
IMT School for Advanced Studies, Lucca
Lucca, Italy

Type discipline for message-passing components in
distributed systems

PhD Program in Computer Science and Engineering

XXXIII Cycle

By

Zorica Savanović

2023.

mailto:zorica.savanovic@imtlucca.it

The dissertation of Zorica Savanović is approved.

PhD Program Coordinator: Rocco De Nicola, IMT School for Advanced
Studies Lucca, Italy

Advisor: Dr. Letterio Galletta, IMT School for Advanced Studies Lucca,
Italy

The dissertation of Zorica Savanović has been reviewed by:

Prof. Carbone Marco, IT University of Copenhagen, Denmark

Prof. Dezani-Ciancaglini Mariangiola, Università di Torino, Italy

IMT School for Advanced Studies Lucca
2023.

Contents

List of Figures ix

List of Tables x

Acknowledgements xi

Vita and Publications xii

Abstract xv

1 Introduction 1
1.1 Research motivation . 1
1.2 Contributions of the thesis 4
1.3 Outline . 6

1.3.1 Published papers based on our research 6

2 Background 8
2.1 Behavioural types . 8

2.1.1 Operational semantics 11
2.1.2 Session types . 14

2.2 GC language . 18
2.2.1 Syntax of GC language 19
2.2.2 Operational semantics of GC language 21

3 The EC type language 29
3.1 Informal introduction of EC type language 29
3.2 Formal introduction of EC type language 33

vii

3.2.1 Syntax of EC type language 34
3.2.2 Semantics of EC type language 35

3.3 EC type extraction for base components 38
3.4 EC type extraction for composite components 40

3.4.1 Dependencies extraction 42
3.4.2 Boundaries extraction 45
3.4.3 Type extraction . 46

3.5 Type safety (EC type language) 47
3.5.1 Modified type . 48
3.5.2 Well-typed components 52

3.6 Proof of type safety (EC type language) 53

4 The IC type language 77
4.1 Informal introduction of IC type language 77

4.1.1 A passport renewal system 77
4.1.2 Modeling the system in GC language 78
4.1.3 Extracting types of components 81

4.2 Formal introduction of IC type language 91
4.2.1 Syntax of IC type language 91
4.2.2 Semantics of IC type language 92

4.3 IC type extraction for base components 97
4.4 IC type extraction for composite components 99

4.4.1 Step 1: Local protocol computation 100
4.4.2 Step 2: Checking composition 101
4.4.3 Step 3: Checking the conformance with the protocol 106
4.4.4 Step 4: Dependencies extraction 111
4.4.5 Step 5: Boundaries extraction 115
4.4.6 Type extraction . 117

4.5 Type safety (IC type language) 120
4.6 Proof of type (IC type language) 120

5 Concluding remarks 131
5.1 Related work . 131
5.2 Conclusion . 133
5.3 Future work . 133

viii

List of Figures

1 Parallel adapters/processes 11

2 Image Recignition System 30
3 Direct Dependency . 42
4 Transitive Dependency . 42

5 Passport renewal . 79
6 Passport renewal data flow 79
7 Passport renewal off. 87
8 Direct Dependency (*) . 112
9 Transitive Dependency (*) 112

ix

List of Tables

1 Reduction relation . 12
2 Typing rules . 17
3 Syntax of Governed Components. 19
4 Semantics of base components. 22
5 Semantics of composite components. 22
6 Semantics of protocols. 26
7 Protocol projection (including run-time terms). 28

8 Type Syntax (EC type language) 34
9 Type Semantics (EC type language) 36
10 T -Type syntax (EC type language) 49
11 T - Semantics (EC type language) 50
12 Conformance relation (EC type language) 51

13 Creating transitive dependencies-summary 85
14 Type syntax (IC type language) 93
15 Type semantics (IC type language) 95
16 T -Type syntax (IC type language) 107
17 T -Type semantics (IC type language) 108
18 Conformance relation (IC type language) 111

x

Acknowledgements

I wish to express my deep gratitude to my advisor Dr. Let-
terio Galletta that was more than supportive during my PhD
research. I want to thank him for helping me grow as a re-
searcher and for making all these years easy with his kind-
ness and patience. I want to thank my parents for being the
most supportive parents during my whole education. Also,
thanks to family, my partner and friends from Serbia and
from Italy for being always a big encouragement. Next, I
want to thank professor Jovanka Pantovic for her support
and her advice to enroll at IMT School for Advanced Studies,
which has been one of the best experiences. Special thanks
to my committee Marco Carbone and Mariangiola Dezani-
Ciancaglini whose attentive reading and invaluable sugges-
tions improved this dissertation. Finally, I want to thank all
the professors from IMT for their knowledge transfer.

xi

Vita

February 29, 1992 Born, Novi Sad , Serbia

2011-2015 Professor of Mathematics
Final mark: 8.92/10.00
Faculty of Natural Sciences, Novi Sad, Serbia

2015-2016 Engineer of Applied Mathematics
Final mark: 10.00/10.00
Faculty of Technical Sciences, Novi Sad, Serbia

2016-2017 High School Teacher
Subjects: Mathematics and Discrete mathematics
IT High School “Smart”, Novi Sad, Serbia

2017- PhD Student
Program: Computer Science, SySMA research group
IMT School for Advancd Studies, Lucca, Italy

2020-2022 Teaching Assistant
Subjects: Mathematical Analysis, Numerical Mathe-
matics, Discrete Mathematics and Linear Algebra
Alfa BK University, Belgrade, Serbia

2022- System Test Engineer and Software System Test Man-
ager (SSTM)
Continental Automotive, Novi Sad, Serbia

xii

Publications

1. Zorica Savanović, Letterio Galletta, and Hugo Torres Vieira (2020). “A type
language for message passing component-based systems”. In: Proceedings
13th Interaction and Concurrency Experience, ICE 2020, On-line, 19 June 2020.
Ed. by Julien Lange et al. Vol. 324. EPTCS, pp. 3–24.
DOI:10.4204/EPTCS.324.3.URL:https://doi.org/10.4204/EPTCS.324.3.31

2. Zorica Savanovic and Letterio Galletta. “A type language for distributed
reactive components governed by communication protocols”. In: Journal
of Logical and Algebraic Methods in Programming 132 (2023), p. 100848.
ISSN: 2352-2208. DOI: https://doi.org/10.1016/j.jlamp.2023.100848. URL:
https: //www.sciencedirect.com/science/article/pii/S2352220823000020

xiii

Presentations

1. Zorica Savanović, Letterio Galletta, and Hugo Torres Vieira, “A type lan-
guage for message passing component-based systems”, ICE 2020, On-line,
19 June 2020.

2. Zorica Savanović, Letterio Galletta, and Hugo Torres Vieira, “A type lan-
guage for message passing component-based systems”, Summer school on
behavioural APIs, Leicester, UK, July 2019.

xiv

Abstract

Component based software engineering (CBSE) is a method-
ology that aims to design and build software systems by
assembling together reusable and loosely coupled compo-
nents. Applying CBSE in a distributed setting is appealing
but challenging: distributed applications require different
remote components to interact following a well-defined
protocol. This thesis addresses a model for message passing
component-based systems where components are assembled
together with the protocol itself. Components can there-
fore be independent from the protocol, and can react to
messages in a flexible way. This thesis studies how types
can capture component behaviour and can enable checking
the compatibility with a protocol. In particular, this thesis
proposes two type languages for reactive components: the
first language excludes choice terms, whereas the second one
includes them. We show the correspondence of component
and type behaviours, which entails a progress property for
components.

xv

Chapter 1

Introduction

Code reusability is an important principle to support the development
of software systems in a cost-effective way. It is a key principle in
Component-Based System Engineering (CBSE) [18], where the idea is
to build systems relying on the composition of loosely-coupled and
independent units called components.

The motivations behind CBSE are, on the one hand, to increase de-
velopment efficiency and lower the costs (by building a system from pre-
existing components, instead of building from scratch), and on the other
hand, to improve quality of the software for instance to what concerns
software errors (components can be tested over and over again in differ-
ent contexts). Consider, for example, microservices (see, e.g., [10]) that
have been recently adopted by massively deployed applications such as
Netflix, eBay, Amazon and Uber, and that are reusable distributed soft-
ware units. In such a distributed setting, composing software elements
necessarily involves some form of communication scheme, for instance
based on message passing.

1.1 Research motivation

The internet has evolved so much that nowadays we have a collective
network of connected devices and the technology that promote commu-

1

nication between devices and the cloud, as well as between the devices
themselves. Such a network that allows the physical world to be digi-
tally monitored or even controlled is called Internet of Things[16] (IoT).
The internet is not only a network of computers, but it has evolved into
a network of devices of all types: vehicles, smart phones, home appli-
ances, toys, cameras, medical instruments and industrial systems, ani-
mals, people, buildings, all connected, all communicating and sharing
information based on protocols in order to achieve smart analysis, trac-
ing, safe and control and even personal real time online monitoring. In
order to be considered an IoT system, four components must be prop-
erly integrated into the system: sensors/devices, connectivity, data pro-
cessing, and user interface. The IoT technology in the device allows the
device to create an interaction between internal components and the out-
side world, that assists in decision-making. An IoT system can be seen as
a set of distributed interactive components, which could be designed ap-
plying Component-Based Software Engineering (CBSE). In recent years,
component-based design has shown great promise in dealing with the
complexity in modern systems. Component-Based Software Engineering
uses the approach to form a complete system from pre-designed compo-
nents. This approach has the potential of increasing design productivity
by reusing the same components in multiple designs. One of the funda-
mental questions is: when we compose components to form a system,
how can we ensure that they will work together?

In order for the functionality to be achieved, communication among
components should follow a well-defined protocol of interaction, that
may be specified in terms of some choreography language like, for ex-
ample, WS-CDL [25] or the choreography diagrams of BPMN [20]. A
component should be able to carry out a certain sequence of I/O actions
in order to fulfil its role in the protocol. One way to accomplish this is
to implement a component in a way that executes a strict sequence of
I/O actions, that precisely matches the actions expected by the protocol.
However, this choice interferes with reusability, since such a component
can be used only in an environment that expects that exact sequence of
actions. For instance, if a component receives an image and outputs its

2

classification just once, what will happen if we need to use this compo-
nent in a context where the classification is sent multiple times?

In contrast, a more flexible design choice comes from reactive pro-
gramming and consists of designing components so that they can re-
spond to external stimulus without any specific I/O sequence. The re-
active programming principle for building such components considers
that as soon as the data is available, it can be received or emitted. For ex-
ample, we can design a component that is able to output a classification
after receiving an image, as long as required. In such a way, reusability is
promoted since such components can be used in different environments
thanks to the flexibility given by the reactive behaviour. However, such
a flexibility at the composition level may be too wild if all components
are able to send/receive data as soon as it is available. Hence, we need
to discipline the interactions at the level of the environment where the
composition takes place. What if, for example, we have different images
that need to be classified and the classifying component is continuously
emitting the result for the first image?

Carbone et al. [5] proposed a language that supports the development
of distributed systems by combining the notions of reactive components
with choreographic specifications of communication protocols [19]. The
proposal considers components that can dynamically send/receive data
as soon as it is available, while considering that an assembly of compo-
nents is governed by a protocol. Hence, among all the possible reactions
that are supported by the composed components, the only ones that will
actually be carried out are the ones allowed by the protocol. A compo-
sition of components defines itself a component that can be further com-
posed (under the governance of some protocol) also providing a reactive
behaviour. This approach promotes reusability thanks to the flexibility of
the reactive behaviour. For instance, it abstracts from the number of sup-
ported reactions, because if a component can (always) perform a compu-
tation reacting to some inputs, then it can be used in different protocols
that require such computation independently of the number of times;
it also abstracts from message ordering, indeed, if a component needs
some values to perform a computation, it may be used with any protocol

3

that provides them in any order.
Component implementations should be hidden, so it should not be

necessary to inspect its internals in order to asses if it is usable in a de-
termined context for the purpose of off-the-shelf reuse. Hence, a compo-
nent should be characterised with a signature that allows checking its
compatibility when used in a composition. In particular, it must be en-
sured that each component provides (at least) the behaviour prescribed
by the protocol in which the component participates. Carbone et al. [5]
propose a verification technique that ensures communication safety and
progress. However, the approach requires checking the implementation
of components each time the component is put in a different context, i.e.,
each component should provide (at least) the behaviour as needed by
the protocol that it participates in. This approach gives the answer to the
question addressed to component: "Can you do this?". In this thesis our
goal is to have a property of a component that allows the component to
answer to the question: "What can you do?".

1.2 Contributions of the thesis

This thesis follows the research line of Carbone et al. [5] and considers an
approach where we avoid the check each time a component is to be used.
We introduce two different type languages that describe component be-
haviour and we check component implementation only once, during the
type extraction of a component. After that, the type of a component is
enough to capture the component reactive behaviour. The first type lan-
guage, named EC type language (EC-excluding choices) characterises
the behaviour of components governed by the protocol that excludes
choices in its description. This approach is useful for many simpler sys-
tem (such as [1]) and the type extraction procedure is far more easier and
in some sense “elegant”. Then, we extend the protocol description with
choice terms obtaining a new type language named IC type language
(IC-including choices). This language captures the behaviour of greater
number of components than the previous type language, but the type ex-
traction procedure is more involved. The development of both languages

4

follows the same steps: First, we introduce a type language that charac-
terises the reactive behaviour of components, i.e., we assign them a type
that labels components and provides all the information about their re-
active behaviour. Secondly, we devise an inference technique that identi-
fies the types of components, based on which we can verify whether the
component provides the reactive behaviour required by a context. The
motivation is in tune with reusability: once the component’s type is iden-
tified, there is no further need to check the implementation, because the
type is enough to describe “what the component can do".

Basically, our types specify the ability of components to receive values
of a prescribed basic type. Moreover, they track different kinds of depen-
dencies, for instance that certain values require a specific set of inputs
(dubbed per-each-value dependencies) to be emitted always for each out-
put. Our types can also describe the fact that a component needs to be,
in some sense, initialised by receiving specific values before proceeding
with other reactive behaviour (dubbed initial dependencies). Further-
more, our types also identify constraints on the number of values that a
component can send. Finally, we ensure the correctness of our type sys-
tem by proving that our type extraction procedures are sound with re-
spect to the semantics of the Governed Components (GC) language [5],
considering first the choice-free subset of the GC language and then a
full account of the language. Moreover, we ensure that whenever a type
of a component prescribes an action, a component will not be stuck, i.e.,
it will eventually carry out the matching action.

In this thesis we provide two type languages that ensure that the type
of a component is enough to verify that the component provides (or not)
the reactive behaviour required by any context. These types enable com-
ponent reuse, which is a key benefit of component-based design. More-
over, by ensuring component compatibility, our type systems can greatly
increase the robustness of a system, that is particularly valuable for IoT
devices.

5

1.3 Outline

The thesis is organised in the following way:

Chapter 1 recalls the Behavioural types (Section 2.1) and Governed Compo-
nents (GC) language (Section 2.2) that models components whose
behaviour is captured by the research of this thesis.

Chapter 3 introduces an EC type language that characterises the reactive be-
haviour of components modelled in a choice-free subset of GC lan-
guage. First, we intuitively introduce our type language through a
motivating example based on AWS Lambda [1] where we point out
different scenarios that might occur while composing components
and how our types allow describing certain behavioural patterns
in Section 3.1; in Section 3.2 we introduce the syntax and semantics
of the type language; Then, we define the type extraction for base
components in Section 3.3, whereas the type extraction for compos-
ite components in Section 3.4; finally, in Section 3.5 and Section 3.6
we state and proof the type safety of EC type language.

Chapter 4 introduces the IC type language that characterises the reactive be-
haviour of components modelled in (full) GC language. First we
intuitively introduce our type language through a motivating ex-
ample in Section 4.1; in Section 4.2 we introduce the syntax and
semantics of IC type language; Then, we define the type extraction
for base components in Section 4.3, whereas the type extraction for
composite components in Section 4.4.3; finally, in Section 4.5 and
Section 4.6 we state and proof the type safety of EC type language.

Chapter 5 concludes our work, relates it to other researches and discuss per-
spectives of future work.

1.3.1 Published papers based on our research

The content of the thesis is a collection, revision and extension of the
material which we developed during the Ph.D.:

6

1. Zorica Savanovic, Letterio Galletta, and Hugo Torres Vieira (2020).
“A type language for message passing component-based systems”.
In: Proceedings 13th Interaction and Concurrency Experience, ICE
2020, On-line, 19 June 2020.Ed. by Julien Lange et al. Vol. 324.
EPTCS, pp. 3–24.

2. Zorica Savanovic and Letterio Galletta. “A type language
for distributed reactive components governed by communica-
tion protocols”. In: Journal of Logical and Algebraic Meth-
ods in Programming 132 (2023), p. 100848. ISSN: 2352-2208.
DOI: https://doi.org/10.1016/j.jlamp.2023.100848. URL: https:
//www.sciencedirect.com/science/article/pii/S2352220823000020

7

Chapter 2

Background

This chapter is an introduction to the relevant background for the thesis.
First, we recall behavioural types in terms of session types and then we
introduce the GC language as a fundamental model of reactive compo-
nents whose behaviour we consider in this thesis.

2.1 Behavioural types

Type systems “A type system is a tractable syntactic method for proving the
absence of certain program behaviours by classifying phrases according to the
kinds of values they compute.” ([22])

The essential idea behind the type systems is to prevent execution
errors during the execution of a program, i.e. to reduce the possibili-
ties for bugs in computer programs. Essentially, it is a deduction system
comprising a set of rules that assigns a property called type to the var-
ious constructs of a programming language. Types play a central role
in the design of modern programming languages, because they charac-
terise the form expected by the result of a computation. Type systems are
a simple form of static analysis which compute an over-approximation
of program behaviour.

Typically formalising the type system of a programming language
consists of three steps:

8

1. defining the syntax of the types, the typing environment and the
type judgements;

2. defining the type rules;

3. proving the soundness of the type system with respect to the dy-
namic semantics of the language.

In this section we focus on the behavioural type theory that is the ba-
sis for the development of communication-intensive distributed systems.
The key idea of a behavioural type theory is to enrich the expressiveness
of types so that it becomes possible to formally describe systems in dis-
tributes settings where participants exchange messages among them. It
encompasses concepts such as interfaces, communication protocols and
choreography, and describes a software entity, such as a component, in
terms of the sequences of operations it is allowed to perform.

In order to formally introduce behavioural types, we present an ex-
ample of behavioural type system based on session types that works on
a (slightly changed version of) π-calculus [21], following the work by [7].

A basic concept for structuring communication-based programs is the
notion of session. A session is designated by a private port called channel,
through which interactions are performed. A channel is an abstraction
of a communication link between processes.

Syntax We introduce the following syntactic categories and notations:

• P,Q, . . . are the processes

• n,m, p, ... ∈ Int, where Int is a set of Integers;

• c ∈ {l, r}, where {l, r} is set of channels (left and right, respec-
tively);

• ` ∈ {inl, inr}, where {inl, inr} is a set of selectors;

• v, w . . . is a set of values;

• s, t · · · ∈ Bool ∪ Int represent basic types: Boolean constants
[Bool = {true, false}] and Integers [Int = Z];

9

• x, y, z. . . . is a countable set of variables;

• e1, e2, . . . is a set of expressions (variables, values (constants) or
equality e1 = e2).

Similar to the π-calculus, the syntax of processes is defined by follow-
ing grammar:

P ::= 0
| c?(x : t).P
| c!〈e〉.P
| cC `.P
| cB {P,Q}
| if e than P else Q
| P cdQ,

Term 0 represents a process that is terminated; c?(x : t).P is an input
process (receiving message), announcing the reception of the message x
with a basic type t on a channel c; c!〈e〉.P is an output process (sending
message) of the expression e from the channel c; c C `.P is a labelled-
driven selection where selection of the process depends on selector ` that
can be either inl or inr; and c B {P,Q} denotes branching; term “if e
than P else Q” denotes a conditional process and the last one P cdQ is for
the parallel composition.

This calculus describes communication only between adjacent pro-
cesses. Each channel of the process has its left and right side, and it can
both receive and send a message. If we have parallel composition P cdQ
only the right side of the process P can communicate with the left side of
the process Q as graphically presented in Figure 1.

Notice that for that reason parallel composition operator is associa-
tive, but not symmetric in general. In the picture below is presented the
parallel composition of three processes P , R and Q. The process R filters
or/and transforms the message exchange between processes P and Q.

10

Figure 1: Parallel adapters/processes

2.1.1 Operational semantics

The operational semantics of processes is formalised as a reduction rela-
tion. This relation is closed by reduction contexts and a structural con-
gruence relation, which we define next.

Process environment or context
Process environment plays a key role, because depending on environ-

ment process behaves differently. Formally we define a reduction context
with the following grammar:

C ::= [] | CcdP | P cdC

Intuitively, a reduction context is a process which has a “hole” marked
as “[]”. The hole serves as a place keeper for writing the next executed
process. C[P] stands for processes obtained by replacing the hole in C
with the process P ; CcdP and P cdC says that we can add a parallel process
to the process P from the left or the right side, respectively.

Notice that we denote with C ::= [] the identity process, i.e., for every
process Q put in this context we have C[Q] = Q.

Structural congruence
We introduce a structural congruence as the least congruence satisfy-

ing the following equations:

1. 0cd0 ≡ 0

2. P cd(QcdR) ≡ (P cdQ)cdR

The first congruence states that parallel composition of two termi-
nated processes is a terminated process itself. The second one claims the
associativity of operator cd.

Reduction
Reduction relation −→ is the least relation inductively defined by the
rules of Table 1. We assume a deterministic evaluation relation e ↓ v,

11

expressing that expression e evaluates to value v. Value v has a type t,
and we write it as v ∈ t, where t ∈ {Bool,Nat}.

e ↓ v v ∈ t
r!〈e〉.P cdl?(x : t).Q −→ P cdQ{v/x}

[R− COMM R]

e ↓ v v ∈ t
r?(x : t).P cdl!〈e〉.Q −→ P{v/x}cdQ

[R− COMM L]

r / `.P cdl . {Qinl, Qinl} −→ P cdQ`
[R− CHOICE R]

r B {Pinl, Pinr}cdl C `.Q −→ P`cdQ
[R− CHOICE L]

e ↓ v v ∈ Bool
if e then Ptrue else Pfalse −→ Pv

[R− COND]

P −→ Q

C [P] −→ C [Q]
[R− CONTEXT]

P ≡ P ′ P ′ −→ Q′ Q′ ≡ Q
P −→ Q

[R− STRUCT]

Table 1: Reduction relation

We briefly comment below the rules of Table 1. Rule [R-Choice R] states
that having a process that selects (via selector `) from its right channel
and continues as P , in parallel with a left side of two processes (branch-
ing), the resulting process will be P parallel with the process which se-
lector ` chose. Rule [R-COMM R] states that if v is the value of e, with
a basic type t, then the parallel communication between the processes
where we have sending an expression on the right channel (then con-
tinue as P) and receiving some variable x of the type t on the left channel
(then continue asQ) reduces to a parallel communication between P and
Q, where all occurrences of the variable (x) are evaluated with v.

Rule [R-COND] states that depending on evaluation of expression e,
P reduces to Pfalse or Ptrue. Rule [R−CONTEXT] states that if process
P reduces to process Q, then if put in the same context, the reduction
between two processes remains.

In order to define equivalence between processes we need to intro-

12

duce a few concepts. We denote with −→∗ the reflexive, transitive clo-
sure of relation −→, i.e., P −→∗ Q that means: process P reduces to
process Q in finite number of steps by applying reduction rules. If there
is no such of process Q we will write P X−→.

Correct process
Informally, we can say the set of correct processes include those pro-

cesses that terminate every interaction and reduce to 0 in finite number
of steps.

Definition 2.1.1 (Correct processes). We say that process P is correct if
P−→∗Q and Q 6−→ implies Q ≡ 0.

Definition 2.1.2 (Equivalent processes). Two processes P and Q are equiva-
lent, written P ≈ Q, whenever for every context C we have that P is correct in
C if and only if Q is correct in C. Formally,

∀C. P ≈ Q ⇐⇒ C[P] is correct if and only if C[Q] is correct.

The following picture clarifies the notion of process equivalence:

P ≈ Q
C[P] iff C[Q]y
∗

y
∗

Q′1 Q′2X−→ X−→w� w�
Q′1 ≡ 0 Q′2 ≡ 0

The left side of the picture looking from the top to bottom represents
the correctness of a process C[P] and the right side a correctness of a
process C[Q].

Example 2.1.1. Let P and Q be two processes defined as follows:

P := l?(x : Nat).r!〈5〉.0

Q := r!〈5〉.l?(x : Nat).0.

We want to find a context in which both processes are correct. We assume
that:

C [l?(x : Nat).r!〈5〉.0]−→∗0.

13

One simple solution could be the following context:

C := r!〈n〉.0 cd[] cdl?(x : Nat).0,

for some n ∈ N.
The question is: Will the process Q terminate in this context? If we put Q

in the same context we get the following:

C [r!〈5〉.l?(x : Nat).0] =

r!〈n〉.0 cd r!〈5〉.l?(x : Nat).0 cdl?(x : Nat).0 −→

r!〈n〉.0 cd l?(x : Nat).0 cd0 −→

0cd0cd0 ≡ 0.

We can conclude that both processes do terminate in this context, i.e.:

C[P] C[Q]y
∗

y
∗

0 0

However, these two processes are not equivalent, because exists a
context C := []cdr!〈n〉.0cdl?(x : Nat).0 in which P is correct, but Q is
not.

2.1.2 Session types

We chose to introduce session types as an example of behavioural types.
The idea behind session types is to describe communication protocols as
types, that can be checked either statically (at compile-time) or dynam-
ically (at runtime). These types are used to ensure properties desirable
in concurrent and distributed systems, i.e. absence of communication
errors and deadlocks, and protocol conformance.

Session types are ranged over T, S . . . and defined by the following
grammar:

T ::= end | t?.T | t!.T | T + S | T ⊕ S,

Type end types a channel end on which no further interaction is pos-
sible; term t?.T is an input of a value of type t, and t!.T is for an output.

14

Branching T+S and selection T ⊕S are binary operators, consistent with
the process language that we explained below.

The type system enforces duality of behaviours on endpoints. The
dual of the session type S is a session type S, obtained by switching an
input and an output or a selection and a branching in S. Duality plays
a key role when we talk about session types because it allows smooth
communication between two ends of a channel.

To check if some type T1 is a dual of type T2, we must construct T1

first, then check if those two types are equivalent.

Example 2.1.2. Let us have a type T = s?.t!.end. Check if type S = s!.t?.end
is the dual of the type T .

We know that s? = s!; t! = t?; and end = end. Then constructed dual
type T of type T is

T = s!.t?.end

and T = S.

The fundamental element of the type rules is the type environment,
denoted by Γ, that is a finite function mapping variables to types. For
example,

Γ ` e : τ

asserts that e has the type τ under the assumption that free variables
occurring in e have the types specified in Γ. These assumptions are called
the typing judgements.

The main judgements of this calculus are:

• Γ ` x : t

• Γ ` P I {c : T, c : S}

First judgement says that x must have a type t in environment Γ. The
other one states that “under the environment Γ, a well-typed process P
has a typing c : T, c : S”. Typing c : T, c : S specifies P ’s behaviour at its
free channels. Process P :

• is well-typed in environment Γ ;

• uses a channel c according to type T , and channel c according to
type S.

15

To be sure that channels of the session have the corresponding (dual)
type at the beginning of a session, we use typing rules from the Table 2.
We now briefly explain some of the rules: Rule [T − RCV] states that if
P uses channel c according to type T , and channel c according to type S
in a type environment where x has a type t, then the process c?(x : t).P
(input of variable x of type t on the channel c) uses channel c according
to the type t?.T . Rule [T − SEND] is similar, but for the output.

Rule [T − PAR] states that two processes in order to be put in a par-
allel composition the right channel of the process on the right side (P)
of a composition and the left channel of the process on the left side of
the composition (Q) have to have dual types, since the communication
happens on those two channels. Then when composed, that process has
the channels of the remaining types (left as left in P and right as right in
Q).

Using the rules from the Table 2 we can prove the following theorem
that states that if both channels of a process have a termination type, then
the process is correct.

Theorem 2.1.1. If ` P I {l : end, r : end}, then P is correct process.

Proof. Using the type rules, it is clear that P can be only one of three
processes:

• 0 process;

• parallel composition;

• conditional process.

The first one and the third one are obvious. In the case of parallel com-
position, lets take P = P1cdP2cd. . .cdPicd. . .cdPn, where P1, P2, . . . , Pn are
processes that terminate in one step. Then the rule [T-PAR] requires:
` P1 I {l : end, r : T1}, ` Pi I {l : T i−1, r : Ti} for 2 ≤ i ≤ n − 1

and ` Pn I {l : Tn−1, r : end},
for some types T1, T2 . . . Tn. The proof is by induction on T1, T2 . . . Tn.

• Base of induction Coincides on the first case.

• Inductive step Assume that Pj , j ∈ {1, 2, . . . , n} is not a condi-
tional process. If it is, it can be reduced by the rule [T-COND].

• Notice that r and l are the only channels in P1 and Pn (respectively).
Then there must exist at least one index j ∈ {1, 2, . . . , n− 1}), such

16

Γ, x : t ` x : t
[T − V AR]

v ∈ t
Γ ` v : t

[T − V AL]

Γ ` e1 : t Γ ` e2 : t

Γ ` e1 = e2 : bool
[T − EQUIV]

Γ, x : t ` P I {c : T, c : S}
Γ ` c?(x : t).P I {c : t?.T, c : S}

[T −RCV]

Γ ` e : t Γ ` P I {c : T, c : S}
Γ ` c!〈e〉.P I {c : t!.T, c.S}

[T − SEND]

Γ ` Pk I {c : Tk, c : S}{k=1,2}

Γ ` c . {P1, P2} I {c : T1 + T2, c : S}
[T −BCH]

Γ ` P I {c : T1, c : S}
Γ ` c / inl.P I {c : T1 ⊕ T2, c : S}

[T − LSELECT]

Γ ` P I {c : T2, c : S}
Γ ` c / inr.P I {c : T1 ⊕ T2, c : S}

[T −RSELECT]

Γ ` 0 I {l : end, r : end}
[T − ID]

Γ ` e : Bool Γ ` Pk I {l : T, r : S}{k=1,2}

Γ ` if e thanP1 elseP2 I {l : T, r : S}
[T − COND]

Γ ` P I {l : T, r : T ′} Γ ` Q I {l : T
′
, r : S}

Γ ` P cdQ I {l : T, r : S}
[T − PAR]

Table 2: Typing rules

17

that Pj starts with a communication/selection/branching on chan-
nel r, and Pj+1 starts with a communication/selection/branching
on channel l.

Observe the case Tj = Tinl ⊕ Tinr (other cases similar). Rules [T-R-
SELECT], [T-R-SELECT] and [T-BCH] require:

Pj ≡ r / `.Q

and
Pj+1 ≡ l . {Qinl, Qinr}.

According to rules [R-CHOICE-R] and [R–CONTEXT] we have:

P −→ P1cd. . .cdQcdQlcd. . .cdPn.

This concludes the proof, since

` Q I {l : Tj−1, r : Tl},` Ql I {l : Tl, r : Tj+1}.

The following theorem states that if a well-typed process P can be
reduced to Q by applying reduction rules a finite number of times, then
Q is well-typed and has the same type as P .

Theorem 2.1.2 (Subject reduction). If Γ ` P I {c : T, c : S} and P −→∗ Q
then Γ ` Q I {c : T, c : S}.

In conclusion, types are used to check statically some properties of
processes, and also to help in proving theorems about behavioural prop-
erties of processes. Next, we present a language that describes entities
called components, in distributed systems, where the interaction among
them is done by message passing. This language model is the base of the
thesis, since the main goal of this thesis consists of describing the reactive
behaviour of such components.

2.2 GC language

In this section, we briefly report the GC language following the presenta-
tion of Carbone, Montesi, and Viera [5]. We focus on the main points that
allow grasping the essence of the model and supporting a self-contained
understanding of the rest of the thesis. For details about the language,
we refer the reader to the original paper [5].

18

In GC, the computation performed by components is defined in the
reactive style, using binders that dynamically produce results as soon
as they get the input data that they need. Components can be com-
posed, where a composition of components is always associated to a pro-
tocol, given as a choreography, that governs the flow of communications
among the components. The composition of some components is itself a
component which can be used in further compositions.

2.2.1 Syntax of GC language

The syntax of the GC language is in Table 3. There are two kinds of com-
ponents (K): base and composite. Both kinds interact with the external
environment by means of input and output ports exposed as the com-
ponent’s interface. Besides of the interface, components are defined by
their implementation.

Components K ::= [x̃ 〉 ỹ]{L} (base)
[x̃ 〉 ỹ]{G;R;D; r[F]} (composite)

Local Binders L ::= y = f (x̃)
L,L

Protocol G ::= p
`−→q̃;G (communication)

p
`−→q̃(G,G) (choice)

µX.G (recursion)
X (recursion variable)
end (termination)

Role Assignments R ::= p = K
R,R

Distribution Binders D ::= p.x
`←− q.y

D,D
Forwarders F ::= z ← w

F,F

Table 3: Syntax of Governed Components.

In the case of a base component the implementation is given by a list
of local binders ({L}). A local binder specifies a function, denoted as
y = f(x̃), which is used to compute the output values for port y relying
on values received on list of (input) ports x̃. We say that component’s
ability to output a value may depend on the received ones, where in-

19

stead, components are always able to receive values. We abstract from
the definition of such functions f and assume them to be total. Received
values are processed in a FIFO discipline, so queues are added to the
local binders at run-time (noted as y = f(x̃) 〈 σ̃). Each element (σ) in
a queue (σ̃) is a store defined as a partial mapping from input ports to
values (σ̃ = σ1, σ2, . . . , σk, where the oldest received values are stored
in σ1, the second-oldest values in σ2, and so on and so forth up to σk).
For example, consider a component with a local binder y = f(x1, x2) < ·
(where the dot in the term "< ·" represents the empty queue) and assume
that the component receives v1 and v2 on port x1, and v3, v4 and v5 on
port x2. Once all values are received, the queue contains the following
three mappings (x1 → v1, x2 → v3), (x1 → v2, x2 → v4), (x2 → 5) where
two are “complete”, i.e., have all the arguments to compute the function
f and one is not.

The implementation of a composite component, in symbols

{G;R;D; r[F]},

is an assembly of subcomponents whose interaction is governed by a
protocol (G). The set of subcomponents are given in R together with
their roles in the interaction, e.g., we write r = K to denote that compo-
nent K is assigned to role r. Composite components also specify a list of
distribution binders (D) that provide an association between the messages
exchanged in the protocol (`) and the ports (x, y) of the components. For

example, the binder p.x `←− q.y states that a message with a label ` is
emitted on port y of the component assigned to role q, and it is received
on port x by the component assigned to role p. Ports are uniquely asso-
ciated to message labels (`) in such a way that each communication step
in the protocol has a precise mapping to a port: all values emitted on a
port will be carried in messages with the same label and all values re-
ceived on a port will be delivered in messages with the same label. For
example, every time a value is emitted from some port y it will be car-
ried in a message labelled with ` and a value delivered on some port x
is delivered on a message with the same label `. Other labels cannot be
attached to y, otherwise the association would not be unique. For ex-
ample, the class message label (or some other) cannot be attached to yp
otherwise the association would not be unique. Finally, subterm r[F] is
used to specify the interfacing component. This is the only subcomponent
responsible for the interaction with the external environment and it is
identified by its role r and by forwarders F , i.e., special connections with

20

the ports of the composite components. The idea underlying forwarders
is that values received on the input ports of the composite component are
directly forwarded to the input ports of the interfacing subcomponent;
and values emitted on the output ports of the interfacing subcomponent
are forwarded to the output ports of the composite component. For ex-
ample, the term x′ ← x is for forwarding an input, and the term y ← y′

is for forwarding an output, where x and y are the ports of the composite
component and x′ and y′ are ports of the interfacing subcomponent.

Protocol specifications prescribe the interaction among a set of parties

identified by roles. A communication term p
`−→ q̃;G specifies that role p

sends the message labelled ` to the (nonempty) set of roles q̃, after which

the protocol continues as specified byG. In a choice term p
`−→q̃(G,G) role

p sends the message labelled with ` to roles q̃ announcing the choice of
proceeding either according to protocol G1 or G2. Then, the terms µX.G
and X are for specifying recursive protocols. Finally, term end defines
the termination of the protocol.

2.2.2 Operational semantics of GC language

We now present the operational semantics of the GC in terms of a la-

belled transition system (LTS). We denote by K λ−→ K ′ that a compo-
nent K evolves in one computational step to K ′, where observations are
captured by labels defined as follows

λ ::= x?v | y!v | τ.

Transition label x?v represents an input on port x of a value v; label y!v
denotes an output on port y of a value v; and label τ stands for an internal
move.

We present the rules that describe the behaviour of components in
two parts, addressing base and composite components separately.

Table 4 shows rules OutBase and InpBase that capture base component
behaviour. These rules rely on an auxiliary transition system for local

binders, denoted by L λ−→ L′. Rule OutBase states that if local binders
L can perform the output of a value v on port y, and y is part of the
component’s interface, then the corresponding output can be exhibited
by the base component. Rule InpBase follows the same lines.

Notice that the transition of the local binder specifies a final configu-
ration L′ which is accounted for in the evolution of the base component.

21

L
y!v−−→ L′ y ∈ ỹ

[x̃ 〉 ỹ]{L} y!v−−→ [x̃ 〉 ỹ]{L′}
OutBase

L
x?v−−−→ L′ x ∈ x̃

[x̃ 〉 ỹ]{L} x?v−−−→ [x̃ 〉 ỹ]{L′}
InpBase

f() ↓ v

y = f () 〈 · y!v−−→ y = f () 〈 ·
LConst

{x̃}=dom(σ) f(σ(x̃)) ↓ v

y = f (x̃) 〈σ, σ̃ y!v−−→ y = f (x̃) 〈 σ̃
LOut

x ∈
⋂
σi∈σ̃ dom(σi) x ∈ x̃

y = f(x̃) 〈 σ̃ x?v−−−→ y = f(x̃) 〈 σ̃, {x 7→ v}
LInpNew

x ∈
⋂
σi∈σ̃1

dom(σi) x 6∈ dom(σ) x ∈ x̃

y = f(x̃) 〈 σ̃1, σ, σ̃2
x?v−−−→ y = f(x̃) 〈 σ̃1, σ[x 7→ v], σ̃2

LInpUpd

x 6∈ x̃

y = f(x̃) 〈 σ̃ x?v−−−→ y = f(x̃) 〈 σ̃
LInpDisc

L1
y!v−−→ L′1

L1, L2
y!v−−→ L′1, L2

LOutLift
L1

x?v−−−→ L′1 L2
x?v−−−→ L′2

L1, L2
x?v−−−→ L′1, L

′
2

LInpList

Table 4: Semantics of base components.

K
u!v−−→ K ′ D = q.z

`←− p.u,D′ G
p!`〈v〉−−−−→ G′

[x̃ 〉 ỹ]{G; p=K,R;D; r[F]} τ−→ [x̃ 〉 ỹ]{G′; p=K ′, R;D; r[F]}
OutChor

K
z?v−−−→ K ′ D = q.z

`←− p.u,D′ G
q?`〈v〉−−−−→ G′

[x̃ 〉 ỹ]{G; q=K,R;D; r[F]} τ−→ [x̃ 〉 ỹ]{G′; q=K ′, R;D; r[F]}
InpChor

K
τ−→ K ′

[x̃ 〉 ỹ]{G; s=K,R;D; r[F]} τ−→ [x̃ 〉 ỹ]{G; s=K ′, R;D; r[F]}
Internal

K
z!v−−→ K ′ F = y ← z, F ′ y ∈ ỹ

[x̃ 〉 ỹ]{G; r=K,R;D; r[F]} y!v−−→ [x̃ 〉 ỹ]{G; r=K ′, R;D; r[F]}
OutComp

K
z?v−−−→ K ′ F = z ← x, F ′ x ∈ x̃

[x̃ 〉 ỹ]{G; r=K,R;D; r[F]} x?v−−−→ [x̃ 〉 ỹ]{G; r=K ′, R;D; r[F]}
InpComp

Table 5: Semantics of composite components.

22

Essentially, a (run-time) local binder y = f(x̃) 〈 σ̃ is always receptive
to an input x?v: if x is not used in the function (x 6∈ x̃), the value v is
simply discarded; otherwise, the value is added to the (oldest) entry in
mapping queue σ̃ that does not have an entry for x (possibly originating
a new mapping at the tail of σ̃). All local binders in L synchronise on
an input, so each local binder will store (or discard) its own copy of the
value. Instead, local binder outputs are not synchronised among them:
if a local binder outputs a value, other local binders will not react. When
the oldest mapping in queue σ̃ is complete, i.e., it assigns values to all of
x̃, the function f may be computed, and its result is then carried in the
transition label (i.e., the v in y!v).

We now introduce the rules that capture the behaviour of the compos-
ite components, displayed in Table 5. Notice that a composite component
may itself be used as a subcomponent of another composition (of a “big-
ger” component), and base components provide the syntactic leaves.

Rules OutComp and InpComp capture the interaction of a compos-
ite component with an external environment, realised by the interfacing
subcomponent. The role assignment r=K captures the relation between
component K and role r, which is specified as the interfacing role (r[F]).
Rule OutComp allows for the interfacing component K to send a value v
to the external environment via one of the ports y of the composite com-
ponent. Notice that the connection between the port z of the interfacing
component and the port y of the composite component is specified in a
forwarder F = y ← z, F ′. Rule InpComp follows the same lines to model
an externally-observable input. Rule Internal allows for internal actions
in a subcomponent K, where the final configuration K ′ is registered in
the final configuration of the composite component.

Rules OutChor and InpChor capture the interaction among subcom-
ponents of a composite component. Rule OutChor addresses the case
when a component is sending a message to another one. The premises,
together with role assignment p = K, establish the connection among
sender component K, the component port u, sender role p, and message

label `. Premise K u!v−−→ K ′ says that the sender component K can

perform an output of value v on port u. Premise D = q.z
`←− p.u,D′

says that the distribution binders specify the (unique) relation between
port u of sender role p and message label ` (receiver role q and associated

port z are not important here). The last premiseG
p!`〈v〉−−−−→ G′ realises the

component governing the protocol, i.e., saying that the communication is
only possible if the protocol prescribes it. Namely, the premise says that

23

the protocol exhibits an output of a value v carried in message ` from
role p. Naturally, operational semantics has an impact on our technical
development (namely regarding end-point projection in local protocols),
but to some extent can be addressed in a modular way (i.e., up to the
existence of the end-point projection). Notice that the transitions of com-
ponent K and protocol G specify final configurations K ′ and G′ which
are accounted for in the evolution of the composite component.

Rule InpChor is similar, but instead of message sending, it addresses
the case when a subcomponent receives a message from another sub-
component. The premises are equivalent to the ones for Rule OutChor,
but now regard reception. Namely, it says that the receiving component
K performs a corresponding input transition, that the distribution binder
specifies the relation of message label ` with receiver role q and port z,
and that protocol G allows the input of a value.

The premises of rules InpChor and OutChor include the protocol tran-
sitions. Figure shows how the protocol evolves when some role p sends
(denoted by p!`〈v〉) or receives (denoted by p?`〈v〉) a value v on the inter-
action `. Below, we use α to range over these labels. We also want that
the values are captured at the intermediate communication states, so the
following run-time terms need to be added to the syntax of the protocols:

G ::= . . . | `,v−−→q̃;G | `,v−−→q̃(G1, G2)

Both terms above indicate that the message has been sent by a sender,
but still not received by the receiver. We now comment on the semantics
rules for protocols shown in Figure 6. Rule GSVal represents the outputs.
Role p sends a value v labelled by ` (p!`〈v〉) to multiple roles q̃. The tran-

sition to the run-time term
`,v−−→q̃, registers the communication of a value

v that still needs to be received by q̃. Rule GRVal models an input: if there
is a value in passage, it will be consumed by one of the receivers.

Rule GSChoice is similar to the rule GSVal, but for choices. The value
in the transmission needs to be one of the constants inl or inr which
give the information to receivers whether the sender chose that commu-
nication proceeds as protocol G1 or G2. Rule GRChoice is similar as rule
GRVal, but for choices.

When there is only one receiver, the communication proceeds follow-
ing the continuation, as described in the rules GRVal2 and GRChoice2.
Rule GRec captures recursion in the standard way. The rules labelled
with GConc describe the asynchronous and concurrent execution of the
protocol, i.e, if an action does not include the role in the prefix of the

24

protocol, the continuation is allowed to make a transition, leaving the
prefix unmodified. Note that in these rules the notation role(α) is used
to extract the name of the role from the label.

25

p
`−→q̃; G p!`〈v〉−−−−→ `,v−−→q̃; G

GSVal

v ∈ {inl, inr}

p
`−→q̃(G1, G2)

p!`〈v〉−−−−→ `,v−−→q̃(G1, G2)
GSChoice

q̃ nonempty
`,v−−→q̃, q; G q?`〈v〉−−−−→ `,v−−→q̃; G

GRVal

`,v−−→q; G q?`〈v〉−−−−→ G
GRVal2

q̃ nonempty
`,v−−→q̃, q(G1, G2)

q?`〈v〉−−−−→ `,v−−→q̃(G1, G2)
GRChoice

v ∈ {inl, inr}
`,v−−→q(Ginl, Ginr)

q?`〈v〉−−−−→ Gv

GRChoice2

G{µX.G/X}
α−→ G′

µX.G
α−→ G′

GRec

G
α−→ G′ role(α) 6∈ p, q̃

p
`−→q̃; G α−→ p

`−→q̃; G′
GConc1

G1
α−→ G′1 G2

α−→ G′2 role(α) 6∈ p, q̃

p
`−→q̃(G1, G2)

α−→ p
`−→q̃(G′1, G′2)

GConc2

G
α−→ G′ role(α) 6∈ q̃

`,v−−→q̃; G α−→ `,v−−→q̃; G′
GConc3

G1
α−→ G′1 role(α) 6∈ q̃

`,inl−−−→q̃(G1, G2)
α−→ `,inl−−−→q̃(G′1, G2)

GConc4

G2
α−→ G′2 role(α) 6∈ q̃

`,inr−−−→q̃(G1, G2)
α−→ `,inr−−−→q̃(G1, G

′
2)

GConc5

Table 6: Semantics of protocols.

26

In GC language, the communication among the components inside
the composite component is governed by the protocol. Each component
needs to be able to carry-out the protocol, i.e., each component must be
capable of performing the behaviour prescribed by the protocol, for the
corresponding role. For this reason, we introduce an operation that re-
turns the expected behaviour of the component according to its role in
the composition and a protocol. The operation is named Protocol Projec-
tion and it is shown in Figure 7. We denote with G ↓p,D,γ the projection
of protocol G to role p with the connection binder D and the mapping γ.
The mapping γ maps the interaction labels to the base types of commu-
nicated values and it ensures that both sender and receiver agree on the
type of the value. Moreover, we denote with z!.B and w?.B an output
from the port z of a value of the type B and an input on the port w of
a value of type B. This operation is crucial for extracting the type of a
composite component. Indeed, as we discuss later, we use this operation
to get the local protocols describing the behaviour of subcomponents.

Later on we show the illustrating examples of GC language, i.e. the
description of components modelled in GC language.

27

(p
`−→q̃;G)↓p,D,γ , z!B.G↓p,D,γ

where (D = q.w
`←− p.z,D′ ∧ γ(`) = B)

(p
`−→q̃, q;G)↓q,D,γ , w?B.G↓q,D,γ

where (D = q.w
`←− p.z,D′ ∧ γ(`) = B)

(p
`−→q̃;G)↓r,D,γ , G↓r,D,γ

where (r 6∈ p, q̃)
(
`,v−−→q̃, q;G)↓q,D,γ , w?B.G↓q,D,γ

where (D = q.w
`←− p.z,D′ ∧ v : B)

(
`,v−−→q̃;G)↓r,D,γ , G↓r,D,γ

where (r 6∈ q̃)
(p

`−→q̃(G1, G2))↓p,D,γ , z ⊕ (G1 ↓p,D,γ , G2 ↓p,D,γ)

where (D = q.w
`←− p.z,D′)

(p
`−→q̃, q(G1, G2))↓q,D,γ , w&(G1 ↓q,D,γ , G2 ↓q,D,γ)

where (D = q.w
`←− p.z,D′)

(p
`−→q̃(G1, G2))↓r,D,γ , G1 ↓r,D,γ

where (r 6∈ p, q̃ ∧ G1 ↓r,D,γ= G2 ↓r,D,γ)

(
`,v−−→q̃, q(G1, G2))↓q,D,γ , w&(G1 ↓q,D,γ , G2 ↓q,D,γ)

where (D = q.w
`←− p.z,D′ ∧ v : ChoT)

(
`,inl−−−→q̃(G1, G2))↓r,D,γ , G1 ↓r,D,γ

where (r 6∈ q̃)

(
`,inr−−−→q̃(G1, G2))↓r,D,γ , G2 ↓r,D,γ

where (r 6∈ q̃)
(µX.G)↓r,D,γ , µX.(G↓r,D,γ)

where (r ∈ roles(G))
(µX.G)↓r,D,γ , end

where (r 6∈ roles(G))
X↓r,D,γ , X

end↓r,D,γ , end

Table 7: Protocol projection (including run-time terms).

28

Chapter 3

The EC type language

In this chapter we introduce an EC type language that characterises the
reactive behaviour of components modelled in a choice-free subset of
GC language. First, we intuitively introduce our type language through
a motivating example based on AWS Lambda [1] and then we formalise
the language.

3.1 Informal introduction of EC type language

In order to motivate GC language and also to introduce our typing ap-
proach, we now informally discuss an example inspired by a microser-
vices scenario [1] that addresses an Image Recognition System (IRS).
The basic idea is that users upload images and receive back the resulting
classification. Moreover, users can get the current running version of the
system whenever desired.

The IRS is made of two microservices, Portal and Recognition
Engine (RE), that interact according to a predefined protocol.

The classification task is achieved according to the following work-
flow: Portal sends the image loaded by a user to RE to be processed.
When RE service finishes its classification , it sends the class as the result
of the classification to Portal. We model the scenario in the GC language
by assigning to each microservice the corresponding role and using com-
ponents to represent them. We assign role Portal to component KPortal

and role RE to component KRE , where KPortal and KRE are base com-
ponents.

29

Figure 2: Image Recignition System

Interaction between these two components is governed by global pro-
tocol G, that is described as follows:

Portal
image−−−−→RE;RE

class−−−−→Portal.

This (the part of G) protocol exactly specifies the workflow described

above: Portal sends an image to RE (Portal
image−−−−→ RE) that answers

with the computed class (RE class−−−−→Portal). If we add the termination
(end) we obtain (complete G) protocol

Portal
image−−−−→RE;RE

class−−−−→Portal; end

which may be described as a one-shot protocol, since the interaction is
over (end) after the components exchange the two messages.

We obtain composite component KIRS by assembling KPortal and
KRE together with protocol G that governs the interaction.

Figure 2 shows how it is possible to graphically represent compo-
nent KIRS , where we represent KPortal and KRE as its subcomponents:
The subcomponent KPortal is the interfacing component (hence is the
only one connected to the external environment via forwarders). We can
specify KPortal in the GC language as

[xp, x
′
p 〉 yp, y′p, y′′p]{yp = fu(xp) < σ̃yp , y′p = fr(x

′
p) < σ̃y

′
p , y′′p = f() < ·}

As previewed in the graphical illustration, from the specification we
can see thatKPortal component has two input ports (xp, x′p), three output
ports (yp, y′p, y′′p), and three local binders that at runtime are equipped
with queues (σ̃yp , σ̃y

′
p and empty queue · given that the respective binder

does not use any input ports). Notice that the queues are only required
at runtime and are initially empty.

30

The idea of our type description is to provide an abstract characteri-
sation of component’s behaviour. Types provide information about the
set of input ports, namely the types of values that can be received on
them, and about the output ports, namely their behavioural capabilities.
In particular, for each output port there are constraints which comprise
three pieces of information: (i) what type of values are emitted; (ii) what
is the maximum number of values that can be emitted; and (iii) what
are the dependencies on input ports, possibly including the number of
currently available values that satisfy the dependency at runtime.

Informally, the type of KPortal announces the following: In the two
input ports xp and x′p the component can receive an image and a class ,
respectively ({xp(image), x′p(class)}). Also, the type says the component
emits images from port yp and it can do so an unbounded number of
times (denoted by∞), as the underlying local binder imposes no bound-
ary constraints. In particular, the local binder can send an image as soon
as one is received in xp. Hence, we have a per each value dependency of
yp on xp. Formally, we write this constraint as yp(image) :∞ : [{xp :Np}],
where Np is the number of values received on xp that are available to be
used to produce the output on yp. We may describe constraint y′p(class) :
∞ : [{x′p :N ′p}] in a similar way. In constraint y′′p (version) :∞ : [∅] there are
no dependencies from input ports specified, hence the reading is only
that a version can be emitted an unbounded number of times. We may
specify the type of KPortal as:

TPortal =< Xb; C >
Xb = {xp(image), x′p(class)}
C = {C1, C2, C3}
C1 = yp(image) :∞ : [{xp :Np}]
C2 = y′p(class) :∞ : [{x′p :N ′p}]
C3 = y′′p (version) :∞ : [∅]

Composite component KIRS is an assembly of two base components
KPortal and KRE whose communication is governed by global protocol
G. The description of KIRS in GC language is the following:

KIRS = [x 〉 y, y′]{G;Portal = KPortal, RE = KRE ;D;Portal[F]}

where G is the already described one-shot protocol

G = Portal
image−−−−→RE;RE

class−−−−→Portal; end

31

Interfacing component KPortal forwards the values from/to the external
environment as specified in the forwarders (F = xp ← x, y ← y′p, y

′ ←
y′′p). The forwarding implies that the characterisation of ports x, y and y′

in the type of KIRS relies on one of the ports xp, y′p and y′′p , respectively,
in the type of KPortal .

The type of KIRS then says that it can always input on x values of
type image accordingly to the input receptiveness principle. The con-
straint for y′ is the same as for y′′p since y′′p does not depend on the pro-
tocol (in fact it has no dependencies). However, this is not the case for y:
in order for a class of an image to be forwarded from y′p there is a depen-
dency (identified in TPortal) on port x′p. Furthermore, componentKPortal

will only receive a value on x′p accordingly to the protocol specification,
in particular upon the second message exchange. Hence, there is also
a protocol dependency since the first message exchange has to happen
first, so there is a transitive dependency to an image being sent in the
first message exchange, emitted from port yp of component KPortal . Fi-
nally, notice that yp depends on xp which is linked by forwarding to port
x of component KIRS , thus we have a sequence of dependencies that
link y to x.

Since we have a one-shot protocol, the communications happens only
once, which implies that one class is produced for the first image re-
ceived. We therefore consider that the dependency of y on x is initial
(since one value suffices to break the one-shot dependency), and that the
maximum number of values that can be emitted on y is 1. This constraint
is formally written as y(class) : 1 : [{x : Ω}]. The constraint for y′ is
y′(version) :∞ : [∅], where the set of dependencies is empty, i.e., it does
not depend on any input. We then have the following type for compo-
nent KIRS :

TIRS =< {x(image)}; {y(class) :1 : [{x : Ω}], y′(version) :∞ : [∅]} >

Let us now assume a recursive version of protocol

G′ = µX.Portal
image−−−−→RE;RE

class−−−−→Portal;X

is used instead. In other words, we consider the following component

K ′IRS = [x 〉 y, y′]{G′;Portal = KPortal, RE = KRE ;D;Portal[F]}.

The idea now is that for each image received a class is produced. So, class
may be emitted by y an unbounded number of times and the dependency

32

of y on x is of a per each kind. Notice that the chain of dependencies can
be described as before, but the one-shot dependency from before is now
renewed at each protocol iteration.

The constraint for y in this settings is y(class) :∞ : [{x :Ni}], where Ni
captures the number of values received on x that are currently available
to produce the outputs on y. The constraint for y′ is the same as in the
previous case. We then have that the type of K ′IRS is

< {x(image)}; {y(class) :∞ : [{x :Ni}], y′(version) :∞ : [∅]} >

Imagine that K ′Portal is now a composite component that has an ini-
tialisation phase such that, first it receives a message about what kind of
classification is required (e.g., “classify the image by the number of faces
found on it”), then it sends it toK ′RE , after which the uploading and clas-
sification of the images can start (all other characteristics remain). Let x1

be the port of K ′IRS on which this message is received. Let us consider
the following protocol

G′′ = Portal
kind−−−→RE;µX.Portal

image−−−−→RE;RE
class−−−−→Portal;X

where after component K ′Portal sends the required kind of classifications
(labelled as kind), the communication between K ′Portal and K ′RE is gov-
erned by a recursive protocol as described in the previous example. The
type of the component K ′IRS is similar to the type from the previous ex-
ample, but now announces that the output on y requires an initial value
to be received on port x1, as the image classification process can only
start after that. We then have the type of K ′IRS

< {x(image)}; {y(class) :∞ : [{x :Ni, x1 : Ω}], y′(version) :∞ : [∅]} >

3.2 Formal introduction of EC type language

In this section we define the type language that captures the behaviour
of components in an abstract way, starting with the presentation of the
syntax which is followed by the operational semantics. Then, in the next
sections we present two procedures that define how to extract the type
of a component. The first procedure is for base, and the second one is for
composite components.

33

3.2.1 Syntax of EC type language

Types T
∆
=< Xb; C >

Input interfaces Xb
∆
= {x1(b1), . . . , xk(bk)}

Constraints C ∆
= {y1(b1) :B1 : [D1], . . . , yk(bk) :Bk : [Dk]}

Dependencies D ∆
= {x1 :M1, . . . , xk :Mk}

Dependency kinds M ::= N | Ω
Boundaries B ::= N | ∞
Additional notations k ≥ 0 N ∈ N0

Table 8: Type Syntax (EC type language)

The syntax of types is presented in Table 8 and some explanations follow.
A type T consists of two elements: a (possibly empty) set of input ports,
where each one is associated with a basic type b (i.e., int, string, etc.),
and a (possibly empty) set of constraints C, one for each output port.
Basic types (ranged over by b, b1, b2, bx, by, b′, . . .) specify the type of the
values that can be communicated through ports, so as to ensure that no
unexpected values arise.

Each constraint in C contains a triple of the form y(b) : B : [D], which
describes the type (b) of values sent via y, the capability (B) of y and
the dependencies (D) of y on the input ports. The set of constraints C
is ranged over C1,C2, . . . ,C′,C′′,Cy, . . . (likewise other syntactic cate-
gories like N , B, D, . . .). Capability B identifies the upper bound on the
number of values that can be sent from the output port: a natural num-
ber N denotes a bounded capability, whereas∞ an unbounded one. De-
pendencies are of two kinds: per-each-value dependencies are of the form
x : N and initial dependencies are given by x : Ω. A dependency x : N
says that each value emitted on y requires the reception of one value on
x, and furthermore N provides the (runtime) number of values available
on x (hence, initially N = 0). Instead, a dependency x : Ω says that y ini-
tially depends on a (single) value received on x, hence the dependency
is dropped after the first input on x.

Note that there are only two kinds of dependencies: a per-each-value
dependency and an initial one. Since we aim at static typing, the depen-
dencies that appear after the extraction of a type are either x : 0 or x : Ω,
but for the sake of showing our results, we need to capture these values
in the evolution of the types. So, we need to capture the number of val-
ues available on the input ports, hence we have dependencies of the kind

34

x :1, x :2, . . . (for N = 1, N = 2 . . .).
This thesis investigates the mathematical model for the purpose of

showing our results, but we may already point towards practical appli-
cations. In particular, for the purpose of the (static) type verification we
are aiming at, the counting required for the theoretical model would not
be involved and the component type information available for develop-
ers would be as follows:

1. set of input ports with their basic types;

2. set of constraints for each output port with the following informa-
tion:

2.1 the basic type associated to the output port;

2.2 one of two possibilities for output port capability: bounded or
unbounded;

2.3 one of two possibilities for each kind of dependency: per-
each-value or initial.

Hence, for the sake of static type checking and from a developers per-
spective, apart the expected information regarding basic (value) types,
the type information would be y:bounded or y:unbounded to what
concerns output port capabilities and x:per-each or x:initial to
what concerns dependencies.

3.2.2 Semantics of EC type language

We now define the operational semantics of the type language, that is
required to show that types faithfully capture component behaviour. The
semantics is given by the LTS shown in Table 9. There are four kinds of
labels λ described by the following grammar:

λ ::= x? | x?(b) | y!(b) | τ.

Label x? denotes an input on x; whereas, label x?(b) denotes an input of
a value of type b; then, label y!(b) represents an output of a value of type
b; finally, τ captures an internal step.

35

x /∈ dom[D]

y(b) :B : [D]
x?−→ y(b) :B : [D]

[T1]

y(b) :B : [{x : Ω}]D]
x?−→ y(b) :B : [D]

[T2]

y(b) :B : [{x :N}]D]
x?−→ y(b) :B : [{x :N + 1}]D]

[T3]

T
τ−→ T

[T4]

∀i ∈ 1, 2, . . . , k yi(bi) :Bi : [Di]
x?−→ yi(bi) :Bi : [D′

i]

< {x(bx)]Xb}; {yi(bi) :Bi : [Di]|1 ≤ i ≤ k} > x?(bx)−−−−→
< {x(bx)]Xb}; {yi(bi) :Bi : [D′

i]|1 ≤ i ≤ k} >

[T5]

∀i ∈ 1, 2, . . . , k Ni ≥ 1 B > 0

< Xb; {y(by) :B : [{xi :Ni|1 ≤ i ≤ k}]}] C >
y!(by)−−−−→

< Xb; {y(by) :B− 1: [{xi :Ni − 1|1 ≤ i ≤ k}]}] C >

[T6]

Table 9: Type Semantics (EC type language)

We briefly describe the rules shown in Table 9. Note that Rules
[T1,T2,T3] describe inputs of a (single) constraint, while [T4, T5, T6]
capture type behaviour.

Rule [T1] says a constraint for y can receive (and discard) an input
on x in case y does not depend on x, i.e., if x is not in the domain of D
(dom(D) = {x | D = {x :M}]D′}), leaving the constraint unchanged.

Rule [T2] addresses the case of an initial dependency, where after re-
ceiving the value on x the dependency is removed. Rule [T3] captures
the case of a per-each-value dependency, where after the reception the
number of values available on x for y is incremented.

With respect to type behaviour, Rule [T4] says that the type can ex-
hibit an internal step and remain unchanged, used to mimic component
internal steps (which have no impact on the interface). Rule [T5] states
that if all type constraints can exhibit an input on x and x is part of the
type input interface, then the type can exhibit the input on x considering
the respective basic type. Notice that rules [T1,T2,T3] say that constraints

36

can always exhibit an input (simply the effect may be different). Finally,
Rule [T6] says that if one of the constraints has all of the dependencies
met, i.e., has at least one value for each x for which there is a dependency,
and also that the boundary has not been reached (i.e., it is greater than
zero), then the type can exhibit the corresponding output implying the
decrement of the boundary and of the number of values available in de-
pendencies. Notice that in order for a port to output a value, there can be
no initial dependencies present (which are dropped once satisfied), only
per-each-value dependencies.

In the following example and in the rest of the chapter (where appro-
priate) we adopt the following notation: i abbreviates the image type, c
abbreviates the class type and v abbreviates the version type.

Example 3.2.1. We revisit the type of componentKPortal shown in Section 3.1
TPortal =< Xb; C >
Xb =< {xp(i), x′p(c)}
C = {C1, C2, C3}
C1 = yp(i) :∞ : [{xp :Np}]
C2 = y′p(c) :∞ : [{x′p :N ′p}]
C3 = y′′p (v) :∞ : [∅]

for some N1 and N2. Recall also type

< {x(i)}; {y(c) :1 : [{x : Ω}], y′(v) :1 : [∅]} >

that may evolve upon the reception of an input on x as follows:

y(c) :1 : [{x : Ω}] x?−−→ y(c) :0 : [∅]
[T2]

x /∈ dom[D]

y′(v) :1 : [∅] x?−−→ y′(v) :1 : [∅]
[T1]

< {x(i)}; {y(c) :1 : [{x : Ω}], y′(v) :1 : [∅]} > x?(i)−−−→< {x(i)}; {y(c) :0 : [∅], y′(v) :1 : [∅]} >
[T5]

The type language serves as a means to capture component be-
haviour, and types for components may be obtained (inferred) as
explained below. The results presented afterwards ensure that when
the type extraction is possible, then each behaviour in the component
is explained by a behaviour in the type, and that each behaviour in the
type can eventually be exhibited by the component.

37

3.3 EC type extraction for base components

In this section we describe the procedure that allows to (automatically)
extract the type of a component, focusing first on the case of base com-
ponents, remembering their reactive flavour. The goal is to identify the
basic types associated to the communication ports, as well as the de-
pendencies between them, while checking that their usage is consistent
throughout.

In order to extract the type of a base component we need to define two
auxiliary functions and to introduce some notations. First, we assume
that we can infer the type of each function f(x̃) used in a local binder.
Second, given a local binder y = f(x̃) < σ̃, we need to count the number
of values that y has available at runtime for each of the ports in x̃. This
corresponds to the number of elements in σ̃ that have a mapping for a
port x to a value, which we denote by count(x, σ̃) defined as follows. Let
X be the set of ports and Σ a set whose elements are the lists of mappings
from ports to values. Then function count : X × Σ → N0 is defined as
follows:

count(x, σ̃) =

j if σ̃ = σ1, . . . , σj , σj+1, . . . , σl ∧

x ∈
⋂

1≤i≤j dom(σi) ∧ x /∈
⋃
j+1≤i≤l dom(σi)

0 otherwise

Notice that mappings in σ̃ are handled following a FIFO discipline, so
the first (oldest) mappings are the ones that need to be accounted for.
Finally, we introduce the notation γ(·) to represent a mapping from basic
elements (such as values, ports, or functions) to their respective types.
We also use γ for lists of elements in which case we obtain the list of
respective types (e.g., γ(1, hello) = integer , string).

We now define our type extraction procedure for base components:

Definition 3.3.1 (Type Extraction for a Base Component).
Let [x̃ > ỹ]{y1 = fy1(x̃y1) < σ̃y1 , . . . , yk = fyk(x̃yk) < σ̃yk} be a base

component, where ỹ = y1, y2, . . . , yk. If there exists γ such that γ(x̃) = b̃ and
γ(y1) = b′1, . . . , γ(yk) = b′k and provided that γ(fyi) = b̃yi → b′i for any
i ∈ 1, . . . , k and that b̃yi = γ(x̃yi) for any i ∈ 1, . . . , k then the extracted type
of the base component is < Xb; C > where

Xb = {x(b) | x ∈ x̃ ∧ b = γ(x)}

and
C = {yi(b′i) :∞ : Dyi | i ∈ 1, . . . , k ∧

38

b′i = γ(yi) ∧Dyi = {x : count(x, σ̃yi) | x ∈ x̃yi}}

In Definition 3.3.1 the list of local binders is specified in such a way
that each function (fyi), its parameters (x̃yi) and the list of mappings (σ̃yi)
are indexed with the output port that is associated to them (yi), so as to
allow for a direct identification. Moreover, notice that each list of argu-
ments x̃yi (of function fyi) is a permutation of list x̃, as otherwise they
would be undefined.

Notice also that every output port of the interface of the component
has a local binder associated to it and that there is no local binder yt =
fyt(x̃

yt) < σ̃yt such that yt is not part of the component interface, i.e., we
do not type components that have undefined output ports or that declare
unused local binders, respectively. We also rely in Definition 3.3.1 on (the
existence of) γ to ensure consistency. Namely, we consider γ provides
the list of basic types for the input ports (γ(x̃) = b̃) and for the output
ports (γ(y1) = b′1, . . . , γ(yk) = b′k). Then, we require that γ(fyi), for each
fyi , specifies the function type where the return type matches the one
identified for yi (i.e., b′i). Furthermore, we require that the types of the
parameters given in the function type (b̃yi) match the ones identified for
the respective (permutation of) input port parameters (γ(x̃yi)).

We then have that the extracted type of a base component is a compo-
sition of two elements. The first one (Xb) is a set of input ports which are
associated with their basic types. The second one is a set of constraints C,
one for each output port and of the form yi(b

′
i) :∞ : [Dyi]. The constraint

specifies the basic type (b′i) which is associated to the output port, and the
maximum number of values that can be output on yi is unbounded (∞),
since local binders can potentially perform computations indefinitely.

The third element of the constraint (Dyi) is a set of per-each-value
dependencies (of port yi) on the input port parameters x̃yi , capturing
that each value produced on yi depends on a value being received on all
of the ports in x̃yi . Notice that the number of values that yi has available
(at runtime) for each x in x̃yi is given by count(x, σyi).

From an operational perspective, Definition 3.3.1 can be implemented
by first considering the type inferred for the functions in the local binders
and then propagating (while ensuring consistency of) this information.

Example 3.3.1. Consider our running example from Section 3.1, in particular,
component KPortal specified as

[xp, x
′
p 〉 yp, y′p, y′′p]{yp = fu(xp) < σ̃yp , y′p = fr(x

′
p) < σ̃y

′
p , y′′p = f() < ·}.

39

Let us take γ such that γ(xp, x
′
p) = i, c and γ(yp) = i, γ(y′p) = c and

γ(y′′p) = v. We know that function fu takes an image (i) and gives an image
in return, hence γ(fu) = i → i. Similarly, we also know that function fr
is typed as γ(fr) = c → c. Function f does not have any parameters hence
γ(time) = () → v. The extracted set of input ports with their types is Xb =
{xp(i), x′p(c)}. Assume that the component is in the initial (static) state, so the
queues of lists of mappings are empty (i.e., σ̃yp = · = σ̃y

′
p). Hence, we have that

count(xp, σ̃yp) = 0 and count(x′p, σ̃
y′p) = 0. The extracted set of constraints is

C = {yp(i) :∞ : [{xp :0}], y′p(c) :∞ : [{x′p :0}], y′′p (v) :∞ : [∅]}

and the extracted type of the component KPortal is < Xb; C >.

3.4 EC type extraction for composite compo-
nents

Extracting the type of a composite component is more challenging than
for a base component. The focus of the extraction procedure is on the
interfacing subcomponent, which interacts both via forwarders and via
the protocol.

For the purpose of characterising how components interact in a given
protocol, we introduce local protocols LP which result from the projec-
tion of a (global) protocol to a specific role that is associated to a compo-
nent. We reuse the projection operation from [5, 23], where message la-
bels are mapped to communication ports (thanks to distribution binders
D) and also to basic types that describe the communicated values (that
can be inferred from the ones of the ports). The syntax of local protocols
LP is:

LP := x?(b).LP | y!(b).LP | µX.LP |X | end.

Term x?(b).LP denotes a reception of a value of a type b on port x,
upon which protocol LP is activated. Term y!(b).LP describes an output
in similar lines. Then we have standard constructs for recursion and for
specifying termination (end). Our local protocols differ from the ones
used in [5] since here we only consider choice-free global protocols. To
simplify the setting, we consider global protocols that have at most one
recursion (consequently also the projected local protocols). We also con-
sider that message labels can appear at most once in a global protocol

40

specification (up to unfolding of recursion), hence also ports occur only
once in projected local protocols (also up to unfolding).

We omit the definition of projection and present the intuition via an
example.

Example 3.4.1. Let G be the (one-shot) protocol

G = Portal
image−−−−→RE;RE

class−−−−→Portal; end

from Section 3.1 and let γ(image, class) = i, c be a function that given a list of
a message labels returns a list of their types. Then, the projection of protocol G
to role Portal, denoted by G ↓Portal is protocol

yp!(i).x
′
p?(c).end

and the projection of G to role RE is local protocol

xre?(i).yre!(c).end

where ports x′p, yp, xre, yre are obtained via distribution bindersRE.xre
image←−−−−

Portal.yp, Portal.x
′
p

class←−−−− RE.yre. Essentially, the local protocol of Portal
describes that first it emits an image on yp and then receives a classification on
x′p, and the local protocol of RE says that it first receives an image on xre and
then outputs a result of a classification on yre.

We introduce some notation useful for the definition of the type ex-
traction for composite components. We use the language context for local
protocols (excluding recursion), denoted by C, so as to abstract from the
entire local protocol and focus on specific parts and we define it as:

C[·] ::= x? : b.C[·] | y! : b.C[·] | · .

We denote the set of ports appearing in a local protocol by fp(LP)
and by rep(LP) the set of ports that occur in a recursion (e.g. in LP for
recursion µX.LP). Considering a list of forwarders F , we define two
sets: by F i we denote the set of (internal) input ports and by F o the set
of (internal) output ports which are specified in F (e.g., if F = xp ← x
then F i = {xp}).

We now introduce the important notions that are used in our type
extraction, namely that account for values flowing in a protocol and for
the kinds of dependencies involved in composite components. Finally, we
address the boundaries for the output ports.

41

Values flowing Our types track the dependencies between output and
input ports, including per-each-value dependencies that specify how
many values received on the input port are available to the output port.
As discussed in the previous section, for base components this counter
is given by the number of values available in the local binder queues.
For composite components, as preliminary discussed in Section 3.1,
per-each-value dependencies might actually result from a chain of
dependencies that involve subcomponents and the protocol. So, in
order to count how many values are available in such case, we need to
take into account how many values are in the subcomponents (which is
captured by their types) and also if a value is flowing in the protocol. We
can capture the fact that a value is flowing by inspecting the structure of
the protocol. In particular we are interested in values that flow from y
to x when an output on y precedes an input in x in a recursive protocol,
hence when the protocol is of the form C[µX.C′[y!(b′).C′′[x?(b).LP ′]]. The
value is flowing when the output has been carried out but the input is
yet to occur, which we may conclude if the protocol is also of the form
C′′′[x?(b).LP ′′] where x, y /∈ fp(C′′′[·]). We denote by vf (LP, x, y) that
there is a value flowing from y to x in LP , in which case vf (LP, x, y) = 1,
otherwise vf (LP, x, y) = 0. We will return to this notion in the context of
the extraction of the dependencies of the output ports, discussed next.

3.4.1 Dependencies extraction

Composite components comprise two kinds of dependencies between
output ports and input ports, illustrated in Figure 3 and Figure 4, which
are dubbed direct and transitive, respectively.

Figure 3: Direct Dependency Figure 4: Transitive Dependency

Direct dependencies

We gather the set of direct dependencies, i.e., when external output ports
directly depend on external input ports (see Figure 3), in Dd(C, F, y)

42

which is defined as follows:

Dd(C, F, y) , {x :M |C = {y(by) :B : [{x :M}]D]}]C′∧ x ∈ F i∧y ∈ F o}

Hence, in Dd(C, F, y) we collect all the dependencies for y given in (in-
ternal) constraint C whenever both ports are external and preserving the
kind of dependency M so as to lift it to the outer interface.

Transitive dependencies

For transitive dependencies (see Figure 4) to exist there are three neces-
sary conditions. The first condition is to have in the description of a local
protocol at least one output action, say on port y′, that precedes at least
one input action, say on port x′. The second condition is that such output
port y′ depends on some external input port x and the third condition is
that there exists some external output port y that depends on the input
on x′. In such cases, we say that y depends on x in a transitive way.

We introduce a relation that allows to capture the first condition
above. Let LP be the local protocol that is prescribed for an interfacing
component. Two ports x′ and y′ are in relation �LPi for some local
protocol LP if x′, y′ ∈ fp(LP) and where i ∈ {1, 2, 3} as follows:

1. y′ �LP1 x′ if LP = C[y′!(by′).C′[x′?(bx
′
).LP ′]] and x′, y′ /∈ rep(LP);

2. y′ �LP2 x′ if LP = C[y′!(by′).C′[µX.C′′[x′?(bx
′
).LP ′]]] and

y′ /∈ rep(LP);

3. y′ �LP3 x′ if LP = C[µX.C′[y′!(by′).C′′[x′?(bx
′
).LP ′]]].

We distinguish three cases: when both the output and the input are
non-repetitive, when only the input is repetitive, and when both the out-
put and the input are repetitive.

We may now characterise the transitive dependencies. Let
[x̃′ 〉 ỹ′]{G; r = K,R;D; r[F]} be a composite component, Tr =< Xb,C >
the type of interfacing component K and LP its local protocol.

The set of transitive dependencies on y, denoted Dt(C, F, LP, y), is
defined relying on an abbreviation η as follows:

η , C = {y(b1) :B : [{x′ :M ′}]D′], y′(b2) :B′ : [{x :M}]D]}] C′

∧ x ∈ F i ∧ y ∈ F o ∧ y′ �LPi x′

43

Dt(C, F, LP, y) , E ∪ S ∪ V

E =
{
x : Ω | η ∧ i ∈ {1, 2} ∧M ≯ 0}

S =
{
x : Ω | η ∧ i = 3 ∧ (M = Ω ∨ (M ′ = Ω ∧M = 0 ∧

vf (LP, x′, y′) = 0))
}

V =
{
x : (N +N ′ + vf (LP, x′, y′)) | η ∧ i = 3 ∧M = N ∧M ′ = N ′

}
In η we gather a conjunction of conditions that must always hold in

order for a transitive dependency to exist: namely that the (internal) con-
straint C specifies dependencies between y and x′ and between y′ and x
and also that y and x are external ports while y′ precedes x′ in the proto-
col. To simplify presentation of the definition of Dt(C, F, LP, y) we rely
on the (direct) implicit matching in η of the several mentioned elements.

There are two kinds of transitive dependencies that are gathered in
Dt(C, F, LP, y), namely initial (x : Ω) and per-each-value (x : N). For
initial dependencies there are two separate cases to consider. The first
case is when the protocol specifies that the output on y′ is non-repetitive
(i ∈ {1, 2}), hence will be provided only once. Condition M ≯ 0 says
that no values are already available for that initial output to take place
(internally to the component that provides them as specified in η), hence
either M = x : Ω or M = 0.

The second case for an initial transitive dependency is when both y′

and x′ are repetitive in the protocol (i = 3) but at least one of the inter-
nal dependencies (between y′ and x and between y and x′, given by M
and M ′ respectively) is an initial dependency. This means that, regard-
less of the protocol, such a dependency is dropped as soon as a value is
provided which implies that the transitive dependency is also dropped.
Since M is at the beginning of the dependency chain, if it is initial then
no further conditions are necessary. However, if M ′ is initial we need
to ensure that there is no value already flowing (vf (LP, x′, y′) = 0) or
already available to be output on y′ (M = 0), since only in such case
(an initial) value is required from the external context (i.e., otherwise if
vf (LP, x′, y′) = 1 or M ≥ 0 then the chain of dependencies is already
“internally” satisfied).

Finally, we have the case of per-each-value transitive dependency,
that can only be when both y′ and x′ are repetitive in the protocol (i = 3)
and internal dependenciesM andM ′ are both per-each-value dependen-
cies (M = N and M ′ = N ′), which means that the dependency chain is
persistent. The number of values available of (external) x for y is the sum

44

of the values available in the internal dependencies (N and N ′) plus one
if there is a value flowing (zero otherwise).

Notice that the definition of value flowing presented previously fo-
cuses exclusively in the case when y′ and x′ are repetitive in the protocol,
since this is the only case where values might be flowing and the depen-
dency is still present in the protocol structure (i.e., y′ �LP3 x′ holds). In
contrast, a dependency y′ �LPi x′ for i ∈ {1, 2} is no longer (structurally)
present as soon as the value is flowing (i.e., a non-repetitive y′ no longer
occurs in the protocol after an output).

It might be the case that one output port depends in multiple ways
on the same input port. For that reason we introduce a notion of priority
among dependencies, denoted by pr(,) that gives priority to per-each-
value dependencies (with respect to “initial”).

The priority builds on the property that if multiple per-each-value
dependencies (including direct and transitive) are collected (e.g.,
x : N1, . . . , x : Nk) then the number of available values specified in
them is the same (i.e., N1 = . . . = Nk). The list of dependencies for
port y is then given by the (prioritised) union of direct and transitive
dependencies:

D(C, F, LP, y) = pr(Dd(C, F, y) ∪Dt(C, F, LP, y))

3.4.2 Boundaries extraction

The last element that we need to determine in order to extract the
type of a composite component is the boundary of output ports.
The type of the interfacing component already specifies a (internal)
boundary, however this value may be further bound by the way in
which the component is used in the composition. In particular, if
an output port depends on input ports that are not used in the pro-
tocol nor are linked to external ports, then no (further) values are
received in them and the potential for the output port is consequently
limited. We distinguish three cases for three possible limitations:

B1 = {N ′ | C = y(b1) :B : [{x′ :N ′}]D′]] C′ ∧ x′ /∈ (fp(LP) ∪ F i)}

B2 = {0 | C = {y(b1) :B : [{x′ : Ω}]D′]}] C′ ∧ x′ /∈ (fp(LP) ∪ F i)}

B3 = {(N ′ + 1) | C = {y(b1) :B : [{x′ :N ′}]D′]}] C′ ∧ x′ ∈ fp(LP)
∧x′ /∈ (rep(LP) ∪ F i)}

45

In B1 and B2 we capture the case when there is a dependency on a
port that is not used in the protocol (x′ /∈ fp(LP)) nor linked externally
(x′ /∈ F i), where the difference is in the kind of dependency. For per-
each-value dependencies (if any), the minimum of the internally avail-
able values is identified as the potential boundary, while for initial de-
pendencies (if present) the potential boundary is zero (or the empty set).

In B3 we capture a case similar to B1 where the port is used in the
protocol but in a non-repetitive way, hence only one (further) value can
be provided.

The final boundary determined for y, denoted by B(y, LP,C), is the
minimum number among the internal boundary of y (i.e., B if C = y(b) :
B : [D]] C′) and possible boundaries B1, B2 and B3 described above.

B(y, LP,C) = min({B} ∪B1 ∪B2 ∪B3)

3.4.3 Type extraction

We may now present the definition of type extraction of a composite
component relying on a renaming operation. Since the type extraction
of a composite component focuses on the interfacing subcomponent, we
single out the ports that are linked via forwarders to the external environ-
ment. To capture such links, we introduce renaming operation ren(,)
that renames the ports of the interfacing subcomponent to the outer ones
by using the forwarders as a guideline. For example, if we have that
F = xp ← x than ren(F, xp) = x.

Definition 3.4.1 (Type Extraction for a Composite Component). Let
[x̃ 〉 ỹ]{G; r = K,R;D; r[F]} be a composite component and LP = G �r the
local protocol for component K. If Tr =< Xr

b ; Cr > is the type of component
K, then the extracted type from LP and Tr is

T (LP, Tr, F) = ren(F,< Xb; C >)

where: Xb = {x(b) | x(b) ∈ Xr
b ∧ x ∈ F i}

C = {y(b′) : B(y, LP,Cr) : [D(Cr, F, LP, y)] | Cr = {y(b′) : B′ :
[D′]}] C′ ∧ y ∈ F o}.

Example 3.4.2. Let us extract the type of component KIRS from Section 3.1
considering protocol G = Portal

image−−−−→ RE;RE
class−−−−→ Portal; end. The

type of interfacing component KPortal is

46

TPortal =< Xb; C >
Xb =< {xp(image), x′p(class)}
C = {C1, C2, C3}
C1 = yp(image) :∞ : [{xp :Np}]
C2 = y′p(class) :∞ : [{x′p :N ′p}]
C3 = y′′p (version) :∞ : [∅]

We have that local protocol is LP = yp!(i).x
′
p?(c).end and sets of external

ports F i = {xp} and F o = {y′p, y′′p}, where ren(F, xp) = x, ren(F, y′p) = y
and ren(F, y′′p) = y′. This immediately gives us the set of input ports that is in
the description of the type of component KIRS which is Xb = {x(i)}.

Let us now determine the constraints of the output ports. Since port y′′p
has no dependencies also port y′ will not have any, and moreover has the same
boundary (∞). So, the extracted constraint for y′ will be ren(y′′p (v) :∞ : [∅]),
which is y′(v) :∞ : [∅]. Port y′p instead depends on port x′p which is used in
the protocol (x′p ∈ fp(LP)). Since the protocol is not recursive we have the
consequent limited boundary (case B3 explained above), namely the boundary
of y′p is min(N ′p + 1,∞) = N ′p + 1. Furthermore. we have that yp �LP1 x′p
and that yp has per-each-value dependency xp : Np. If Np > 0 then y′p does
not transitively depend on xp, otherwise there is an initial dependency. Let us
consider the initial (static) state where no image has been receive yet, i.e., Np =
0. In such case we have that the resulting constraint for y′p is y′p(c) :N ′p : [xp : Ω],
which after renaming for y is y(c) :N ′p : [xp : Ω]. So, the extracted type of KIRS

is the following

< {x(i)}; {y(c) :N ′p : [xp : Ω], y′(v) :∞ : [∅]} >

3.5 Type safety (EC type language)

In this section we present our main results that show a tight correspon-
dence between the behaviour of components and of their extracted types.
Apart from the conditions already involved in the type extraction, for a
component to be well-typed we must also ensure that any component
that interacts in a protocol can actually carry out the communication ac-
tions prescribed by the protocol.

For this reason we introduce the conformance relation, denoted by ./,
that asserts the compatibility between the type of a component and the
local protocol that describes the communication actions prescribed for

47

the component. For the purpose of ensuring compatibility, in particular
for the interfacing component, we also introduce an extension of our type
language, dubbed modified types T . The idea for modified types is to al-
low to abstract from input dependencies from the external environment,
namely by considering such dependencies can (always) potentially be
fulfilled, allowing conformance to focus on internal compatibility.

3.5.1 Modified type

Now we introduce the modified type denoted by T . The interfacing
component of the composite one, beside its interaction with other com-
ponents, also interacts with an external environment. In this case the
crucial part is that it is able to receive in any moment values that are in-
put externally. For the purpose of observing if a type of a component can
perform actions required by the protocol, we need to modify the type ac-
cording to the possible inputs that a (interfacing) component can receive
from the external context without any constraints. The modified type of
a type T , taking into account the list of corresponding list of forwarders,
is denoted by T (F, T). If T is the type of the interfacing component, each
dependency on the external input ports is per-each-value dependency
and the number of values available is unbounded (assuming that when-
ever the value is available it is received on the external input ports). The
syntax of T -type is given in the Table 10. It is similar to the syntax of the
types which we have already shown, with the difference in the number
of values received, that in the modified type can be unbounded (infinite).
Moreover, the rules defining the semantics of modified type are the same
as the ones shown for our typing language (Table 11), shown in Sub-
section 3.2.2. The the only implicit difference for modified types is that
decrementing an unbounded dependency has no effect.

In order to get the modified type out of the interfacing component we
use the following definition:

Definition 3.5.1. If Tr =< Xb; C > is a type of interfacing subcomponent K
of composite component [x̃ > ỹ]{G; r = K,R;D; r[F]} then T (F, Tr) is the
Tr-modified type where:

48

T (F,< Xb,C >) , < Xb; T (F,C) >

T (F, {y(b) :B : [D]}] C) , T (F, {y(b) :B : [D]})] T (F,C)

T (F, {y(b) :B : [D]}) , {y(b) :B : [T (D)]}

T (F, {x :M}]D) , T (F, {x :M})] T (D)
[where M ∈ {N,Ω}]

T (F, x :M) , {x :M}
[if x /∈ F i, where M ∈ {N,Ω}]

T (F, x :M) , {x :∞}
[if x ∈ F i]

T (F, x : Ω) , ∅
[if x ∈ F i]

Note that for K = [x̃ > ỹ]{G, r1 = K1, r2 = K2, . . . , rn =
Kn;D; r1[F]}we have that

T (F, Tr2) = Tr2 , . . . , T (F, Trk) = Trk

since the only component that forwards the values from/to external en-
vironment is component K1.

Types T ∆
=< Xb; C >

Xb
∆
= {x1(b1), . . . , xk(bk)}

Constraints C ∆
= {y1(b1) :B1 : [D1], . . . , yk(bk) :Bk : [Dk]}

Dependencies D ∆
= {x1 :M1, . . . , xk :Mk}

Kinds of dependencies M ::= N | Ω
N ::= N | ∞

Boundaries B ::= N | ∞
Additional values k ≥ 0;N ∈ N0

Table 10: T -Type syntax (EC type language)

49

x /∈ dom[D]

y(b) :B : [D]
x?−→ y(b) :B : [D]

[T 1]

y(b′) :B : [{x : Ω}] D]
x?−→ y(b′) :B : [D]

[T 2]

y(b′) :B : [{x :N}] D]
x?−→ y(b′) :B : [{x :N + 1}] D]

[T 3]

T τ−→ T
[T 4]

∀i ∈ 1, 2, . . . , k yi(bi) :Bi : [Di]
x?−→ yi(bi) :Bi : [D′i]

< {x(bx)]Xb}; {yi(bi) :Bi : [Di]|i ∈ 1, . . . , k} > x?(bx)−−−−→
< {x(bx)]Xb}; {yi(bi) :Bi : [D′i]|i ∈ 1, . . . , k} >

[T 5]

B > 0 Ni ≥ 1

< Xb; {y(by) :B : [{xi :Ni|i ∈ 1, . . . , k}]}] C > y!(by)−−−−→
< Xb; {y(by) :B− 1: [{xi :Ni − 1|i ∈ 1, . . . , k}]}] C >

[T 6]

Table 11: T - Semantics (EC type language)

50

Conformance relation

The definition of the conformance relation is given by induction on the
structure of the local protocol and it is characterised by judgements of the
form Γ ` T ./ LP , where Γ is a type environment that handles protocol
recursion (i.e., Γ maps recursion variables to modified types).

T x?(b)−−−→ T ′ Γ ` T ′ ./ LP
Γ ` T ./ x?(b).LP

[InpConf]

T y!(b)−−−→ T ′ Γ ` T ′ ./ LP
Γ ` T ./ y!(b).LP

[OutConf]

Γ ` T ./ end
[EndConf]

T ′ ≤ T
Γ, X : T ′ ` T ./ X

[V arConf]

Γ, X : T ` T ./ LP

Γ ` T ./ µX.LP
[RecConf]

Table 12: Conformance relation (EC type language)

Definition 3.5.2. T ′ ≤ T if exists a (possibly empty) set of typed input ports

{x1(b1), x2(b2), . . . , xk(bk)} such that T ′ x1?(b1)−−−−−→ · · · xk?(bk)−−−−−→ T .

Rule [InpConf] ensures that a modified type T is conformant with
the protocol, where it can receive an input of a matching type with a con-
tinuation as a protocol LP , if a modified type can receive a value on port
x, and assuming that port x receives a value of type b and the evolved
type is conformant with LP . Similar reasoning is for an output. Rule
[EndConf] states that a modified type is always conformant with the ter-
mination protocol. Finally, we have two rules [V arConf] and [RecConf]
for the recursion. The premise of Rule [V arConf] requires that the type
associated with the recursion variable by assumption and the type under
consideration are related as T ′ ≤ T (Definition 3.5.2). Observing the se-
mantics of modified types, the possible difference between types T ′ and
T is that some initial dependencies might be dropped or that the number
of values available on some input ports for some outputs might increase.
Rule [RecConf] states that T is conformant with a protocol µX.LP , pro-
vided that the type is conformant with the body of the recursion under

51

the environment extended with assumption X : T .

3.5.2 Well-typed components

We can now formally define when a component K has type T , in which
case we say K is well-typed.

Definition 3.5.3. Let K be a component, we say that K has a type T , denoted
by K ⇓ T :

1. If K is a base component, K ⇓ T when T is obtained by Definition 3.3.1.

2. If K = [x̃ > ỹ]{G; r1 = K1, . . . , rk = Kk;D; r1[F]} then K ⇓ T when

• ∃Tri |Ki ⇓ Tri , for i = 1, 2, . . . , k;

• T is extracted type from T1 and G �r1 by Definition 3.4.1;

• T (F, Tri) ./ G �ri for i = 1, 2, . . . , k;

Notice that the definition relies on modified types for conformance,
but for any type T not associated with the interfacing component we
have that T (F, T) = T since there can be no links to external ports (as-
suming that all ports have different identifiers).

We can now present our type safety results given in terms of Subject
Reduction and Type fidelity, which provide the correspondence between
the behaviours of well-typed components and their types.

In the statements we rely on notation λ(v) that represents x?(v), y!(v)
or τ and λ(b) that represents x?(b), y!(b) or τ .

Theorem 3.5.1 (Subject Reduction). If K ⇓ T and K λ(v)−−→ K ′ and v has

type b then T
λ(b)−−→ T ′ and K ′ ⇓ T ′.

Theorem 3.5.1 says that if a well-typed componentK performs a com-
putation step toK ′, then its type T can also evolve to type T ′ which is the
type of component K ′. Moreover, the theorem ensures that if K carries
out an input or an output of a value v, type T performs the correspond-
ing action at the level of types.

Theorem 3.5.1 thus attests that well-typed components always evolve
to well-typed components, and furthermore that any component evolu-
tion can be described by an evolution in the types.

52

The type fidelity result does not describe a strong correspondence like
for Subject Reduction since we need to abstract from internal computa-
tions in components. For that reason, in the Type fidelity statement we

rely on K λ(v)
==⇒ K ′ to denote a sequence of transitions K τ−→ · · ·K ′′ λ(v)−−−→

K ′′′
τ−→ · · ·K ′, i.e, that component K may perform a sequence of inter-

nal moves, then an I/O action, after which another sequence of internal
moves leading to K ′.

Theorem 3.5.2 (Type fidelity). If K ⇓ T and T
λ(b)−−→ T ′ and λ(b) 6= τ then

b is the type of a value v and K λ(v)
==⇒ K ′ and K ′ ⇓ T ′.

Theorem 3.5.2 says that if type T of component K can evolve by ex-
hibiting an I/O action to type T ′, then K can eventually (up to carrying
out some internal computations) exhibit a corresponding action leading
to K ′, and where K ′ has type T ′. Theorem 3.5.2 thus ensures that the
behaviours of types can eventually be carried out by the respective com-
ponents, which entails components are not stuck and allows, together
with Theorem 3.5.1, to attest that types faithfully capture component be-
haviour. Intuitively, our types can be seen as promises of behaviour in the
sense that whatever they prescribe as possible behaviours, the compo-
nents will eventually deliver. For the sake of addressing any possible
component configuration, in particular when components have already
all the dependencies (internally) satisfied in order to provide some be-
haviour, it is crucial that types capture the number of (internally) avail-
able resources.

3.6 Proof of type safety (EC type language)

First, we present some auxiliary results that simplify our proofs.
The first proposition ensures that if a local binder y = f(x̃) < σ̃ per-

forms an input from a port x that is used as argument of f (x ∈ x̃), then
the number of values of x available for y increases by one. Otherwise, if
x /∈ x̃, the number of available value for y remains unchanged.

Proposition 3.6.1. Let L be a local binder y = f(x̃) < σ̃, L1, if L
x?(v)−−−→ L′

where L′ = y = f(x̃) < σ̃′, L′1 then:

count(x, σ̃′) =

{
count(x, σ̃) + 1 if x ∈ x̃
count(x, σ̃) otherwise

53

Moreover, σ̃′ = σ̃ when x /∈ x̃.

Proof. Proof by induction on the derivation of L
x?(v)−−−→ L′ and by cases

on the last rule applied:

[LInpDisc] y = f(x̃) < σ̃
x?(v)−−−→ y = f(x̃) < σ̃, by inversion we

know that x /∈ x̃ so the property holds.

[LInpNew] y = f(x̃) < σ̃
x?(v)−−−→ y = f(x̃) < σ̃, {x → v}, by

inversion we know that x ∈ ∩σi∈σ̃ dom(σi), i ∈ {1, 2, . . . , n}. After
an input on x, the number of mappings for x is increased by 1. So,
the property holds.

[LInpUpd] y = f(x̃) < σ̃1, σ, σ̃2
x?(v)−−−→ y = f(x̃) < σ̃1, σ[x → v], σ2.

By inversion we know that x ∈ ∩σi∈σ̃1 dom(σi) and x ∈ x̃. After
input on x, the number of mappings for x is increased by 1. So, the
property holds.

[LInpList] L1, L2
x?(v)−−−→ L′1, L

′
2. By inversion we know that L1

x?(v)−−−→
L′1, and by i.h. we know that for L′1 the property holds. The same

reasoning for L2
x?(v)−−−→ L′2, so also for L′2 the property holds. Di-

rectly we can conclude that the property holds also for L′1, L′2.

Note that the proposition above can be easily extended to lists of local
binders.

The following proposition ensures that if a local binder y = f(x̃) < σ̃
performs an output, the number of values of input ports used as argu-
ments of f decreases by one. Instead, the constant function f() < · re-
mains having zero values available on each input port since it does not
have any arguments.

Proposition 3.6.2. If L
y!(v)−−−→ L′, then

• if L = y = f(x̃) < σ̃, L1 and L′ = y = f(x̃) < σ̃′, L′1, we have that

count(x, σ̃′) = count(x, σ̃)− 1 ∀x ∈ x̃

54

• if L = f() < σ̃, L1 and L′ = f() < σ̃′, L′1, we have that

count(x, σ̃′) = count(x, σ̃) = 0

Proof. Proof by induction on the derivation of L
y!(v)−−−→ L′ and then by

cases on the last rule applied:

[LOut] y = f(x̃) < σ, σ̃
y!(v)−−→ y = f(x̃) < σ̃, so f(x̃) < σ̃ has one

store (σ) less. Since one complete store contains the full mappings
from x to v, where x ∈ x̃, the property holds.

[LConst] f() < · y!(v)−−→ f() < ·, the property directly holds, since
the queues of stores of mappings are empty.

[LOutLift] L1, L2
y!(v)−−→ L′1, L2. By inversion we know that L1

y!(v)−−→
L′1 and by i.h. we know that the property holds for L′1. If we add to
the list any other functions, property will hold, because y is a func-
tion in L1 (and also in L′1). So the property holds also for L′1, L2.

Combining the two propositions above we prove the following
lemma ensuring that the behaviour of a base component is fully
qualified by the behaviour of its local binders.

Lemma 3.6.1. Let K = [x̃ > ỹ]{L} be a base component. If K
λ(v)−−−→ K ′ for

some K ′ = [x̃ > ỹ]{L′}, then

1. If λ = x?, we have that L
x?(v)−−−→ L′ ∧ x ∈ x̃;

2. If λ = y! , we have that L
y!(v)−−−→ L′ ∧ y ∈ ỹ.

Proof. Proof by induction on the derivation of K
λ(v)−−−→ K ′ and by cases

on the last rule applied. Since K by hypothesis is a base component the
only possible cases are:

[InpBase] [x̃ > ỹ]{L} x?(v)−−−→ [x̃ > ỹ]{L}, by inversion we know that

L
x?(v)−−−→ L′ and that x ∈ x̃.

55

[OutBase] [x̃ > ỹ]{L} y!(v)−−−→ [x̃ > ỹ]{L}, by inversion we know that

L
x?(v)−−−→ L′ and that y ∈ ỹ.

In order to make proofs more concise we define the function inc. This
function by given as an argument the constraint and the port on which
the value is received gives us as a result (according to the semantics of
the typing language from Table 9) the evolved constraint.

Definition 3.6.1. By inc(C, x) we denote the constraint defined as follows:

inc(C1,C2;x) , inc(C1;x), inc(C2;x)

inc(y(b) :B : [{x :N}]D];x) , y(b) :B : [{x :N + 1}]D]

inc(y(b) :B : [{x : Ω}]D];x) , y(b) :B : [D]

inc(y(b) :B : [D];x) , y(b) :B : [D] (if x /∈ dom(D).

Proposition 3.6.3. If T =< Xb,C > ∧ C x?−→ C′ then C′ = inc(C, x).

Proof. By induction on the derivation of C x?−→ C′.

[T1] C1,C2
x?−→ C′1,C

′
2 by inversion we know that C1

x?−→ C′1 and by
induction hypothesis we know that the property holds for C′1. Also, by

inversion we know that C2
x?−→ C′2 and by i.h. property holds also for

C′2. Directly we can conclude that the property will hold also for C′1,C
′
2.

[T6] y(b) :B : [{x :N}]D]
x?−→ y(b) :B : [{x :N + 1}]D] we can directly

conclude that the property holds.

[T5] y(b) : B : [{x : Ω}]D]
x?−→ y(b) : B : [D], we can directly conclude

that the property holds.

[T4] y(b) : B : [D]
x?−→ y(b) : B : [D], by inversion we know that

x /∈ dom(D), so the number of received values on x remained the same,
which implies that the property holds also for this case.

Lemma 3.6.2. If T =< Xb; C > and T
x?(b)−−−→ T ′ then C x?−→ C′.

56

Proof. By induction on the derivation of T
x?(b)−−−→ T ′.

[T5] T =< Xb; C >
x?(b)−−−→ T ′ =< Xb; C′ >, by inversion we know that

C x?−→ C′, so we can directly conclude that the property holds.

Lemma 3.6.2 states that the type suffers the changes only in the sec-
ond part of the type description-the constraint, where the set of input
ports together with the attached type remain the same. Moreover, the
number of the constraints remains the same, but it differs from its pre-
decessor. This coincides with the evolution of the component where the
interface remains the same, but local binders evolve.

Proposition 3.6.4. [Dependencies requirement] Let T =< Xb; C1,C2, . . . ,Ck >

and Ci = {yi(bi) : Bi : [Di]. Then, T
yi(bi)−−−→ T ′ ⇒ Bi > 0 ∧ ∀x ∈ dom(Di) :

Di = {x :N}]D′i ∧N > 0.

Proof. Observing the Rule [T6] the proof is direct.

Proposition 3.6.5. [Constraint independency] If K ⇓ T =< Xb; C1] · · ·]
Ck} then K(yi) ⇓< Xb; Ci >= T yi where i = 1, 2, . . . , k and K(yi) is the
component K restricted to the one output port-port yi.

Proposition 3.6.6. If x ∈ Xb then < Xb,C >
x?(b)−−−→< Xb,C′ >.

Proof. The rules [T1],[T2] and [T3] imply the proposition.

We can now prove the main theorems of this chapter. Lets recall the
first theorem (Theorem 3.5.1):

K ⇓ T and K λ(v)−−→ K ′ and v has type b then T
λ(b)−−→ T ′ and K ′ ⇓ T ′.

Proof. (sketch) Proof by induction on the derivation of K
λ(v)−−−→ K ′.

We divide the proof into two parts: first one is where we consider
component K to be a base component and the second one where K is a
composite one.

We start with the rules that define a transition of a base component:

57

[InpBase] We know that K = [x̃ > ỹ]{L} x?(v)−−−→ [x̃ > ỹ]{L′}, by inversion on

the rule we have that x ∈ x̃ and that L
x?(v)−−−→ L′, so the Proposi-

tion 3.6.1 holds. By hypothesis K ⇓ T and since K is a base com-
ponent, by the Definition 3.3.1 T =< Xb; C > where

Xb = {x(b) | x ∈ x̃ ∧ b = γ(x)}

and
C = {yi(b′i) :∞ : Dyi | i ∈ 1, . . . , k ∧

b′i = γ(yi) ∧Dyi = {x : count(x, σ̃yi) | x ∈ x̃yi}}

where since x ∈ x̃, then x(b) ∈ Xb and b = γ(v), hence ∃T ′ such that

T
x?(v)−−−→ T ′. This implies the Lemma 3.6.2, so the Proposition 3.6.3

holds. By the Definition 3.3.1 and Proposition 3.6.1 we conclude
K ′ ⇓ T ′ where T ′ ⊆ T .

[OutBase] We know that [x̃ > ỹ]{L} y!(v)−−→ [x̃ > ỹ]{L′}, by inversion on the

rule we have that y ∈ ỹ and that L
y!(v)−−−→ L′, so the Proposition 3.6.2

holds. Then we have that for all x ∈ x̃y holds: count(x, σ̃y) > 0 (*).

By hypothesis we have thatK ⇓ T and sinceK is a base component
we have by the Definition 3.3.1 T =< Xb; C > where

Xb = {x(b) | x ∈ x̃ ∧ b = γ(x)}

and
C = {yi(b′i) :∞ : Dyi | i ∈ 1, . . . , k ∧

b′i = γ(yi) ∧Dyi = {x : count(x, σ̃yi) | x ∈ x̃yi}}

where since y ∈ ỹ, then y(b) ∈ Xb and b = γ(v).

Since (*) holds, and we have that for the base component the
boundary is infinite, we have that the hypothesis of the Rule T6

holds. So, exists T ′ such that T
y!(b)−−−→ T ′. Note that∞− 1 = ∞. By

the Definition 3.3.1 and Proposition 3.6.2 we conclude that K ′ ⇓ T ′
where T ′ ⊆ T .

Now, we move to the rules that characterise an evolution of a com-
posite component.

58

[InpComp] K = [x̃ > ỹ]{G; r = K,R;D; r[F]} x?v−−→ [x̃ > ỹ]{G; r =
K ′, R;D; r[F]} = K ′, then by inversion we know that x ∈ x̃

and that exists z such that K z?v−−→ K ′ ∧ F = z ← x, F ′. Since
K is well-typed, all its subcomponents are also well-typed, so
K ⇓ Tr, for some Tr. By induction hypothesis exists T ′r such that

Tr
z?(bx)−−−−→ T ′r ∧K ′ ⇓ T ′r, where bx = γ(v).

Let the type of K be T =< Xb; C >. Since x ∈ x̃ then by the
definition of the type extraction x(bx) ∈ Xb. By 57 3.6.6 we know

that T
x?(bx)−−−−→ T ′, for some T ′.

Since the global protocol G remained the same, its projection to
role r (denoted by LP) remains unchanged due to an input on x,
since x as an external port does not affect the protocol. Moreover,
the modified types of each subcomponent, remained conformant
to their local protocol after the evolution of K.

Now we need to prove that evolved type T ′ is the type extracted
from T ′r and LP , i.e., K ′ ⇓ T ′.
Since the set of input ports with an input does not change, the
extracted type from T ′r and LP will have the same set of input
ports as T (Xb). The only possible change can be in the set of
constraints.

By Proposition 3.6.5, we analyse the constraints of output ports of
T separately. We have three cases: First one is when the output port
does not depend on the input on x; second one is when it depends
per-each-value; the last one is when we have an initial dependency.
Each of these constraints was extracted from Tr and LP . We now
consider how an input on x affect these constraints.

Recall that T =< Xb,C > and let Tr =< Zb; Cr > where Cr =
{y(by) :Br : [Dr]}] C′r, with F = y ← y, z ← x, F ′ then:

Case 1. C = {y(by) : B : [D]}] C′ ∧ x /∈ dom(D) i.e., the first case is
when input port x is not in the domain of the dependencies of
some output port y.
Since z ∈ F i and y ∈ F o, then by the definition of the type
extraction of T we have that ¬∃M | z : M ∈ Dd(Cr, F, y)]
Dt(Cr, F, LP, y), i.e., z is not in the domain of dependencies of

59

y obtained in a direct nor transitive way. With an input on z
we do not create any new dependencies, so the constraint for
y in the type extracted from T ′r and LP is y(by) :B : [D].
Observing the constraint for y when T evolves by Rule [T1]
we have that:
y(by) :B : [D]

x?−→ y(by) :B : [D].
Hence, as the extracted type, T ′ will also have y(by) :B : [D] for
the constraint for port y.

Case 2. C = {y(by) : B : [{x :N}] D]}] C′ ⇒ z :N ∈ D(Cr, F, LP, y)
i.e., port x is in the domain of the dependencies of some port
y as a per-each-value dependency.
By the definition of the type extraction we have two ways to
obtain the per-each-value dependency:

(a) z :N ∈ Dd(Cr, F, y) i.e., when dependency on z was ob-
tained in a direct way.
This implies that by the definition of the type extraction
Cr = {y(by) : Br : [{z :N}]D′r]}] C′r and by inversion of
Rule [T5], applying Rule [T3] we have that:

y(by) :Br : [{z :N}]D′r]
z?−→ y(by) :Br : [{z :N+1}]D′r].

Since it is a dependency obtained in a direct way, by the
definition of the type extraction the constraint for y in the
extracted type from LP and T ′r is y(by) :B : [{x :N+1}]D′].

Observing the constraint for y when T evolves with
an input on x, by inversion on Rule [T5] and applying

Rule [T3] we have that: y(by) : B : [{x :N}]D]
x?−→ y(by) :

B : [{x :N + 1}]D].

(b) z : N ∈ Dt(Cr, F, LP, y) i.e., when the dependency on z
was obtained in a transitive way.
By the definition of the type extraction exist ports y′ and
z′ such that y′, z′ ∈ fp(LP) and y′ �LP3 z′, where port y
(y ∈ F o) depends on port z′, and port y′ depends on port
z (z ∈ F i) namely: Cr = {y(by) : Br : [{z′ : N ′}] D′r]}]
{y′(by′) :B′′ : [{z :N ′′}]D′′r]}] C′r.
By the definition of the type extraction we know that the
number of values received on x for y (N) is computed as

60

N ′+N ′′+ vf (LP, z′, y′). So, N = N ′+N ′′+ vf (LP, z′, y′).
By inversion on Rule [T5] and applying Rule [T3] we have
that:
y′(by

′
) :B′′ : [{z :N ′′}]D′′r]

z?−→ y′(by
′
) :B′′ : [{z :N ′′+1}]D′′r]

We know that Tr
z?(b)−−−→ T ′r. Let T ′r =< Xb; Cr >. Since lo-

cal protocol LP remains the same, number of values flow-
ing vf (LP, z′, y′) remained the same after an input on z.
Then in the extracted type from LP and T ′r we have that
z : N ∈ Dt(Cr, F, LP, y) where N = N ′ + N ′′ + 1 +
vf (LP, z′, y′). This number can be written as

N = (N ′ +N ′′ + vf (LP, z′, y′)) + 1 = N + 1.
We conclude that z : N + 1 ∈ Dt(C, F, LP, y) and
by the definition of the type extraction we have that
y(by) :B : [{x :N+1}]D] is the constraint for port y in the
extracted type.

For T =< Xb; {y(by) : B : [{x : N}] D]}] C′ > by
inversion of Rule [T5] and applying Rule [T3] we have

that: y(by) :B : [{x :N}]D]
x?−→ y(by) :B : [{x :N+1}]D]

So, y(by) :B : [{x :N+1}]D] is the constraint for y in T ′.
Case 3. C = {y(by) : B : [{x : Ω}] D]}] C′ i.e., port x is in the do-

main of the dependencies of some output port y as an initial
dependency. Consider again Tr =< Zb; Cr >.
We have two possible ways of obtaining the initial depen-
dency:
(a) z : Ω ∈ Dd(Cr, F, y) ∧ z : Ω /∈ Dt(Cr, F, LP, y) i.e., we

obtained the initial dependency in a direct way.
Then we have that Cr = {y(by) :Br : [{z : Ω}]D′r]}] C′r.
By Rule [T2] we have that: y(by) : Br : [{z : Ω}] D′r]

z?−→
y(by) :Br : [D′r].
This means that dependency is dropped, so it will also be
dropped in the extracted type.
By Rule [T2] in T ′ the dependency of y on x will be

dropped: y(by) :B : [{x : Ω}]D]
z?−→ y(by) :B : [D].

(b) z : Ω ∈ Dt(Cr, F, LP, y), i.e., the initial dependency was
obtained in a transitive way. We do not exclude the pos-

61

sibility of having z : Ω in the set of direct dependencies,
since we saw that with an input on z it will be dropped,
so this possibility does not interfere with this case.
By the definition of the type extraction we have that there
exist ports y′ and z′ such that y′, z′ ∈ fp(LP) and y′ �LPi z′,
where
Cr = {y(by) : B′ : [{z′ : M ′}] D′], y′(by

′
) : B′′ : [{z : M}]

D′′]}] Cr1 .
One of the conditions of having a transitive initial depen-
dencies are:

I i = 3 ∧M = 0 ∧M ′ = Ω ∧ vf (LP, z′, y′) = 0

II i = 3 ∧M = Ω ∧ vf (LP, z′, y′) = 0

III i ∈ {1, 2} ∧M ≯ 0

Number vf (LP, z′, y′) remains the same (it is zero) due
to the fact that the protocol did not evolve. With an in-
put on z transitive dependency on z is dropped due to
the rules of the semantic where either it is dropped since
the dependency of y′ on x is dropped as initial depen-
dency (Rule [T2]) or M = M + 1 ≥ 1, for some M ∈ N0

(Rule [T3]).
Due to the semantics of the typing language by inversion
on Rule [T5], applying Rule [T2] we have that also the
dependency of y on x is dropped:

y(by) :B : [{x : Ω}]D]
x?−→ y(by) :B : [D].

Since all the constraints in the extracted type from T ′r and
LP match the constraints in T ′ and the set of input ports
remain the same, we can conclude that the extracted type
and T ′ are the same and that K ′ ⇓ T ′.

[OutComp] K = [x̃ > ỹ]{G; r = K,R;D; r[F]} y(v)−−→ [x̃ > ỹ]{G; r =
K ′, R;D; r[F]} = K ′, then by inversion we know that y ∈ ỹ

that exist y such that K
y!(v)−−−→ K ′ ∧ F = y ← y, F ′. Since K is

well-typed, so are its subcomponents, thus, K ⇓ Tr. By induction

hypothesis we have that ∃by, T ′r such that Tr
y!(by)−−−−→ T ′r ∧ K ′ ⇓ T ′r,

where γ(v) = b.

Let T =< Xb; C >, since y ∈ F o and Tr could do an output on y,

62

the value is directly forwarded to y, then ∃T ′ : T
y!(by)−−−−→ T ′.

After an output on y, global protocol G remains unchanged, so is
its projection to role r (denoted by LP). Also, for the same rea-
son all the subcomponents remain conformant to their local proto-
cols.Moreover, the set of input ports with their basic types in type
T ′ and in the extracted type from T ′r and LP remains unchanged.

Now we need to prove that type T ′ is the type extracted from T ′r
and LP i.e., that K ′ ⇓ T ′.
The set of input ports in the type extracted from T ′r and LP remains
unchanged, i.e., it is the same as in type T , since due to the rules of
the semantics we cannot lose or gain new input ports.

Let Tr =< Zb; Cr > and Cr = {y(by) : Br : [Dr]}] Cr1 and we have
that F = y ← y, F ′ ⇒ y ∈ F o.
For the extraction of the dependencies, we consider two cases: First
case is that y has no dependencies and the second one is when it
has and due to the rules of the semantics (Rule [T6]), all of them are
per-each-value dependencies.

I If C = {y(by) : B : [∅]}] C′ ⇒ ¬∃x | x : N ∈ (Dd(Cr, F, y) ∪
Dt(Cr, F, LP, y)), i.e., if y had no dependencies in type T , then
in the type extraction the sets of dependencies of y obtained
in a direct or transitive way are empty.

By induction hypothesis we have that Tr
y!(by)−−−−→ T ′r, thus, we

have that:

< Zb; {y(by) : Br : [Dr]}] Cr1 >
y!(by)−−−−→< Zb; {y(by) : Br−1 :

[D′r]}] Cr1 >
Observing Rule [T6] and Definition 3.4.1, we conclude that the
boundary in the extracted type is B′r = min{B1−1, B2−1, B3−
1,Br−1}. So, the extracted type from T ′r and LP is

(< ren(F,Zb) >; ren({y(by) :B′r : [∅]})] C′}

However, we cannot consider the set of possible boundaries
{B2}, because in that case exists some input port on which
y initially depends that is not in fp(LP) nor in F i (extracted

63

boundary, the minimum is zero). This implies that y is not
able to have an output, that as a consequence has that a value
cannot be emitted from y. If boundary is 0 a type cannot per-
form an output ([Rule T6]), since in that case for the boundary
of the type extracted from T ′ and LP is 0−1. So we have that
B′r = min{B1−1, B3−1,Br−1}.
Now, for type T , applying Rule [T6]

< Xb; {y(by) : B : [∅]}] C′ >
y!(by)−−−−→< Xb; {y(by) : B − 1 :

[∅]}] C′ > and we have that min{B1− 1, B3− 1,Br− 1} =
min{B1, B2, B3,Br} − 1 = B−1 and we conclude that the ex-
tracted type from T ′r and LP matches with T ′.

– If C = {y(by) :B : [{x1 :N1, . . . , xk :Nk}]D]}] C′, i.e., if y had
dependencies on some input ports x1, . . . , xk.

By the definition of the type extraction we know that there
exist a set {z1 :N1, . . . , zk :Nk} where {z1 :N1, . . . , zk :Nk} =
ren(F, {x1 :N1, . . . , xk :Nk}) and
{z1 :N1, . . . , zk :Nk} = Dt(Cr, F, LP, y)]Dd(Cr, F, y).
Considering that Tr =< Zb; Cr >, then z1 : N1, . . . , zk : Nk ∈
Zb.
Observing how we obtained the dependencies of y on zi (i =
1, 2, . . . , k) in the extracted component from Tr to LP , we have
the following cases that focus on one input port, without the
loss of generality:

Case 1. zi :Ni ∈ Dd(Cr, F, y), i.e., the dependencies are obtained
in a direct way.
Then we have that Cr = {y(by) :Br : [{zi :Ni}]D′r]}] C′r.
Since Tr had an output from port y, by Rule [T6] we have
that:
Tr

y!(by)−−−−→< Zb; {y(by) :Br−1: [{zi :Ni−1}]D′′r}]]C′r >= T ′r.
By Definition 3.4.1 in the extracted type obtained from
LP and T ′r, we have that zi :Ni−1 is the element of the set
of the dependencies of y.

Case 2. zi : Ni ∈ Dt(Cr, F, LP, y), i.e., the dependencies are ob-
tained in a transitive way.
We have to notice that it is a per-each-value dependency
and that there is only one possible way to obtain it, when
we consider transitive dependencies:

64

Let Tr =< Zb; Cr > then there must exist y′, z′ ∈ fp(LP)
such that y′ �LP3 z′ (recap: recursive protocol, where both
y′ and z′ are in rep(LP) in such an order that an output
on y′ precedes the input on z′), where
Cr = {y(by) : Br : [{z′ : N ′}] Dy], y′(by

′
) : Br1 : [{zi :

Ny′

i }]Dy′]}] C′r.

Since Tr
y!(by)−−−−→ T ′r, by Rule [T6] we have the following:

< Zb; Cr >
y!(by)−−−−→< Zb; {y(by) : Br − 1 : [{z′ : N ′− 1}]

D′y], y′(by
′
) : Brr : [{zi :Ny′

i }] D′]}] C′r >= T ′r, where by
inversion we know that N ′ > 0,Br > 0.

By the type extraction procedure from LP and T ′r, the
number of values from port zi available for y is Nzi =

(N ′−1)+Ny′

i + vf (LP, x′, y′).
Since T =< Xb; {y(by) : B − 1 : [{x1 : N1, . . . , xk : Nk}]
D]}]C′ > and by the type extracting procedure we know
that Ni = N ′+Ny′

i + vf (LP, z′, y′). By Rule [T6] we have

that T
y!(by)−−−−→< Xb; {y(by) : B− 1 : [{x1 : N1− 1, . . . , xi :

Ni− 1, . . . , xk :Nk− 1}]D]}] C′ >= T ′.
This implies that the number of values from port xi avail-
able for y (i = 1, . . . , k) in type T ′ is Ni−1 = N ′−1+Ny′

i −
+vf (LP, z′, y′) = Nzi .
Note that vf (LP, z′, y′) remained the same since the pro-
tocol did not evolve.
The boundary of y decreases by one compared to the one
in T and that all the ports in the dependency of y have one
value less available for computing y, applying Rule [T6]
we have that the extracted type and T ′ match so K ′ ⇓ T ′.

[Internal] K = [x̃ > ỹ]{G; r = K,R;D; r[F]} τ−→ K ′ = [x̃ > ỹ]{G; r =

K ′, R;D; r[F]}, then by inversion we know that K τ−→ K ′. If K
has a type Tr, by induction hypothesis we know that there exist
type T ′r such that Tr

τ−→ Tr ∧ K ′ ⇓ Tr. We can conclude that each
type of the subcomponents remained the same, and also the global
protocol did not evolve, so these types remained conformant with
their local protocols. Therefore, the extracted type from T ′r and LP
is the one extracted from Tr and LP , and by Rule [T4] we know

65

that T τ−→ T .

[InpChor] K = [x̃ > ỹ]{G; r = Kr, R;D; r[F]} τ−→ [x̃ > ỹ]{G′; r =

K ′r, R;D; r[F]} = K ′, then by inversion we know that Kr
z?(v)−−−→

K ′r ∧ D = r.z′ ← p.u,D′ ∧ G
r?l < v >−−−−−−→ G′.

Let R = r1 = K1, r2 = K2, . . . , rm = Km. Since K is well-typed,
all its subcomponents are also well-typed, hence, exist types
Tr, T1, . . . , Tm such that Kr ⇓ Tr, K1 ⇓ T1, . . . , Km ⇓ Tm.

Let the projection of protocol G to role r (G ↓r) be local protocol
LP . Since component Kr, assigned to role r, can input a value v on
port z, then LP = z?(b).LP ′.

By Definition 3.5.1, since Kr is the only interfacing component,
then T (F, Ti) = Ti, where i = 1, . . . ,m.

Since all the subcomponents are well-typed, their modified types
are conformant to their local protocols: T (F, Tr) ./ z?(b).LP ′, T1 ./
G �r1 , . . . , Tm ./ G �rm .

Since x is a port of Kr, after the input on z all the other subcompo-
nents are conformant to their local protocol.

By induction hypothesis, we know that exist b, T ′r such that γ(v) = b

and Tr
z?(b)−−−→ T ′r.

Let Tr =< Zb; Cr >, Ti =< Zib; Ci >, where i = 1, . . . ,m. Since
z(b) ∈ Zb and z(b) /∈ Zib,∀i = 1, . . . ,m, by Rule [T 5] we have that:

T (F, Tr)
z?(b)−−−→ T ′(F, Tr), T1

z?(b)−−−→ T1, . . . , Tm
z?(b)−−−→ Tm.

By Rule [InpConf] we have that: T ′(F, Tr) ./ G′ �r, T1 ./ G′ �r1
. . . , Tm ./ G′ �rm .

Let T =< Xb; C >, be the extracted type from LP and Tr. Since

Tr
z?(b)−−−→ T ′r, then T does an internal move, i.e., T τ−→ T . We need to

prove that K ′ ⇓ T .

Since the set of input ports Xb after any transition remains the
same, we need to prove that the set of constraints extracted from
LP ′ and T ′r will be exactly C. Precisely, since we do not output a
value from the external ports it is enough to prove that the depen-
dencies of the output ports remained the same.

66

In reminder Tr
z?(b)−−−→ T ′r and Tr =< Zb; Cr >. Since z ∈ fp(LP) we

need to consider the following cases:

Case 1. ¬∃y ∈ F o such that y(by) : By : [{z :M}] Dy], i.e., there is no
external port depending on z. By the definition of the type ex-
traction we cannot obtain the transitive dependency (on some
external port) of any output port via z. So, we cannot obtain
any new ones after an input on z, so the dependencies of the
external output ports remain unchanged.

Case 2. ∃y ∈ F o such that y(by) :By : [{z :M}]Dy], i.e., some external
output port depends on the input on z.
Since we have local protocol LP = z′? : t′b.LP

′ we consider
the following scenarios:

a. ¬∃y′ | y′ �LP3 z, i.e., one of the conditions of obtaining the
transitive dependency of en external port y, where z is the
port involved, fails. By the definition of the type extrac-
tion the dependencies obtained in a transitive way remain
the same after an input on z since port z does not have any
impact on obtaining them.

b. ∃y′ | y′ �LP3 z, i.e., one of the conditions for obtaining the
transitive dependency of port y is fulfilled.
We now have to consider other two possibilities:

I ¬∃z1 ∈ F i | y′(by
′
) : By

′
: [{z1 :M1] Dy′}], one of the

conditions of obtaining the transitive dependency of y
where in the extraction port z is included, fails, so an
input on z will not change any dependencies obtained
in a transitive way.

II ∃z1 ∈ F i | y′(by
′
) :By

′
: [{z1 :M1}]Dy′] i.e., there exist

an external port z1 such that y′ depends on it.
Combining cases 2,b and II, by the extraction proce-
dure, we have the dependency of y on z1 obtained in
a transitive way. To sum up we have that set of con-
straints Cr is

Cr = {y(by) :By : [{z :M}]Dy],

y′(by
′
) :By

′
: [{z1 :M1}]Dy′]}] C1

r}

67

where y′ �LP3 z. Recall that then

LP 1 = C[µX.C′[y′!(t′b).C′′[x′?(.)LP ′]]]

Since we have that LP = z?(b).LP ′, indicates that the
component already had an output from y′. Since y′

depends on an input on z1 implies that the value is
already received.
IfM1 = Ω then the dependency of y on z1 was already
dropped in T , so an input on z does not change that
fact.
If instead, M1 = N and M = Ω, by the type extraction
procedure in type T we do not have a dependency of
y on z1 (up to renaming), since vf (LP, z, y′) = 1. After
an input on z, vf (LP, z, y′) = 0, but the dependency of
y on z will be dropped, hence, by the type extraction
procedure, there is no dependency of y on z1 obtained
in a transitive way .
Now, we consider the case where M = N and M1 =
N1. By the definition of the type extraction the num-
ber of values from port z1 available for y in T (up
to renaming) is N +N1 + vf (LP, z, y′) = N +N1 + 1
(vf (LP, z, y′) = 1). After an input on z, the number of
values of z available for y (that was N) will increase
by 1 (Rule [T5]), hence in the extracted type from T ′r
and LP ′ we have that the number of values of port z1

available for y isN+1+N1+vf (LP, z, y′) = N+1+N1+0
(vf (LP, z, y′) = 0 since the value that was flowing was
input on z. We conclude that for this case the depen-
dencies in the constraint will remain the same in T ′,
as it is in T .

We can conclude that dependencies of the output ports did not
change. We conclude that the extracted type from LP ′ and T ′r is
type T . Therefore, K ′ ⇓ T .

[OutChor] K = [x̃ > ỹ]{G; r = Kr, R;D; r[F]} τ−→ [x̃ > ỹ]{G′; r =

K ′r, R;D; r[F]} = K ′, then by inversion we know that Kr
y′!(v)−−−→

K ′r ∧ D = p.u← r.y′, D′ ∧ G
r!l < v >−−−−−−→ G′.

68

The first part of the proof for Rule [OutChor] and the assumptions
are the same as for Rule [InpChor], but for an output (from port y′).

Below we assume:

– T =< Xb; C >;

– R = r1 = K1, r2 = K2, . . . , rm = Km.

– ∃Tr, T1, . . . , Tm such that Kr ⇓ Tr, K1 ⇓ T1, . . . , Km ⇓ Tm;

– ∃b, T ′r | γ(v) = b ∧ Tr
y′!(b)−−−→ T ′r;

– LP is the projection of G to role r and LP = y′!(b).LP ′;

– T (F, Ti) = Ti, where i = 1, . . . ,m;

– T (F, Tr) ./ z?(b).LP ′, T1 ./ G �r1 , . . . , Tm ./ G �rm ;

– G
r?l < v >−−−−−−→ G′ then G ↓i= G′ ↓i, i = 1, . . .m;

– Let Tr =< Zb; Cr >, Ti =< Zib; Ci >, where i = 1, . . . ,m;

– T (F, Tr)
y′!(b)−−−→ T ′(F, Tr), T1

y′!(b)−−−→ T1, . . . , Tm
y′!(b)−−−→ Tm;

– By Rule [OutConf] we have that: T ′(F, Tr) ./ G′ �r, T1 ./
G′ �r1 . . . , Tm ./ G′ �rm .
Let us prove that the extracted type from T ′r and LP ′ is T and
that K ′ ⇓ T .
Since the set of input ports Xb after any transition remains the
same (we do not lose or gain any new input ports due to the
semantics of (modified) type), we need to prove that the set
of constraints extracted from LP ′ and T ′r are exactly the ones
in C. Again, since we do not output a value from the external
ports it is enough to prove that the dependencies of the output
ports remained the same.

In reminder we have that Tr
y′!(b)−−−→ T ′r and LP = y′!(b).LP ′.

Let Tr =< Zb; {y(b) :By : [Dy]}] C1
r >.

Since Tr can do an output from port y′, by Rule [T6] we know that
T ′r =< Zb; {y′(b) : By

′
− 1: [Dy′

1]}] C1
r >, where ∀z :N ∈ Dy′ ⇒ z :

N−1 ∈ Dy′

1 .

If in the description of LP ′ we do not have any input ports or if we
had ones such that there is no external output port depending on

69

them, output on y′ does not have any impact on the dependencies
obtained in a transitive way. Moreover, by the type extraction pro-
cedure, it is also irrelevant for creating the dependencies obtained
in a direct way.
Consider now the case where we have in the description of local
protocol LP ′ an input port z′ and that ∃y ∈ F o such that y depends
on z′. We have two cases:

Case 1. ¬∃z ∈ F i such that y′ depends on it. If this is the case, we
do not have the dependency of port y obtained in a transitive
way, hence, the output from the port does not have any impact
on the extracted constraints of y.

Case 2. ∃z ∈ F i such that y′ depends on it.
Similar to the proof for Rule [InpChor] we have that set of
constraints C is

Cr = {y′(by
′
) :By

′
: [{z :M}]Dy′

2], y(b) :By : [{z′ :M ′}]Dy]}]C2
r

Extracting type T , port y cannot initially depend on port z,
since we know that y′ can output, which implies that a value
was already received on z, i.e. before an output on y′ the de-
pendency was already dropped.
If there was a per-each-value dependency of y on z in type T ,
then by the type extraction procedure we know that y′ �LP3 z′,
M = N and M ′ = N ′. Before an output on y′, we have in T
that the number of values on z available for y is N + N ′ + 0
(vf (LP, z′, y′) = 0 before an output on y′). After an output
on y′, N will decrease by 1 (Rule [T6]), but vf (LP, z′, y′) will
increase by 1 (vf (LP, z′, y′) = 1). Hence, in the extracted type
from T ′r and LP ′ the number of values of port z available for
y is N−1+N1 +vf (LP, z, y′) = N−1+N1 +1. Therefore, the
dependencies of the output ports in type T ′ are the same as
those in T . Therefore, K ⇓ T ′, where T ′ = T .

First, we prove the following lemma that we use to prove the Type
fidelity theorem.

Lemma 3.6.3. [Protocol Fidelity] Let K = [x̃ > ỹ]{G; r = Kr, R;D; r[F]} be
a well-typed composite component. Assuming all subcomponents enjoy the type
fidelity property:

70

K ⇓ T and T
λ(b)−−→ T ′ and λ(b) 6= τ then b is the type of a value v and

K
λ(v)
==⇒ K ′ and K ′ ⇓ T ′.

Then for any trace such that

G
p1`1(v1)−−−−−→ · · · pk`k(vk)−−−−−→ G′

we have that

[x̃ > ỹ]{G;R;D; r[F]} τ−→ · · · τ−→ [x̃ > ỹ]{G′;R′;D; r[F]}

Proof. By induction on the size of the trace.

Base case. k = 1, i.e., the size of the trace is one. Then we have that

G
p`(v)−−−→ G′, where p ∈ {p!, p?}. Let R = p = Kp, R1. Since K is a

well typed component, there exists some T such that , K ⇓ T . Then all
its subcomponents are well-typed, so exists Tp such that Kp ⇓ Tp and
let LP = G �p. Moreover, all the subcomponents’ modified types re-
mained conformant with their local protocols after protocol G evolved,
besides the component with role p, since all the other protocol projec-

tions remained the same. Instead, T (F, Tp)
a(b)−−→ T (F, T ′p), where a = x?

if p = p?, a = y! if p = p!, and γ(v) = b, where x and y are ports ex-
plained in a distribution binder (D). After protocol G evolved to G′,
by Rule [InpConf] for a = x? or Rule [OutConf] for a = y!, we have

that T (F, T ′p) ./ G
′ �p, so Tp

τ−→ · · ·Tp
a(b)−−→ T ′p (in reminder Rule [T4]

Tp
τ−→ Tp). Subcomponent Kp enjoys the type fidelity property, so exists

some value v of type b, and K ′p such that Kp
a(v)
===⇒ K ′p and K ′p ⇓ T ′p,

K ′p also enjoys the type fidelity property. Applying Rule[Internal] some
number of times and then Rule [InpChor] (or [OutChor] depending on
the nature of I/O action) we have that K τ−→ [x̃ > ỹ]{G;R1;D; r[F]} τ−→
· · · [x̃ > ỹ]{G′;R′;D; r[F]} = K ′. We have that K ⇓ T , by Theorem 3.5.1

then T τ−→ · · ·T and K ′ ⇓ T .

Induction hypotehsis. Assume that the property holds for any trace of
size k = n− 1.

71

Inductive step. We prove that the property holds for any trace of size
k = n, i.e.,

G
p1`1(v1)−−−−−→ · · · pn−1`n−1(vn−1)−−−−−−−−−−→ Gn−1 pn`n(vn)−−−−−−→ G′.

By induction hypothesis exists K ′′ such that K τ−→ · · · τ−→ [x̃ >
ỹ]{Gn−1;R′′;D; r[F]} = K ′′. Since K ⇓ T and K has some number
of internal steps e.g., m steps, applying the Theorem 3.5.1 m times
we know that exists T ′′ such that T τ−→ · · · τ−→ T ′′ and K ′′ ⇓ T ′′.
By inversion on rules [InpChor], [OutChor] or [Internal] we know
that then for some subcomponents K1,K2, . . .Kl, l ≥ 1 such that
R = p1 = K1, p2 = K2, . . . pl = Kl, R

′ (R′ possibly empty list) with
possibility of having the case where pi = Ki = r = Kr for some
i ∈ {1, 2, . . . l} holds the following

Ki
a(v)
===⇒ K ′i

or
Ki

τ
=⇒ K ′i

Since each subcomponent Ki is well-typed, i.e., exists Ti such that Ki ⇓
Ti, by the Theorem 3.5.1 (applied multiple times) exists T ′i such thatK ′i ⇓
T ′i . Each K ′i enjoys the type fidelity property.

If we apply the reasoning for the base case having Gn−1 pn`n(vn)−−−−−−→
G′, K ′′ ⇓ T ′′ and all subcomponents of K ′′ that enjoy the type fidelity
property, we conclude that K ′′ τ

=⇒ K ′, so in conclusion, for n-size trace
where

G
p1`1(v1)−−−−−→ · · · pn−1`n−1(vn−1)−−−−−−−−−−→ Gn−1 pn`n(vn)−−−−−−→ G′.

exists K ′ such that
K

τ
=⇒ K ′.

Let us now recall the Type fidelity theorem (Theorem 3.5.2):

Theorem 3.6.1 (Type fidelity). If K ⇓ T and T
λ(b)−−→ T ′ and λ(b) 6= τ then

b is the type of a value v and K λ(v)
==⇒ K ′ and K ′ ⇓ T ′.

Proof. (Sketch) Proof by induction on the structure of K.

72

• First, we prove the base case, where K is a base component by
inspection on the rules for types.

• Then we assume that the type fidelity property holds for all the
subcomponents of K.

• Finally, we prove that the type fidelity property holds for K by
inspection on the rules for types.

Base case. Let K be a base component [x̃ 〉 ỹ]{L} of type T . Then, we

prove the statement by induction of the derivation of T
λ(b)−−→ T ′ and by

cases on the last rule applied:

[T5] < {x(bx)}] Xb; {yi(bi) : Bi : [Di]|i ∈ 1, . . . , k} > x?(bx)−−−−→< {x(bx)}]
Xb; {yi(bi) : Bi : [D′i]|i ∈ 1, . . . , k} >, then by inversion we know

that ∀i ∈ 1, 2, . . . , k it holds that yi(bi) : Bi : [Di]
x?−→ yi(bi) : Bi : [D′i].

Since x(bx) ∈ {x(bx)}] Xb, by the Definition 3.3.1, we have that
x ∈ x̃ and that there exist a component K ′ and a value v of type b

(γ(v) = bx) such that K
x?(v)−−−→ K ′. We need to prove that K ′ ⇓ T ′.

We have that T =< Xb; {Ci|i = 1, 2, . . . , k} > and T
x?(bx)−−−−→ T ′ then,

by Lemma 3.6.2, T ′ =< Xb; {inc({Ci, x})|i = 1, 2, . . . , k} > (by the
type semantics, T ′ is unique).

Since K is a base component and [x̃ 〉 ỹ]{L} x?(v)−−−→ [x̃ 〉 ỹ]{L′}, then

by inversion on the Rule [InpBase] we know that L x?v−−→ L′ and
that x ∈ x̃, so the Lemma 3.6.1 holds.
By the Definition 3.3.1 K ′ ⇓ T ′.

[T6] <Xb; {y(by) : B : [{xi : Ni|i ∈ 1, . . . , k}]}] C>
y!(by)−−−−→<Xb; {y(by) :

B − 1 : [{xi : Ni − 1|i ∈ 1, . . . , k}]}] C>. By inversion we know
that B > 0 and Ni > 0 for all i ∈ 1, . . . , k. Since it holds that y(by) :
B : [{xi :Ni|i ∈ 1, . . . , k}] ∈ {y(by) : B : [{xi :Ni|i ∈ 1, . . . , k}]}] C,
then by Definition 3.3.1 we have that y ∈ ỹ, and that there exist

K ′ and a value v of type by (γ(v) = by) such that K
y!(v)−−−→ K ′. We

need to prove that K ′ ⇓ T ′. Recall that K = [x̃ 〉 ỹ]{L}, then since

[x̃ 〉 ỹ]{L} y!(v)−−−→ [x̃ 〉 ỹ]{L′} by the premise of the Rule [OutBase] we

know that L
y!(v)−−−→ L′ and y ∈ ỹ, so the Lemma 3.6.1 holds. By

the Definition 3.3.1 we conclude that K ′ ⇓ T ′.

73

We proved the case where K is a base component. Now we apply the
induction hypothesis for a composite component.

Induction hypothesis Assume that all the subcomponents of K enjoy
the type fidelity property.

Inductive step We prove that the component K enjoys the type fidelity
property. We have that K = [x̃ > ỹ]{G; r = Kr, R;D; r[F]} where K ⇓ T
and T

λ(b)−−→ T ′.
Let T =< Xb; C >. Since K ⇓ T then exists a type Tr such that Kr ⇓
Tr. Let Tr =< Zb; Cr > and LP be the local protocol of the component
Kr. Since K is well-typed, all of its subcomonent’s modified types are
conformant with their local protocol (e.g. T (F, Tr) ./ G �r= LP). Let us
now divide the proof depending on the label λ.

Case 1. [λ = x?], i.e., if we had an input on the port x.

Since T
x?(bx)−−−−→ T ′ we know by the Rule [T5]) that x(b) ∈ Xb.

By the extraction procedure of a composite component ∃z(bx) ∈
Zb, T

′
r | F = z ← x, F ′ ⇒ Tr

z?(bx)−−−−→ T ′r. By induction hypothesis

∃K ′r, γ, v | Kr
z?(v)−−−→ K ′r ∧ K ′r ⇓ T ′r ∧ γ(v) = bx (since the value is

forwarded the value is directly input, i.e., the number of internal
moves is zero). Applying the rule [InpComp] we have that then

K
x?(v)−−−→ K ′. Since K ⇓ T and K

x?(v)−−−→ K ′, applying the [Theo-
rem 3.5.1] and knowing by the definition of the type extraction that
T ′ is unique we have that K ′ ⇓ T ′.
This is true because an external input does not affect the modified
types of the subcomponents different from the interfacing one, so
they remained conformant to their local protocol. In the case of the
interfacing component by the Rule [T 5] and the 48 3.5.1, an input
on the external port does not affect the modified type.

Case 2. [λ = y!]

Since K ⇓ T and T
y!(b)−−−→ T ′ we know by the definition of the type

extraction that ∃y : F = y ← y, F ′.

We have to consider two possible cases:

1 Tr
y!(b)−−−→ T ′r

74

2 Tr 6
y!(b)−−−→

If the case 1 holds, by induction hypothesis existK ′r and v such that

Kr
y!(v)−−−→ K ′r, γ(v) = b and K ′ ⇓ T ′r (since the value is forwarded

the value is directly output, i.e., the number of internal moves
is zero). Then, by the rule [OutComp] we have that K = [x̃ >

ỹ]{G; r = Kr, R;D; r[F]} y!(v)−−→ K = [x̃ > ỹ]{G; r = K ′r, R;D; r[F]}.
Since G did not move (all the projections remained the same) and
the output on the port y does not interfere with the conformance,
we can conclude that T (T ′r)G �r= LP . Since all the modified type
of other components remain the same, by Theorem 3.5.1 we can
conclude that K ′ ⇓ T ′.

If the case 2 holds, T can output a value but Tr cannot. This means
that during the type extraction we capture values that are flowing.
Since the port y can output, this means that all its dependencies
are satisfied. However, since F = y ← y, F ′, but y still has some
unsatisfied dependencies, the only possible case is that y still needs
to receive the values from the ports in fp(LP):

Assume that there is one input port, e.g., z′ ∈ fp(LP) (without a
loss of generality) such that y depends on it, and on which does
not have the dependency satisfied.

Let LP = G �r and Tr =< Zb; Cr > where

Cr = {y(b) :Br : [Dr]}] C′r.

We have the case where Dr = {z′ :M}]D′r ∧ (M = 0 ∨M = Ω).

Since T (Tr) ./ LP and z′ ∈ fp(LP) then we can write that
T (F, Tr) ./ C[z′(b′).LP ′]. This implies that LP ′ = G′ ↓r where G→

· · · r`(v
′)−−−−→ G′. Since K ⇓ T by induction hypothesis all the subcom-

ponents enjoy the type fidelity property, by the ?THM? ?? exists a
trace such that K τ−→ · · · τ−→= [x̃ > ỹ]{G′; r = K ′r, R;D; r[F]} = K ′′

and we have that exists some T ′r such that K ′r ⇓ T ′r. Applying
the Rule [InpConf] (possibly multiple times, together with the
Rule [OutConf]) we have that T (F, T ′r) ./ G′ �r which implies
that we had an input on z′. Since all the dependencies of y are

75

satisfied now, we conclude based on the case 1) that exists K ′ such

that K ′′
y!(v)−−→ K ′. Then we have K

y!(v)
===⇒ and the Theorem 3.5.1

(applied multiple times) exists T ′ such that K ′ ⇓ T ′.

76

Chapter 4

The IC type language

In this chapter we introduce the IC type language that characterises the
reactive behaviour of components modelled in (full) GC language. First
we intuitively introduce our type language through a motivating exam-
ple and then we formalise the language.

4.1 Informal introduction of IC type language

In this section we provide an overview of our type language and of our
type extraction procedure through an example. In particular, we start
from base components and show how they can be assembled together
with a protocol resulting in a new component. For each component we
give a brief description of its type and describe how it is extracted from
the code.

4.1.1 A passport renewal system

Consider a person who wants to set up an appointment for passport re-
newal. Assume that the person can start the renewal procedure by using
an online Passport renewal system made of different interacting services.
Hereafter, for simplicity, we focus only on two of them: a Request handler
and an Administration service. The person uploads the Passport number,
the Name, the Renewal reason and the person’s Available date to the sys-
tem, which handle them through to Request handler service. When the
first three pieces of information are collected, they are joined together

77

and sent to other system services, e.g., for logging the request, which we
do not model. Moreover, some of the uploaded data are further elab-
orated. As soon as the Passport number is uploaded to Request handler,
the expiration date of the passport is compared with the current one to
check if the renewal request can be accepted or not. The result of this
check is sent to Administration. If the request is accepted, Request handler
sends the previously uploaded person’s Available date to Administration,
after which it sends also the message containing the Available dates that
are self-generated (working days, excluding weekends, holidays, etc.).
However, if the renewal request is denied, Request handler ends the inter-
action with Administration, and the person does not get the appointment.
The Administration service computes the best date for the appointment
based on the received information. It sends them to Request handler that
finally forwards the final result to the person.

4.1.2 Modeling the system in GC language

We model the system presented above as a composite component in the
GC language. In particular, we implement Request handler and Admin-
istration through the two base components Krh and Ka, and the whole
Passport renewal system through the composite component Kpr. Figure 5
shows an architectural representation of Kpr highlighting how the com-
ponents are wired together, whereas Figure 6 shows an activity-like dia-
gram describing the workflow of the behaviour of the components.

As described above, crucial to the behaviour of Kpr is the interaction
between Krh and Ka that must obey to the following protocol G:

G = RH
a/d−−−→ADM(RH

date−−−→ADM ;RH
Av.d.−−−−→ADM ;ADM

App.d.−−−−−→RH, end)

where RH stands for Request handler, ADM for Administration, a/d
for Approval/ Disapproval, Av.d. for Available date and App.date for ap-
pointment date. (Note that we use a different font for the roles in order to
distinguish them from the values.) The protocolG requires that if Request
handler sends the Approval to Administration, it also needs to send Date (re-
ferring to person’s available date) and then the computed Available dates;
once received these pieces of information Administration replays with the
generated Appointment date. Otherwise, if Request handler sends the dis-
approval to Administration, ends the communication.

Finally, note that Request handler communicates with both internal
(Administration) and external environment (Person), thus, Krh will be the

78

Figure 5: Passport renewal

Figure 6: Passport renewal data flow

79

interfacing component ofKpr. Below we first focus on describing the im-
plementation of Krh in GC language (the implementation of Ka is simi-
lar), and then we describe how obtaining Kpr from Krh and Ka.

The definition of component Krh A graphical representation of Krh is
in Figure 5 where to each port is attached a description of the received
and produced values. The component Krh has five input ports x1, x2,x3,
x4 and x5 and five output ports y1, y2, y3, y4 and y5. In order to provide
a Personal info via port y4, Krh needs Passport number, Name and Renewal
reason from x1,x2 and x4, respectively. We say that port y4 depends on
x1,x2 and x4. Also, port y1 depends on port x1 because the component
needs to receive Passport number before emitting the approval or disap-
proval. The component can output Date from port y2 only when a per-
son’s Available date is received on port x3. Similarly, to produce a Appoint-
ment from port y5 an Appointment date on port x5 is needed. However,
Krh can always produce a list of Available dates for the appointment on
port y3 because this value does not depend on any input.

Using GC language, the implementation of component Krh is the fol-
lowing:

Krh = [I]{W}

� I = x1, x2, x3, x4.x5〉y1, y2, y3, y4, y5

� W = y1 = fcd(x1), y2 = fuad(x3), y3 = f(), y4 = fiu(x1, x2, x4), y5 =
fad(x5)

where the interface I of Krh specifies the input and output ports de-
scribed above; the implementation W lists of the local binders defining
how compute the produced values; and fcd stands for function Compare
to today’s date, fuad for Upload available date, fiu for Info upload and fad for
Appointment date. For example, the local binder y1 = fcd(x1) attaches the
function fcd to decide the approval of the request based on the value of
x1. By inspecting the implementation of a base component it is immedi-
ate to derive the direct dependencies among ports. The definition of Ka

is similar and we do not show it for brevity.

The definition of Kpr Component Kpr has its own interface exposing
the input ports x11, x12, x13 and x14 and the output ports y11 and y21.
As we said, these values are directly forwarded to/from the interfacing

80

component Krh. The internal communication between the components
Krh and Ka is governed by the previously described protocol G.

Using GC language, Kpr can be implemented as:

Kpr = [x11, x12, x13, x14 〉 y11, y21]{G;R;D; r[F]}

� R = RH = Krh, ADM = Ka (Role assignments)

� D = ADM.z1
a/d←−−− RH.y1, ADM.z2

date←−−− RH.y2, ADM.z3
Av.d←−−−

RH.y3,

RH.x5
App.d←−−−− ADM.w1 (Distribution binders)

� F = x1 ← x11, x2 ← x12, x3 ← x13, x4 ← x14, y11 ← y4 and
y21 ← y5 (Forwarders)

the role assignments R assigns the roles RH and ADM to Krh and KA,
respectively; the distribution binders D specify the connections between
the ports of Krh and Ka, e.g., the input port z1 of Ka is connected to the
output port y1 of Krh; the forwarders F specify the connections between
Kpr and the interfacing component.

4.1.3 Extracting types of components

We use types to capture finitely the reactive behaviour of a component.
In particular, we provide a type extraction procedure that infers the type
of a component from its definition in GC language. The extracted type is
enough to obtain the relevant information and reason about the compo-
nent’s behaviour without looking at its code anymore.

Below, we show first how to extract the type of the interfacing com-
ponent Krh, and then of the whole system Kpr.

Type extraction for Request handler Our types are the concatenation
of six matrices: the first and next-to-last matrices specify the component
interface; the second, the third, and the fourth matrices describe the de-
pendencies of the output ports of the component on the input ones; the
last matrix specifies the choice port (immaterial for base components).

The type of component Krh is the following:

Trh = Xrh
b .Lrh.Rrh.Frh.Y rhb [chrh]

1. Xrh
b =

[
x1(number) x2(name) x3(date) x4(reason) x5(date)

]
81

2. Lrh = {0}5x5

3. Rrh = {0}5x5

4. Frh=

NF11 :0 0 0 0 0

0 0 NF23 :0 0 0
0 0 0 0 0

NF41 :0 NF42 :0 0 NF44 :0 0
0 0 0 0 NF55 :0

5. Y rhb =

y1(y/n) :∞
y2(date) :∞
y3(date) :∞
y4(info) :∞
y5(date) :∞

6.
[
chrh

]
=
[
0
]

The matrix Xrh
b consists of a single row whose length is equal to the

number of input ports. Each element of this matrix stores the association
between the corresponding input port and the type of values that can be
received on it. For example, the element x1(number) denotes the fact that
the input port x1 can receive a numeric value.

The matrices Lrh and Rrh are always zero matrices for base compo-
nents (they are used to describe dependencies built upon the choice).

The matrix Frh contains the dependencies that exist only observing
the interfacing component, where none of the input values needed for
computing the output value goes through the protocol.

Since Krh is a base component, the dependencies either do not exist
(0 element of the matrix) or are “per-each-value” kind (NFij : 0). This
kind of dependency encodes the situation where a component needs to
receive values from all the input ports it depends on before producing a
value on some output port y.

More precisely, an element NFij : 0 represents a dependency for ith

element of the matrix Y rhb from the jth element of the matrix Xb. For
example, the element NF23 :0 above encode the fact that y2 depends x3.

The zero next to NFij represents the number of the so-called possible
values (always 0 for base components). These values are relevant for the
types of composite components when the protocol includes choices. In
this case, while extracting the type, we cannot ensure that some value
will arrive for computing the output value, but we know that depending
on a choice, it can happen.

82

Note that we are typing our components statically. For this reason,
both Nαij and pαij are equal to zero while extracting the type. However,
both represent the number of values received for computing the corre-
sponding output value.

The first one Nαij expresses the number of received values that for
sure will eventually be used for computing an output value. Whereas,
pαij counts the received values that might be used for computing the
output depending on a choice made by the component. Both counters
provide us with the number of values available at run-time for a given
port and they help us in proving the safety of our language.

The matrix Y rhb gives information on the types of the values produced
by the output ports and on the maximum number of values that can be
output. For example, the element y2(date) :∞ informs that from the port
y2 the component can produce values of the type date unlimited number
of times.

The last matrix declares the port in charge of sending or receiving the
choice (for base components is always 0).

Once we have the type of the interfacing component, we can extract
the type of the component Kpr (Figure 5) representing the whole system.

The type extraction for Passport renewal Since the input ports can al-
ways receive values, we focus on which conditions a composite compo-
nent can output a value in our type extraction procedure. We extract the
type of a component statically when values are yet to arrive. Consider
first the output port y11. From the graphical representation of component
Kpr in Figure 5, we have that the values received on the ports x11, x12 and
x14 are needed for computing the output for port y11 (per-each-value de-
pendencies). We also note that these values are forwarded to/from the
interfacing component from/to an external environment without pass-
ing through the protocol. Thus, we store the information about these
dependencies in the matrix F whose first row regards y11 (we discuss
below the second row regarding y21):

F =

[
0:0 0:0 0 0:0
0 0 0 0

]
The “box-emphasised” entries (0:0) announce the per-each-value de-

pendencies, where the values are still yet to be received. Instead, zero (0)
entries announce the absence of dependencies.

83

Now consider the output port y21. From the definition of Krh, we
have that the values produced by this port come from y5 of Krh. Hence,
we actually need to understand under which condition y5 produces val-
ues.

For this aim, recall the definition of the protocol G:

G = RH
a/d−−−→ADM(RH

date−−−→ADM ;RH
Av.d.−−−−→ADM ;ADM

App.d.−−−−−→RH, end)

and the matrices making up the type of component Krh:

Trh = Xrh
b .Lrh.Rrh.Frh.Y rhb [ch].

Consider also the local protocol LP returned by the protocol projection
operator and representing the behaviour of Krh driven by protocol G:

LP = y1!(a/d)(y2!(date).y3!(Av.d.).x5?(App.d.).end, end).

From the matrix Frh of Trh (the relevant entries are in red in the PDF),
we have the dependency N55 : 0, meaning that the output port y5 needs
values received on x5. Inspecting the definition of the local protocol LP
from right to left, we observe that Krh receives values on port x5 after
others interactions with Ka. These interactions may introduce further
dependencies. In particular:

• the input on x5 is preceded by an output on y3; from the matrix Frh
of Trh, this output does not depend on any inputs;

• the output on y3 is preceded by an output on y2; from the matrix
Frh of Trh, we know that y2 depends on external input port x3;

• the output on y2 is preceded by output on y1; from the matrix Frh
of Trh we have that port y1 depends on the external port x1.

Thus, these interactions create transitive dependencies of y21 on ports
x13 and x11. The steps to compute the dependencies described above are
summarised in Table 13.

84

Need Requirements Observation
y21! (forwarded from y5) x5? According to Trh

x5? y3! According to LP
y3! y2! According to LP

y2!
x13? (forwards to x3) According to Trh

y1! According to LP
x13? no requirements
y1! x11? (forwards to x1?) According to Trh
x11 right choice (Approval) According to LP

Table 13: Creating transitive dependencies-summary

Moreover, from local protocol LP we have that an output on
y1 is followed by a choice between the termination of interaction
(end) or the continuation of communication through the sub-protocol
(y2!(date).y3!(Av.d.).x5?(App.d.).end). Note also that a reception of a
value on port x5 is only possible if Kpr receives the approval of the
passport renewal and the right side of the protocol is executed.

The branch of the protocol to choose depends on the values produced
by y1 which result from the computation of function fcd on values from
port x1. In turn, x1 receives values from port x11 (via forwarders), so we
mark it as a choice port because it determines the branch taken by LP .

Therefore, all the dependencies of y21 (obtained via y5) are created
observing LP . Since selecting the “left side” of LP we do not have fur-
ther communications, the matrix L storing the left dependencies is zero.
Instead, when we select the “right side” of the protocol, y5 depends on
ports x13 and x11. Thus, we store this information in the matrix R. More-
over, note that our protocol G is a one-shot protocol (once the commu-
nication is established, there are no further communications), thus, the
obtained dependencies are initial ones. This means that the dependency
is dropped once an output port receives a value from the input port on
which it initially depends. Moreover, since x5 can receive only a value
according to LP , the maximum number of values that y21 can emit is 1,
and we record this bound in the matrix Yb.

Summing up, we “box-emphasise” the non-zero dependencies in ma-
trices R and F and the type of component Kpr is the following:

Tpr = Xb.L.R.F.Yb.[ch]

where

85

1. Xb =
[
x11(number) x12(name) x13(date) x14(reason)

]
2. L = {0}2x4

3. R =

[
0 0 0 0

Ω :0 0 Ω :0 0

]

4. F =

[
0:0 0:0 0 0:0
0 0 0 0

]

5. Yb =

[
y11(info) :∞
y21(date) :1

]
6.
[
ch
]

=
[
x11

]
In the matrices above we used red and green colors to distinguish the

non-zero dependencies of port y11 and port y21, respectively. In the ma-
trixRwe use the notation Ω:pij to represent an initial dependency, where
pij = 0 is the number of values received on the jth input port. However,
these values will be used to compute the output value for the ith output
port, if the component choices the right branch of the protocol. More-
over, since the arrival of values for the computation of the output port
y11 is not restricted by protocol, y11 can produce an unbounded number
of values (denoted with the bound∞ in the matrix Yb). Note that the ba-
sic types of the interface ports of Kpr match those of the interface ports
of Krh to/from whom values are forwarded (e.g. x1 ← x11).

Note that component Ka can have further interactions with other
components, but our focus here is on the interfacing one that interacts
with internal and external environment (Krh in this case). Moreover,
Krh and Ka can interact in a different way from the one we described.
For example, we can define a protocol that excludes the choice and lets
a person get an appointment regardless of approval/disapproval mes-
sage. The protocol we considered captures the most relevant scenario for
introducing our proposal.

Extending the passport system

Here, we extend the scenario presented above to the case where we want
to assemble components using a recursive protocol.

86

Passports are usually valid for ten years, and a person can lose her
passport more than once during this period. We define a new compo-
nent that uses the Passport renewal system above to book an appoint-
ment when a person loses her passport. In this case, the person gives
only the Name and the Renewal reason to the Renewal passport service,
whereas the new Passport number and the available date are provided by
another component, called Official database. The Official database sends the
Available date when the employee in charge of paperwork is at disposal.
In the end, the new component produces as output the Appointment for
the person, together with the Personal info collected if needed for further
communication.

Figure 7: Passport renewal off.

Definition of the new component Below we assume to have a base
component Kod for Official database and we compose it with Kpr intro-
duced above to obtain a new composite component Kpro (see Figure 7).
The communication between Passport renewal and Official database
is the following: each time a new person requests a new passport,
Official database sends the Passport number to Passport renewal, after
which sends the Available date. Formally, this protocol can be written as:

G′ = µX.OD
pass.num−−−−−−−→PR;OD

Av.d−−−→PR.X

87

where OD stands for Official database and PR for Passport renewal.
We assign the component Kpr to the role Passport renewal, and Kod to
the role Official database.

The definition of Kpro in GC language is the following:

Kpro = [x, x′ 〉 y′, y′′]{G′, R′, D′, r[F ′]}

where

� R′ = PR = Kpr, OD = Kod (Role assignments)

� D′ = PR.x11
pass.num←−−−−−−− OD.w′, PR.x13

Av.d.←−−−− OD.w′′ (Distribu-
tion binders)

� F ′ = x12 ← x, x14 ← x′, y′ ← y11 and y′′ ← y21 (Forwarders)

The component Kpro has two input ports x and x′ and two output ports
y and y′; the input port forward values to ports x12 and x14 of Kpr; the
output ports y and y′ receive values from y11 and y21, respectively.

Type extraction forKpro Extracting the type of a composite component
is quite challenging, especially in the case where we compose composite
components with others. The problem comes when we have an inter-
facing component whose type has a choice port different from zero. In
those cases, we need to restrict how to compose such components. The
reason behind this restriction is to ensure that we can extract the choice
port from the new-built component for further composition.

Consider the type Tpr of the interfacing component Kpr described
above, and the local protocol LP ′ obtained projecting G′ on Kpr:

LP ′ = µ.X.x11?(num).x13?(date).X

The choice port x11 of component Kpr is the part of the description of
LP ′. This means that x11 is the port in charge of the internal communi-
cation. In this case, we need to have an external port that announces the
choice made internally, and we do it by checking the following:

• There exists some external output port that depends on that input
choice port (the external output port yi1 depends on x11 according
to Tpr);

88

• If such a port exists, it must be the case that their dependency
does not depend on internal choices of component Kpr (formally,
∀1≤k≤4 : dLik = 0 ∧ dRik = 0, see Section 4.2). This is true according
to Tpr.

Now we can say that in the extracted type of component Kpro we find
the port y11 as the choice port. The set of the interfacing input ports is
{x12, x14}, where x12 receives values from port x and x14 from x′.

To extract the type, we need to consider under which conditions the
output ports y′ and y′′ can produce values. First, we focus on port y′. As
prescribed by forwarders F , this port gets values from port y11 of Kpr.
In turn, from the matrix F of Tpr we have that port y11 depends on both
x12 and x14, and consequently on the two external ports x and x′.

Since the protocolG′ is not branching, we have that each time a value
is received on x12 (from x) and on x14 (from x′), it used for computing the
value of y11 (and of y′ consequently). We observe only the dependencies
on the external ports, so we can say that y′ depends on x and x′, where
each time a value is received on both ports, y′ can perform an output.
Moreover, since the protocol is recursive, each time a value is received
on x11, it is used for computing y11 (y′).

Since there is no bound on the number of values that can be received
(the external environment can continually produce new ones, and the
recursive behaviour of the protocol enables reception of new values in
each iteration), the component is able produce unlimited number of val-
ues from port y′.

Consider now port y′′, which receives values from port y21. Accord-
ing to the type of Kpr (matrices R and

[
ch
]
), y21 depends on x11 and

x13 and receives values from them only if the internal protocol of Kpr

makes the adequate choice. Both ports x11 and x13 are used for internal
communication between components Kpr and Kod. Since local protocol
LP ′ is recursive, we get a value on x11 and x13 for computing a value for
y21 in each iteration. However, the dependency between x11 (x13) and
y21 in matrix R of Tpr is an initial one: it tells us that if the component
makes the right choice the dependency is dropped, after receiving one
value. Moreover, from Tpr we know that y21 can produce only one value,
it does not depend on any interfacing port, that we capture in our types,
but depends on a choice.

In this case, we make a per-each-value dependency on the interfacing
input ports for y21, giving the unbounded number of possible values,
where when the right choice is made once, one of the possible values

89

becomes the actual value used for computing the output on y21.
Summing up, the type of component Kpro is then:

Tpr = X ′b.L′.R′.F′.Y ′b .[ch′]

1. X ′b =
[
x(name) x′(reason)

]
2. L′ = {0}2x2

3. R′ =

[
0 0

0:∞ 0:∞

]

4. F′ =

[
0:0 0:0
0 0

]

5. Y ′b =

[
y′(info) :∞
y′′(date) :1

]
6.
[
ch′
]

=
[
y′
]

Matrix R′ contains the abstract dependencies 0 :∞, announcing that
the port y′′ does not actually depend on ports x and x′, but on the choice,
and that it is going to be able to produce a value if the component makes
a right choice.

Remark. Components from the example of Section 3.1 can be described
in IC type language, where components from this section cannot be de-
scribed in EC type language, because of the lack of the information in the
type description. We can say that the amount of components that can be
typed in EC language is a subset of those that can be typed in IC type
language.

We can “translate” the first type language into the second one.

Example 4.1.1. Let us recall the type from Subsection 3.1

TPortal =< Xb; C >
Xb = {xp(image), x′p(class)}
C = {C1, C2, C3}
C1 = yp(image) :∞ : [{xp :Np}]
C2 = y′p(class) :∞ : [{x′p :N ′p}]
C3 = y′′p (version) :∞ : [∅]

90

This type in IC language is translated into:
TPortal = Xb.[0].[0].F.Yb.[0]

Xb = {xp(image), x′p(class)}

F =

Np :0 0 :0
0:0 N ′p :0
0 :0 0:0

Yb =

 yp(image) :∞
y′p(class) :∞
y′′p (version) :∞

4.2 Formal introduction of IC type language

In this section we present the syntax and the semantics of the language.
Then, in the next sections we present two procedures that define how to
extract the type of a component. The first procedure is for base, and the
second one is for composite components.

4.2.1 Syntax of IC type language

In this section, we formally present our type language to describe the
behaviour of GC components. We first introduce the syntax and then, in
the following section, the operational semantics of our types.

The syntax of our types is in Table 14. The type of a component is
a sequence of five matrices and a choice port. The first Xb and the last
matrix Yb represent the interface of a component. The matrix Xb is a row
matrix that has m elements representing the input ports of the compo-
nent and the basic types b1j of the values that can be received. Similarly,
Yb is a column matrix of size n and contains the output ports with the
basic types bi1 of values they produce and their capabilities Bi1. A capa-
bility represents the maximum number of values that an output port can
produce at run-time. We denote with N a finite bound and with ∞ an
unbounded capability.

The middle three matrices ranged over α = {L,R,F} encode the de-
pendencies among ports. In the case of composite components, matrices
L and R record the dependencies on the choices made by a protocol or
an internal component. The existence of one entails the existence of the

91

other one. If both are zero, emitting values from any output port does
not depend on a choice. The matrix F instead represents dependencies
that exist regardless of any choice. Note that these matrices are always
zero for base components but not for composite ones.

All three matrices are of the same size n×m, where m is the number
of columns of Xb, and n is the number of rows of Yb. The underlying
idea is that kth column refers to a kth element of Xb, and that the qth row
refers to the qth element of Yb. In this way, an element dαi,j in the matrix
α represents the dependency of the output port yi1 on the input port x1j .

The dependencies can be of three kinds: a zero dependency denoted by
0 means the absence of dependency; a initial one, in symbols Ω : pαij , says
that the port yi1 needs only one actual value received on xj for producing
its first value, after which the dependency is dropped (observing the ma-
trix α); and per-each-value dependency, in symbols Nαij : pαij , says that
each value emitted by yi needs one actual value received on xj . When we
type a component at a static time, Nαij is always zero, but at run-time, it
tracks the number of values available on x1j . This tracking helps prove
the safety of our language.

A value pαij appearing in a dependency is called possible value, and
counts the number of values received on x1j that are possibly used for
yi1. More precisely, pαij represents the values that could reach yi1 de-
pending on the choices made by an internal component or by the proto-
col. LikeNαij , pαij is zero at static time, and it is incremented at run-time.

The last syntactic element of a type is the so-called choice port ch that
says from which port we get the information about the choice made in-
ternally by a component. Note that this port is one belonging to the in-
terface of the component or it is zero when there is no choice.

4.2.2 Semantics of IC type language

We now describe the operational semantics of our type language needed
to show that our types truly capture component behaviour. The seman-
tics is given by means of a LTS whose labels λ are defined by the follow-
ing grammar:

λ = x1j? | x1j(b1j)? | yi1(bi1)! | τ.

The label x1j? denotes an input on port x1j where we do not record the
type of the value; x1j(b1j)? represents an input of a value of type b1j ; label
yi1! is an output from the port yi1 of any type and yi1(bi1)! represents an
output of a value of type b; finally, τ captures an internal step.

92

Type T
∆
= Xb.L.R.F.Yb[ch]

Input interfaces Xb
∆
= {x1j(b1j)}1×m

Output interfaces Yb
∆
= {yi1(bi1) : Bi1}n×1

Choice-related dependencies L.R ∆
= {dLij}n×m.{dRij}n×m

Choice-free dependencies F = {dFij}n×m
Dependencies dαij ::= 0 | Ω : pαij | Nαij : pαij
Choice port ch ::= 0 | x1j(b1j)∈Xb | yi1(bi1) :Bi1∈Yb
Boundary Bi1, pαij ::= N | ∞
Additional variables N,Nαij ∈ N0 α ∈ {L,R,F}

i ∈ {1, ..., n}, j ∈ {1, ...,m};m,n ∈ N
Table 14: Type syntax (IC type language)

Let A = {aij}n×n be a matrix, we denote with [akj] and with (aik) the
kth row and the kth column of A, respectively.

We now introduce an auxiliary operation that we use in the semantic
rules to decrement the number of values available in a per-each-values
dependency. Let T = Xb.L.R.F.Yb.[ch] be a type, where Yb = (yk1(bk1) :
Bk1), 1 ≤ k ≤ n. Let k be the index of the row containing a per-each-value
dependencies (Nαkj : pαkj) or zeros for all α ∈ {L,R,F}; let Nαkj > 0 for
all j ∈ {1, ...,m} and Bk1 > 0. We define shrink(L,R,F, Yb, k) on the
elements of a type as follow (we overload the shrink to work also on
matrices and its elements):

shrink(L,R,F, Yb, k)
∆
=

shrink(L, k).shrink(R, k).shrink(F, k).shrink(Yb, k)

shrink(Nαkj : pαkj , k)
∆
= Nαkj − 1 : pαkj

shrink(Nαkj : pαkj , s)
∆
= Nαkj : pαkj s 6= k

shrink(0, k)
∆
= 0

shrink([dαkj], k)
∆
= [shrink(dαkj , k)]

93

shrink(α, k)
∆
=

[dα1j]
...

shrink([dαkj], k)
...

[dαnj]

shrink(Yb, k)
∆
=

y11(b11) : B11

...
yk1(bk1) : Bk1 − 1

...
yn1(bn1) : Bn1

Intuitively, the operation defined above goes inside the structure of
each matrix, except the matrix Xb. If a dependency is found in any of
the matrices L,R or F is zero, the shrink operation returns the zero as it
was. Otherwise, this operation decrements two counters: the number of
values received from the per-each-value dependencies and the number
of values that can be produces from the input port, all of them of the row
index by k.

Table 15 shows the rules of the type semantics. We have two levels
of rules: those that describe how the entry of a matrix evolves and those
that describe the behaviour of types. A description of the rules of the
first level is in order. Rule [InpZero] says that if the element in the jth

column of a matrix L,R or F is zero, it remains zero after an input of a
jth element of a matrix Xb. In other words, if yi1 had no dependencies
on x1j , the input on that port does not create a new one. Rule [InpDisc]
states that the input of the kth element from the matrix Xb does not have
an impact on the dependencies found in a column different from k in
the dependency matrices. This comes from labelling the dependencies
(dij) in such a way that the column index (j) points to the input port
on which the output port pointed with the row index (j) depends on.
Rules [InpIntF] and [InpPevF] describe dependencies that exist regard-
less of a choice. If the dependency is initial (rule [InpIntF]), after an
input on the corresponding port, the dependency is dropped. Instead,
if the dependency (rule [InpPevF]) is of kind per-each-value, the input
increments by one the number of values available for the port yij .

94

dαij = 0

dαij
x1j?−−−→ dαij

[InpZero]
k 6= j

dαij
x1k?−−−→ dαij

[InpDisc]
dFij = Ω : pFij

Ω : pFij
x1j?−−−→ 0

[InpIntF]

dFij = NFij : pFij

NFij : pFij
x1j?−−−→ NFij + 1 : pFij

[InpPevF]
T

τ−→ T
[InpInter]

dβij = Ω : pβij β ∈ {L,R}

Ω : pβij
x1j?−−−→ Ω : pβij + 1

[InpIntLR]

dβij = Nβij : pβij β ∈ {L,R}

Nβij : pβij
x1j?−−−→ Nβij : pβij + 1

[InpPevLR]

∀i ∈ {1, ..., n}, ∀j ∈ {1, . . . ,m} α ∈ {L,R,F}
α = {dαij}n×m dαij

x1p?−−−→ d′αij ∧ x1p(b1p) ∈ Xb

Xb.L.R.F.Yb[ch]
x1p(b1j)?−−−−−−→ Xb.{(dLij)′}.{(dRij)′}.{(dFij)′}.Yb[ch]

[InpT]

∀j ∈ {1, ...,m} dαij = Nαij : pαij ∨ dαij = 0 Bi1, Nαij > 0
i ∈ {1, ..., n} ∧ yi1(bi1) : Bi1 ∈ Yb

Xb.L.R.F.Yb[ch]
yi1(bi1)!−−−−−→ Xb.shrink(L,R,F, Yb, i)[ch]

[OutT]

Table 15: Type semantics (IC type language)

Instead, when we input on a port x1j and the dependencies in matri-
ces L andR are different than zero, they evolve by increasing the number
of possible values by one for each entry in their jth column. Note that
this increment occurs both when the entry represents a per-each-value
dependency (rule [InpPevLR]), and the initial one (rule [InpIntLR]).

Then, we have the rules that capture the type behaviour.
Rule [InpInter] always allows a type to perform an internal step τ
and to remain unchanged. Rule [InpT] deals with input actions: if all
the entries of the matrices L,R and F can perform an input on x1j , then
the whole type can input on that port a value of type b1j as indicated
in the interface. Rule [OutT] allows a type to carry out an output on
port yi1 when the following conditions are met: (i) the ith rows of the

95

matrices L,R and F contain only 0 or per-each-value dependencies; (ii)
the number of values available for the computation of the ith output
port is greater than zero; and (iii) the constraint for the ith output port
is greater than zero. After the output the type evolves by updating the
entries of matrices L,R,F and Yb using the shrink operation.

Example 4.2.1. Let us recall the type of component Kpr of Section 4.1

Tpr = Xb.L.R.F.Yb.[ch]

where

Xb =
[
x11(number) x12(name) x13(date) x14(reason)

]
L = {0}2x4 R =

[
0 0 0 0

Ω:0 0 Ω:0 0

]
F =

[
0:0 0:0 0 0:0
0 0 0 0

]
Yb =

[
y11(info) :∞
y21(date) :1

] [
ch
]

=
[
x11

]
This type may evolve upon the reception on the port x11 as follows:

dL11 = 0

dL11
x11?−−−→ 0

[InpZero]
dR21 = 0

dL21
x11?−−−→ 0

[InpZero]

dR11 = 0

dR11
x11?−−−→ dR11

[InpZero]
dR21 = Ω : 0

dR21
x11?−−−→ Ω : 1

[InpIntLR]
dF11 = 0 : 0

dF11
x11?−−−→ 1 : 0

[InpPevF]

For the rest of dependencies we apply the following rule:

dαij
x1k?−−−→ dαij

[InpDisc]

We now apply the last rule:

∀i ∈ {1, 2}, ∀j ∈ {1, 2, 3, 4, } ∀α ∈ {L,R,F}
α = {dαij}2×4 dαij

x11?−−−→ d′αij ∧ x11(number) ∈ Xb

Xb.L.R.F.Yb[x11]
x11(number)?−−−−−−−−−→ Xb.L′.R′.F′.Yb[x11]

[InpT]

where

L′ = {0}2x4 R′ =

[
0 0 0 0

Ω:1 0 Ω:0 0

]
F′ =

[
1:0 0:0 0 0:0
0 0 0 0

]
96

4.3 IC type extraction for base components

The type extraction is a procedure that given a component in GC language
infers its type. Here, we focus on base components keeping in mind their
reactive behaviour. Next section describes the procedure for composite
components.

The extraction procedure for base components starts by inferring the
types of values associated to the communication ports, then it focuses
on their dependencies, while checking that their usage is consistent
throughout. Hereafter, we assume that every output port is associated
with a local binder and that each local binder is associated with a port of
the component interface.

In the definition of type extraction we use the auxiliary functions γ(·)
and count(x, σ̃). The function γ(·) maps values, ports, functions and local
binders to their respective types. Hereafter, we also extend γ for lists
in which case we obtain the list of respective types, e.g., γ(1, hello) =
integer , string .

The function count(x, σ̃), given a local binder y = f(x̃) < σ̃, returns
the number of values available to y for each of the ports in x̃. The re-
turned value corresponds to the number of elements in σ̃ that have a
binding for x. Formally, let X be the set of ports and Σ the set of lists of
mappings from ports to values. Then, the function count : X × Σ → N0

is defined as follows:

count(x, σ̃) =

j if σ̃ = σ1, . . . , σj , σj+1, . . . , σl ∧

x ∈
⋂

1≤i≤j dom(σi) ∧ x /∈
⋃
j+1≤i≤l dom(σi)

0 otherwise

Note that the mappings in σ̃ are handled according to a FIFO discipline,
so the first (oldest) mappings are the ones that we need to account for.

Now we can define type extraction for base components:

Definition 4.3.1 (Type Extraction for a Base Component).
Let C = [x̃ > ỹ]{y1 = fy1(x̃y1) < σ̃y1 , . . . , yk = fyk(x̃yk) < σ̃yk} be a

base component, where ỹ = y1, y2, . . . , yk. If there exists γ such that γ(x̃) = b̃

and γ(y1) = b′1, . . . , γ(yk) = b′k and provided that γ(fyi) = b̃yi → b′i and that
b̃yi = γ(x̃yi) for any i ∈ 1, . . . , k, then the type of C is

Xb.{0}n×m.{0}n×m.F.Yb.[0]

where

97

� Xb = {x1j(b1j)}1×m for x1j ∈ x̃ and b1j = γ(x1j);

� F = {dFij}n×m where dFij =

{
count(x1j , σ̃

yi1) :0 if x1j ∈ x̃yi1
0 otherwise

� Yb = {yi1(bi1) :∞}n×1 for yi1 ∈ ỹ and bi1 = γ(yi1).

In the definition above the list of local binders is specified in such a
way that each function (fyi), its parameters (x̃yi) and the list of mappings
(σ̃yi) are indexed with the relevant output port (yi). We assume γ to
provide the list of basic types for the input ports, (γ(x̃) = b̃), for the
output ports (γ(y1) = b′1, . . . , γ(yk) = b′k), and for each function fyi . Then,
we require that the return type of each fyi matches the one of yi (i.e., b′i);
and that the types of the parameters of fyi (b̃yi) match the ones of input
port parameters (γ(x̃yi)).

The type obtained by the extraction procedure has matrices L and R
equal to zero as well as the choice port. This is always the case for base
components since there are no protocols in their implementation. The
matrixXb contains a row for each input ports occurring in the component
interface together with the basic type returned by the function γ(·). The
elements of the matrix Yb are obtained in a similar way but they also
include the maximum number of values that can be produced by each
port, that for a base component is always unbounded (local binders can
potentially perform computations indefinitely).

The elements of the matrix F are per-each-value dependencies
count(x1j , σ̃

yi1) : 0 if x1j is in the list of arguments of function fyi1 ,
otherwise they are zeros. Note that in a per-each-value dependency
count(x1j ,) is the number of actual values received on input port x1j . The
number of possible values is always zero in the case of base components.

From an operational perspective, the type extraction procedure of
Definition 4.3.1 can be implemented in the same way as is Section 3.3.

Example 4.3.1. Consider our running example from Section 4.1, in particular,
component Krh specified as

Krh = [I]{W}

� I = x1, x2, x3, x4.x5〉y1, y2, y3, y4, y5

� W = y1 = fcd(x1), y2 = fuad(x3), y3 = f(), y4 = fiu(x1, x2, x4), y5 =
fad(x5)

98

Let us take γ such that γ(x1, x2, x3, x4, x5) = number, name, date,
reason, date and γ(y1) = y/n, γ(y2) = date, γ(y3) = date, γ(y4) = info
and γ(y5) = date. We know that function fcd takes a number and gives an
y/n in return, hence γ(fcd) = number → y/n. Similarly, we also know
that function fuad is typed as γ(fuad) = date → date; function fiu is typed
as γ(fiu) = number, name, reason → info; and function fad is typed
as fad = date → date. Function f does not have any parameters hence
γ(f)=()→ date. The extracted matrix Xrh

b of input ports with their types is[
x1(number) x2(name) x3(date) x4(reason) x5(date)

]
and the extracted matrix Y rhb of output ports with their types and boundaries is[
y1(y/n) :∞ y2(date) :∞ y3(date) :∞ y4(info) :∞ y5(date) :∞

]T
Assume that the component is in the initial (static) state, so the queues of lists of
mappings are empty (i.e., σ̃y1 = σ̃y2 = σ̃y3 = σ̃y4 = σ̃y5 = ·). Hence, we have
that count(x1, σ̃

y1) = count(x3, σ̃
y2) = count(x1, σ̃

y4) = count(x2, σ̃
y4) =

count(x4, σ̃
y4) = count(x5, σ̃

y5) = 0. The extracted matrix of dependencies
Frf is then

Frh=

0:0 0 0 0 0
0 0 0:0 0 0
0 0 0 0 0

0:0 0:0 0 0:0 0
0 0 0 0 0:0

and the extracted type of the component is

Trh = Xrh
b .{0}5×5.{0}5×5.Frh.Y rhb [0]

.

4.4 IC type extraction for composite compo-
nents

Capturing the behaviour of a composite component is quite challenging
due to the presence of choices in protocols. The type extraction for the
composite components can be done in five steps. Below, we explain each
of them separately.

99

4.4.1 Step 1: Local protocol computation

The extraction procedure for composite components targets the interfac-
ing component, which interacts with the external world via forwarders
and with other internal components via the protocol.

This step of the algorithm mainly aims at identifying precisely how
the interfacing component should interact with the other ones according
to the global protocol. To do achieve that, we introduce the notion of
local protocolsLP to represent how components interact through a given
global protocol.

These protocols result from the projection of a (global) protocol on the
specific role of a component [5]. This step outputs the local protocol of
the interfacing component.

The syntax of local protocols LP is:

LP ::=x?(b).LP | y!(b).LP | µX.LP | X | end |
| x?(b) &(LPinl, LPinr) | y!(b)⊕ (LPinl, LPinr).

A term x?(b).LP denotes a reception of a value of type b on port x, upon
which the interaction continues according to the continuation LP . Sim-
ilarly, a term y!(b).LP represents an output on port y. Then, we have
standard constructs for recursion, recursion variable and protocol ter-
mination (end). The term x?(b) &(LPinl, LPinr) denotes the input of a
choice on the port x of a value of type b, after which the communication
continues according to LPinl or LPinr. The term y!(b) ⊕ (LPinl, LPinr)
is similar, but for the output of a choice. To simplify the formal devel-
opment, hereafter we restrict ourselves to consider only global protocols
that have at most one recursion and one branching (selection). Conse-
quently, also the projected local protocols respect these restrictions. We
also assume that message labels can appear at most once in a global pro-
tocol specification (up to unfolding of recursion), so that ports occur only
once in projected local protocols (also up to unfolding).

Note that we do not lose generality because we can always transform
a generic protocol description by renaming the labels so as to satisfy the
previous assumption.

We introduce some notation useful for the definition of the type ex-
traction. The first one is the notion of contexts for local protocols (exclud-
ing recursion), in symbols C[·]. Intuitively, a context is a local protocol
with a hole that is filled in by the term we want to highlight. Formally, a

100

context C is defined as follow:

C[·] ::= x? : b.C[·] | y! : b.C[·] | · .

Below we use contexts to abstract from the entire local protocol and focus
on specific parts. Finally, we denote with fp(LP) the ports appearing in
a local protocol, and with rep(LP) the ports that occur in a recursion
(µX.LP), formally

fp(LP)
4
= {z|LP = C[z?.LP ′] ∨ LP = C[z!.LP ′] ∨ LP = C[µX.C′[z?.LP ′]]

∨LP = C[µX.C′[z!.LP ′]] ∨ C[&(LP ′, LP ′′)] ∨ C[⊕(LP ′, LP ′′)]}

rep(LP)
4
= {z|LP = C[µX.C′[z?.LP ′]] ∨ LP = C[µX.C′[z!.LP ′]]}

4.4.2 Step 2: Checking composition

Base components can always take part in a composition, as long as they
are able to carry out the prescribed protocol that governs the interaction.
However, when we compose composite components multiple times, we
must pay some attention. Indeed, after the first composition, new issues
may arise: encapsulating the new-composed components might lead to
loosing track of the source of a choice. This may require that to correctly
track the source of a choice we need to type check a component more
than once. However, tracking all the choices may require revealing some
implementation details of a component that may hinder the encapsula-
tion properties that we want to ensure. For this reason, we decide to de-
tect the components that suffer from this problem and reject them during
the type extraction. The goal of this step of algorithm is exactly to detect
and reject such ‘’bad” components.

Below, we first discuss the conditions that a component and a com-
position need to fulfil in order to be typed.

Note that extracting a component’s type is challenging also with our
restrictions. Moreover, the second or the third level of the composition
might make the internal choice invisible to the external environment,
hence, making hard describing the component’s behaviour.

Let K ′ = [x̃ 〉 ỹ]{G;R;D; r[F]} be the composite component that we
are about to type. Let K be its interfacing component with the following
type T

T = Xb.L.R.F.Yb.[ch],

101

and let LP be the local protocol of component K (the projection of G to
role associated to K).

In the following, LP�ch denotes a local protocol LP that includes no
branching and no selection term. Formally, LP�ch is such that

LP 6= C[z1j?(b) &(LP1, LP2)] ∧ LP 6= C[yi1!(b)⊕ (LP1, LP2)] ∧ LP 6=

C[µX.z1j?(b) &(LP1, LP2)] ∧ LP 6= C[µX.yi1!(b)⊕ (LP1, LP2)].

We have 5 different cases to determine whether K ′ can be typed de-
pending on the choice port ch:

[Case 1.] ch = 0. In this case we know that there is no branching in
the implementation of the interfacing component K, hence,

T = Xb.{0}.{0}.F.Yb.[0].

We identify other 5 cases depending on the shape of the local pro-
tocol LP :

[Case 1.(a)] LP = LP�ch. It is enough to ensure that the com-
ponentK can carry-out the protocol LP by observing the con-
formance relation (see below).

[Case 1.(b)] LP = C[x1k &(LP1, LP2)]. Since K is the interfac-
ing component, it has to expose its choice to the external envi-
ronment. We require the existence of an external output port
yi1 of K which informs us about the internal choice (whose
output does not depend on any choice), and which depends
on x1k, formally,

∃yi1(bi1) :Bi1∈Yb |F =y′i1 ← yi1, F
′∧dLik 6=0∧ ∀m(dRim, d

L
im=0)

Note: y′i1 becomes a choice port of K ′.

[Case 1.(c)] LP = C[yi1 ⊕ (LP1, LP2)]. If the protocol requires
component K to output its choice, then the output port yi1
must depend on some external input port. Formally,

∃x1k(b1k)∈Xb | F =x1k ← x′1k, F
′∧dFik 6=0 ∧ ∀m(dRim, d

L
im=0)

Note that x′ik becomes a choice port of K ′.

102

[Case 1.(d)] LP = C[µX.x1k &(LP1, LP2)]. The conditions are
the same as in Case 1.(b), but in addition we require the ex-
istence of a per-each-value dependency between yi1 and x1k,
formally:

∃yi1(bi1) :Bi1∈Yb | F = y′i1 ← yi1, F
′ ∧ dFik=Nik :pik ∧

∀m(dRim, d
L
im=0)

Note that y′i1 becomes a choice port of K ′.
[Case 1.(e)] LP = C[µX.yi1 ⊕ (LP1, LP2)]. The conditions are
the same as in Case 1.(c), but we also require a per-each-value
dependency of yi1 on some external input port x1k:

∃x1k(b1k) ∈ Xb | F = x1k ← x′1k, F
′ ∧ dFik = Nik : pik ∧

∀m(dRim, d
L
im = 0)

Note that x′1k becomes a choice port of K ′.

[Case 2.] ch is an input port xik. In this case, we know that K inter-
nally performs a choice, but the information about it is provided to
K by another subcomponent of K ′. Then, the only cases we con-
sider are the ones where LP is described as in Case 1.(b) and Case
1.(d) but where we now have that ch = xik. The reasoning and
the conditions are the same with the difference that now we do not
create a choice port, but we “replace it” with y′i1, for the new type.

[Case 3.] ch is an output communication port yi1. The only cases
we consider are the ones where LP is described as in Case 1.(c)
and Case 1.(e) but where we now have that ch = yi1. Thus, we
“replace” choice port yi1 with x′1k, for the new type.

The following two cases refer to the choice port of the type T (the type
of the interfacing component) that forward their values together with a
choice to/from the external environment.

[Case 4.] Let ch be an interfacing input port such that ch = x1k and
F = x1k ← x′1k, F

′. We have three different cases depending on the
local protocol LP :

[Case 4.(a)] LP = LP�ch. We check the compatibility using the
conformance relation. For the new composite component, the
choice port is x′1k.

103

[Case 4.(b)] LP = C[x1j &(LP1, LP2)] or
LP = C[µX.x1k &(LP1, LP2)]. We do not compose K, since
the component has to choose between the choice that comes
internally and externally.
[Case 4.(c)] LP = C[yi1 ⊕ (LP1, LP2)] . It must be that yi1
depends on a choice port x1k. Moreover we require that there
are no ports on which yi1 depends that in turn depend on the
internal choice of K. Formally,

dFik 6= 0 ∧ ∀m(dRim = 0 ∧ dLim = 0)

[Case 4.(d)] LP = C[µX.yi1 ⊕ (LP1, LP2)]. If the protocol re-
quires component to output its choice, then the output port
must depend on some external input port. So, also require a
per-each-value dependency of yi1 on external input port x1k:

dFik = Nik : pik ∧ ∀m(dRim = 0 ∧ dLim = 0)

[Case 5.] Let ch be an interfacing output port such that ch = yi1
and F = y′i1 ← yi1. We have the following four cases:

[Case 5.(a)] LP = C[yi1 ⊕ (LP1, LP2)] or LP = C[µ.Xyi1 ⊕
(LP1, LP2)]. In this case we do not compose the component
further, since it might happen that it has to chose between
choice made internally and externally.

[Case 5.(b)] LP = LP�ch, then it must exist an input port x1k

such that
dLik 6= 0 ∧ ∀m(dRim = 0 ∧ dLim = 0)

[Case 5.(c)] LP = C[x1k &(LP1, LP2)]. In this case we have
that yi1 depends on x1k, and must not depend on any port
whose values are received depending on the choice the com-
ponent K makes. Formally,

dLik 6= 0 ∧ ∀m(dRim = 0 ∧ dLim = 0)

[Case 5.(d)] LP 6= C[µX.x1k &(LP1, LP2)]. In this case, yi1 has
a per-each-value dependency on x1k, and must not depend on
any port whose values are received depending on the choice
the component K makes. Formally,

dLik = Nik :pik ∧ ∀m(dRim = 0 ∧ dLim = 0)

104

The choice port of the composite component is y′i1.

Example 4.4.1. Consider component

Kpr = [x11, x12, x13, x14 〉 y11, y21]{G;R; ; r[F]}

R = RH = Krh, ADM = Ka

D = ADM.z1
a/d←−−− RH.y1, ADM.z2

date←−−− RH.y2, ADM.z3
Av.d←−−−

RH.y3,

RH.x5
App.d←−−−− ADM.w1

F = x1 ← x11, x2 ← x12, x3 ← x13, x4 ← x14, y11 ← y4 and
y21 ← y5

introduced in Section 4.1 and its type

Tpr = Xb.L.R.F.Yb.[ch]

where

1. Xb =
[
x11(number) x12(name) x13(date) x14(reason)

]
2. L = {0}2x4

3. R =

[
0 0 0 0

Ω:0 0 Ω:0 0

]

4. F =

[
0:0 0:0 0 0:0
0 0 0 0

]

5. Yb =

[
y11(info) :∞
y21(date) :1

]
6.
[
ch
]

=
[
x11

]
Since it uses x11 as a choice port, it cannot be in a composition governed

by a protocol G = K
name−−−−→PR(G1, G2), because Kpr would have to choose

between an internal and an external choice.

105

4.4.3 Step 3: Checking the conformance with the protocol

This step checks whether the interfacing component is able to fulfill its
task, namely it is compliant with the protocol. Intuitively, a component is
compliant when it can perform the actions specified by its local protocol.
Below, we formalise this fact by introducing the notion of conformance
relation. In practice, given a component and a local protocol this step of
the algorithm verifies that the conformance relation holds.

However, there is the following technical issue we need to address.
The interfacing component, beside interacting with the others, also inter-
acts with the external environment; and, given the reactive nature of our
components, the interfacing component can receive in any moment val-
ues that are external input. To take into account this ability, we modify
our types as if the external values are already received unlimited number
of times. So, to check the conformance between the interfacing compo-
nent and the protocol, we observe its modified type and its local protocol
instead of the actual type. Below, we first introduce the notion of mod-
ified types, and then we formalise when a type is complaint to a local
protocol.

Modified types

We modify the type of a (interfacing) component to receive inputs from
the external environment without any constraints. The modified version
of type T for a list of forwarders F is denoted by T (F, T). In the modi-
fied type T (F, T), each dependency on the external input ports, if any, is
a per-each-value dependency, and the number of values available is un-
bounded. Also, we assume that a value is received whenever available
on the external input ports. Formally,

Definition 4.4.1. Let [x̃ > ỹ]{G; r = K,R;D; r[F]} be a composite com-
ponent, and let T = Xb.L.R.F.Yb.[ch] be the type of the interfacing subcom-
ponent K, then T (F, T) is the T -modified type of T defined as follows for

106

α ∈ {L,R,F}:

T (F,Xb.L.R.F.Yb.[ch])
∆
= Xb.T (F,L.R.F).Yb.[ch]

T (F,L.R.F)
∆
= T (F,L).T (F,R).T (F,F)

T (F, {dαij})
∆
= {T (F, {dαij})}

T (F, dαij)
∆
= dαij if x1j /∈ F i

T (F,Nαij :pαij)
∆
= ∞ :pαij if x1j ∈ F i

T (F,Ωαij :pαij)
∆
= 0 if x1j ∈ F i

T -Type syntax The syntax of T -types is similar to the one presented of
Section 4.2, with a difference in the number of values received, because
now they can be unbounded (infinite).

Type T ∆
= Xb.L.R.F .Yb[ch]

Input interfaces Xb
∆
= {x1j(b1j)}1×m

Output interfaces Yb
∆
= {yi1(bi1) : Bi1}n×1

Choice-related dependencies L.R ∆
= {dLij}n×m.{dRij}n×m

Choice-free dependencies F = {dFij}n×m
Dependencies dαij ::= 0 | Ω : pαij | Nαij : pαij
Choice port ch ::= 0 | x1j(b1j) ∈ Xb | yi1(bi1) : Bi1 ∈ Yb
Boundary Bi1, pαij ,Nαij ::= N | ∞
Additional variables N ∈ N0 α ∈ {L,R,F}

i ∈ {1, ..., n}, j ∈ {1, ...,m};m,n ∈ N
Table 16: T -Type syntax (IC type language)

107

T -Type semantics (IC type language) The rules defining the semantics
of modified types are the same as the ones shown in Table 15.

dαij = 0

dαij
x1j?−−−→ dαij

[InpZero]
dαij

x1k?−−−→ dαij

[InpDisc]
dFij = Ω : pFij

Ω : pFij
x1j?−−−→ 0

[InpIntF]

dFij = NFij : pFij

NFij : pFij
x1j?−−−→ NFij + 1 : pFij

[InpPevF]
T

τ−→ T
[InpInter]

dβij = Ω : pβij β ∈ {L,R}

Ω : pβij
x1j?−−−→ Ω : pβij + 1

[InpIntLR]

dβij = Nβij : pβij β ∈ {L,R}

Nβij : pβij
x1j?−−−→ Nβij : pβij + 1

[InpPevLR]

∀i∈{1,...,n}, ∀j∈{1,...,m}, ∀α∈{L,R,F}

dαij
x1j?−−−→ d′αij ∧ x1j(b1j) ∈ Xb

Xb.L.R.F.Yb[ch]
x1j(b1j)?−−−−−−→ Xb.{(dLij)′}.{(dRij)′}.{(dFij)′}.Yb[ch]

[InpT]

∀j∈{1,...,m} dαij=Nαij :pαij∨d
α
ij=0 Bi1,Nαij>0

i ∈ {1, ..., n} ∧ yi1(bi1) :Bi1 ∈ Yb

Xb.L.R.F.Yb[ch]
yi1(bi1)!−−−−−→ Xb.shrink(L,R,F, Yb, i)[ch]

[OutT]

Table 17: T -Type semantics (IC type language)

Note that given a composite component K, the types of all the other
subcomponents are unmodified (formally, K1 ⇓ Tr2 , . . . ,Kn ⇓ Trn) so,
we have that

T (F, Tr2) = Tr2 , . . . , T (F, Trn) = Trn

since the only component that forwards the values from/to external en-
vironment is component K1. Note that given a composite component,
the types of all the other subcomponents are unmodified, since the only
component that forwards the values from/to external environment is in-
terfacing one.

108

We also introduce a subtyping relation between modified types, de-
fined as:

Definition 4.4.2. T ′ ≤ T if exists a (possibly empty) set of typed input ports

{x1(b1), x2(b2), . . . , xk(bk)} such that T ′ x1?(b1)−−−−−→ · · · y!(b)−−−→ · · · xk?(bk)−−−−−→ T .

Since, by the Definition 4.4.1 we have that dependencies on the ex-
ternal ports are either zero or there is an unlimited number of values
received, this definition raises after observing the changes and the re-
duction of the modified type after receiving values that come from the
protocol.

From the semantics and the definition of modified types, we can de-
duce that the only possible difference between types T ′ and T is that
some initial dependencies might be dropped or that the number of val-
ues available on some input ports for some outputs might increase.

Example 4.4.2. Consider the interfacing component

Krh = [I]{W}

� I = x1, x2, x3, x4.x5〉y1, y2, y3, y4, y5

� W = y1 = fcd(x1), y2 = fuad(x3), y3 = f(), y4 = fiu(x1, x2, x4), y5 =
fad(x5)

of component Kpr of Section 4.1, the list of forwarders

F = x1 ← x11, x2 ← x12, x3 ← x13, x4 ← x14, y11 ← y4, y21 ← y5

and type :

Trh = Xrh
b .Lrh.Rrh.Frh.Y rhb .[chrh]

Xrh
b =

[
x1(number) x2(name) x3(date) x4(reason) x5(date)

]
Lrh = {0}5x5 Rrh = {0}5x5

Frh =

NF11 :0 0 0 0 0

0 0 NF23 :0 0 0
0 0 0 0 0

NF41 :0 NF42 :0 0 NF44 :0 0
0 0 0 0 NF55 :0

109

Y rhb =

y1(y/n) :∞
y2(date) :∞
y3(date) :∞
y4(info) :∞
y5(date) :∞

[chrh] =

[
0
]

Then, following the Definition 3.5.1, we have the following modified type:

T (F, Trh) = Xrh
b .Lrh.Rrh.Frh∗.Y rhb [chrh]

Frh∗ =

∞ :0 0 0 0 0

0 0 ∞ :0 0 0
0 0 0 0 0
∞ :0 ∞ :0 0 ∞ :0 0

0 0 0 0 NF55 :0

ž

where all the other dependency matrices remain the same (they are zero ma-
trices).

To formalise the ability of a component to carry-out its local protocol, we
introduce a conformance relation, denoted by ./. This relation is inductively de-
fined by the inference rules of Table 12, where Γ is a type environment mapping
recursion variables to modified types. We now briefly comment on these rules.

Notice that all the rules, except the last two, are the same as the Rules from
the Subsection 3.5.1, hence, we did not rename it. Rules [BranchConf] and
[SelectConf] are for the protocols with the choices, and are similar to the Rules
[InpConf] and [OutConf], respecively, but require that the resulting type is
conformant with both branches.

Example 4.4.3. Let us take modified type T (F, Trh) from the previous example
and the local protocol LP = y1!(app).y2!(date).end.

We apply the Rule [OutConf]: all the dependencies of y1 are either 0 or
have an unlimited number of values available for the computation of its value
(only one dependency), and moreover, the boundary is unlimited, the type can
output a value from the port y1. The new-evolved type is the T (F, Trh) itself
(since∞−1 =∞ for both number of values available and the boundary, see the
Table 17). It is conformant to the protocol y2!(date).end. and we can apply the
same rule and the same reasoning again, and finally, apply the rule [EndConf].

110

T x?(b)−−−→ T ′ Γ ` T ′ ./ LP
Γ ` T ./ x?(b).LP

[InpConf]

T y!(b)−−−→ T ′ Γ ` T ′ ./ LP
Γ ` T ./ y!(b).LP

[OutConf]

Γ ` T ./ end
[EndConf]

T ′ ≤ T
Γ, X : T ′ ` T ./ X

[V arConf]

Γ, X : T ` T ./ LP

Γ ` T ./ µX.LP
[RecConf]

T x?(b)−−−→ T ′ Γ ` T ′ ./ LP1 Γ ` T ′ ./ LP2

Γ ` T ./ x?(b) &(LP1, LP2)
[BranchConf]

T y!(b)−−−→ T ′ Γ ` T ′ ./ LP1 Γ ` T ′ ./ LP2

Γ ` T ./ y!(b)⊕ (LP1, LP2)
[SelectConf]

Table 18: Conformance relation (IC type language)

4.4.4 Step 4: Dependencies extraction

The goal of this step is to determine the dependencies between the input
and output ports of a composite components. We identify two kinds
of dependencies of output ports on the input ports: the direct and the
transitive ones. Intuitively, we say that an output port y directly depends
on an input port x, when x is one of the argument of the function attached
to y. Whereas we say that an output port y transitively depends on an
input port xwhen y depends on the values produced by another internal
component that in turn depends on x.

Computing such dependencies is the most challenging part of our
type extraction procedure. For this task we rely on the following obser-
vation. We know that the values received on the composite component
ports are directly forwarded to the ones of interfacing component. Sym-
metrically, the values produced by the output ports of a composite com-
ponent come from its interfacing component. Thus, to extract the depen-
dencies we can focus on the local protocol of the interfacing component,
its ports and the forwarders attached to them.

Below, we provide a formal characterization of the dependencies

111

from which it is direct derive an algorithm to actually compute them. In
our formal treatment we denote with external input ports (F i) and with
external output ports (F o) the ports of the interfacing components which
interact with the external environment. We define them as follows:

F i
4
= {x | ∃x′ F = x← x′, F ′}

F o
4
= {y | ∃y′ F = y′ ← y, F ′}

We can identify two kinds of dependencies of output ports on the in-
put ports: the direct and the transitive ones. Below, we characterise both
of them and to graphical representation we reuse the figures from from
Subsection 3.4.1, where we put (*) next to the name of reused figure.

Direct dependencies

Given a composite component K with interfacing component Kp, intu-
itively, a direct dependency exists between an external input port x and
an external output y when both the following conditions are met (see
Figure 3): (i) y is linked to an output port yp of Kp which depends solely
on input ports of Kp; (ii) port x is linked to an input port xp of Kp which
yp depends on.

Below, we formalise this intuition. Let K be a composite compo-
nent with interfacing component Kp and forwarders F ; and, let Tp =
Xb.L.R.F.Yb[ch] be the type of Kp. Let F i be the set of (internal) in-
put ports of F and F o be the set of (internal) output ports of F (e.g.,
if F = xp ← x then F i = {xp}).

Figure 8: Direct Dependency (*) Figure 9: Transitive Dependency
(*)

For each output port yi1, we gather the set of direct dependencies
D(L,R,F, yi1) defined as follows:

D(L,R,F, yi1) , {dαij , α ∈ {L,R,F} | dαij 6= 0 ∧ x1j ∈ F i ∧ yi1 ∈ F o}

Example 4.4.4. All the non-zero dependencies of base components are the direct
dependencies, since none of them is created through the protocol.

112

The transitive dependencies

Intuitively, given a composite component K we have a transitive depen-
dency between an external input port x and an external output y, when
y is linked to an output port yp of the interfacing component Kp, which
depends solely on a value output by another internal component, that in
turn depends on x (see Figure 9).

More precisely, for a transitive dependency to exist there are three
necessary conditions. The first one is to have in the local protocol of Kp

at least one output action, say on port y′, that precedes at least one input
action, say on port x′. The second condition is that such output port y′

depends on some external input port x of K. The third condition is that
there exists some external output port y of K that depends on port x′. In
such cases, we say that y depends on x in a transitive way.

We first introduce a relation �·· to capture the first condition above.
Let LP be the local protocol of Kp, two ports x and y are in relation �LPr
for LP and r ∈ {1, 2, 3, 4, 5, 6} if x, y ∈ fp(LP) and one of the following
condition hods:

1. y �LP1 x if LP = C[y!(b).C′[x?(b).LP ′]] and x, y /∈ rep(LP);

2. y �LP2 x if LP = C[y′!(b).C′[µX.C′′[x?(b′).LP]]] and y /∈ rep(LP);

3. y �LP3 x if LP = C[µX.C′[y!(b).C′′[x?(b).LP ′]]].

4. y �LP4 x if LP = C[y!(b).C′[(C′′[x?(b′).LP ′]), LP ′′]] and x, y /∈
rep(LP);

5. y �LP5 x if LP = C[y!(b).C′[(C′′[µX.C′′[x?(b′).LP ′]]), LP ′′]] and y /∈
rep(LP);

6. y �LP6 x if LP = C[µX.C′[y!(b).C′′[(C′′′[x?(b′).LP ′]), LP ′′]]].

First note that in all conditions we find an output on y before the
reception on x. The first relation captures the case where both x and y
are not in the recursive (if exists) part of the protocol; The second one is
for the case where y is not in the repetitive part of the protocol, but x is;
The next one serves for describing the relation where both of them are
in the body of the recursion of the protocol; The fourth and the fifth one
are the same as one and two, respectively, but they consider the protocol
with the choices, where y comes before, and x after the choice in the
protocol description; The last relation takes into account the case where

113

both reception on x and the output on y are found in the recursive part
of the protocol, after the choice is made.

We now formally characterise the transitive dependencies.
Let [x̃′ 〉 ỹ′]{G; r = Kp, R;D; r[F]} be a composite component,
Tp = Xb.L.R.F.Yb[ch] be the type of the interfacing component Kp

and LP its local protocol.
Given an output port yi1 ∈ Yb of K, the set of its transitive depen-

dencies denoted by D(R,L,F, F, yi1, LP) relies on the predicate ηα1/α2 ,
defined as:

ηα1/α2(LP,F) , dα1

kj 6= 0 ∧ dα2
im 6= 0 ∧ x1j ∈ F i ∧ yi1 ∈ F o ∧ yk1 �LPr x1m

and for abbreviating the following definitions we have that:
If LP = C[&(LP ′, LP ′′)] ∨ C[⊕(LP ′, LP ′′)] then x ∈ L if x ∈ fp(LP ′)

and x ∈ R if x ∈ fp(LP ′′), otherwise x ∈ F.

The set of transitive dependencies D(R,L,F, F, yi1, LP) is defined be-
low as the union of six sets:

D(R,L,F, F, yi1, LP) , A(α, F, yi1, LP)∪B(α, F, yi1, LP)∪C(α, F, yi1, LP)∪

D(α, F, yi1, LP) ∪ E(α, F, yi1, LP) ∪Q(α, F, yi1, LP)

where the setsA andB contain the initial dependencies, whileC contains
the per-each-value dependencies obtained transitively, formally:

A(α, F, yi1, LP) =
{

Ω : pFij | ηF/F(F,LP)∧ (dFim = Ω : 0 ∨ dFim = 0 : 0)∧
dRkj , d

R
i m, d

L
kj , d

L
im = 0 ∧ r ∈ {1, 2}

}
B(α, F, yi1, LP) =

{
Ω : pFij | ηF/F(F,LP) ∧ r = 3 ∧ ((dFim = Ω : 0)∨

(dFkj = Ω : 0 ∧ dFim = 0 : 0 ∧ vf (LP, x1m, yk1 = 0))) ∧ dRkj , dRi m, dLkj , dLim = 0}

C(α, F, yi1, LP) =
{

[NF,kj +NFim + vf (LP, x1m, yk1)] :0)) | ηF/F(F,LP)
∧r = 3 ∧ dFim = NFim :0 ∧ dFkj = NFkj :0 ∧ dRkj , dRi m, dLkj , dLim = 0

}
D(α, F, yi1, LP) =

{
Ω : pβij , β ∈ {L,R} | ηF/F(F,LP) ∧ xij ∈ β∧

(dFim = Ω : 0 ∨ dFim = 0 : 0) ∧ dRkj , dRi m, dLkj , dLim = 0 ∧ r ∈ {4, 5}
}

114

E(α, F, yi1, LP) =
{

Ω : pβij , β ∈ {L,R} | ηF/F(F,LP) ∧ r = 6 ∧ xij ∈ β
((dFim = Ω : 0) ∨ (dFkj = Ω : 0 ∧ dFim = 0 : 0 ∧ vf (LP, x1m, yk1 = 0)))∧

dRkj , d
R
i m, d

L
kj , d

L
im = 0}

Q(α, F, yi1, LP) =
{
Nβim : [Nβ,kj + vf (LP, x1m, yk1)], β ∈ {L,R} |

xij ∈ βηF/F(F,LP) ∧ i = 6 ∧ dFim = NFim :0 ∧ dFkj = NFkj :0∧
dRkj , d

R
i m, d

L
kj , d

L
im = 0}

Example 4.4.5. As an example of extraction of transitive dependencies consider
the process described in Table 13 of Section 4.1.

4.4.5 Step 5: Boundaries extraction

Sometimes the availability of input values needed for computing some
output might be limited due to the protocol. For example, if y has a de-
pendency on some input port obtained transitively, and we have a “one-
shot” protocol that allows only one value for computing y, the values
produced by y are limited, where the boundary turns to be 1.

This step aims to compute these boundaries. Intuitively, the bound-
ary associated to an output port depends on the kind of dependency.
In the case of per-each-value dependency the boundary is computed as
the minimum of internal boundaries. In case of initial dependency the
boundary is zero. Below, we formally characterise this computation.
Again, it is direct to translate our formal characterisation into an algo-
rithm.

Let K = [x̃ 〉 ỹ]{G;R;D; r[F]} be a composite component, and let
Tr = Xb.L.R.F.Yb.[ch] be the type of the interfacing component r = Kr,
and LP its local protocol (LP ↓r). If yi1(b) : B is an entry of the matrix Yb
and yi1 ∈ F o, we distinguish three cases for three possible limitations:

B1(α, F, LP, yi1)
∆
= {Nαij | dαij = Nαij :pαij ∧ x1j /∈ (fp(LP)

⋃
F i)}

B2(α, F, LP, yi1)
∆
= {0 | dαij = Ωαij :pαij ∧ x1j /∈ (fp(LP)

⋃
F i)}

B3(α, F, LP, yi1)
∆
= {Nαij + 1 | dαij = Nαij :pαij ∧ x1j ∈ fp(LP)

x1j /∈ (rep(LP) ∪ F i)}
In B1 and B2 we capture the case when there is a dependency on a

port that is not used in the protocol (x1j /∈ fp(LP)) nor linked externally
(x1j /∈ F i), where the difference is in the kind of dependency. For per-
each-value dependencies (if any), the minimum of the internally avail-
able values is identified as the potential boundary, while for initial de-

115

pendencies (if present) the potential boundary is zero (or the empty set).
In B3 we capture a case where we have a per-each-value dependency
on some port, and where the port is used in the protocol but in a non-
repetitive way, hence only one (further) value can be provided together
with internally available values.

Next, we get the minimum number among the internal boundaries
for each matrix separately:

BL = min{t|t ∈ (B1(L, F, LP, yi1)∪B2(L, F, LP, yi1)∪B3(L, F, LP, yi1))}

BR = min{t|t ∈ (B1(R, F, LP, yi1)∪B2(R, F, LP, yi1)∪B3(R, F, LP, yi1))}

BF = min{t|t ∈ (B1(F, F, LP, yi1) ∪ B2(F, F, LP, yi1) ∪ B3(F, F, LP, yi1))}

We compute the greater number between BR and BL, since those
numbers are computed from the choice matrices, and we do not want
the case where the component can produce more values due to its
choice, than the port is available (if choosing the left choice we get 0, and
the right 5, we want the output port to be able to produce 5 values if the
component makes the right choice).

B∗ = max{BL,BR}

The final boundary determined for yi1, denoted by B(α, F, LP, yi1), is
the minimum number among the internal boundary of yi1 (i.e., B) and
B∗ and BF described above:

B(α, F, LP, yi1) = min{B∗,B,BF}

Example 4.4.6. Recall the component Kpr of Section 4.1. Let us focus on ex-
tracting the boundary of port y21. The values are forwarded from the port y5 of
the interfacing component Krh. From type Trh we know that the internal of y5

is unbounded (∞). Moreover, port y5 has only a per-each-value dependency on
x5 in matrix F (NF55 :0). The interfacing component is governed by the protocol

G = RH
a/d−−−→ADM(RH

date−−−→ADM ;RH
Av.d.−−−−→ADM ;ADM

App.d.−−−−−→RH, end),

that is a “one-shot” protocol. So, with only one dependency, we can generate the
set: B3 = {NF55 + 1:0} = BF.

Thus, the boundary of port y21 is B = min{∞, NF55+1} = NF55+1. Since
we are extracting the type at static time, at the beginning of the type extraction
NF55 = 0, so the boundary for y21 is 1.

116

4.4.6 Type extraction

We now present our type extraction procedure for a composite compo-
nents. Our definition relies on a renaming operation ren(,) that allows
us to single out the ports that are linked via forwarders to the external
environment, since we introduced the dependencies and the boundaries
via the names of the interfacing component ports. Formally, the renam-
ing operation ren(,) is defined as follows:

ren(F, {x1j(b1j)}1×n) , {x′1j(b1j)}1×n

with F = x11 ← x′11, . . . , x1n ← x′1n, F
′

ren(F, {yi1(bi1) :Bi1}m×1) , {y′i1(bi1) :Bi1}m×1

with F = y′11 ← y11, . . . , y
′
m1 ← ym1, F

′

Now we have all the ingredients for defining the type extraction for
composite components:

Definition 4.4.3 (Type Extraction for a Composite Component). Let
[x̃ 〉 ỹ]{G; r = K,R;D; r[F]} be a composite component and LP = G �r the
local protocol for interfacing component K. If Tr = X ′b.L′.R′.F′.Y ′b .[ch′] is the
type of component K, then the extracted type of the whole component is

T (LP, Tr, F) = ren(F,Xb).L.R.F.ren(F, Yb).[ch])

where

Xb ={x1j(b1j)}1×m where x1j(b1j) ∈ X ′b ∧ x1j ∈ F i

α =

{
{dαij}n×m if dαij ∈ D(Tr, F, LP)

0 otherwise
where α ∈ {L,R,F}

Yb ={yi1(bi1) :B(α, F, LP, yi1)}n×mwhere yi1 ∈ F o

From Definition 4.4.3 is evident that it suffices knowing the type and
the local protocol of the interfacing component and the list of forwarders
to carry out the type extraction.

Example 4.4.7. We present a technical example which illustrates how our type
extraction procedure works in the case of composite components. Consider com-
ponent K specified as [x̃ 〉 ỹ]{G;R;D; r[F]}, where

G = r
`1−−→p(p `2−−→r.end, end), R = r = K1, p = K2

117

D = p.x′1
`1←−− r.y1, r.x2

`2←−− p.y′1, F = x1 ← x, y ← y2.

Let the interfacing component K1 have type

T1 =
[
x1(b1) x2(b2)

]
.{0}.{0}.

[
0:0 0
0 0:0

]
.

[
y1(b1) :∞
y2(b2) :∞

]
.
[
0
]

and component K2 type

T2 =
[
x′1(b′1)

]
.{0}.{0}.

[
0:0
]
.
[
y′1(b′1) :∞

]
.
[
0
]

Step 1. Local protocol. The local protocol of the interfacing component K1 is

LP = G ↓r= y!(b1)⊕ (x2?(b2).end, end)

Step 2. Restriction on the composition This is the case 1.(c) (LP = C[yi1 ⊕
(LP1, LP2)]) that says: If the protocol requires component K1 to output its
choice, then the output port must depend on some external input port, and can-
not have the dependencies in the choice matrices. From type T1 we can read
that this condition is fulfilled, since F = x1 ← x, F ′. The choice port of the
composite component becomes x.
Step 3. Modified type and conformance relation. The modified type of the
type T1 is

T (F, T1) =
[
x1(b1) x2(b2)

]
.{0}.{0}.

[
∞ :0 0

0 0:0

]
.

[
y1(b1) :∞
y2(b2) :∞

]
.
[
0
]

Applying the rules [SelectConf] and then [InpConf] and/or
[EndConf], we have that T (F, T1) ./ LP . We take the next steps ob-
serving only interfacing output port y2.
Step 4. The dependencies extraction. We have the following information:
y2 ∈ F o and x1 ∈ F i (F = x1 ← x, y ← y2). From the fourth matrix of the
type T1 we have that y1 has a per-each-value dependency on x1, and y2 has a per-
each-value dependency on x2, where by the local protocol description (LP) we
get that y1, x2 ∈ fp(LP). Moreover, y1 �LP4 x2, and we conclude the transitive
relation between ports x1 and y2. The transitive relation that we obtain is initial
dependency of y2 on x1 in the left choice matrix (Ω : 0) that comes from the set
D from transitive dependencies extraction where

D(α, F, yi1, LP) =
{

Ω : pβij , β ∈ {L,R} | ηF/F(F,LP) ∧ xij ∈ β∧

(dFim = Ω : 0 ∨ dFim = 0 : 0) ∧ dRkj , dRi m, dLkj , dLim = 0 ∧ r ∈ {4, 5}
}

118

Step 5. Boundaries extraction. In our example, we have that the boundary
of y2 reading the T1 is∞, and we have that the conditions from the set B3 defined
as

B3(F, F, LP, yi1)
∆
=

{NFij+1 | dFij=NFij :pFij ∧ x1j ∈ fp(LP)x1j /∈(rep(LP) ∪ F i)}

fulfilled, where in our case if we have that x2 = x1j and y2 = yi1 the boundary
B3 is 0 + 1 = 1, and the final boundary of y2 is min{∞, 1} = 1

Now we rename our ports: ren(F, x1) = x and ren(F, y2) = y.
The extracted type of our component is:

T =
[
x(b1)

]
.
[
Ω:0

]
.{0}.{0}.

[
y(b2) :1

]
.
[
x
]

We can now formally define when a component K has type T , in
which case we say K is well-typed.

Definition 4.4.4. Let K be a component, we say that K is well typed and has
a type T , in symbols K ⇓ T :

1. If K is a base component, and T is obtained by Definition 4.3.1;

2. If K = [x̃ > ỹ]{G; r1 = K1, . . . , rk = Kk;D; r1[F]} is a composite
component, and the following hold

• Each sub-component Ki has a type Tri , i.e., Ki ⇓ Tri , for i =
1, . . . , k;

• T is extracted from the type T1 and G �r1 by Definition 4.4.3;

• Each sub-component is conformance to its local protocol, i.e.,

T (F, Tri) ./ G �ri for i = 1, 2, . . . , k;

Notice that the definition above relies on modified types for ensuring
the conformance to the local protocols of sub-components. However, for
each type T not associated with the interfacing component we have that
T (F, T) = T since there are no links to external ports (assuming that all
ports have different identifiers).

Example 4.4.8. One example of well typed component is component Kpr from
Section 4.1.

119

4.5 Type safety (IC type language)

In this section we state Subject Reduction and Type fidelity theorems
that ensure a tight correspondence between the behaviours of compo-
nents and of their extracted types. These results provide a tight corre-
spondence between the behaviours of well-typed components and their
types. This enables us to use types, e.g., for verifying properties of a com-
ponent. In the statements below we denote with λ(v) the actions x?(v),
y!(v) or τ on values; whereas we denote with λ(b) the actions x?(b), y!(b)
or τ on types.

Theorem 4.5.1 (Subject Reduction). If K ⇓ T and K λ(v)−−→ K ′ and v has

type b then T
λ(b)−−→ T ′ and K ′ ⇓ T ′′ where T ′′ ⊆ T ′.

For stating our Type fidelity theorem, we introduce the following abbrevia-
tion which denotes the transition of a component whose input or output action
is preceded and succeeded by some number (possible zero) of internal actions.

Definition 4.5.1. K
λ(v)
===⇒ K ′

4
= K → τ· · ·K ′′ λ(v)−−−→ K ′′′ → τ· · ·K ′

Now we are ready to state and prove our Type fidelity theorem:

Theorem 4.5.2 (Type fidelity). If K ⇓ T and T
λ(b)−−→ T ′ and λ(b) 6= τ then

b is the type of a value v and K
λ(v)
===⇒ K ′ and K ′ ⇓ T ′′ where T ′′ ⊆ T ′.

4.6 Proof of type (IC type language)

In the Section 3.6 (Chapter 3) we have stated and proved some propo-
sitions and lemmas (Proposition 3.6.2, Proposition 3.6.1, Lemma 3.6.1)
that refer to the properties of the local binder and base components in
GC language. Those results are used also in this section for the sake of
proofs.

When the protocol that governs the internal interaction among com-
ponents includes choices, this internal action is not supposed to be visible
in the type, i.e. due to the type semantics, the type remains the same after
the internal action. However, the type of the interfacing component (of
the composite component) might change after the internal action. These
types (before and after the internal action) are in a specific relation that
we are now about to give a definition of.

120

The following definition and the proposition refer to a relation be-
tween types comparing the number of the received input and the num-
ber of values that the port is able to output.

Definition 4.6.1. Let T ′ = Xb.L′.R′.F′.Y ′b .[ch] and T = Xb.L.R.F.Yb.[ch],
α′ ∈ {L′,R′,F′} and α ∈ {L,R,F}.

T ′ ⊆ T if

1. dαij = Nαij :pαij then dα
′

ij = N ′α′ij :pα′ij and Nα′ij ≥ Nαij ,

2. dαij = Ωα,ij :pαij than dα
′

ij = Ω:pα′ij or dα
′

ij = 0.

3. yi1(bi1) : Bi1 ∈ Yb then yi1(bi1) : B′i1 ∈ Y ′b and B′i1 ≤ Bi1.

The following propositions are crucial for proving the Subject Reduc-
tion theorem:

Proposition 4.6.1. If T ⊆ T ′ and T ′ ⊆ T ′′ then T ⊆ T ′′

Proof. The relation “≤” between numbers (Nαij) is a transitive relation.
Assume that Ωαij : pαij is a dependency in T ′. By the definition of the
relation “⊆” it is the dependency in T ′′ and in T , or in T it is 0. If in T ′

some dependency is 0, also it is 0 in T , and in T ′′ can be either 0 or initial
dependency.

Proposition 4.6.2. If Tr ⊆ T ′r then T (LP, Tr, F) ⊆ T (LP, T ′r, F).

Proof. Immediate from the Definition 4.6.1 and Definition 4.4.3.

The following proposition helps us with proofs and is a consequence
of the rules of the semantics that describe the evolution of dependencies
due to an input of a value.

Proposition 4.6.3. If x1j ∈ Xb then Xb.L.R.F.Yb[ch]
x1j(b1j)?−−−−−−→

Xb.L′.R′.F′.Yb[ch].

Proof. Since the collection rules from the Table 15 that describes the tran-
sitions of dependencies with an input, announce that in any possible case
whether it is a per-each-value dependency, on initial one, or zero, or even
if some port does not depend on a specific input port, the dependency
can perform an input.

121

Now we are ready to state and prove our Theorem 4.5.1 result:

Theorem 4.6.1 (Subject Reduction). If K ⇓ T and K λ(v)−−→ K ′ and v has

type b then T
λ(b)−−→ T ′ and K ′ ⇓ T ′′ where T ′′ ⊆ T ′.

Proof. By induction on the derivation of K
λ(v)−−−→ K ′ and by cases on the

last rule applied.

[InpBase] We know that K = [x̃ > ỹ]{L} x?(v)−−−→ [x̃ > ỹ]{L′}, by

inversion on the rule we have that x ∈ x̃ and that L
x?(v)−−−→ L′, so

the Proposition 3.6.1 holds.

By hypothesis K ⇓ T and since K is a base component, by the
Definition 4.3.1

T = Xb.{0}.{0}.{dFij}.Yb.[0]

where since x ∈ x̃, then x(b) ∈ Xb and b = γ(v). Moreover, if x is
the jth element of the matrixXb, for every element yi1 of the matrix
Yb (x1j = x) we have that

F =

{
{dFij}n×m where dFij = count(x1j , σ̃

yi1) :0 if x1j ∈ x̃yi1
dFij = 0. otherwise

Applying the rules [InpZero], [InpDisc] and [InpPevF] we have that

∀α ∈ {L,R,F} dαij
x1j?−−−→ d′

α
ij

Since the hypothesis of the Rule [InpT] holds, we conclude that ex-

ists T ′ such that T
x1j?(b)−−−−→ T ′.

If x1j /∈ x̃yi1 then dFij = 0, and applying the rule [InpZero] d′
F
ij =

0. If x1j ∈ x̃yi1 then dFij = count(x1j , σ̃
yi1) : 0 and by the rule

[InpPevF] dFij = count(x1j , σ̃
yi1) + 1 : 0. Other dependencies are

0, so applying the Rule [InpDisc], they remain the same. Then
T ′ = Xb.{0}.{0}.{d′Fij}.Yb.[0]. By the Definition 4.3.1 and Propo-
sition 3.6.1 we conclude K ′ ⇓ T ′ where T ′ ⊆ T ′.

[OutBase] We know that [x̃ > ỹ]{L} y!(v)−−→ [x̃ > ỹ]{L′}, by inver-

sion on the rule we have that y ∈ ỹ and that L
y!(v)−−−→ L′, so the

122

Proposition 3.6.2 holds. Then we have that for all x1j ∈ x̃y holds:
count(x1j , σ̃

y) > 0 (*).

By hypothesis we have thatK ⇓ T and sinceK is a base component
we have by the Definition 4.3.1

T = Xb.{0}.{0}.{dFij}.Yb.[0]

where since y ∈ ỹ, then y(b) ∈ Xb and b = γ(v). Moreover, if y is
the ith element of the matrix Yb (yi1 = y) then

F =

{
{dFij}n×m where dFij = count(x1j , σ̃

yi1) :0 if x1j ∈ x̃yi1
dFij = 0. otherwise

and
Yb =

[
· · · yi1(b) :∞ · · ·

]t
.

Since (*) holds, and we have that for the base component
the boundary is infinite, we have that the hypothesis of the

Rule [OutT] holds. So, exists T ′ such that T
yi1!(b)−−−−→ T ′, and

T ′ = Xb.shrink({0}, {0},F, Yb, i)[0]. Note that∞− 1 = ∞. By the
Definition 4.3.1 and Proposition 3.6.2 we conclude that K ′ ⇓ T ′

where T ′ ⊆ T ′.

[InpComp] We have that

K = [x̃ 〉 ỹ]{G; r = Kr, R;D; r[F]} x?v−−→
=K′︷ ︸︸ ︷

[x̃ 〉 ỹ]{G; r = K ′r, R;D; r[F]} .

By inversion on the rule we know that x ∈ x̃, and that exist K ′r and

z such that Kr
z?v−−→ K ′r and that F = z ← x, F ′. Since K ⇓ T , there

exists Tr such that Kr ⇓ Tr. By induction hypothesis, there exist T ′r
and T ′′r such that Tr

z?(b)−−−→ T ′r and K ′r ⇓ T ′′r , where T ′′r ⊆ T ′r. Since
the global protocol G does not evolve, neither the local protocols
do. Let LP = G �r. Then by the Definition 4.4.3 the extracted type
of component K ′ is T ′ = T (LP, T ′′r , F)

Since x ∈ x̃ and K ⇓ T = Xb.L.R.F.Yb.[ch], then by the Defini-
tion 4.4.3, the port x is the jth element of the matrix Xb together
with its basic type γ(v) = b. By the Proposition 4.6.3 we know that

then exists T ′ such that T
x1j?(bx)−−−−−→ T ′. Since T ′′r ⊆ T ′r we have that

T (LP, T ′′r , F) ⊆ T ′.

123

[OutComp] We have that

K = [x̃ 〉 ỹ]{G; r = Kr, R;D; r[F]} y!v−−→
=K′︷ ︸︸ ︷

[x̃ 〉 ỹ]{G; r = K ′r, R;D; r[F]}

By inversion on the rule we know that y ∈ ỹ, Kr
w!v−−→ K ′r and

that F = y ← w,F ′. Since K ⇓ T , there exists Tr such that Kr ⇓
Tr. By induction hypothesis there exists T ′r such that Tr

w!(bw)−−−−→ T ′r
and K ′r ⇓ T ′′r , T ′′r ⊆ T ′r. Since G does not evolve, neither the local
protocols evolve. Since K can perform an output, by the definition
of the type extraction we have that all the dependencies in T for

yi1 are satisfied, so there is T ′ such that T
y!(by)−−−−→ T ′ where γ(v) =

bw = by T
′ is uniquely determined by the rule [OutT]. Let LP =

G �r, by applying the rule [OutT] on Tr, we get the shape of T ′r.
By the definition of the type extraction we get T (LP, T ′′r , F), with
T (LP, T ′′r , F) ⊆ T ′.

[Internal] We know that K = [x̃ 〉 ỹ]{G; r = Kr, R;D; r[F]} τ−→
[x̃ 〉 ỹ]{G; r = K ′r, R;D; r[F]} = K ′ by inversion on the rule we
know that exists K ′r such that Kr

τ−→ K ′r. Since K ⇓ T , there is Tr
such that Kr ⇓ Tr. By induction hypothesis there exists T ′r such
that Tr

τ−→ T ′r, according to the rule [InpInter] Tr
τ−→ Tr. Moreover,

there exists Tr′′ such that T ′′r ⊆ Tr and K ′r ⇓ T ′′r . Global protocol
G did not evolve, hence none of the local protocols, so all the mod-
ified type of the subcomponents of a composite component stay
conformant with their local protocols. Applying the [InpInter] we
have that T τ−→ T . By the definition of the type extraction from T ′′r
and LP (projection of G to role associated to Kr) since T ′′r ⊆ Tr,
than T (LP, T ′′r , F) ⊆ T .

[InpChor] We know that K = [x̃ 〉 ỹ]{G; r = Kr, R;D; r[F]} τ−→
[x̃ 〉 ỹ]{G′; r = K ′r, R;D; r[F]} = K ′ by inversion on the rule we

know that existsK ′r such thatKr
x?(v)−−−→ K ′r ∧ D = r.z′ ← p.u,D′ ∧

G
r?l < v >−−−−−−→ G′. By the rule [InpInter] we have that T τ−→ T .

Let assign the subcomponents to their roles in the following way
R = r = Kr, r2 = K2, . . . , rm = Km and since K ⇓ T then Kr ⇓
Tr,K1 ⇓ T1, . . . ,Km ⇓ Tm.

124

We have that D = r.z′ ← p.u,D′ ∧ G
r?l < v >−−−−−−→ G′and since K is

well-typed, all its subcomponent’s modified types are conformant
with their local protocols, with input on x as the first action, i.e.

T (Tr) ./ x?G′ �r, T2 ./ x?G′ �r2 , . . . , Tm ./ x?G′ �rm .

Since x is the port of (only) component Kr, G � ri = G′ � ri, i =
2, . . . ,m.

We can conclude that due to the semantic of the (modified) type

that T (Tr)
x?−→ T ′(Tr), T2

x?−→ T2, . . . , Tm
x?−→ Tm.

Applying the rule [InpConf] we have that T ′(Tr) ./ G′ �r, T2 ./
G′ �r2 . . . , Tm ./ G′ �rm .
Note that LP = G �r and LP ′ = G′ �r.

By induction hypothesis exist T ′r and T ′′r such that Tr
x?(bx)−−−−→

T ′r ∧K ′r ⇓ T ′′r ∧ T ′′r ⊆ T ′r. Applying the previous proof for the rule
[InpComp] we have that T ′r = T ′′r .

We need prove that T (LP ′, T ′′r , F) ⊆ T .

We know that x ∈ fp(LP) and let x be the the kth element of the
matrix Xr

b , where Tr = Xr
b .Lr.Rr.Fr.Y rb .[chr] (x = x1k).

Let us consider the following cases:

1. ¬∃ dαrjk 6= 0 where yj1 ∈ Y rb and forwards the values to an ex-
ternal environment (yj1 ∈ F o) . By the type composition de-
scription x 6= chr. By the type extraction definition, the input
on that port cannot create or discard the new dependencies
and none of the dependencies in T were created via that port.
By the definition of the type extraction T (LP ′, T ′′r , F) = T .

2. x 6= chr. Since Tr
x1k?(b1k)−−−−−−→ T ′r, (having b1k = bx). By the rule

[InpT], we know the type T ′r, and the values expected to be re-
ceived by the protocol due to the type extraction are received,
we get the same type as type T .

3. x = chr. With an input on x as a choice port, the protocol be-
comes restricted to one branch (up to the next unwrapping if
it is a recursive protocol). By the type extraction procedure, in

125

the extracted type from T ′r and LP ′ we have some initial de-
pendencies dropped or some actual values (not possible val-
ues) received for computing the output. By the definition of
the relation “⊆”, T (LP.T ′′r , F) ⊆ T .

[OutChor] Analogous to the previous proof, considering the output
and the rule [OutT] applied on the type Tr.

Now we are ready to state and prove our Type Fidelity theorem:

Theorem 4.6.2 (Type fidelity). If K ⇓ T and T
λ(b)−−→ T ′ and λ(b) 6= τ then

b is the type of a value v and K λ(v)
==⇒ K ′ and K ′ ⇓ T ′′ where T ′′ ⊆ T ′.

Proof. Proof by induction on the structure of K.

Base case. Let K be the base component. If K is a base component of
the type T then:

(Proof for the base case by induction on the derivation of T
λ(b)−−→ T ′.)

[InpT]: Xb.L.R.F.Yb[ch]
x1j(b1j)?−−−−−−→ Xb.{(dLij)′}.{(dRij)′}.{(dFij)′}.Yb[ch],

then by inversion we know that dαij
x1j?−−−→ (dαij)

′ and x1j(b1j) ∈ Xb.

Since x1j(b1j) ∈ Xb ⇒ ∃K ′ | K
x1j?(v)−−−−−→ K ′ (v is some value of the

type b1j). We need to prove that K ′ ⇓ T ′′, for some T ′′ ⊆ T ′.

– By applying the rules [InpZero], [InpDisc], [InpIntF] and
[InpPevF] and by observing the Lemma 3.6.1 by the Defini-
tion 3.3.1 we conclude that K ′ ⇓ T ′, knowing that T ′ ⊆ T ′.

[OutT]: Xb.L.R.F.Yb[ch]
yi1(bi1)!−−−−−→ Xb.shrink(L,R,F, Yb, i)[ch]. By in-

version we know that

∀j ∈ {1, ...,m} dαij = Nαij : pαij ∨ dαij = 0 Bi1, Nαij > 0 (i ∈
{1, ..., n}) ∧ yi1(bi1) :Bi1 ∈ Yb.
Since K ⇓ T , the proof is straightforward. Let K = [x̃ > ỹ]{L}.

– ∀j ∈ {1, ...,m} dαij = Nαij : pαij ∨ dαij = 0 Bi1, Nαij > 0, by

Lemma 3.6.1 L
y!(v)−−→ L′.

126

– By the Proposition 3.6.1 and the Definition 3.6.1, knowing
the form of T ′ on whose matrices is applied the shrink opera-
tion, we conclude that K ′ ⇓ T ′ and T ′ ⊆ T ′.

Induction hypothesis.(1) Let K = [x̃ > ỹ]{G; r = K,R;D; r[F]} and
let’s assume that Theorem 4.5.2 holds for all the components “smaller”
that K (subcomponents).

Proof for K. Let K be the composite component K = [x̃ > ỹ]{G; r =

Kr, R;D; r[F]}where K ⇓ T and T
λ(b)−−→ T ′.

Let
T = Xb.L.R.F.Yb[ch]

Since K ⇓ T then ∃Tr : Kr ⇓ Tr and let Tr = Xr
b .Lr.Rr.Fr.Y rb [chr].

Moreover, since K is well-typed T (Tr) ./ G �r= LP .

[Case 1.] [λ = x1j?] Since T
x1j(b1j)−−−−−→ T ′ by [InpT] we know that

x1j(b1j) ∈ Xb. By the definition of the type extraction ∃z1k(b1j) ∈
Xr
b such that F = z ← x, F ′ ⇒ Tr

z1k(b1j)−−−−−→ T ′r. By induction

hypothesis there exists K ′r such that Kr
z?(v)
===⇒ K ′r. By repeatedly

applying the rule [Internal] some number of times and then ap-
plying the rule [InpComp], we conclude that there is K ′ such that

K
x?(v)
===⇒ K ′. Since K ⇓ T and K

x?(v)
===⇒ K ′ by repeatedly applying

Theorem 3.5.1 (first for internal moves, then for the input), know-
ing that “⊆” is the partial order relation, we have that exists T ′′

such that T ′′ ⊆ T ′ and K ′ ⇓ T ′′.

[Case 2.] [λ = y!] Since K ⇓ T and T
y!(b)−−−→ T ′ we know by the

Definition 3.4.1 that ∃w : F = y ← w,F ′.

We have two possible cases:

2.1 Tr
w!(b)−−−→ T ′r

2.2 Tr 6
w!(b)−−−→

If the case 2.1 holds, by induction hypothesis (1) there exist K ′r
such that Kr

w!(v)
===⇒ K ′r and T ′′r such that K ′r ⇓ T ′′r and T ′′r ⊆ T ′r.

127

Repeatedly applying the rule [Internal] and then the rule [Out-

Comp] we have that K = [x̃ > ỹ]{G; r = Kr, R;D; r[F]} y!(v)−−→
K = [x̃ > ỹ]{G; r = K ′r, R;D; r[F]}. Since G did not move, all the
projections remain the same, and since the output on the port w
does not affect the conformance to the protocol, we can conclude
that T (Tr)G �r= LP . We have also that all the other types of
subcomponents remain conformant with their local protocols
because their types do not evolve neither does G. Since K ⇓ T

and K
y!(v)
===⇒ K ′ by repeatedly applying Theorem 3.5.1 (firts for

internal moves, then for the output), and since “⊆” is the partial
order relation, there is T ′′ such that T ′′ ⊆ T ′ and K ′ ⇓ T ′′.

If the case 2.2 holds, since the type T can output, but Tr cannot, we
know that extracting the type we captured the values that are input,
but still flowing, or the ones that protocol “promised” to give. Since
all the dependencies of the port y are satisfied, and F = y ← w,F ′,
but w still has some unsatisfied dependencies, the only possible
case is thatw still needs to receive the values from the ports that are
in fp(LP). Now we need to prove that those values will eventually
be received, so that Tr can output a value from the port w, and then
we will be back on the case 2.1.

Let’s take any input port in fp(LP) without loss of generality that
still needs values to be input, so that w can output:

LP = G �r
Tr = Xr

b .Lr.Rr.Fr.Y rb [chr]
w = wi1, as the part of the ith element of the matrix Y rb .

∃z1j ∈ fp(LP) : z1j(b
z) ∈ Xr

b ∧ (dαij = Ω : pαij or dαij = 0 : pαij)

SinceK ⇓ T ⇒ T (Tr) ./ LP , and because z1j ∈ fp(LP)⇒ T (Tr) ./
C[z1j?:bz.LP ′].

[*]Now we prove by the induction on the number of evolution
steps of G, that G will have an input on z1j and that the confor-
mance relation is still satisfied.

Base case.

G
r?lz1j (v)
−−−−−−→ G′

128

If G
r?lz1j (v)
−−−−−−→ G′ then LP = z1j? : bz.LP ′. By induction hypoth-

esis (1) Kr
z1j?(v)
=====⇒ K ′r. So, the dependency is satisfied, hence:

Kr
x1j?(v)−−−−−→ K ′r

wi1(v)−−−−→ K ′′r . Applying the rules [Internal] and [In-

pChor] we have that K
y!(v)
===⇒ K ′.

[4] All the other subcomponents did not evolve, neither their
types, and since the port z1j is the free port of LP , only the protocol
projection for the component with the role r changed, and others
remained the same. Moreover [InpConf] T (T ′r) ./ LP

′.

Now we need to distinguish two different cases. First one is if z1j 6=
ch.

Then by the Definition 3.4.1, [4]⇒ K ′ ⇓ T ′ and T ′ ⊆ T ′.

Second one is when z1j = ch. ThenG
r?lz1j (v)
−−−−−−→ G1G

′′ orG
r?lz1j (v)
−−−−−−→

G2G
′′.

If the choice is G1G
′ (the same if it is G2), by the Definition 3.4.1

all the transitive dependencies created via branch G1, are dropped
(if they are initial dependencies) or have a number of values from
an input port available for a specific output increased by one. In
other words, one possible value becomes the actual value for the
transitive dependencies created via branch G1.

The transitive dependencies created via branch G2 become 0, and
possibly some boundaries become 0, if it is a “one shot protocol”
where G′′ = end, or remain the same if G′′ = µX.G.

Hence, by the Definition 3.4.1, and [4] we have that K ⇓ T (G′′ �r
, T ′r, F) and T (G′′ �r, T ′r, F) ⊆ T ′.
Induction hypothesis. (2) Lets assume that [*] holds for [k-1] steps.

G
pl1(v)−−−−→ G1

pl2(v)−−−−→ G2 · · ·
plk−1(v)−−−−−→ Gk−1

r?lz1j (v)
−−−−−−→ G′.

Let G
pl1(v)−−−−→ G1

pl2(v)−−−−→ G2 · · ·
plk−1(v)−−−−−→ Gk−1

plk(v)−−−−→ Gk
r?lx′ (v)−−−−−→ G′,

where p can be the role of any subcomponent ofK, and p ∈ {p?, p!}.

Let G
pl1(v)−−−−→ G1.

If p 6= r then by the Rules [BranchConf] ([SelectConf]) and [In-
pConf] ([OutConf]) the type of the component with the role p

129

stays conformant with its local protocol. All the other projec-
tions of the protocol G1 did not change, so all the components
are conformant with their projections of the protocol G1. Since
K = [x̃ > ỹ]{G, r = K,R;D; r[F]} and G �r= G1 �r= LP the
extracted type for the component K remains the same, and all the
subcomponents are conformant with their local protocols, so we
can conclude that K ′ = [x̃ > ỹ]{G1, r = Kr, R;D; r[F]} ⇓ T . By
the induction hypothesis (2) Kr will have an input on z1j , hence
the dependency of wi1 will be satisfied. Now, by applying the
previously proved on the component K ′ with a type T , where

T
y!(b)−−→ T ′, we have that exist K ′′, T ′′, such that K

y!(v)
===⇒ K ′′, where

K ⇓ T ′′ and T ′′ ⊆ T ′.

Let p = r? and D = r.z1k
l1←− q, v,D. By the induction hypothesis,

and applying the base case on the componentKr, whereKr
z1k?(v)−−−−→

K ′r and Kr ⇓ Tr, we know that exists T ′′r such that K ′r ⇓ T ′′r .
Next, by the rule [InpChor] we have that K τ−→ K ′ where K ′ =
[x̃ > ỹ]{G1, r = Kr, R;D; r[F]} and exists T ′′ such that K ′r ⇓ T ′′
and T ′′ ⊆ T ′. Moreover, applying the rule [InpConf] we have
T (T ′r) ./ G1 �r. The types of the other components remained the
same as did their local protocols. Finally, we now apply the induc-
tion hypothesis (2) on K ′, with a protocol G1, that has k − 1 steps
up to the input on k1j .

Similar proof for p = r!. �

In conclusion following the rules [Internal], [OutChor] and [Out-

Comp], [Definition 3.4.1] we proved that K ⇓ T ∧ T y!(b)−−−→ T ′ ⇒
K

y!(v)
===⇒ K ′ ∧K ′ ⇓ T ′′ where T ′′ ⊆ T ′.

130

Chapter 5

Concluding remarks

In this chapter we compare the work of this thesis with the relevant lit-
erature; then, we present some concluding remarks and discuss some
possible future work as the extension of the type languages presented in
this thesis.

5.1 Related work

We place our approach in the behavioural types setting ([12]) since our
types evolve in order to explain component behaviour (cf. Theorem 3.5.1,
Theorem 4.5.1), in contrast with classic subject reduction results where
the type is preserved. In the realm of behavioural types, we distinguish
Multiparty Asynchronous Session Types [11] which actually lay the ba-
sis for the protocol language of our target model [5]. The model builds
on the idea that protocols can be used to directly program the interac-
tion, and not only serve as a specification/verification mechanism, fol-
lowing the approach of choreographic programming [4, 19]. Moreover,
we need to mention the tool for typechecking protocols StMungo [6] that
is based on the integration of session types and typestate which consists
of a formal translation of session types for communication channels into
typestate specifications for channel objects, the latter defines the order
in which the methods of the channel objects can be called. This tool can
guide the user in the design and implementation of distributed multi-
party communication-based programs with guarantees on communica-
tion safety and soundness.

131

We discuss some closely related work, starting by Open Multiparty
Sessions [3] which to some extent shares the same goals and the same
background ([11]). The approach in [3] targets the composition of pro-
tocols by considering that one of the participants can actually be instan-
tiated by an external environment. Two protocols can then be connected
if there is a participant in each that can serve as the interface to the other
interaction. So protocols can be viewed as the units of composition in-
stead of components like in our case, and reusing such protocols in other
compositions requires compatibility between the I/O actions which are
prescribed for the interfacing role. The main difference is therefore that
we consider components that are potentially more reusable considering
the I/O flexibility provided the reactive flavour.

We also identify the CHOReVOLUTION [13]project where the as-
sembly of services via a choreography is addressed. The I/O flexibil-
ity is provided by adapters at assembly time that can solve I/O inter-
face mismatches between service and choreography. We remark that the
CHOReVOLUTION approach is at a very mature state (including tool
support [2]), where however an assembly of services cannot be provided
as a unit of reuse (like our composite components). Differently, our type-
based approach aims at abstracting from the implementation and pro-
vides more general support for component substitution and reuse. Simi-
lar to our research, the model of service based architectures (SOA’s) [17] ex-
poses components that exchange services between each other via ports.
However, the authors do not present the type language, where some
ideas we presented for extracting a type of a component could be used
for the model they present.

In [14] the authors present a novel type system and type inference al-
gorithm that prevent interconnection and message-handling errors when
assembling component-based communication systems. Their type sys-
tem ensures that typable assemblages do not exhibit the targeted class of
errors, where our type system focus on capturing the behaviour of the
component in order to avoid any errors.

We may also find the notion of distributed components is the Signal
Calculus (SC) [8], where in each component a process is located. The
type-based approach presented in [9] addresses the issue of ensuring SC
local processes are composed and interact in a way such that they follow
a well-defined protocol of interaction. Our model embeds the protocol
in the operational semantics so such coordination is ensured by construc-
tion. Our types focus on a different purpose of ensuring data dependen-
cies are met in order to ensure components are not stuck in the sense of

132

the type fidelity result.

5.2 Conclusion

We have developed two type languages for components that capture
their reactive behaviour together with their capabilities: First one (EC
type language [24]) is modelled in a choice-free subset of GC language [5]
for describing simpler-composed components, obtaining the easier type
extraction procedure; Second one (IC type language) is modelled in a
full GC language, obtaining the wider spectrum of possible composition
scenarios that can be described with that type language.

Our types describe the ability of components to receive and send val-
ues, while tracking different kinds of dependencies (per-each-value and
initial ones) and specifying constraints on the boundary of the number
of values that a component can emit. We show how types of compo-
nents can be extracted (inferred) and prove that types faithfully capture
component behaviour by means of Subject Reduction and Type fidelity
theorems.

5.3 Future work

Immediate directions for future work include providing a characterisa-
tion of the substitution principle [15] based in our types. In this work as
a meta data we introduced a kind of a subtyping relation. However, the
subtyping relation and the whole theory behind it remains to be further
explored. Further future challenge is to assess the usability of our the-
oretical model to concrete applications, for specification an the reuse of
components. Moreover, our safety results enable to use types as starting
point either to apply other verification techniques to check properties
of data components exchange [BodeiDFG17], to enforce security poli-
cies [DeganoFGM12], or to extract all the possible ways of communi-
cation between two (or more components), which can be the upcoming
task. This forthcoming task can be used in making component-based
system patterns.

133

Bibliography

[1] Amazon Web Services, Inc. AWS Lambda: Developer Guide. 2019.
URL: https://docs.aws.amazon.com/en_pv/lambda/
latest/dg/lambda-dg.pdf#welcome.

[2] Marco Autili et al. “CHOReVOLUTION: Automating the Real-
ization of Highly–Collaborative Distributed Applications”. In:
21th International Conference on Coordination Languages and Models
(COORDINATION). Ed. by Hanne Riis Nielson and Emilio Tuosto.
Vol. LNCS-11533. Coordination Models and Languages. Part 2:
Tools (1). Springer International Publishing, June 2019, pp. 92–108.
DOI: 10.1007/978-3-030-22397-7_6.

[3] Franco Barbanera and Mariangiola Dezani-Ciancaglini. “Open
Multiparty Sessions”. In: Proceedings 12th Interaction and Concur-
rency Experience, ICE 2019, Copenhagen, Denmark, 20-21 June 2019.
Ed. by Massimo Bartoletti et al. Vol. 304. EPTCS. 2019, pp. 77–96.
DOI: 10.4204/EPTCS.304.6.

[4] Marco Carbone and Fabrizio Montesi. “Deadlock-freedom-by-
design: multiparty asynchronous global programming”. In: The
40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’13, Rome, Italy - January 23 - 25,
2013. Ed. by Roberto Giacobazzi and Radhia Cousot. ACM, 2013,
pp. 263–274. DOI: 10.1145/2429069.2429101.

[5] Marco Carbone, Fabrizio Montesi, and Hugo Torres Vieira. Chore-
ographies for Reactive Programming. CoRR abs/1801.08107. 2018.
URL: http://arxiv.org/abs/1801.08107.

[6] Ornela Dardha et al. “Mungo and StMungo: Tools for Typecheck-
ing Protocols in Java”. In: Behavioural Types: from Theory to Tools
(2017), p. 309.

134

https://docs.aws.amazon.com/en_pv/lambda/latest/dg/lambda-dg.pdf#welcome
https://docs.aws.amazon.com/en_pv/lambda/latest/dg/lambda-dg.pdf#welcome
https://doi.org/10.1007/978-3-030-22397-7_6
https://doi.org/10.4204/EPTCS.304.6
https://doi.org/10.1145/2429069.2429101
http://arxiv.org/abs/1801.08107

[7] Mariangiola Dezani-Ciancaglini, Luca Padovani, and Jovanka Pan-
tovic. “Session Type Isomorphisms”. In: Electronic Proceedings in
Theoretical Computer Science 155 (June 2014), pp. 61–71. DOI: 10.
4204/eptcs.155.9. URL: https://doi.org/10.4204%
2Feptcs.155.9.

[8] Gian Luigi Ferrari, Roberto Guanciale, and Daniele Strollo. “JSCL:
A Middleware for Service Coordination”. In: Formal Techniques for
Networked and Distributed Systems - FORTE 2006, 26th IFIP WG 6.1
International Conference, Paris, France, September 26-29, 2006. Ed. by
Elie Najm, Jean-François Pradat-Peyre, and Véronique Donzeau-
Gouge. Vol. 4229. Lecture Notes in Computer Science. Springer,
2006, pp. 46–60. DOI: 10.1007/11888116_4.

[9] GianLuigi Ferrari et al. “Coordination Via Types in an Event-Based
Framework”. In: Formal Techniques for Networked and Distributed
Systems - FORTE 2007, 27th IFIP WG 6.1 International Conference,
Tallinn, Estonia, June 27-29, 2007, Proceedings. Ed. by John Derrick
and Jüri Vain. Vol. 4574. Lecture Notes in Computer Science.
Springer, 2007, pp. 66–80. DOI: 10.1007/978-3-540-73196-
2_5.

[10] Nicola Dragoniand Saverio Giallorenzo et al. “Microservices: Yes-
terday, today, and tomorrow”. In: Present and Ulterior Software En-
gineering. Ed. by Manuel Mazzara and Bertrand Meyer. Springer,
2017, pp. 195–216. DOI: 10.1007/978-3-319-67425-4_12.

[11] Kohei Honda, Nobuko Yoshida, and Marco Carbone. “Multiparty
Asynchronous Session Types”. In: J. ACM 63.1 (2016), 9:1–9:67. DOI:
10.1145/2827695.

[12] Hans Hüttel et al. “Foundations of Session Types and Behavioural
Contracts”. In: ACM Comput. Surv. 49.1 (2016), 3:1–3:36. DOI: 10.
1145/2873052.

[13] S. Keller, M. Autili, and M. Tivoli. CHOReVOLUTION project.
http://www.chorevolution.eu. 2014.

[14] Michael Lienhardt et al. “Typing Component-Based Com-
munication Systems”. In: Formal Techniques for Distributed
Systems. Springer Berlin Heidelberg, 2009, pp. 167–181. DOI:
10 . 1007 / 978 - 3 - 642 - 02138 - 1 _ 11. URL: https :
//doi.org/10.1007%2F978-3-642-02138-1_11.

135

https://doi.org/10.4204/eptcs.155.9
https://doi.org/10.4204/eptcs.155.9
https://doi.org/10.4204%2Feptcs.155.9
https://doi.org/10.4204%2Feptcs.155.9
https://doi.org/10.1007/11888116_4
https://doi.org/10.1007/978-3-540-73196-2_5
https://doi.org/10.1007/978-3-540-73196-2_5
https://doi.org/10.1007/978-3-319-67425-4_12
https://doi.org/10.1145/2827695
https://doi.org/10.1145/2873052
https://doi.org/10.1145/2873052
http://www.chorevolution.eu
https://doi.org/10.1007/978-3-642-02138-1_11
https://doi.org/10.1007%2F978-3-642-02138-1_11
https://doi.org/10.1007%2F978-3-642-02138-1_11

[15] Barbara Liskov and Jeannette M. Wing. “A Behavioral Notion
of Subtyping”. In: ACM Trans. Program. Lang. Syst. 16.6 (1994),
pp. 1811–1841. DOI: 10.1145/197320.197383.

[16] Theo Lynn et al. “The Internet of Things: Definitions, Key Con-
cepts, and Reference Architectures”. In: The Cloud-to-Thing Contin-
uum: Opportunities and Challenges in Cloud, Fog and Edge Computing.
Ed. by Theo Lynn et al. Cham: Springer International Publishing,
2020, pp. 1–22. ISBN: 978-3-030-41110-7. DOI: 10.1007/978-3-
030-41110-7_1. URL: https://doi.org/10.1007/978-3-
030-41110-7_1.

[17] A. Malkis and D. Marmsoler. “A Model of Service-Oriented Ar-
chitectures”. In: 2015 IX Brazilian Symposium on Components, Ar-
chitectures and Reuse Software (SBCARS). Los Alamitos, CA, USA:
IEEE Computer Society, Sept. 2015, pp. 110–119. DOI: 10.1109/
SBCARS.2015.22.

[18] M. Douglas Mcllroy. “Mass Produced Software Components”. In:
Software Engineering: Report of a conference sponsored by the NATO
Science Committee. Garmisch, 1969, pp. 138–155.

[19] Fabrizio Montesi. “Choreographic Programming”. PhD the-
sis. IT University of Copenhagen, 2013. URL: http : / /
fabriziomontesi . com / files / choreographic _
programming.pdf.

[20] Object Management Group, Inc. (OMG). Business Process Model and
Notation, specification version 2.0.2. 2014. URL: https://www.omg.
org/spec/BPMN/2.0.2/.

[21] Joachim Parrow. “Chapter 8. An Introduction to the π-Calculus”.
In: (Dec. 2001). DOI: 10.1016/B978-044482830-9/50026-6.

[22] Benjamin C Pierce. Types and programming languages. MIT press,
2002.

[23] Zorica Savanovic, Letterio Galletta, and Hugo Torres Vieira. “A
type language for message passing component-based systems”. In:
Proceedings 13th Interaction and Concurrency Experience, ICE 2020,
Online, 19 June 2020. Ed. by Julien Lange et al. Vol. 324. EPTCS.
2020, pp. 3–24. DOI: 10.4204/EPTCS.324.3. URL: https:
//doi.org/10.4204/EPTCS.324.3.

136

https://doi.org/10.1145/197320.197383
https://doi.org/10.1007/978-3-030-41110-7_1
https://doi.org/10.1007/978-3-030-41110-7_1
https://doi.org/10.1007/978-3-030-41110-7_1
https://doi.org/10.1007/978-3-030-41110-7_1
https://doi.org/10.1109/SBCARS.2015.22
https://doi.org/10.1109/SBCARS.2015.22
http://fabriziomontesi.com/files/choreographic_programming.pdf
http://fabriziomontesi.com/files/choreographic_programming.pdf
http://fabriziomontesi.com/files/choreographic_programming.pdf
https://www.omg.org/spec/BPMN/2.0.2/
https://www.omg.org/spec/BPMN/2.0.2/
https://doi.org/10.1016/B978-044482830-9/50026-6
https://doi.org/10.4204/EPTCS.324.3
https://doi.org/10.4204/EPTCS.324.3
https://doi.org/10.4204/EPTCS.324.3

[24] Zorica Savanović, Letterio Galletta, and Hugo Torres Vieira. “A
type language for message passing component-based systems”.
In: Electronic Proceedings in Theoretical Computer Science 324 (Sept.
2020), pp. 3–24. ISSN: 2075-2180. DOI: 10.4204/eptcs.324.3.
URL: http://dx.doi.org/10.4204/EPTCS.324.3.

[25] W3C WS-CDL Working Group. Web Services Choreography Descrip-
tion Language Version 1.0. 2004. URL: http://www.w3.org/TR/
2004/WD-ws-cdl-10-20040427/.

137

https://doi.org/10.4204/eptcs.324.3
http://dx.doi.org/10.4204/EPTCS.324.3
http://www.w3.org/TR/2004/WD-ws-cdl-10-20040427/
http://www.w3.org/TR/2004/WD-ws-cdl-10-20040427/

Unless otherwise expressly stated, all original material of whatever
nature created by Zorica Savanović and included in this thesis, is
licensed under a Creative Commons Attribution Noncommercial
Share Alike 3.0 Italy License.

Check on Creative Commons site:

https://creativecommons.org/licenses/by-nc-sa/3.0/it/legalcode/

https://creativecommons.org/licenses/by-nc-sa/3.0/it/deed.en

Ask the author about other uses.

https://creativecommons.org/licenses/by-nc-sa/3.0/it/
https://creativecommons.org/licenses/by-nc-sa/3.0/it/
https://creativecommons.org/licenses/by-nc-sa/3.0/it/
https://creativecommons.org/licenses/by-nc-sa/3.0/it/legalcode/
https://creativecommons.org/licenses/by-nc-sa/3.0/it/deed.en
mailto:zorica.savanovic@imtlucca.it

	List of Figures
	List of Tables
	Acknowledgements
	Vita and Publications
	Abstract
	1 Introduction
	1.1 Research motivation
	1.2 Contributions of the thesis
	1.3 Outline
	1.3.1 Published papers based on our research

	2 Background
	2.1 Behavioural types
	2.1.1 Operational semantics
	2.1.2 Session types

	2.2 GC language
	2.2.1 Syntax of GC language
	2.2.2 Operational semantics of GC language

	3 The EC type language
	3.1 Informal introduction of EC type language
	3.2 Formal introduction of EC type language
	3.2.1 Syntax of EC type language
	3.2.2 Semantics of EC type language

	3.3 EC type extraction for base components
	3.4 EC type extraction for composite components
	3.4.1 Dependencies extraction
	3.4.2 Boundaries extraction
	3.4.3 Type extraction

	3.5 Type safety (EC type language)
	3.5.1 Modified type
	3.5.2 Well-typed components

	3.6 Proof of type safety (EC type language)

	4 The IC type language
	4.1 Informal introduction of IC type language
	4.1.1 A passport renewal system
	4.1.2 Modeling the system in GC language
	4.1.3 Extracting types of components

	4.2 Formal introduction of IC type language
	4.2.1 Syntax of IC type language
	4.2.2 Semantics of IC type language

	4.3 IC type extraction for base components
	4.4 IC type extraction for composite components
	4.4.1 Step 1: Local protocol computation
	4.4.2 Step 2: Checking composition
	4.4.3 Step 3: Checking the conformance with the protocol
	4.4.4 Step 4: Dependencies extraction
	4.4.5 Step 5: Boundaries extraction
	4.4.6 Type extraction

	4.5 Type safety (IC type language)
	4.6 Proof of type (IC type language)

	5 Concluding remarks
	5.1 Related work
	5.2 Conclusion
	5.3 Future work

