,

At = [I2 − I2]
′
[︃
cos(θrt ) sin(θrt )
− sin(θrt ) cos(θrt )

]︃
,

where θrt is the given reference orientation of ego vehicle wrt global
axis for each time instant t and I2 is the identity matrix of order 2, and
Bt =

[︁
Lr

2
Wr

2
Lr

2
Wr

2

]︁′
.

2.4 Conclusions

In this chapter, we have addressed the control problem we are trying to
solve in this thesis. In addition, we described the need for obstacle inten-
tion prediction and the association of obstacle parameters in the control
problem of the ego vehicle.
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Chapter 3

Model Predictive Control
Algorithms

In this chapter, we emphasize the controller design for our problem. We
define an ideal MPC framework to act as a baseline and we further in-
troduce the robust and stochastic MPC formulations that are capable of
directly dealing with the uncertainty of obstacle predictions.

3.1 Prescient Model Predictive Control

In the ideal case, the obstacle vehicle position at each time instant t is
known prior, and we further refer to the resulting MPC framework as
Prescient Model predictive control (PMPC). At time t the corresponding
PMPC formulation is given as follows.
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min
{Xk|t, Uk|t}
k = 0, . . . , N

N∑︂
k=0

∥Xk|t −Xr
k|t∥

2
Q + ∥Uk|t − Ur

k|t∥
2
R (3.1a)

s.t. Xk+1|t = f(Xk|t, Uk|t) (3.1b)

X0|t = Xt (3.1c)

Xk|t ∈ X (3.1d)

Uk|t ∈ U (3.1e)

Ak|t(Xk|t −Xr
k|t) ≤ Bk|t (3.1f)

(xk|t − xo
k|t)

2 + (yk|t − yok|t)
2 ≥ d2min. (3.1g)

In (3.1), we assume that at the current time t a measurement or an
estimate of the state Xt is available, (xo

k|t, y
o
k|t) denotes the known ob-

stacle trajectory (we will relax this assumption later). The given refer-
ence samples are (Xr

k|t, U
r
k|t), k = 0, 1, . . . , N , and ∥x∥2Q = x′Qx, where

matrix Q ∈ R5×5 is symmetric and positive semi-definite, while matrix
R ∈ R2×2 is symmetric and positive definite. The sets X , U are the sets
of feasible state and input vectors, respectively.

The equation (3.1f) and (3.1g) are the road and obstacle avoidance
constraints introduced in chapter 2 and are given by (2.14) and (2.12)
respectively.

Problem (3.1) is solved at each time step t. The optimal solution’s first
component UPMPC

0|t is commanded as the input Ut to the vehicle and the
remaining components UPMPC

1|t , . . . , UPMPC
N |t are discarded using receding

horizon strategy, and the problem is solved again at time t+1, and so on.

3.1.1 Conclusion

The ideal control framework (3.1) cannot be applied in practice, as it re-
quires the knowledge of the future obstacle positions (xo

k|t, y
o
k|t), which

are not exactly known a priori. Nonetheless, we will consider (3.1) as a
baseline policy for comparison with other control strategies.
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3.2 Robust Model Predictive Control

While the previous problem formulation (3.1) assumes the exact knowl-
edge of obstacle vehicle trajectory (xo

k|t, y
o
k|t) in order to model the obsta-

cle avoidance constraint, verifying this assumption might be unrealistic
in practice. A sensible way to tackle this issue is to enumerate all possible
scenarios that can be encountered by explicitly modeling all the possible
future trajectories of the obstacle. These trajectories are obtained by sim-
ulating the obstacle dynamics and represent the set of all the positions
that are reachable by the obstacle. Then, Problem (3.1) must ’tighten’ the
feasible region by all possible obstacle reachable positions. This mech-
anism of tightening the constraint set is a common approach in robust
MPC [43, 44, 45, 46]. Unlike the standard setting of robust MPC, we en-
counter uncertainty in the constraints rather than in the dynamics. A
similar setting has been studied previously in [31, 33, 34], in which guar-
antees for the recursive feasibility of MPC in the presence of unknown
constraints were provided.

3.2.1 Problem Formulation

We consider the following formulation to take into account the uncer-
tainty associated with future obstacle positions,

min
{Xk|t, Uk|t}
k = 0, . . . , N

N∑︂
k=0

∥Xk|t −Xr
k|t∥

2
Q + ∥Uk|t − Ur

k|t∥
2
R (3.2a)

s.t. Xk+1|t = f(Xk|t, Uk|t) (3.2b)

X0|t = Xt (3.2c)

Xk|t ∈ X (3.2d)

Uk|t ∈ U (3.2e)

Ak|t(Xk|t −Xr
k|t) ≤ Bk|t (3.2f)

(xk|t − xoi
k|t)

2 + (yk|t − yoik|t)
2 ≥ d2min

∀i = 1, . . . ,mt (3.2g)
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where (xoi
k|t, y

oi
k|t), i = 1, . . . ,mt, are meaningful corner-case scenarios

used to account for the set of all possible trajectories taken by an obstacle
traveling over the future horizon. The formulation (3.2) is robust in that
collisions are avoided in all possible scenarios; in fact, the only differ-
ence between (3.1) and (3.2) is in the obstacle avoidance constraint (3.2g).
Note that mt is the number of corner cases considered, which generally
depends on time t, i.e., at time t if the ego vehicle is performing a lane
change in the highway the corresponding corner cases mt won’t be the
same as the corner cases it would be while crossing an intersection.

3.2.2 Conclusions

In this section, we have introduced a robust approach for overcoming the
drawbacks in PMPC and elaborated the formulation for a single obstacle
problem. The shortcoming of this approach is that it can lead to a con-
servative output and has a chance to obtain an infeasible solution since
we are considering all possible obstacle scenarios simultaneously.

3.3 Stochastic Model Predictive Control

The main drawback of (3.2) is the possibility of conservativeness, due
to the fact that all the corner cases are considered equally likely. In this
section, we will elaborate on an approach that mitigates this drawback
of the previously discussed control approach.

For real-world systems, uncertainties in obstacle vehicle (xo
k|t, y

o
k|t)

can be modeled effectively in a probabilistic setting. For instance, the
event of an obstacle vehicle slowing down or stopping on a high-speed
lane is of low probability. On the hand, the event might occur with high
probability on a low-speed lane. Hence we move to a stochastic ap-
proach [47, 48] by taking into account the probabilities of all the possible
intentions of the obstacle vehicle. We obtain these probabilities from the
classifier which we will discuss in the upcoming chapter 4. There are sev-
eral ways of formulating a stochastic MPC which is discussed in [49]. In
the chance-constrained method [50, 51], the cost function is considered
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as a random variable, the expected value of which is minimized, and
probabilistic guarantees are provided with respect to constraint satisfac-
tion. Alternatively in a scenario-based [52, 53] approach, the expectation
of the cost function considering all scenarios is computed. The latter can
become computationally challenging with the increase in the number of
scenarios. Hence, to eliminate the irrelevant scenarios, a scenario tree is
introduced which is obtained from the historical data on the uncertainty.
In this thesis, we adopt the scenario-based stochastic approach to reduce
the conservativeness in problem (3.2).

3.3.1 Scenario-based Stochastic MPC

In order to tackle the issue in the robust approach, let us associate a prob-
ability ωi

t to each scenario i,
∑︁mt

i=0 ω
i
t = 1, ωi

t ≥ 0, ∀t ≥ 0.

Scenario-tree generation

We assume that the scenarios are organized as a scenario tree, see the
example depicted in Figure 5. Each different branch of the tree is pa-
rameterized with a corresponding command input to be optimized and
the number of leaves of the tree is equal to the number mt of considered
corner cases. The time instants over the prediction horizon at which a
split in sub-scenarios occurs are those at which one will be able to rec-
ognize different maneuvers taken by the obstacle, e.g., go straight or go
left. We will explain the construction of the scenario tree in detail in the
next chapter 4.

As multiple control moves can occur at the same prediction instant,
the state prediction is no longer unique, as in the prescient and robust
MPC cases. In fact, we associate the state trajectory {Xi

k|t} to scenario
i and let {U i

k|t} denote the corresponding sequence of optimal control
inputs. To take into account the tree structure, i.e., that scenarios i and j

have a common subpath

(xoi
k|t, y

oi
k|t) = (x

oj
k|t, y

oj
k|t), k = 0, . . . , kij

we impose the equality constraints (a.k.a. causality constraints) U i
k|t =
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Figure 5: Scenario tree used in the SMPC single obstacle case formula-
tion (3.3)

U j
k|t for all k = 0, . . . , kij ∀ i, j = 1, . . . ,mt and i ̸= j. Note that all

trajectories originate from the current state, i.e., Xi
0|t ≡ Xt.

3.3.2 Problem Formulation

Following the probabilistic scenario tree mentioned above, we formulate
the following Stochastic MPC problem

min
{Xi

k|t, U
i
k|t}

k = 0, . . . , N
i = 1, . . . ,mt

mt∑︂
i=1

ωi
t

N∑︂
k=0

∥Xi
k|t −Xr

k|t∥
2
Q + ∥U i

k|t − Ur
k|t∥

2
R (3.3a)

s.t. Xi
k+1|t = f(Xi

k|t, U
i
k|t) (3.3b)

Xi
0|t = Xt (3.3c)

Xi
k|t ∈ X (3.3d)

U i
k|t ∈ U (3.3e)

Ai
k|t(X

i
k|t −Xr

k|t) ≤ Bi
k|t (3.3f)

(xi
k|t − xoi

k|t)
2 + (yik|t − yoik|t)

2 ≥ d2min

∀i = 1, . . . ,mt (3.3g)

U i
k|t = U j

k|t, k = 0, . . . , kij (3.3h)

∀ i, j = 1, . . . ,mt and i ̸= j (3.3i)

23



Where ωi
t will be obtained at each time t from the classifier and the

scenario tree will lift the obstacle avoidance constraints associated with
unnecessary scenarios in the equation (3.3) once they are distinguishable.

3.3.3 Conclusions

An obvious reason why the SMPC formulation (3.3) is less conservative
than the RMPC formulation (3.2) is that it has more degrees of freedom,
as it can employ different input values in different scenarios. This im-
plicitly defines a closed-loop optimal policy over the prediction horizon
rather than a single open-loop optimal trajectory.
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Chapter 4

Obstacle Model and
Scenario Prediction

Our goal is to obtain a control law that can drive the ego vehicle au-
tonomously through uncontrolled intersections. To use the MPC ap-
proaches described in the previous chapters, we need to define uncertain
scenarios (3.3) and (3.2) and also the corresponding probabilities in the
case of SMPC.

In this thesis, we have considered three possible scenarios that the
obstacle vehicle might take which are straight, right, and left turn. And
predict those scenarios with the help of a supervised learning classifier
approach.

4.1 Machine Learning

In [54] machine learning is defined as solving a practical problem by 1)
gathering a dataset, and 2) algorithmically building a statistical model
based on that dataset. That statistical model is assumed to be used some-
how to solve the practical problem.

Machine learning is mainly classified as supervised, unsupervised,
and reinforcement learning.
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Supervised Learning

In supervised learning, the dataset is a collection of labeled examples
{(xi, yi)}Ni=1. Each xi within the vector of length N is called a feature
vector. A feature vector is a vector of dimension D,i.e., j = 1, . . . , D,
each xj

i is a value that describes the example, and this value xj
i is called

a feature. The label yi indicates the class to which each feature vector xi

belongs. A label can be a set of finite real numbers or an index selecting
one of the multiple classes 1, . . . , C.

The goal of a supervised learning algorithm is to use the dataset to
produce a model that takes a feature vector x as input and outputs infor-
mation that allows deducing the label for this feature vector.

Some of the supervised learning algorithms are decision trees [55],
support vector machine (SVM) [56], and artificial neural network [57].

Unsupervised Learning

In unsupervised learning, the dataset is a collection of unlabeled exam-
ples {xi}Ni=1. xi is a feature vector, and the goal of an unsupervised
learning algorithm is to create a model that takes a feature vector x as
input and either transforms it into another vector or into a value that
can be used to solve a practical problem. For example, in clustering [58],
the model returns the index of the cluster for each feature vector in the
dataset.

Reinforcement Learning

Reinforcement learning [59] is a subfield of machine learning where the
algorithm trains a policy that interacts with the environment and it can
perceive the state of that environment as a vector of features. The ma-
chine can execute actions in every state. Different activities bring dif-
ferent rewards and could also move the machine to another state of the
environment. The goal of a reinforcement learning algorithm is to learn
a policy. A policy is a function f similar to supervised learning that takes
the feature vector of a state as input and outputs an action. The action is
optimal if it maximizes the expected average reward.
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Reinforcement learning solves a particular kind of problem where
decision-making is sequential, and the goal is long-term, such as game
playing, robotics, resource management, or logistics.

In this thesis, we utilize an ensemble-based [60] decision tree classifier
for predicting the obstacle vehicle intentions.

4.2 Problem Formulation

As depicted in Figure 6, we consider the simplest case of a four-way
intersection in which collisions with a single obstacle vehicle must be
avoided. Hence, we have mt ≤ 3 possible obstacle maneuvers

M ∈ {straight, left, right}

i.e., the obstacle can only pass the intersection by driving straight, turn-
ing left, or right.

In addition to each corner case, we need to also define the following
probabilities: ω1

t associated with M = straight, ω2
t with M = left, and

ω3
t with M = right. To this end, we collect trajectories (see Chapter 5)of

multiple obstacles at intersections and use them to train a classifier, with
categorical output M and a suitably defined input feature vector F that
is sufficiently informative about the current state of the obstacle. As our
ultimate goal is to get the time-varying discrete probability distribution
{ω1

t , ω
2
t , ω

3
t }, we will employ classification methods that also return prob-

abilities.
Each of the three possible corner-case scenarios is associated with an

obstacle trajectory

(xoi
k|t, y

oi
k|t), k = 0, . . . , N, i = 1, 2, 3 (4.1)

that will be used in (3.2g) and (3.3g). The obstacle coordinates in (4.1)
are (xoi

k|t, y
oi
k|t) = foi(dok|t). In order to obtain the continuous function

foi(dok|t), we use B-spline interpolation on data collected from the SUMO
simulator and parameterized by the distance do traveled by the obstacle
vehicle along the center of the lane.
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Figure 6: Uncontrolled intersection example: the ego vehicle (red) drives
straight and the obstacle vehicle (green) takes a left turn

4.2.1 Features of Classifier

The feature vector consumed by the classifier is defined as

Ft = [vo ao θodiff doln dolt d
o
t ]

′

where, assuming the center of the lane for a straight scenario as the ref-
erence lane, vo and ao are, respectively, the speed and acceleration of the
obstacle, θodiff denotes the obstacle’s orientation with respect to the refer-
ence, doln, dolt are, respectively, its longitudinal and lateral distances from
the reference, and dot is the distance traveled by the obstacle.

We collected 605,016 training data and 151,254 test data. The bagged-
tree classifier, based on 25 learners, is trained in approximately 213 s on
an Intel(R) Corei7-8550U CPU @ 1.80GHz machine in MATLAB R2019a
using the fitcensemble and templateTree functions available in the statis-
tics and machine learning toolbox for MATLAB. The resulting number
of splits in the decision tree is 90,323 (14.93% of the training data set).
Further details regarding the choice of learners and no of splits in the
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Figure 7: Predicted probability ωi
t associated with the actual outcome Mi

of each training trajectory as a function of the distance traveled by obstacle
dot with respect to the intersection, averaged on all training trajectories with
outcome Mi, i = 1, 2, 3. The black vertical line represents the starting point
of the intersection.

decision tree can be found in Appendix A
The predicted probability ωi

t associated with the actual outcome Mi,
i = 1, 2, 3, averaged on all trajectories, is displayed in Figure 7 (train-
ing data) and Figure 8 (test data): it is evident that when the obstacle is
almost 150 m away from the intersection, all the scenarios are equally
probable (ωi

t ≈ 1
3 , ∀i = 1, 2, 3); they become more distinguishable as the

obstacle moves towards the intersection. In particular, the obstacle is cor-
rectly predicted with probability 1 to drive straight about 21 m before the
intersection, and about 5.5 m for left and right turns. Refer to Figures-
Figures 23, 24, 25 in Appendix A for the detailed plot of probabilities of
all trajectories in the training dataset for each scenario.

4.2.2 Bagged Decision tree

To classify the intent of the obstacle vehicle to go straight, turn left, or
turn right we use a bagged decision tree [61], due to its ability to return
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Figure 8: Predicted probability ωi
t associated with the actual outcome Mi

of each testing trajectory as a function of the distance traveled by obstacle
dot with respect to the intersection, averaged on all testing trajectories with
outcome Mi, i = 1, 2, 3. The black vertical line represents the starting point
of the intersection.

the discrete probability distribution {ω1
t , ω

2
t , ω

3
t } associated with the pre-

dicted categorical target M . The motivation to choose this specific clas-
sifier is that, as we will discuss next, we observed experimentally that it
produces better probability estimates compared to other methods, such
as, e.g., naı̈ve-bayes (NB) classifiers [62] and SVM [63], without using
additional calibration methods such as Platt scaling or Isotonic Regres-
sion [64].

The Figures 9 and 10 compares the receiver operating characteris-
tic (ROC) curve, relating the true positive rate (TPR) and false positive
rate (FPR), obtained by the trained bagged decision tree with those ob-
tained by an NB and SVM classifier for the three different scenarios, i.e.,
{Straight, Left, Right} on test data. More specifically, Figure 9 shows the
ROC curve by considering data points whose distance from the inter-
section is in the interval [100, 25] m (i.e., far away from the intersection),
while Figure 10 for data in the interval [25, 5] m (i.e., close to the intersec-
tion). It can be observed that, close to the intersection, the TPR is much
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Figure 9: ROC curve of Bagged decision tree, Naı̈ve-Bayes, and SVM for
each scenario with the data points on testing dataset within a distance 100m
to 25m from the intersection.

better for all the classifiers and the bagged decision tree has a signifi-
cantly higher TPR than NB and SVM. As expected, it is nearly impossible
to distinguish the three scenarios far away from the intersection. Finally,
when the obstacle is closer than 5 m to the intersection the TPR for the
bagged decision tree is 1 for all scenarios, indicating that the classifier
correctly identifies the obstacle’s intention.

4.2.3 Scenario-tree

For setting up the SMPC controller, we consider the scenario tree de-
picted in Figure 5, in which we set k12 = k13 < k23, where t+k12 = t+k13

is the time at which we assume we can distinguish between scenario 1
(straight) and the remaining scenarios, while t+k23 is the time one will be
able to distinguish between the left and right scenarios. The trained clas-
sifier generates the associated probabilities. The times at which we can
distinguish the scenarios are learned offline from the probability distri-
bution of training trajectories for each scenario. We considered the time
of trajectory that distinguishes each scenario at the end. Refer to Figures-
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Figure 10: ROC curve of Bagged decision tree, Naı̈ve-Bayes, and SVM for
each scenario with the data points on testing dataset within a distance 25m
to 5m from the intersection.

Figures 23, 24, 25 in Appendix A for the corresponding probability plots
of each scenario.

4.3 Conclusions

In this chapter, we have given a brief introduction to the machine learn-
ing approaches and elaborated on the supervised learning technique we
have used to predict the scenarios taken by the obstacle vehicle. Partic-
ularly, the features we have chosen for designing the classifier that pro-
vides probabilities to the SMPC control algorithm (3.3). As well as the
performance comparison of the bagged decision tree with NB and SVM
classifiers.
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Chapter 5

Simulation of Urban
Mobility

Simulation of Urban Mobility (SUMO) [39] is an open-source micro-
scopic traffic simulator that has a set of tools for designing several traffic
scenarios. SUMO has been developed by the employees of the Institute
of Transportation Systems at the German Aerospace Center. Microscopic
simulator means each vehicle is modeled explicitly, has its route, and
moves independently.

These features make SUMO suitable to model obstacles with differ-
ent types and parameters in order to generate realistic data of obstacle
trajectories as well as to create test scenarios for our proposed control
algorithm.

Preliminaries

Edges: A ”normal” edge is a connection between two nodes (junc-
tions) and it is unidirectional. The attributes of an edge are:

id: The id of the edge.

from: The id of the node it starts.

to: The id of the node it ends at.

priority: Indicate the importance of the road (optional)
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function: Describes the edge purpose. The values are ”normal”, ”in-
ternal”, ”connector”, ”crossing”, and ”walking area”. The default
is ”normal”.

Netconvert: It is a command line application that imports digital
road networks from different sources and generates road networks
suitable for SUMO environment.

Route: Defines the edges that the object should pass by.

5.1 Scenario Creation using SUMO

There are three main components required to build a scenario in SUMO,
which is Network, Demand, and Simulation. Each of these components
is explained in detail in the following sections.

5.1.1 Network Modeling

The network gives information on the type of roadway, the no. of lanes,
the right of way, and the surroundings. It is in the form of .net.xml file
that consists of edges and nodes, its connection, access to roads, traf-
fic lights program definition, walking areas, speed limits, etc. The net-
work can be defined either by using netedit tool within SUMO or net-
convert command to import from other platforms such as Open Street
Map (OSM), VISUM, Vissim, OPENDRIVE, and a few more.

Open Street Map

Open Street Map is a free editable map of the world. It can be imported
to SUMO with the help of netconvert command. Here below is an exam-
ple where an OSM file lucca.osm.xml is imported to SUMO network file
format lucca.net.xml using netconvert command.

netconvert−−osm− files lucca.osm.xml − o lucca.net.xml

In this thesis, we have used OSM to extract a real road network for
learning the obstacle vehicles as well as for testing our proposed control
algorithms.
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5.1.2 Demand Modeling

Demand modeling describes the vehicles that need to be running within
the network. There are several approaches within SUMO to model de-
mand that are by using trip definitions, flow definitions, randomization,
origin-destination (OD) matrices, flow definitions and turn ratios, detec-
tor data, by hand, population statistics, data from other sources such as
routing by turn probabilities, activity-based demand generation, random
trips, importing OD matrices from VISUM or Vissim.

In our thesis, we created demand by hand that is we defined our
.rou.xml file manually. There are 3 parts to define demand in SUMO. 1)
a vehicle type that describes the vehicle’s physical properties 2) a route
of the vehicle 3) and the vehicle itself. An example .rou.xml file is given
below where a vehicle with id ego of type car1 that starts from edge beg

passes through middle and stops at end.
< routes >

< vType id = ”car1” accel = ”0.8” decel = ”4.5”

length = ”5” maxSpeed = ”70”/ >

< vehicle id = ”ego” type = ”car1” depart = ”0”

color = ”1, 0, 0” >

< route edges = ”beg middle end”/ >

< /vehicle >

< /routes >

Here we emphasize important vehicle and vehicle type attributesthat
we considered in our thesis.

The following are the vehicle attributes that we have used:-

• Vehicle id: Defines the name of the vehicle in the network. It is an
id(string) value type.

• Vehicle type: Defines the type of vehicle. It is defined separately
and has its attributes.

• depart: Time step at which the vehicle should enter the network. It
is a float value type.
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• departPos: The position at which the vehicle should enter the net-
work. It’s a float(m)/string (”random”, ”free”, ”random-free”,
”base”, ”last”, ”stop”). Default value is ”base”.

• color: Defines vehicle’s color.

• route: Defines the ids of the edges that the vehicle should drive.

The following attributes are used within vType:-

• vClass: Defines an abstract vehicle class that a vehicle can take. The
vClass available in SUMO is given in Table 1.

• length: It is the vehicle’s netto-length (length) in meters. The de-
fault value is 5m.

• maxSpeed: The vehicle’s (technical) maximum velocity in m/s. Its
default value is 200km/hr.

• speedFactor: Individual Speed factor or Speed factor is the SUMO
vehicle modeling parameter that determines the desired driving
speed for a vehicle. The default value is 1, if the value is higher
it can exceed the road limit speed or maximum speed.

• car following models: It describes the way a vehicle will follow
the preceding vehicle in traffic. The Table 2 gives the available car
following models in SUMO.

5.1.3 Simulation

To run a scenario we have to provide some input files to the configuration
file. The input files required are given below:-

• Road network: In the simulation file we require to provide a net-
work file using the option −− net− file.

• Traffic demand(routes): The demand file that contains the informa-
tion about vehicles, their parameters and corresponding routes to
be simulated should be provided using the option −−route−files.
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Table 1: Vehicle class available in SUMO

vClass Comment
ignoring drive on all lanes regardless of permissions
private
emergency
authority
army
vip
pedestrian Allowed on the lanes called ’sidewalks’ in netconvert
Passenger Default vehicle class and denotes regular passenger traffic
hov High-occupancy vehicle
taxi
bus Urban line traffic
coach Overland transport
delivery Allowed on service roads that are not meant for public traffic
truck
trailer truck with trailer
motorcycle
moped Motorized 2-wheeler which may not drive on motorways
bicycle
evehicle Reserved for future mobility concepts such as electric vehicles which may get special access rights
tram
rail urban Heavier than ’tram’ but distinct from ’rail’. Encompasses Light Rail and S-Bahn
rail heavy rail
rail electric heavy rail vehicle that may only drive on electrified tracks
rail fast High Speed rail
ship basic class for navigating waterways
custom1 reserved for user-defined semantics
custom2 reserved for user-defined semantics

Table 2: Car following models available in SUMO

Attribute name Description
Krauss The Krauß-model with some modifications which is the default model used in SUMO
KraussOrig1 The original Krauß-model
PWagner2009 A model by Peter Wagner, using Todosiev’s action points
BKerner A model by Boris Kerner
IDM The Intelligent Driver Model by Martin Treiber
IDMM Variant of IDM
EIDM Extended Intelligent Driver Model for subsecond simulation by Dominik Salles
KraussPS default Krauss model with consideration of road slope
KraussAB default Krauss model with bounded acceleration
SmartSK Variant of the default Krauss model
Wiedemann Car following model by Wiedemann (2-Parameters)
W99 Car following model by Wiedemann, 10-Parameter version
Daniel1 Car following model by Daniel Krajzewicz
ACC Car following model by Milanés V. and Shladover S.E.
CACC Car following model by Milanés V. and Shladover S.E.
Rail Model for various train types
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• Additional files: More than one file can be added as an additional
file for the simulation. Usually, it consists of the following type of
files such as:-

– infrastructure related: traffic light programs, induction loops,
and bus stops

– additional visualization: POIs and polygons (i.e. rivers and
houses)

– dynamic simulation control structures: variable speed signs
and rerouters

– demand related entities: vehicle types and routes

It is added to the configuration file using −− additional − files

• Parsing order: All the inputs for the simulation should be added
in a certain order and are given as:-

– Read the network

– Read the additional file in the same order as they are

– The route files are opened and the first n steps are read

– each n time steps, the routes for the next n time steps are read

Traffic Control Interface (Traci)

It is an interface that gives access to a running traffic simulation, also
allows retrieval of values, and manipulates the behavior of simulated
objects ”on-line”. In this thesis, we use TraCI4Matlab [65] to interface
SUMO with MatLab to retrieve the parameter values of ego and obstacle
vehicles.

5.2 Data collection of Obstacle vehicle

We have simulated several examples of obstacle vehicles in SUMO to col-
lect the parameters of the same, and to build a scenario prediction model

38



which we will discuss in the next chapter. For the road network, we con-
sidered a real uncontrolled intersection extracted from Open Street Map
and use different types of vehicles.

In order to define the driving style, we rely on the Intelligent Driver
Model (IDM) [66], included in SUMO and it describes the dynamic posi-
tion and velocity of a vehicle as follows.

ẋδ = vδ (5.1a)

v̇δ = amax

(︄
1−

(︃
vδ(t)

vdes(t)

)︃ϵ

−
(︃
σ∗ (vδ(t),∆vδ(t))

σδ(t)

)︃2
)︄

(5.1b)

where amax and dmax are the vehicle’s maximum desired acceleration and
deceleration, respectively; vδ , vdes, and ϵ are the current velocity, the de-
sired velocity, and a tuning parameter; ∆vδ is the relative velocity with
respect to the vehicle in front. Moreover, in (5.1)

σ∗ (vδ(t),∆vδ(t)) = σ0 + vδ(t)T +
vδ(t)∆vδ(t)

2
√
amaxdmax

(5.2)

where σ0 is the minimum desired distance from the vehicle in front and
T the desired time headway, while the net distance between the two ve-
hicles is

σδ(t) = df(t)− dδ(t)− lf = ∆dδ(t)− lf (5.3)

where label f refers to the front vehicle, d is the position of a vehicle along
the centerline of the road, and lf is the length of the vehicle in front.

In this thesis, as we consider free-road behaviors, Equation (5.1) sim-

plifies to v̇δ = amax

(︂
1−

(︂
vδ(t)
vdes(t)

)︂ϵ)︂
.

In SUMO, in a free-driving scenario the term vdes(t) is given by

vdes(t) = min(vmax, sv
des
max, svlim)

where vmax, vdesmax, and vlim are the maximum speed, desired maxi-
mum speed, and speed limit respectively, and s is a speed factor.

More specifically to collect obstacle vehicle data, we consider 3 types
of vehicles, namely a passenger car, a motorcycle, and a bus, each with 5
different speed factor values ranging from 0.6 to 1.4.
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Moreover, for each type of vehicle, we select 6 different vehicle speeds
within the range of 40 to 60 km/h. As a result, we collected 90 obsta-
cle vehicle variations for each maneuver thus a total of 270 scenarios, of
which 216 trajectories are used for training and the remaining 54 for test-
ing the classifier. The obstacle starts 250 m away from the beginning of
the intersection and we considered the data from there up to 30m after
the starting point of the intersection which gives a total distance of 280.1
m by using a resolution of 0.1 m. We collected 605,016 training data and
151,254 test data as we discussed in Chapter 4.

5.3 Conclusion

In this chapter, we have introduced the SUMO traffic simulator which
we have used to collect data required for learning the prediction model
of the obstacle vehicle. We were able to simulate quite some examples of
the same in a real road network.
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Chapter 6

Simulation Results

To analyze the performance of our proposed SMPC method, we com-
pare it with the PMPC and RMPC approaches introduced in the previous
chapters. We considered an uncontrolled intersection in Lucca, Italy, as
shown in Figure 11 that is imported from Open Street Map and several
realistic examples were simulated with the help of SUMO. We model the
ego vehicle as a passenger car with a length of 5 m with a given maxi-
mum speed vmax and s = 1.

Performance Analysis

Closed-loop performance is assessed by the following measure

Jcl =

ts∑︂
t=0

∥Xt −Xr
0|t∥

2
Q + ∥Ut − Ur

0|t∥
2
R (6.1)

consistently with the MPC cost function, where ts is the total simulation
time. SUMO’s IDM model is used offline to generate a discrete set of
reference samples for Xr and Ur, given a desired maximum speed vmax

of the ego vehicle. Such samples are used to define B-spline interpolation
functions fXr : R ↦→ R5, fUr : R ↦→ R2, such that, for a generic distance d

along the central line of the road, fXr(d) = [xr(d) yr(d) θr(d) vr(d) δr(d)]
′

and fUr(d) = [ar(d) ωr(d)]
′ provide the corresponding state and input

41



Figure 11: The Google image of the uncontrolled intersection in Lucca, Italy

references, respectively. Then, at each controller execution step t, given
the piecewise-constant velocity and orientation profiles

v(τ) = v⋆k+1|t−1

θ(τ) = θ⋆k+1|t−1, ∀τ ∈ [(t+ k)Ts, (t+ k + 1)Ts]

obtained from the previous MPC solution {v⋆k|t−1, θ
⋆
k|t−1}, k = 0, . . . , N ,

we use explicit Runge-Kutta 4 to integrate the differential equation

ḋ(τ) = v(τ) cos(θ(τ)− θr(d(τ)))

over the prediction horizon [tTs, (t+N)Ts] to get samples dk|t, k = 0, . . . , N ,
of the distance d traveled by the ego vehicle, starting from the initial con-
dition d(tTs) (i.e., the current longitudinal distance traveled by the ego
vehicle). Finally, the corresponding MPC references Xr

k|t = fXr(dk|t) and
U r
k|t = fUr(dk|t).
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6.1 Simulation examples

We use sample time Ts = 0.1 s for both discretizing the continuous-time
ego-vehicle model and executing the MPC controller, which has a pre-
diction horizon N = 40. The CPU time for solving a single Prescient,
Robust, and Stochastic MPC problem is on average, respectively, 0.7 s,
0.9 s, and 2 s using CasADi [67] and the interior-point nonlinear pro-
gramming solver IPOPT [68]. Note that no particular care was taken in
solving the MPC problems efficiently, and dedicated software will pro-
duce significantly lower computational times.

6.1.1 Collision scenario - Obstacle bus taking a left turn

Example 1: The first example refers to the case in which the ego vehicle
aims at passing the intersection without turning at a maximum speed
vmax = 50 km/h, while the obstacle is a bus coming from the opposite
direction at vomax = 54 km/h, with speed factor s = 1.3, taking a left turn.
The results obtained using the different MPC formulations in this sce-
nario where a collision is possible are described in Figure 14 and Table 3,
from which we can infer that all the control algorithms result in the same
closed-loop costs since the ego vehicle sway from the reference path to
avoid the collision with the bus. Figure 13 shows the probabilities ω1

t , ω2
t ,

ω3
t estimated by the classifier with respect to the distance traveled by ego

d(0|t) from the intersection and the black vertical line at 0 m represent
the starting point of the intersection.

Example 5: This is a similar scenario as Example 1 where the ego
vehicle crosses the intersection without turning at vmax = 45 km/h and
the obstacle is a bus taking a left turn at a speed vomax = 50 km/h with
speed factor s = 1. This is also a collision scenario where all the control
algorithms have the same closed-loop cost.
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Table 3: Closed-loop cost Jcl (6.1) of prescient, robust, and stochastic MPC
obtained in the five test examples.

Example prescient MPC robust MPC stochastic MPC
Example 1 14.8514 14.8514 14.8514
Example 2 6.9371 33.1935 7.4447
Example 3 20.4692 40.6931 20.4692
Example 4 6.9371 117.291 10.3261
Example 5 10.5519 10.5519 10.5519

6.1.2 Non-collision scenario - Obstacle motorcycle turn-
ing right

Example 2: The ego vehicle travels at vmax = 43 km/h and passes the
crossroad without turning, the obstacle vehicle is a motorcycle taking
a right turn at vomax = 44 km/h with speed factor s = 1.1. Figure 17
shows the positions of ego and obstacle vehicle near the intersection,
and the probabilities ω1

t , ω2
t , ω3

t estimated by the classifier with respect
to the distance traveled by ego d0|t from the intersection. It is apparent
that, initially, RMPC and SMPC behave similarly until the scenarios start
becoming distinguishable, i.e., the probability distribution starts getting
non-uniform. In Figure 16 the black vertical line represents the point at
which the ego vehicle enters the intersection. Note that, as remarked
earlier, a right turn can only be predicted with high probability by the
classifier when the obstacle is close to the intersection. Thanks to the
use of the scenario tree, SMPC tends to behave more similarly to PMPC
than RMPC, which instead remains conservative. This is a crucial ben-
efit of using SMPC compared to other schemes: even without an exact
information about the future positions of the obstacle, past information
is used in a more clever way to infer possible obstacle positions and the
related chances to realize. Thanks to the probabilistic model and the use
of additional degrees of freedom associated with it, SMPC takes control
decisions that, by construction, are best in expectation. This behavior is
reflected in Table 3, which shows that the cost associated with SMPC is
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significantly smaller than that of RMPC, which instead gives the same
importance to all possible scenarios.

Example 4. The ego vehicle travels straight across the intersection at
vmax = 43 km/h. A motorcycle with a speed factor s = 1.3 traveling at
a maximum speed of 44 km/h takes a right turn. This is a non-collision
scenario, and in Table 3 we observe that the RMPC has the highest closed-
loop cost as it takes into account the scenario (left turn) that leads to
a collision as well, while SMPC will consider such a scenario very un-
likely, resulting in an overall control action that has a cost closer to that
of PMPC.

6.1.3 Non-collision scenario - Obstacle passenger car go-
ing straight

Example 3: The ego travels at vmax = 45 km/h takes a left turn, and the
obstacle is a car with speed factor s = 1 driving straight across the inter-
section in the opposite direction at a maximum speed of vomax = 40 km/h
as shown in Figure 18. There is no potential collision between the ego
vehicle and the obstacle in this example. From Table 3 it is evident that
SMPC works closer to PMPC than RMPC thanks to the exploitation of
the scenario tree. As shown in Figure 19, the straight scenario is detected
early by the classifier, thus SMPC lifts the collision avoidance constraints
from the other two scenarios. Instead, the actions commanded by RMPC
suffer from the presence of the irrelevant scenario (right turn), as it causes
the ego to sway to avoid the collision at the turn with the obstacle that
takes the right turn and allowing the obstacle to go ahead.

6.2 Conclusions

In this chapter, we have illustrated several examples that allowed us to
compare our control approach ie. Scenario-based SMPC to the Prescient
as well as Robust MPC approach. From the simulation results and by
referring to Table 3 our approach has cost closer to Prescient MPC for all
these examples. And the cost is the same for all the control approaches
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only in case of collision.
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Figure 12: Ego and obstacle vehicle positions near the intersection. The red
line represents the actual obstacle maneuver and the green line represents
the other two possible maneuvers of the obstacle.
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Figure 13: Estimated scenario probability of the obstacle vehicle as a func-
tion of distance traveled by ego d(0|t) from the intersection. The black ver-
tical line represents the starting of the intersection.

Figure 14: Example 1: Simulation results
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Figure 15: Ego and obstacle vehicle positions near the intersection. The red
line represents the actual obstacle maneuver and the green line represents
the other two possible maneuvers of the obstacle.
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Figure 16: Estimated scenario probability of the obstacle vehicle as a func-
tion of distance traveled by ego d(0|t) from the intersection. The black ver-
tical line represents the starting of the intersection.

Figure 17: Example 2: Simulation results
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Figure 18: Ego and obstacle vehicle positions near the intersection. The red
line represents the actual obstacle maneuver and the green line represents
the other two possible maneuvers of the obstacle.
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Figure 19: Estimated scenario probability of the obstacle vehicle as a func-
tion of distance traveled by ego d(0|t) from the intersection. The black ver-
tical line represents the starting of the intersection.

Figure 20: Example 3: Simulation results
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Chapter 7

Conclusion & Future Work

We proposed a stochastic MPC approach to autonomous driving, focus-
ing in particular on the case of uncontrolled intersections. By training
a classifier on a single obstacle case which also returns the probabilities
corresponding to each possible predictable categorical value, we set up
the stochastic optimization problem to solve at each time t to get the re-
quired command action on the ego vehicle. We have shown that using
such probabilities is beneficial, as it makes SMPC less conservative than
a robust MPC approach, in which they are not taken into account. And
the corresponding results are closer to a Prescient MPC.

Future work will be devoted to extending the idea to multiple ob-
stacles; in such a case, it will be important to develop methods to auto-
matically reduce the number of scenarios considered in the SMPC for-
mulation to ensure that the computational complexity of the approach
remains manageable. Another important feature to investigate is more
meaningful MPC performance indices that also take into account driv-
ing quality.

So far we have considered only uncontrolled intersections, in the fu-
ture, we would like to extend our control approach for broader cases
such as lane changing and normal driving scenarios where the possibil-
ity of collision cannot be avoided.
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Appendix A

Appendix Title

A.1 Bagged decision tree specifications

The parameters of the bagged decision tree are chosen based on Fig-
ures 21, 22. In 21 10-fold classification error is computed on the decision
trees constructed with training dataset for trees with several number of
splits. Figure 22 shows the classification error in the testing dataset for
different number of learners.

A.2 Scenario Tree Generation

This section clarifies the construction of the scenario tree mentioned in
Chapter 4. It is constructed offline using the trajectories composing the
training dataset. The probability estimate from the classifier for each tra-
jectory in the training dataset is observed to choose the time instant or
the distance k12, k13, k23 at which each scenario is distinguishable from
each other, i.e., when the probability of each scenario ω1

t = ω2
t = ω3

t = 1

at last among all the training datasets as depicted in Figures 23, 24, and
25.
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Figure 21: 10 fold classification error with respect to no of splits in the deci-
sion tree
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Figure 22: Classification error on testing dataset based on the no of learners
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Figure 23: Probability estimate of all the training trajectories to be straight
scenario

Figure 24: Probability estimate of all the training trajectories to be left sce-
nario
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Figure 25: Probability estimate of all the training trajectories to be right sce-
nario
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