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ABSTRACT 

In the present work, the dynamics of a single spherical gas bubble surrounded 

by a rheopectic fluid obeying the Quemada model is numerically investigated 

while the bubble undergoes oscillatory motion due to acoustic forcing. The 

generalized form of the Rayleigh–Plesset equation has been used for studying 

bubble dynamics in Quemada fluids. The integro-differential equation 

representing the dynamics of the bubble is solved numerically using the finite-

element method (FEM) and also the Gauss–Laguerre quadrature (GLQ) method. 

The effect of rheopexy number (Rx) and viscosity ratio (ξ) are then investigated 

over a wide range of working parameters. Numerical results show that the 

rheopectic behavior of the fluid surrounding the bubble can dramatically affect 

the bubble dynamics. It is predicted that for highly anti-thixotropic fluids, 

harmonics are affected so much so that the bubble may exhibit chaotic behavior. 

For instance, at Rx = 0.001 and ξ = 1/81, a one-micron-sized bubble may attain 

a size almost 30 times of its initial size. The general conclusion is that, in 

sonography, microbubbles dispersed in rheopectic fluids may indeed be 

considered as a potent ultrasound contrast agent provided that the fluid is just 

moderately anti-thixotropic otherwise its chaotic response might damage the 

adjacent tissues.   
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1. INTRODUCTION 

 Bubble dynamics has historically been an active field 

of research due mainly to its application in cavitating 

flows (Mukundakrishnan et al., 2009; Andonova & 

Sekhar, 2016; Battistella et al., 2017; Dollet et al., 2019). 

It is also of widespread application in refrigeration and 

thermal systems where bubble dynamics normally 

involves heat and/or mass transfer (Dai et al., 2023). In 

recent years, interest in bubble dynamics has dramatically 

increased when it was realized that they can be used for 

opening the blood-brain-barrier (BBB) so that medication 

can reach the brain (McDannold et al., 2006; Liu et al., 

2014). Further interest in bubble dynamics is related to its 

novel application as contrast agent in sonography (Nesser 

et al., 2002; Canchi et al., 2017). While cavitating flows 

usually involves Newtonian fluids, in many other cases of 

practical importance, the working fluid is realized to be 

non-Newtonian (Kelly, 2008; Saththasivam et al., 2016; 

Shpak et al., 2016; Sheeran et al., 2017; Chakibi et al., 

2018; Dudek & Øye, 2018; Perera et al., 2018; Segers et 

al., 2018). For example, industrial fluids such as waxy 

crude oils and polymeric liquids are known to be non-

Newtonian. This is also true for physiological fluids such 

as blood, saliva, mucus, and synovia that are known 

exhibit a variety of non-Newtonian behavior.  

 Due to its broad technological impact, bubble 

dynamics in non-Newtonian fluids has been the subject of 

many studies in the past. One can mention, for example, 

the work by Chahine et al. (2009) who investigated the 

response of gas bubbles in the whole blood modelled as a 

viscoelastic fluid. The elastic behavior of the blood was 

found to play a key role in bubble dynamics and its chaotic 

behavior when subjected to acoustic forcing; see, also, 

Cunha & Albernaz (2013). Zhang and Li (2014) 

numerically showed that during radial oscillations of gas 

bubbles, mass transfer is also affected by the elastic 

stresses generated in the liquid surrounding the bubble 

(Jim'enez-Fernandez & Crespo, 2005; Warnez & Johnsen, 

2015). There are also several works addressing a fluid’s 

yield stress on the bubble response (see, for example, 

Karapetsas, et al., 2019) where translational motion of the 

bubbles has been  
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NOMENCLATURE 

r radial coordinate  We Weber number 

t time  Bo Bond number 

R bubble radius  Rx Rheopexy number 

R0 bubble initial radius  Γ surface tension 

�̇� bubble radial velocity  �̇� shear rate 

�̈� bubble acceleration  α viscosity ratio 

P0,g 
initial pressure of the gas trapped in the 

bubble 
 β controlling parameter of Quemada model 

P0,∞ initial far-field pressure  ω 
frequency of far field acoustic pressure’s 

oscillations 

S structural parameter of Quemada model  ε 
amplitude of far field acoustic pressure’s 

oscillations 

S0 initial structural parameter  ξ viscosity ratio 

a 
microstructures rebuild controlling 

parameter  
 ρ fluid density 

b 
microstructures breakdown controlling 

parameter  
 λ 

structural time dependency controlling 

parameter  

m controlling parameter of Quemada model  μ0 zero-shear viscosity (rebuild viscosity)  

n controlling parameter of Quemada model  μ∞ infinite-shear viscosity (breakdown viscosity) 

Cp pressure coefficient  τrr radial stress 

Re Reynolds number  τθθ tangential stress 

 

observed to be influenced by the liquid’s yield stress. The 

effect of shear-thinning behavior of the fluid surrounding 

the bubbles has also been addressed in the past by Shima 

& Tsujino (1981) for unbounded domains. In a recent 

work, Arefmanesh et al. (2022), have investigated the 

effect of shear-thinning on a confined gas bubble and 

showed that the wall adjacent to the bubble can 

dramatically affect its dynamics. Surprisingly, work on 

bubble dynamics in time-dependent liquids is quite 

limited.  

 Time-dependent fluids are those fluids whose 

viscosity changes with time even at a given shear rate. 

Physiological fluids such as blood, and industrial fluids 

such as drilling muds, are known to exhibit significant 

time-dependent behavior. The main cause of time-

dependent behavior is the fact that such fluids contain 

dispersed particles that form large-scale microstructures 

through inter-particle forces. These microstructures break 

down under shear that convert them into smaller structural 

units. This breakdown is simultaneously counter-balanced 

by the Brownian forces which try to rebuild the 

microstructures. This time-dependent breakdown and 

buildup of microstructures often result in a time-decaying 

viscosity known as thixotropy. And they have been the 

subject of several studies in recent years (Sadeghy & 

Vahabi, 2016; Moseley et al., 2019; Wang et al., 2020). 

One can particularly mention the works by Ahmadpour et 

al. (2011, 2014) on bubble dynamics in thixotropic fluids. 

They numerically showed that, under certain working 

conditions, a bubble’s response is significantly affected by 

the time scale introduced through a fluid’s thixotropic 

behavior. 

 Not all time-dependent fluids are thixotropic. There 

are fluids that exhibit anti-thixotropic behavior. Such 

fluids (which are often called rheopectic fluids) have a 

viscosity that increases with time even at a given shear 

 

rate―apparently because when microstructures are 

broken down, larger micelles and/or networks are formed. 

There are physiological and industrial fluids which exhibit 

rheopectic behavior. Synovial fluid in human joints, for 

example, exhibits this behavior. For such materials, as 

soon as the microstructures are broken down, they are 

interlinked with adjacent microstructures forming a new 

but larger microstructure. In practice, this phenomenon 

gives rise to an increase in the viscosity with time 

(Theodore et al., 2017). A review of studies carried out on 

bubble dynamics in the past indicated a lack of research 

on bubble behavior inside anti-thixotropic fluids. With 

this in mind, the present work aims at investigating the 

effect of a fluid’s rheopectic behavior on the dynamics of 

a free gas bubble in an acoustic field, to the best of our 

knowledge, for the first time. To represent rheopectic 

fluids we rely on the Quemada rheological model. We are 

primarily interested in investigating the effect of anti-

thixotropic behavior on the rise of harmonics in the 

bubble’s response. This is because, in real world, 

harmonics are generated by bubbles not tissues 

surrounding them. In practice, this can help to detect the 

presence of bubbles in tiny blood vessels thereby 

significantly enhancing the quality of ultrasound images 

(Ahmadpour, et al., 2011). The fact that there are 

electronic devices in the market that can easily record 

second harmonics during bubble oscillation makes this 

technique highly attractive for next-generation 

sonography.  

 In the next section, the equations of motion together 

with the rheological model for the Quemada fluid are 

presented. This is followed by briefly describing the 

numerical solution used for solving the governing 

equations. Numerical results are presented next in which 

the effect of a fluid’s time-dependent behavior is 

investigated on the bubble dynamics.   
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Fig. 1 Schematic showing a spherical gas bubble and 

the physical infinity  

 

2. MATHEMATICAL FORMULATION 

 Figure 1 schematically shows the spherical free gas 

bubble at t = 0. This figure also shows the computational 

domain, which is spherical in shape with its radius placed 

at (physical) infinity. We assume that the bubble is 

occupied by a perfect non-condensable gas. We also 

assume that the bubble always remains spherical during its 

motion, which tacitly means that the effect of the 

gravitational force on the bubble is negligible. The liquid 

surrounding the bubble is assumed to be incompressible 

and time-dependent.  

 Since the bubble remains always spherical, the 

velocity induced in the liquid during bubble motion,vr (r,t), 

is purely radial. Based on the continuity equation, the 

radial velocity induced in the liquid at an arbitrary radius 

(r) can then be obtained as: 2 2( ) =r R R /r,t rv where R  is 

the bubble radius with R  being its surface velocity. The r-

momentum equation (in spherical coordinate system then 

becomes (Plesset, 1949): 
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where rr  and   are, respectively, the radial and 

tangential stresses. The equation governing the bubble 

dynamics can then be obtained by integrating this equation 

from the surface of the bubble up to the infinity having 

assumed that the non-condensable gas inside the bubble 

undergoes a polytropic process (Plesset, 1949); that is: 
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where R  is the acceleration of the bubble. ρ is the fluid 

density, Γ is the surface tension, and κ is the polytropic 

constant. Subscript g and zero refer to the gas and initial 

conditions, respectively.  Also,


p refers to the pressure at 

infinity. Equation (2) is the general form of the Rayleigh–

Plesset (RP) equation. It models the motion of a spherical 

free gas bubble in an incompressible liquid, whether 

Newtonian or non-Newtonian (Allen & Roy, 2000a). It 

assumes that at infinity the fluid is at rest and all stress 

terms are equal to zero. To un-balance the bubble, the 

pressure at infinity has to be varied (Rayleigh, 1917). In 

the present work, the bubble is subjected to an acoustic 

pressure field; that is: 

(3) 0
( ) 1 ( ) 

 
 

= +
,

t sin tp p   

where ε is the perturbation to the initial pressure at infinity, 

p∞,0. For non-Newtonian fluids, one has to decide on the 

rheological model so that the stress terms in Eq. (2) can be 

related to the bubble radius. In the present work, we 

assume that the fluid obeys the Quemada model. It is a 

robust rheological model and is widely used to represent 

shear-dependent fluids that simultaneously exhibit a time-

dependent viscosity. Quemada model incorporates a 

structural parameter (S) which varies between 0 and 1 

depending on the state of the internal microstructures 

being fully destructed (S = 0) or fully rebuilt (S = 1), 

respectively. The apparent viscosity (η) of the fluid 

depends on S and also the shear rate, as shown below 

(Quemada, 1984): 

( ) (1 )
   = +S , S .                                              (4) 

where


 is the infinite-shear viscosity (corresponding to 

S = 0) with 
0

1


+( )=


   being the zero-shear viscosity 

(corresponding to S = 1). The structural parameter itself 

satisfies the following kinetic equation: 

(1 ) = − −m n .
D S

a S b S
Dt

                                                  (5) 

where D/Dt is the material derivative. In Quemada model, 

“a” represents structure rebuild (by Brownian motions) 

while “b” controls the rate at which microstructures are 

broken down by the deformation field where  is the 

effective shear rate defined as: 

2

3
2 3 = = .

R R
II

r
                                                     (6) 

where II  is the second invariant of the deformation-rate 

tensor. A close look at Eq. (4) reveals that, for the model 

to represent a time-dependent fluid it is required that we 

should have: 0  and 0 . In fact, the Quemada 

model reduces simply to the Newtonian fluid model (with 

viscosity 


 ) by setting 0= . Using the stress terms for 

the Quemada model (Abdollahi, 2019), the generalized 

Rayleight-Plesset equation is obtained as: 
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 It is important to note that, Quemada model can 

represent both thixotropic and anti-thixotropic fluids. For 

the latter fluids, however, the infinite-shear viscosity is 

larger than the zero-shear viscosity
0

  . In other 

words, when equilibrium is reached, a rheopectic fluid 

always attains a larger viscosity than its initial viscosity. It 

can be shown that, for the model to represent anti-

thixotropic fluids we should have αβ < 0. To show this we 

can integrate Eq. (5) at a constant shear rate to obtain the 

time-evolution of structural parameter (for S0 = 1): 
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              (8) 

 Having obtained S from Eq. 8, Eq. 4 can be used to 

obtain the apparent viscosity as a function of time. As can 

be seen in Fig. 2, at short times, the exponential term in 

Eq. 8 dominates but eventually viscosity reaches an 

asymptotic value. More importantly, based on this figure, 

the apparent viscosity increases with time as long as αβ < 

0. For most physiological fluids (e.g., synovia) α is a 

positive number. As such, with no loss of generality, in 

our simulation β is assigned negative values (e.g., β = - 2) 

so that Quemada model can represent rheopectic fluids  

2.1 Dimensionless Numbers 

Equation (7) can be made dimensionless using R0 as the 

length scale, 1/ω as the time scale, and ωR0 as the velocity 

scale. The results is: 
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where we have: 
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where Cp is the pressure coefficient, which can be 

interpreted as the pressure force divided by the temporal 

inertial force; it is varied through varying ε. On the other 

hand, We is the nominal Weber number and is interpreted 

as the surface tension force divided by the pressure force; 

it is varied through varying the surface tension, Γ. Finally, 

Re is the Reynolds number which, here, compares 

temporal inertial force with the viscous force, and so it can 

be interpreted as the Womersley number. In this work, it  

 

Fig. 2 Effect of αβ on the normalized viscosity 

(m = 0, n = 0.5, S0 = 1, a = 1, b = 0.5, �̇� = 𝟏 ). 

 

is varied through varying frequency, ω. We can also 

define a Bond number (Bo), as shown below: 

2

0=
gR

Bo ,



                           (11) 

which signifies the competition between gravitational 

force with the surface tension force. For the micron-sized 

bubbles used in this study, Bo is vanishingly small 

ensuring that the effect of gravity is indeed negligible 

confirming that the bubble always remains spherical. 

Using the scales mentioned above, the Quemada model 

can also be made dimensionless as: 

)(1Rx 
 

= − + −
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n m

r .
S S

S S
t r

v              (12) 

where, 
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−
− 

=  
 

=
m

n mb
Rx

a
; .

a
                                        (13) 

 Evidently, λ and Rx both represent time-dependency of 

the fluid because they both involve “a”. But, because Rx 

simultaneously involves “b”, it is a better measure of time-

dependency. As such, with no loss of generality, we 

arbitrarily set λ = 1 while Rx (called the rheopexy number) 

is varied over a broad range. Results obtained at very low 

rheopexy numbers (Rx) are representative of strong 

thixotropic/rheopectic effects whereas results obtained at 

very high Rx numbers highlight the role played by the 

shear-dependent viscosity of the fluid. We can also define 

a viscosity ratio, as shown below: 

( )
0

1


+= = .


                                            (14) 

Since for anti-thixotropic fluids we have 
0

  , one 

can conclude that for such fluids ξ < 1.  

3. NUMERICAL METHOD 

 Equations (9) and (12) have no analytical solution in 

close sight. As such, they should be solved numerically.  

A  good  option is  the  Gauss-Laguerre  quadrature  (GLQ)  
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Fig. 3 Variation of τrr in the radial direction for 

Quemada fluids at dimensionless time t* = 6. This 

figure shows that the exponential fit is reasonably 

good (m = 0, n = 0.5, β = -2, Re = 100, Cp = 4, ϵ = 1, We 

= 0.03, ξ = 4/49, Rx = 0.001) 

 

method, which was used extensively in the past for 

simulating the dynamics of spherical gas bubbles 

oscillating in thixotropic fluids (Ahmadpour et al., 2011, 

2014). The GLQ method, however, is based on the 

premise that the radial normal stress generated in the 

liquid decays exponentially with distance from the bubble 

so that the integral term in Rayleigh-Plesset equation can 

be approximated by Laguerre polynomials. But, this 

premise is not necessarily true for all non-Newtonian 

fluids. To see if it is indeed true for Quemada model, use 

was made of the finite element software package 

COMSOL Multiphysics (V5.5). Based on Fig. 3, the 

exponential fit is realized to be indeed a good 

approximation to the radial stress. Note that y in Fig. 3 

represents the distance from a wrbitrary node in the 

horizonthal direction to the surface of the bubble; see 

Appendix A for more details. 

 The notion that exponential decay of radial stress is 

indeed a good approximation for Quemada model is seen 

in Fig. 4 that shows a comparison between our FEM and 

GLQ codes; see Appendix B. The difference between the 

two numerical methods is seen to be quite negligible.  

 

 
Fig. 4 A typical comparison between our FEM and 

GLQ codes for Moore thixotropic fluids. (m = 0, n = 1, 

β = 1, Cp = 4, ϵ = 2, Re = 5.5, We = 0.2, ξ = 1/121, Rx = 

10) 

 

Fig. 5 Verification with published numerical data for 

the Moore thixotropic model (m = 0, n = 1, β = 1, Cp = 

4, ϵ = 2, Re = 5.5, We = 0.2, ξ = 1/121, Rx = 10) 

 

 In fact, the FEM code/script developed in the present 

work in COMSOL environment could easily recover all 

GLQ numerical results reported by Ahmadpour et al. 

(2011) for the Moore thixotropic model, which is a special 

form of the Quemada model (m = 0, n = 1, β = 1). Figure 

5 shows a typical comparison between the two sets of 

numerical results. The comparison is very good, although 

it can be argued that the FEM results are more accurate 

because unlike the GLQ method FEM method does not 

have to enforce S = 1 boundary condition upfront; see 

Appendix A for more details.  

4. RESULTS AND DISCUSSION  

 Having verified the code, it was used to investigate the 

response of the bubble in Quemada model for model 

parameters representing rheopectic fluids. In terms of the 

dimensionless numbers, the inputs are Re, We, Cp, Rx, and 

ξ. And the output is the dimensionless (R*) radius as a 

function of dimensionless time (t*). The main objective is 

to investigate the effect of the rheopexy number (Rx) on 

the bubble dynamics because it has not been investigated 

in the past, whether theoretically or experimentally. Still, 

the problem involves too many parameters with some of 

them addressed in previous works. As such, we arbitrarily 

set m = 0, n = 0.5, β = ‒2, We = 0.03, λ = 1 and ε = 1. 

Unless otherwise stated, Re is fixed at 1. The main 

objective of the work is to investigate the effect of Rx 

although the effect of viscosity ratio, ξ is also investigated.  

4.1 Effect of Rheopexy Number, Rx 

 As earlier mentioned, the rheopexy number (Rx) 

represents the rheopectic behavior of the Quemada model 

because it involves the b/a ratio; see Eq. (13). Figure 6 

shows the strong effect of Rx number on the bubble 

response. The plots also include Newtonian results for 

comparison purposes. The figure shows that deviation 

from Newtonian behavior becomes progressively more 

severe the smaller the Rx number, i.e., when the fluid 

becomes more rheopectic. Based on the results shown in 

Fig. 6, the competition between the time scale of  

acoustic  forcing  (represented by 𝜔−1),  the  time  scale of  
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(a) 

 
(b) 

Fig. 6 Effect of rheopexy number (Rx) on the bubble’s 

response to acoustic pressure. (Re = 1, ξ = 4/9: (a) Cp = 

0.16; (b) Cp = 4) 
 

the deformation time of the fluid (represented by the b/a 

ratio) can strongly affect the bubble response with its 

severity controlled by the Cp. 

 Another look at Fig. 6b reveals that for Cp = 4 the 

harmonics are strongly affected by the Rx number. To 

show this in better perspective, Fig. 7 shows a zoomed 

view of Fig. 6b. As is seen in this figure, the time at which 

the bubble radius successively peaks is closely controlled 

by Rx. More importantly, new harmonics are generated for 

the Quemada fluids as compared with the Newtonian 

fluids.  

 The results shown in Fig. 6 clearly demonstrate that at 

Re = 1 the bubble response is periodic. Figure 8 shows that 

this is not necessarily true at Re = 100. In fact, as compared 

with the Newtonian fluids, the chaotic behavior becomes 

stronger the smaller the Rx number. In other words, fluids 

that are extremely rheopectic are more prone to chaotic 

behavior―a phenomenon which is a clear manifestation 

of shape instability. 

 The prediction that the Reynolds number has a strong 

effect on the bubble response is nothing new and is well-

established in the literature (Sokolov et al., 2000). An 

increase in the Re means that the nonlinear inertial terms 

are becoming larger, and so shape instability may easily 

occur, which manifests  

 

Fig. 7 Effect of rheopexy number (Rx) on the 

harmonics (Re = 1, ξ = 4/9, Cp = 4) 

 

 

Fig. 8 Effect of rheopexy number (Rx) on the bubble’s 

response to acoustic pressure (Re = 100, ξ = 4/9, Cp = 

4 

 

itself as the chaotic behavior (Sokolov et al., 2000). This 

is actually the main reason for the chaotic behavior for 

Newtonian fluids, which have a linear constitutive 

behavior. The situation becomes much more severe for 

nonlinear fluids such as those obeying the Quemada 

model―which become more nonlinear the smaller the Rx 

number.  For such fluids, the chaotic behavior exhibits 

itself by a dramatic increase in the bubble radius. 

Specifically, for Rx = 0.001 and ξ = 1/81, a one-micron-

sized bubble attains a size almost 30 times its initial radius.  

4.2 Effect of Viscosity Ratio,   

 Figure 9 shows the effect of viscosity ratio (ξ) in the 

rheopectic fluid (ξ < 1) for two different pressure 

coefficients.  

 The results presented in Fig. 9 depict the strong effect 

of the pressure coefficient on bubble dynamics. The effect 

was anticipated because an increase in Cp means  

an increase in the amplitude of the acoustic forcing which  
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(a) 

 
(b) 

Fig. 9 Effect of viscosity ratio (ξ) on the bubble’s 

response to acoustic pressure (Rx = 0.001, Re = 1: (a) 

Cp = 0.16; (b) Cp = 4) 

 

makes the response increasingly more nonlinear. The 

response of the bubble is seen to be periodic although for 

Cp = 4 harmonics are predicted to arise in the response of 

the bubble. The harmonics in Fig. 9 are seen to be 

controlled by ξ. The strong effect of ξ on the bubble 

response is not surprising because by reducing this ratio 

the difference between 
0

 and 


 is progressively 

increased. As a result, the fluid needs more time to reach 


  and, in practice, it translates itself into a stronger anti-

thixotropic behavior, as can be seen in Fig. 9. If this 

explanation is true, it is speculated that for sufficiently 

small viscosity ratios, the response should become 

chaotic. Figure 10 shows that this is indeed the case.   

 Figure 10a shows that the chaotic behavior becomes 

more sever the smaller the viscosity ratio. For example, 

for the extreme case of ξ = 1/81, a one-micron-sized 

bubble acquires a size almost 30 times its initial radius 

provided that the Rx number is sufficiently small (say, 

0.001). Interestingly, for the same set of parameters, a 

Newtonian fluid does not exhibit any chaotic behavior; see 

Fig. 10b. 

 
(a) 

 
(b) 

Fig. 10 (a) Effect of viscosity ratio on the bubble’s 

response to acoustic pressure; (b) zoomed view (Re = 

1, Rx = 0.001, Cp = 4) 

 

5. CONCLUDING REMARKS  

 In the present work, the behavior of a tiny gas bubble 

surrounded by a time-dependent fluid obeying the 

Quemada model has been numerically investigated. For 

numerically solving the equations of motion, use was 

made of the Gauss-Laguerre method. Based on the 

obtained numerical results, the following conclusions are 

made: 

• Anti-thixotropy of the Quemada model represented by 

the rheopexy number affect the bubble response with its 

severity depending on the amplitude and frequency of the 

acoustic wave.  

• For sufficiently large amplitudes and frequencies the 

response of the bubble is predicted to be periodic 

regardless of the rheopexy number.  

• At sufficiently high Reynolds numbers, the response 

of the bubble becomes chaotic with its severity controlled 

by the viscosity ratio. 

•  Microbubbles can be used as effective ultrasound 

contrast agents for rheopectic physiological fluids such as 

synovia provided that the level of their anti-thixotropy is 
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not too severe otherwise chaotic response might emerge 

that might damage the tissues adjacent to the bubble. 

 Work is currently ongoing in our research group to 

determine the critical values for the rheopexy number 

through a proper linear temporal instability analysis. 
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Fig. A1 Schematic showing the spherical bubble and 

the spherical computational domain discretized using 

a coarse mesh. Much finer mesh is used in practice 

for the true simulations. The nodes needed for the 

simulations are drawn 

 

12) to this solver by writing appropriate scripts. It is also 

required to discretize the domain. Figure A1 shows a 

typical domain, which is normally used for two- or three-

dimensional flows. Fortunately, the problem at hand is 

one-dimensional meaning that one needs to do is to put 

sufficient nodes along an arbitrary radius (e.g., y-direction 

shown in Fig. A1) and then activate the solver. Deciding 

on the number of nodes needed for the results to be grid-

independent is something very important that is discussed 

below. For spatial discretization of the transport equation 

for the structural parameter, we have used Lagrange shape 

functions based on quadratic type of elements in this 

software. To temporally discretize the system of 

equations, we have used fully-coupled version of the time-

dependent solver based on the Non-Linear Newton 

iterative method (using a damping factor of 1). The 

method uses implicit discretization in an iterative manner 

where the stability of the simulation needs to be 

significantly improved for situations where bubble 

deformation is large (e.g., during its chaotic response).  

 It is worth-mentioning that in the present study 

selecting an optimum value for the far-field radius (Rmax), 

i.e., the radius representing physical infinity turned out to 

be a tedious but straightforward task. The idea was to 

check the structural parameter at the chosen Rmax to see if 

it meets the criterion that the fully-rebuilt condition (S = 

1) is met for the Quemada model. To achieve this goal we 

have tested different values for Rmax in our simulations and 

reached to the conclusion that to meet this boundary 

condition, it is sufficient to set far field radius at least 100 

times the bubble’s initial radius. To ensure mesh- 

independency, however, it was found that Rmax = 400R0 is 

a conservative option. So, in the simulation results 

reported in the main body of the paper, use was made of 

this value. From another perspective, to increase accuracy 

of the simulated results, particularly in cases where the 

bubble behaves chaotically, we have increased the 

resolution of the mesh grids near the bubble’s surface. To 

do this, we have used 2000 elements with element ratio of 

1.75 in the whole computational domain.   

Appendix B: Gauss-Laguerre Method 

 The Gauss–Laguerre quadrature method has been used 

in the past for simulating bubble dynamics in thixotropic 

fluids (Kafiabad & Sadeghy, 2010). The method is based 

on the premise that the stress field decays exponentially in 

the radial direction. As the first step, by substituting y = r 

– R(t) the bubble’s wall is immobilized, so that Eq. 9 is 

transformed from the Eulerian framework to the 

Lagrangian framework. The fluid’s domain is then divided 

such that the first point always corresponds to the bubble 

wall—this little maneuvering eliminates the need for 

following a moving boundary.  Based on this scheme, the 

structural parameter is always set equal to 1 at the last grid 

point. In other words, at far-field, the fluid’s 

microstructures remains intact so that S (t,∞) = 1 at all 

times. The initial conditions are: 

(0) 1 (0) 0 (0 ) 1= = =R , R , S ,r .                                       (B1) 

 For solving the governing equations, use was made of 

the MATLAB software. To that end, the domain is 

discretized into N points in such a way that the first point 

corresponds to the bubble wall. The discretized system is 

as follows: 

 =
dR

U ,
dt
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 The last equation to be discretized is the structural 

parameter transport equation, i.e., Eq. 12. To that end, Eq. 

(12) is transformed from the r-t plane to the y-t plane using 

the transformation: y = r – R(t). After some mathematical 

manipulations, the following transformed equation is 

obtained: 
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 The above equation is valid in the range of 0 ≤ y ≤ ∞. 

To couple this equation with Eqs. B2 and B3, it is required 

that Eq. B4 is discretized in each spatial position y. If 1 ≤ 

j ≤ N represents 0 ≤ y ≤ ∞ then discretization of Eq. B4 can 

be written as: 



A. Abdollahi et al. / JAFM, Vol. 16, No. 10, pp. 1916-1926, 2023.  

 

1926 

 

Fig. B1 A typical grid used in the Gauss-Laguerre quadrature method. The nodes are seen to be concentrated 

near the surface of the bubble (y = 0) 
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where Kj-1, Kj and Kj+1 are defined as: 
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    (B7) 

 Moreover, SN has been replaced by 1 due to boundary 

condition at far field on S. The initial conditions are: R(0) 

= 1, U(0) = 0 and Sj(0) = 1. These equations are then solved 

numerically using the Gauss-Laguerre method. To that 

end, the integral in Eq. B3 is approximated as: 

(B8) 
1

( )
=


N

k k

k

I w y , 

where yk are the zeros of the Laguerre polynomials, which 

are defined as (Jaluria, 1988): 

(B9) ( )( )
−

=

n

x x n

n n

d
L x e e x

dx
 

 Also, are the weighting functions related to the 

Laguerre polynomials as: 

(B10) 
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 What remains to be done is to discretize the domain 

using the roots of the Laguerre polynomials, which has 

been shown in Fig. B1 where the domain has been 

discretized using N = 30 nodes with y = 104.175 serving 

as the node representing physical infinity. The nodes are 

seen to be concentrated near the bubble surface so that 

sharp variation in the stress terms can be resolved; see 

Kafiabad and Sadeghy (2010) for more details. 

 


