
Sensors & Transducers, Vol. 249, Issue 2, February 2021, pp. 9-16

 9

Sensors & Transducers

Published by IFSA Publishing, S. L., 2021
http://www.sensorsportal.com

Unsupervised Embedded Gesture Recognition Based
on Multi-objective NAS and Capacitive Sensing

1, 2, * Juan BORREGO-CARAZO, 1 David CASTELLS-RUFAS,

2 Ernesto BIEMPICA and 1 Jordi CARRABINA
1 Universitat Autònoma de Barcelona, C. de les Sitges s/n, Bellaterra, 08193, Spain

2 R+D, Kostal Elétrica S.A., Notari Jesús Led 10, 08181, Senmenat, Spain
1 Tel.: 93 581 3358

E-mail: juan.borrego@uab.cat

Received: 5 October 2020 /Accepted: 26 November 2020 /Published: 28 February 2021

Abstract: Gesture recognition has become pervasive in many interactive environments. Recognition based on
Neural Networks often reaches higher recognition rates than competing methods at a cost of a higher
computational complexity that becomes very challenging in low resource computing platforms such as
microcontrollers. New optimization methodologies, such as quantization and Neural Architecture Search are steps
forward for the development of embeddable networks. In addition, as neural networks are commonly used in a
supervised fashion, labeling tends to include bias in the model. Unsupervised methods allow for performing tasks
as classification without depending on labeling. In this work, we present an embedded and unsupervised gesture
recognition system, composed of a neural network autoencoder and K-Means clustering algorithm and optimized
through a state-of-the-art multi-objective NAS. The present method allows for a method to develop, deploy and
perform unsupervised classification in low resource embedded devices.

Keywords: Unsupervised learning, Neural networks, Neural architecture search, Capacitive sensing, Embedded
electronics.

1. Introduction

Hand gestures are an efficient way of
communicating simple concepts. During the last two
decades, its usage in Human-Machine Interaction
(HMI) has become pervasive thanks to the
proliferation of low-cost depth sensors based on
structured light, time of flight, and active stereo
matching [1].

Depth sensors based on the analysis of light
parameters can achieve a high-resolution accuracy,
but since they are based on a single point of view that
must be distant to the object to recognize, they are
mostly used for mid-air gesture recognition [2].
Moreover, they are sensible to illumination conditions.

On the other hand, capacitive sensing stands out for its
low power, highly sensitive but reliable solution for
gesture recognition where close contact is required [3].

Neural Networks (NNs) have achieved outstanding
performance in tasks such as image classification or
speech translation. In the supervised case, however,
their usage requires labeling, which can induce, among
other factors, bias in the model and undermine its real-
world use [4]. To partially solve this issue,
unsupervised methods focus only on the information
proportioned by the data to perform the task and avoid
annotation and labeling, both error-prone activities
which could induce noise and bias. Nevertheless, the
bias or noise are not completely removed since the
data itself could still be biased and noisy. In the end,

http://www.sensorsportal.com/HTML/DIGEST/P_3202.htm

https://www.sensorsportal.com/

Sensors & Transducers, Vol. 249, Issue 2, February 2021, pp. 9-16

 10

unsupervised methods do not only liberate from the
task and effects of labeling but also allow for more
freedom in the learning of patterns, by not being
constrained to a specific purpose task. Hence, they
enable the possibility of pattern discovery and
identification outside the constraints of the specific
task purpose.

As an added problem, neural networks have
required a certain level of computing resources
preventing their deployment in low resource platforms
like microcontrollers. Lately, this problem has been
addressed through optimization techniques like
quantization and pruning. However, with the use of

such techniques, the network still has to be built
manually. In the case of low resource platforms, this
fact imposes severe difficulties to develop NNs which
are well-performing and compliant with the different
memory and latency requirements of the deployment
platform. To address this problem, Neural
Architecture Search (NAS) [5] was developed,
allowing for the automatic building of neural
networks. Later, this method was extended to a multi-
objective setting [6], to account for the requirements
of low resource platforms and deliver functional but
also minimal neural networks.

Fig. 1. Examples of numbers drawn at the sensitive surface. From left to right: a one, a five, a six and a three. The black
points correspond to the electrode pairs through which the finger has passed. In an image configuration they correspond

to 1 s while the background is set to 0.

In this work, we present an auto-encoder neural

network that, in junction with K-Means (KM) and
optimized through NAS, can perform unsupervised
classification in a low resource microcontroller for
recognizing gestures. To check the validity of such
unsupervised learning and classification, we check our
model results in a supervised evaluation setting, which
proves the validity of the approach and the possibility
of not needing labeled data when using it. Although
there have been similar works with other models [7] or
with other topics [8], to the best of our knowledge, this
is the first work that presents a fully embedded and
unsupervised solution for gesture recognition using
neural networks and capacitive sensing.

2. Previous Work

Capacitive sensing has been used for multiple
application fields including music [9], security [10], or
entertainment. It is characterized by offering a low
power, only electronic, and cheap alternative to other
sensing methods. In the case of gesture recognition,
capacitive sensing has also been used extensively;
although mostly in touchable surfaces [11], there have
been applications based on wearables [12] and on 3D
and extended ranges [13]. Different applications
require different sensitivities and ranges, capacitive
sensing allows for a variety of design parametrizations
that change these features. In the present case,
we refer to mutual capacitance sensing according to

the classification from [3], which allows for a short-
range interaction.

Several approaches can be used to classify the
sensed signals into recognized gestures. Classic
machine-learning methodologies were based on a two-
step procedure: first, extracting the relevant features
from the input signals; and, second, the classification
of such features into the corresponding gestures [14].
Humans associate gestures with meanings. Gestures
can be classified as being either static or dynamic. In
a static gesture, a certain body part pose that is
maintained for a period of time is associated with a
meaning (e.g. thumbs-up is associated with OK). In a
dynamic gesture, the body part movement is essential
to the meaning (e.g. finger-wag is associated with
NO). Common algorithms to classify static gestures
are support vector machines (SVM) [15], k-nearest
neighbors, and random forests, among others.
Regarding dynamic gestures, Hidden Markov Models
(HMM) [16] or Dynamic Time Warping models are
commonly used due to the intrinsic temporal
component. In order to feed the data in an appropriate
form to the latter algorithms, methods such as
Fisher Vectors, PCA, or other feature representations
were used.

Nevertheless, with the advent and success, albeit
with a higher computational cost, of deep learning this
pipeline has changed. In the deep learning setting, the
feature extraction step has been deleted in most cases
and all the process has been substituted by a neural
network. In the case of static classification, methods

Sensors & Transducers, Vol. 249, Issue 2, February 2021, pp. 9-16

 11

based on CNN [17] stand out, differentiating between
them with regards to the information they use: camera-
based ([18], [19]), or signals ([20], [21]). In the latter
case, 1D convolutions stand out as a novel application.
In the case of dynamic classification, recurrent models
are commonly used ([22], [23]), allowing for a
continuous and online gesture classification. Lately,
however, and in the case of videos, 3D convolutions
have also been used both for continuous and static
classification [24].

Deep learning methods, however, usually entail
high computational costs that unable their deployment
into resource-constrained platforms. To alleviate this
problem several methods such as quantization [25],
pruning [26], distillation, or NAS [27] have been
developed on the software side, while hardware
accelerators and deployment frameworks [28] have
also implemented in order to speed up inference and
allow ease of deployment.

Since then, applications for deploying neural in
resource-constrained environments, and more
specifically, microcontrollers have flourished. From
keyword spotting [29], image classification, and
object detection, new applications are being ported to
low power and edge devices. Gesture recognition has
not been an exception, with new applications and
methods appearing continuously; for example, using
radar signals [30] or with wearables [31]. In the case
of capacitive sensing, most of the applications that use
embedded deep learning are oriented to touch
detection, prediction, and related tasks in smartphone
surfaces [32], while works developed in the
microcontroller environment are less frequent.

In most cases, the development of such embedded
gesture recognition applications with neural networks
requires the annotation of data [33]. There are few
cases, where unsupervised methods have been used for
gesture recognition with neural networks have been
used. In [7] the authors employ several unsupervised
methods, such as K-means, Self Organizing Maps or
Hierarchical Clustering for classifying gestures sensed
through a gyroscope and a geomagnetic sensor.
However, they do not embed the models in the
microcontroller. In [8], the authors use an approach
similar to our proposal based on an autoencoder plus
K-Means to classify images. However, they do not
perform any kind of optimization in order to allow the
model to be run in resource-constrained devices,
reason why our methods stand out.

Precisely and, to the best of our knowledge, this is
the first work using unsupervised gesture recognition
in a microcontroller using neural networks and
capacitive sensing.

3. Sensing Method and Data

3.1. Capacitive Sensing Platform

As depicted in Fig. 2, the sensing platform consists
of a surface touch module with three elements: the

plastic cover, the capacitive foil, and the embedded
board. The touch interface is the upper part of the
plastic cover, which is immediately after the
capacitive foil and glued to it. The embedded board is
in the lower part and connected to the capacitive foil.
The sensing component, which is the capacitive foil,
consists of a central sensitive surface and 24 electrodes
which run through it: 9 horizontally and 13 vertically,
plus a global shield electrode.

The sensing mechanism is based on the
transference of charge between two capacitors:
integration and measurement condensers. More details
of the sensing methodology can be found in [23].

Fig. 2. Illustration of the capacitive foil. Each of the dots
represents an electrode, emitting each one a distinctive

measurement of its row/column in the surface. The foil is
pasted underneath the plastic cover and connected to the

microcontroller through the lower-left pins.

The final result of a measurement is a set of
voltages sensed at the measurement capacitor, one for
each electrode. Each voltage is then converted through
a 10-bit ADC to obtain a final raw value for each
electrode at a predefined sampling rate (in the present
case, 500 Hz).

3.2. Data Collection and Preparation

The user enters the gestures by touching the
sensing surface and, without withdrawing the finger,
draws the gesture on it. We detect the touch by the
method described in [34], and then we begin to collect
the raw values of the electrodes as described in the
previous section. By examining which electrodes,
horizontally and vertically, have the highest value we
can determine in which spatial coordinates the finger
is placed. When the user withdraws the finger, we stop
collecting data. It has to be noted, that the gestures
described do not contain segmentation and thus we do
not assess that problem. That is, we consider a gesture
all the signals from a touch to a withdrawal, and force
users to perform the whole gesture in such a manner.

By integrating all the coordinates through which
the finger has passed we construct a greyscale image
of 9×13 pixels of the figure drawn. That is, we mark
the points through which the user has passed with a 1,

Sensors & Transducers, Vol. 249, Issue 2, February 2021, pp. 9-16

 12

while the rest of the untouched points remain as
background with a value of 0. Hence, the orientation
of the strokes is deleted and only the final form of the
gesture drawn is recorded. That is we produce a static
version of the gesture. To ease the deployment in a
microcontroller and due to deployment framework
limitations, we end up squaring the image to 13×13 by
padding it. An example of such a method can be seen
in Fig. 1, where different numbers drawn on the
sensitive surface can be visualized as the points
through which the finger has passed.

To collect the dataset, numbers from 1 to 9 were
drawn a total of 100 times per number on the sensing
surface. The dataset is divided in a stratified manner in
training, validation, and test, with 720, 90 and
90 samples respectively.

4. Models and NAS Framework

4.1. Models

We consider two auto-encoder (AE) model types,
that is, networks that are trained to replicate the input.
The first a Convolutional Auto-encoder (CAE), and
the second a Dense Auto-encoder (DAE), made only
of fully connected layers.

In general, the architecture consists of two
differentiated parts: the first, the encoder, is in charge
of extracting the information and compress it in a
central vector, and the second, reconstructing the
input. In the CAE case, compression is performed by
a succession of convolutional or pooling layers
followed by ReLU activations, while the input
reconstruction is performed by deconvolution layers
and final upsampling. In the DAE case, all the layers
are fully connected followed by ReLU activations,
except for the final layer which reconstructs the input
by reordering the output of the network. In both cases,
there is a central fully connected layer that produces
the latent feature vector. An important note is that to
reconstruct the input, as it is made of 0s and 1s, we
have used a Binary Cross-entropy Loss for training
the AEs.

To provide unsupervised classification, a KM
algorithm is in charge of grouping the compressed
feature vectors into clusters. The choice of KM is
central since it needs the number of clusters to be
specified. In our case, this is precisely the number
of classes.

4.2. Training and Model Optimization

To train the whole unsupervised method we divide
the training into three separate steps. First, we train the
AE to replicate the input. The loss used is an L2 norm
based reconstruction loss. The networks are trained for

1 For more details, the interested reader can check the
implementation at https://scikit-
learn.org/stable/modules/clustering.html#k-means

a maximum of 50 epochs and the model with the best
validation loss is used as the final model; the number
of epochs is chosen based upon observation of
previous training.

Second, once it has stopped training, we forward
the entire training dataset through it and collect the
latent feature vector for each input. The latent vector
corresponds to the central chosen vector, which can be
seen in Fig. 3. In the CAE case, it has 12 elements,
while in the DAE it has 117. Hence, the feature
extraction through the autoencoder acts as a form of
data compression algorithm with an effective
compression ratio close to 10.

Third, we train the KM algorithm with all the
collected feature vectors. That is, we have a feature
vector per image and each of those vectors correspond
to the central vector obtained by forwarding the
corresponding image through the trained autoencoder.
For example, in the CAE case, we have 720 vectors of
size 12. As we are classifying 9 different numbers
(from digit 1 to 9, excluding 0), we establish 9 clusters
for the K-Means algorithms. K-Means algorithm is
initialized following the k-means ++ strategy [35] of
similarly distanced cluster centers and the distance
used is the L-2 norm1. Finally, to obtain test or
validation results, we forward the test or validation
sets through the AE, obtain the feature vectors, and
predict to which cluster they belong.

Regarding the performance measure, we have
selected a clustering supervised measure, V-Measure
[36], for checking the actual classification capabilities
of the framework. Choosing an actual unsupervised
clustering metric, such as Silhouette Score would not
provide direct insight into the accuracy of the
predictions. The training, however, remains fully
unsupervised.

As detailed as the first step, we have to build and
train the network. However, building and tuning
neural networks to be well-performing but also to
comply with hardware requirements is a difficult task.
Hence, we employ an extended implementation of a
NAS framework [6] oriented towards optimizing
accuracy, model size, maximum feature map (working
memory), and latency. An important note is that, as the
search space is composed of conditional variables, we
use an implementation of the Arc Kernel [37], which
is especially suited for conditional spaces. By
decomposing the space using and using a cylindrical
embedding, it is able to assess the conditionality
among variables. The embedding , :	 	→ ,
where 	is the original dimension i space, can be used
with any distance and covariance method:

= [0, 0] 																	 	 =sin − , cos − 				 ℎ ,

Sensors & Transducers, Vol. 249, Issue 2, February 2021, pp. 9-16

 13

Fig. 3. Best architectures resulting from the optimization procedures for both the CNN and FC autoencoders. The elements
in the image represent the feature maps. In the convolution case, the size of the feature map is indicated by the vertical and
depth numbers, while the horizontal number indicates the number of feature maps. In the FC case, the number indicates the

number of neurons in each step and the images are flattened at the beginning and reshaped at the end.

where ∈ and 	 ∈ [0, 1] are the radius and
angle factor of the cylindrical space, −
establishes the length scale of the dimension i, and
is a delta function establishing the existence of
coupling among dimensions x.

The framework works, in each architecture case,
CA or DE, with a configuration space composed of
both training hyperparameters and architectural
parameters, including post-training linear static
quantization and L1-Norm based pruning. Once the
search space has been defined, the framework
sequentially searches for solutions that minimize the
following objectives
 	 Ω = 1 − Ω Ω = 	 ‖ ‖ Ω = max ‖ ‖ ‖ ‖ ‖ ‖ Ω = 	 ,

where Ω is the specific configuration of the search
space, is the specific layer of the network, the
weights of layer , the output of that layer and the
input. In our present case, the accuracy corresponds to
the correct classification of each pixel of the output
with regards to the input.

Once we have the best model found and trained by
our NAS framework, we can proceed with the next

steps of training the KM model and obtaining
test results.

5. Results

The models established, CAE and DAE, are both
developed in PyTorch and the NAS procedure is
developed under Ax [38] and BoTorch [39].

First, we illustrate the optimization procedure for
the CAE with SpArseMod in Fig. 4. As seen, while the
optimization procedure advances there is a decrease in
the model size. Also, one can observe the trade-off
between the model size and the error: while we
continue to obtain smaller architectures the error
worsens, obtaining in some cases a compromise.

The final result is an election of the best points of
the search: the Pareto frontier. With the best-chosen
model, we train and test the K-Means unsupervised
clustering and classification. We present the
optimization results for the AEs, which correspond to
the results for model size, maximum feature map, and
latency, and detailed in Table 1, as well as the test
results for the K-Means unsupervised classification.
As seen, the CAE outperforms the DAE in almost all
metrics, except for latency where DAE is a little bit
faster. The results for the model size and maximum
feature map sizes are low enough to be able to embed
the model in a low resource microcontroller.

Sensors & Transducers, Vol. 249, Issue 2, February 2021, pp. 9-16

 14

After the optimization result and after training the
KM model with the feature maps obtained, we obtain
the test results for the unsupervised classification. In
this case, the CAE model performs much better than
the DAE, achieving a good result regarding the
V-Measure. This indicates the feasibility of this
method to provide unsupervised classification.

Fig. 4. Optimization procedure for CAE. The y axis
represents the Model size and the x-axis the error (per pixel

classification). Both axes are in logarithmic scale. The
color illustrates the evolution procedure as each of the steps

of the Bayesian optimization procedure.

Table 1. Results for the optimization procedure
with SpArSeMod. MF corresponds to maximum feature

map size, MS to model size, L to latency, and V-M to the
V-Measure.

Model
MF
(kB)

MS
(kB)

L (ms)
V-M
(%)

CNN 2.69 6.13 5.53 87.18
FC 18.32 39.67 4.08 58.63

As the final step of our development, we further
embed the best model with CMSIS-NN in an NXP-
S32K142 microcontroller to perform inference. To
perform inference and obtain test results in the
embedded implementation, we only need the encoder
part of the CAE model and the centroids of KM. We
proceed in the following manner: first and for each
input, we obtain the feature vector by forwarding the
input through the encoder, and second, we measure the
distance to all the centroids and choose the nearest one
to assign a class.

It is important to note that, in CMSIS-NN legacy
API, the quantization used is the power of two based
and in the case of PyTorch is linear, enforcing thus a
loss of precision. This changes the accuracy of the
model but not the size since in both cases we use 8-bit
integers. We obtain a V-Measure of 84.08 %, hence
resulting in a loss of around 3.10 % in the V-measure,
but also validating our embedded deployment.

Finally, to have a visual representation of the
clusters, we embed with t-SNE [40] all the encoded

features from the training set and also the centroids.
As can be seen in Fig. 5, the clusters are well separated
identifying each one as a group of gestures
corresponding to a specific number.

Fig. 5. Cluster visualization of the different gesture
numbers through t-SNE.

6. Conclusions

We have shown a full pipeline of work for

unsupervised classification of gestures. We have
employed a CAE plus KM as a model, and a multi-
objective NAS to find a proper embeddable model.
Finally, we have been able to embed that model into
an embedded platform with CMSIS-NN, obtaining
good performance results, and thus validating our
approach. There are two next important steps to be
able to improve the gesture recognition system. First,
to change the quantization to linear instead of power
of two based to reduce the drop in performance and
also to improve. Second, to improve the clustering by
adding a Kullback-Leibler divergence component in
the loss, hence separating more the feature vectors
corresponding to different numbers [41].

Acknowledgments

This project is supported by the Spanish Ministry
of Science, Innovation, and Universities under grant
RTI2018-095209-B-C22 and the Catalan Government
industrial Ph.D. program under grant 2018-DI-3.

References

[1]. S. Giancola, M. Valenti, R. Sala, A survey on 3D

cameras: Metrological comparison of time-of-flight,

Sensors & Transducers, Vol. 249, Issue 2, February 2021, pp. 9-16

 15

structured-light and active stereoscopy technologies,
Springer, 2018.

[2]. F. M. Caputo, P. Prebianca, A. Carcangiu,
L. D. Spano, A. Giachetti, Comparing 3D trajectories
for simple mid-air gesture recognition, Computers and
Graphics, Vol. 73, 2018, pp. 17–25.

[3]. T. Grosse-Puppendahl, et al., Finding common
ground: A survey of capacitive sensing in human-
computer interaction, in Proceedings of the
Conference on Human Factors in Computing Systems
(ACM CHI’17), 6-11 May 2017, pp. 3293–3316.

[4]. R. Binns, M. Veale, M. Van Kleek, N. Shadbolt, Like
Trainer, Like Bot? Inheritance of Bias in Algorithmic
Content Moderation, Social Informatics, 2017,
pp. 405–415.

[5]. D. Stamoulis, et al., Single-path nas: Designing
hardware-efficient convnets in less than 4 hours, in
Proceedings of the Joint European Conference on
Machine Learning and Knowledge Discovery in
Databases, 2019, pp. 481–497.

[6]. I. Fedorov, R. P. Adams, M. Mattina,
P. N. Whatmough, SpArSe: Sparse Architecture
Search for CNNs on Resource-Constrained
Microcontrollers, in Proceedings of the 33rd
Conference on Neural Information Processing
Systems (NeurIPS 2019), Vancouver, Canada, 2019,
pp. 1–26.

[7]. A. Moschetti, L. Fiorini, D. Esposito, P. Dario, F.
Cavallo, Toward an Unsupervised Approach for Daily
Gesture Recognition in Assisted Living Applications,
IEEE Sens. J., Vol. 17, Issue 24, 2017. pp. 8395–8403.

[8]. C. Song, F. Liu, Y. Huang, L. Wang, T. Tan, Auto-
encoder based data clustering, Lect. Notes Comput.
Sci. (including Subser. Lect. Notes Artif. Intell. Lect.
Notes Bioinformatics), Vol. 8258 LNCS, Issue PART
1, 2013, pp. 117–124.

[9]. J. A. Paradiso, N. Gershenfeld, Musical applications
of electric field sensing, Comput. Music J., Vol. 21,
Issue 2, 1997, pp. 69–89.

[10]. M. Huynh, P. Nguyen, M. Gruteser, T. Vu, POSTER:
Mobile Device Identification by Leveraging Built-in
Capacitive Signature, in Proceedings of the 22nd ACM
SIGSAC Conference on Computer and
Communications Security, 2015, pp. 1635–1637.

[11]. K. Hinckley, M. Sinclair, Touch-Sensing Input
Devices, in Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, 1999, pp. 223–
230.

[12]. A. Pouryazdan, R. J. Prance, H. Prance, D. Roggen,
Wearable Electric Potential Sensing: A New Modality
Sensing Hair Touch and Restless Leg Movement, in
Proceedings of the ACM International Joint
Conference on Pervasive and Ubiquitous Computing:
Adjunct, 2016, pp. 846–850.

[13]. A. Nelson, G. Singh, R. Robucci, C. Patel,
N. Banerjee, Adaptive and Personalized Gesture
Recognition Using Textile Capacitive Sensor Arrays,
IEEE Trans. Multi-Scale Comput. Syst., Vol. 1, Issue
2, 2015, pp. 62–75.

[14]. S. Escalera, V. Athitsos, I. Guyon, Challenges in
multi-modal gesture recognition, Gesture Recognit.,
2017, pp. 1–60.

[15]. D.-Y. Huang, W.-C. Hu, S.-H. Chang, Vision-based
hand gesture recognition using PCA+Gabor filters and
SVM, in Proceedings of the Fifth International
Conference on Intelligent Information Hiding and
Multimedia Signal Processing, 2009, pp. 1–4.

[16]. M. A. Moni, A. B. M. S. Ali, HMM based hand gesture
recognition: A review on techniques and approaches,

in Proceedings of the 2nd IEEE International
Conference on Computer Science and Information
Technology, 2009, pp. 433–437.

[17]. J. Nagi, et al., Max-pooling convolutional neural
networks for vision-based hand gesture recognition, in
Proceedings of the IEEE International Conference on
Signal and Image Processing Applications (ICSIPA),
2011, pp. 342–347.

[18]. X. Liu, K. Fujimura, Hand gesture recognition using
depth data, in Proceedings of the Sixth IEEE
International Conference on Automatic Face and
Gesture Recognition, 2004, pp. 529–534.

[19]. H.-I. Lin, M.-H. Hsu, W.-K. Chen, Human hand
gesture recognition using a convolution neural
network, in Proceedings of the IEEE International
Conference on Automation Science and Engineering
(CASE), 2014, pp. 1038–1043.

[20]. V. Shanmuganathan, H. R. Yesudhas, M. S. Khan,
M. Khari, A. H. Gandomi, R-CNN and wavelet feature
extraction for hand gesture recognition with EMG
signals, Neural Comput. Appl., Vol. 32, Issue 21,
2020, pp. 16723–16736.

[21]. S. Y. Kim, H. G. Han, J. W. Kim, S. Lee, T. W. Kim,
A hand gesture recognition sensor using reflected
impulses, IEEE Sens. J., Vol. 17, Issue 10, 2017,
pp. 2975–2976.

[22]. P. Wang, W. Li, S. Liu, Y. Zhang, Z. Gao,
P. Ogunbona, Large-scale continuous gesture
recognition using convolutional neural networks, in
Proceedings of the 23rd International Conference on
Pattern Recognition (ICPR), 2016, pp. 13–18.

[23]. D. Castells-Rufas, J. Borrego-Carazo, J. Carrabina, J.
Naqui, E. Biempica, Continuous touch gesture
recognition based on RNNs for capacitive proximity
sensors, Personal and Ubiquitous Computing, 2020.

[24]. P. Molchanov, S. Gupta, K. Kim, J. Kautz, Hand
gesture recognition with 3D convolutional neural
networks, in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition Workshops,
2015, pp. 1–7.

[25]. B. Jacob, et al., Quantization and training of neural
networks for efficient integer-arithmetic-only
inference, in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2018,
pp. 2704–2713.

[26]. S. Anwar, K. Hwang, W. Sung, Structured pruning of
deep convolutional neural networks, ACM J. Emerg.
Technol. Comput. Syst., Vol. 13, Issue 3, 2017,
pp. 1–18.

[27]. E. Liberis, Ł. Dudziak, N. D. Lane, µNAS:
Constrained Neural Architecture Search for
Microcontrollers, Computer Science, 2020.

[28]. L. Lai, N. Suda, V. Chandra, CMSIS-NN: Efficient
neural network kernels for arm Cortex-M CPUs, arXiv
Prepr. arXiv1801.06601, 2018.

[29]. Y. Zhang, N. Suda, L. Lai, V. Chandra, Hello edge:
Keyword spotting on microcontrollers, arXiv Prepr.
arXiv1711.07128, 2017.

[30]. M. Scherer, M. Magno, J. Erb, P. Mayer,
M. Eggimann, L. Benini, TinyRadarNN: Combining
Spatial and Temporal Convolutional Neural Networks
for Embedded Gesture Recognition with Short Range
Radars, arXiv Prepr. arXiv2006.16281, 2020.

[31]. E. Torti, et al., Embedded real-time fall detection with
deep learning on wearable devices, in Proceedings of
the 21st Euromicro Conference on Digital System
Design (DSD), 2018, pp. 405–412.

[32]. H. V. Le, S. Mayer, N. Henze, Investigating the
feasibility of finger identification on capacitive

Sensors & Transducers, Vol. 249, Issue 2, February 2021, pp. 9-16

 16

touchscreens using deep learning, in Proceedings of
the 24th International Conference on Intelligent User
Interfaces, 2019, pp. 637–649.

[33]. F. Sakr, F. Bellotti, R. Berta, A. De Gloria, Machine
learning on mainstream microcontrollers, Sensors,
Vol. 20, Issue 9, 2020, p. 2638.

[34]. U. Borgmann, Method for Detecting Contact on a
Capacitive Sensor Element, US Patent App. 16/354,
699, March 2019.

[35]. D. Arthur, S. Vassilvitskii, k-means++: The
advantages of careful seeding, Stanford, 2006.

[36]. A. Rosenberg, J. Hirschberg, V-measure: A
conditional entropy-based external cluster evaluation
measure, in Proceedings of the Joint Conference on
Empirical Methods in Natural Language Processing
and Computational Natural Language Learning
(EMNLP-CoNLL), 2007, pp. 410–420.

[37]. K. Swersky, D. Duvenaud, J. Snoek, F. Hutter,
M. A. Osborne, Raiders of the lost architecture:
Kernels for Bayesian optimization in conditional
parameter spaces, arXiv Prepr. arXiv1409.4011, 2014.

[38]. E. Bakshy, et al., AE: A domain-agnostic platform for
adaptive experimentation, SemanticScholar, 2018.

[39]. M. Balandat, et al., BoTorch: A Framework for
Efficient Monte-Carlo Bayesian Optimization, in
Advances in Neural Information Processing Systems,
Vol. 33, 2020.

[40]. L. van der Maaten, G. Hinton, Visualizing data using
t-SNE, J. Mach. Learn. Res., Vol. 9, Issue 86, 2008,
pp. 2579–2605.

[41]. V. Prokhorov, E. Shareghi, Y. Li, M. T. Pilehvar,
N. Collier, On the importance of the Kullback-Leibler
divergence term in variational autoencoders for text
generation, arXiv Prepr. arXiv1909.13668, 2019.

Published by International Frequency Sensor Association (IFSA) Publishing, S. L., 2021
(http://www.sensorsportal.com).

https://www.sensorsportal.com/HTML/E-SHOP/PRODUCTS_4/USTI.htm
https://www.sensorsportal.com/HTML/E-SHOP/PRODUCTS_4/USTI.htm
https://www.sensorsportal.com/HTML/E-SHOP/PRODUCTS_4/USTI.htm
https://www.sensorsportal.com/HTML/E-SHOP/PRODUCTS_4/USTI.htm

