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Abstract: Gesture recognition has become pervasive in many interactive environments. Recognition based on 
Neural Networks often reaches higher recognition rates than competing methods at a cost of a higher 
computational complexity that becomes very challenging in low resource computing platforms such as 
microcontrollers. New optimization methodologies, such as quantization and Neural Architecture Search are steps 
forward for the development of embeddable networks. In addition, as neural networks are commonly used in a 
supervised fashion, labeling tends to include bias in the model. Unsupervised methods allow for performing tasks 
as classification without depending on labeling. In this work, we present an embedded and unsupervised gesture 
recognition system, composed of a neural network autoencoder and K-Means clustering algorithm and optimized 
through a state-of-the-art multi-objective NAS. The present method allows for a method to develop, deploy and 
perform unsupervised classification in low resource embedded devices. 
 
Keywords: Unsupervised learning, Neural networks, Neural architecture search, Capacitive sensing, Embedded 
electronics. 
 
 
 
1. Introduction 

 

Hand gestures are an efficient way of 
communicating simple concepts. During the last two 
decades, its usage in Human-Machine Interaction 
(HMI) has become pervasive thanks to the 
proliferation of low-cost depth sensors based on 
structured light, time of flight, and active stereo 
matching [1].  

Depth sensors based on the analysis of light 
parameters can achieve a high-resolution accuracy, 
but since they are based on a single point of view that 
must be distant to the object to recognize, they are 
mostly used for mid-air gesture recognition [2]. 
Moreover, they are sensible to illumination conditions. 

On the other hand, capacitive sensing stands out for its 
low power, highly sensitive but reliable solution for 
gesture recognition where close contact is required [3]. 

Neural Networks (NNs) have achieved outstanding 
performance in tasks such as image classification or 
speech translation. In the supervised case, however, 
their usage requires labeling, which can induce, among 
other factors, bias in the model and undermine its real-
world use [4]. To partially solve this issue, 
unsupervised methods focus only on the information 
proportioned by the data to perform the task and avoid 
annotation and labeling, both error-prone activities 
which could induce noise and bias. Nevertheless, the 
bias or noise are not completely removed since the 
data itself could still be biased and noisy. In the end, 
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unsupervised methods do not only liberate from the 
task and effects of labeling but also allow for more 
freedom in the learning of patterns, by not being 
constrained to a specific purpose task. Hence, they 
enable the possibility of pattern discovery and 
identification outside the constraints of the specific 
task purpose. 

As an added problem, neural networks have 
required a certain level of computing resources 
preventing their deployment in low resource platforms 
like microcontrollers. Lately, this problem has been 
addressed through optimization techniques like 
quantization and pruning. However, with the use of 

such techniques, the network still has to be built 
manually. In the case of low resource platforms, this 
fact imposes severe difficulties to develop NNs which 
are well-performing and compliant with the different 
memory and latency requirements of the deployment 
platform. To address this problem, Neural 
Architecture Search (NAS) [5] was developed, 
allowing for the automatic building of neural 
networks. Later, this method was extended to a multi-
objective setting [6], to account for the requirements 
of low resource platforms and deliver functional but 
also minimal neural networks. 

 
 

 
 

Fig. 1. Examples of numbers drawn at the sensitive surface. From left to right: a one, a five, a six and a three. The black 
points correspond to the electrode pairs through which the finger has passed. In an image configuration they correspond  

to 1 s while the background is set to 0. 
 

 
In this work, we present an auto-encoder neural 

network that, in junction with K-Means (KM) and 
optimized through NAS, can perform unsupervised 
classification in a low resource microcontroller for 
recognizing gestures. To check the validity of such 
unsupervised learning and classification, we check our 
model results in a supervised evaluation setting, which 
proves the validity of the approach and the possibility 
of not needing labeled data when using it. Although 
there have been similar works with other models [7] or 
with other topics [8], to the best of our knowledge, this 
is the first work that presents a fully embedded and 
unsupervised solution for gesture recognition using 
neural networks and capacitive sensing.  

 
 

2. Previous Work 
 

Capacitive sensing has been used for multiple 
application fields including music [9], security [10], or 
entertainment. It is characterized by offering a low 
power, only electronic, and cheap alternative to other 
sensing methods. In the case of gesture recognition, 
capacitive sensing has also been used extensively; 
although mostly in touchable surfaces [11], there have 
been applications based on wearables [12] and on 3D 
and extended ranges [13]. Different applications 
require different sensitivities and ranges, capacitive 
sensing allows for a variety of design parametrizations 
that change these features. In the present case,  
we refer to mutual capacitance sensing according to 

the classification from [3], which allows for a short-
range interaction. 

Several approaches can be used to classify the 
sensed signals into recognized gestures. Classic 
machine-learning methodologies were based on a two-
step procedure: first, extracting the relevant features 
from the input signals; and, second, the classification 
of such features into the corresponding gestures [14]. 
Humans associate gestures with meanings. Gestures 
can be classified as being either static or dynamic. In 
a static gesture, a certain body part pose that is 
maintained for a period of time is associated with a 
meaning (e.g. thumbs-up is associated with OK). In a 
dynamic gesture, the body part movement is essential 
to the meaning (e.g. finger-wag is associated with 
NO). Common algorithms to classify static gestures 
are support vector machines (SVM) [15], k-nearest 
neighbors, and random forests, among others. 
Regarding dynamic gestures, Hidden Markov Models 
(HMM) [16] or Dynamic Time Warping models are 
commonly used due to the intrinsic temporal 
component. In order to feed the data in an appropriate 
form to the latter algorithms, methods such as  
Fisher Vectors, PCA, or other feature representations 
were used.  

Nevertheless, with the advent and success, albeit 
with a higher computational cost, of deep learning this 
pipeline has changed. In the deep learning setting, the 
feature extraction step has been deleted in most cases 
and all the process has been substituted by a neural 
network. In the case of static classification, methods 
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based on CNN [17] stand out, differentiating between 
them with regards to the information they use: camera-
based ([18], [19]), or signals ([20], [21]). In the latter 
case, 1D convolutions stand out as a novel application. 
In the case of dynamic classification, recurrent models 
are commonly used ([22], [23]), allowing for a 
continuous and online gesture classification. Lately, 
however, and in the case of videos, 3D convolutions 
have also been used both for continuous and static 
classification [24]. 

Deep learning methods, however, usually entail 
high computational costs that unable their deployment 
into resource-constrained platforms. To alleviate this 
problem several methods such as quantization [25], 
pruning [26], distillation, or NAS [27] have been 
developed on the software side, while hardware 
accelerators and deployment frameworks [28] have 
also implemented in order to speed up inference and 
allow ease of deployment.  

Since then, applications for deploying neural in 
resource-constrained environments, and more 
specifically, microcontrollers have flourished. From 
keyword spotting [29], image classification, and 
object detection, new applications are being ported to 
low power and edge devices. Gesture recognition has 
not been an exception, with new applications and 
methods appearing continuously; for example, using 
radar signals [30] or with wearables [31]. In the case 
of capacitive sensing, most of the applications that use 
embedded deep learning are oriented to touch 
detection, prediction, and related tasks in smartphone 
surfaces [32], while works developed in the 
microcontroller environment are less frequent. 

In most cases, the development of such embedded 
gesture recognition applications with neural networks 
requires the annotation of data [33]. There are few 
cases, where unsupervised methods have been used for 
gesture recognition with neural networks have been 
used. In [7] the authors employ several unsupervised 
methods, such as K-means, Self Organizing Maps or 
Hierarchical Clustering for classifying gestures sensed 
through a gyroscope and a geomagnetic sensor. 
However, they do not embed the models in the 
microcontroller. In [8], the authors use an approach 
similar to our proposal based on an autoencoder plus 
K-Means to classify images. However, they do not 
perform any kind of optimization in order to allow the 
model to be run in resource-constrained devices, 
reason why our methods stand out.  

Precisely and, to the best of our knowledge, this is 
the first work using unsupervised gesture recognition 
in a microcontroller using neural networks and 
capacitive sensing. 

 
 

3. Sensing Method and Data 
 

3.1. Capacitive Sensing Platform 
 

As depicted in Fig. 2, the sensing platform consists 
of a surface touch module with three elements: the 

plastic cover, the capacitive foil, and the embedded 
board. The touch interface is the upper part of the 
plastic cover, which is immediately after the 
capacitive foil and glued to it. The embedded board is 
in the lower part and connected to the capacitive foil. 
The sensing component, which is the capacitive foil, 
consists of a central sensitive surface and 24 electrodes 
which run through it: 9 horizontally and 13 vertically, 
plus a global shield electrode. 

The sensing mechanism is based on the 
transference of charge between two capacitors: 
integration and measurement condensers. More details 
of the sensing methodology can be found in [23]. 

 
 

 
 

Fig. 2. Illustration of the capacitive foil. Each of the dots 
represents an electrode, emitting each one a distinctive 

measurement of its row/column in the surface. The foil is 
pasted underneath the plastic cover and connected to the 

microcontroller through the lower-left pins. 
 
 

The final result of a measurement is a set of 
voltages sensed at the measurement capacitor, one for 
each electrode. Each voltage is then converted through 
a 10-bit ADC to obtain a final raw value for each 
electrode at a predefined sampling rate (in the present 
case, 500 Hz). 
 
 

3.2. Data Collection and Preparation 
 

The user enters the gestures by touching the 
sensing surface and, without withdrawing the finger, 
draws the gesture on it. We detect the touch by the 
method described in [34], and then we begin to collect 
the raw values of the electrodes as described in the 
previous section. By examining which electrodes, 
horizontally and vertically, have the highest value we 
can determine in which spatial coordinates the finger 
is placed. When the user withdraws the finger, we stop 
collecting data. It has to be noted, that the gestures 
described do not contain segmentation and thus we do 
not assess that problem. That is, we consider a gesture 
all the signals from a touch to a withdrawal, and force 
users to perform the whole gesture in such a manner. 

By integrating all the coordinates through which 
the finger has passed we construct a greyscale image 
of 9×13 pixels of the figure drawn. That is, we mark 
the points through which the user has passed with a 1, 
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while the rest of the untouched points remain as 
background with a value of 0. Hence, the orientation 
of the strokes is deleted and only the final form of the 
gesture drawn is recorded. That is we produce a static 
version of the gesture. To ease the deployment in a 
microcontroller and due to deployment framework 
limitations, we end up squaring the image to 13×13 by 
padding it. An example of such a method can be seen 
in Fig. 1, where different numbers drawn on the 
sensitive surface can be visualized as the points 
through which the finger has passed. 

To collect the dataset, numbers from 1 to 9 were 
drawn a total of 100 times per number on the sensing 
surface. The dataset is divided in a stratified manner in 
training, validation, and test, with 720, 90 and  
90 samples respectively. 

 
 

4. Models and NAS Framework 
 
4.1. Models 
 

We consider two auto-encoder (AE) model types, 
that is, networks that are trained to replicate the input. 
The first a Convolutional Auto-encoder (CAE), and 
the second a Dense Auto-encoder (DAE), made only 
of fully connected layers. 

In general, the architecture consists of two 
differentiated parts: the first, the encoder, is in charge 
of extracting the information and compress it in a 
central vector, and the second, reconstructing the 
input. In the CAE case, compression is performed by 
a succession of convolutional or pooling layers 
followed by ReLU activations, while the input 
reconstruction is performed by deconvolution layers 
and final upsampling. In the DAE case, all the layers 
are fully connected followed by ReLU activations, 
except for the final layer which reconstructs the input 
by reordering the output of the network. In both cases, 
there is a central fully connected layer that produces 
the latent feature vector. An important note is that to 
reconstruct the input, as it is made of 0s and 1s, we 
have used a Binary Cross-entropy Loss for training  
the AEs. 

To provide unsupervised classification, a KM 
algorithm is in charge of grouping the compressed 
feature vectors into clusters. The choice of KM is 
central since it needs the number of clusters to be 
specified. In our case, this is precisely the number  
of classes. 

 
 

4.2. Training and Model Optimization 
 

To train the whole unsupervised method we divide 
the training into three separate steps. First, we train the 
AE to replicate the input. The loss used is an L2 norm 
based reconstruction loss. The networks are trained for 

                                                 
1 For more details, the interested reader can check the 
implementation at https://scikit-
learn.org/stable/modules/clustering.html#k-means 

a maximum of 50 epochs and the model with the best 
validation loss is used as the final model; the number 
of epochs is chosen based upon observation of 
previous training.  

Second, once it has stopped training, we forward 
the entire training dataset through it and collect the 
latent feature vector for each input. The latent vector 
corresponds to the central chosen vector, which can be 
seen in Fig. 3. In the CAE case, it has 12 elements, 
while in the DAE it has 117. Hence, the feature 
extraction through the autoencoder acts as a form of 
data compression algorithm with an effective 
compression ratio close to 10. 

Third, we train the KM algorithm with all the 
collected feature vectors. That is, we have a feature 
vector per image and each of those vectors correspond 
to the central vector obtained by forwarding the 
corresponding image through the trained autoencoder. 
For example, in the CAE case, we have 720 vectors of 
size 12. As we are classifying 9 different numbers 
(from digit 1 to 9, excluding 0), we establish 9 clusters 
for the K-Means algorithms. K-Means algorithm is 
initialized following the k-means ++ strategy [35] of 
similarly distanced cluster centers and the distance 
used is the L-2 norm1. Finally, to obtain test or 
validation results, we forward the test or validation 
sets through the AE, obtain the feature vectors, and 
predict to which cluster they belong.  

Regarding the performance measure, we have 
selected a clustering supervised measure, V-Measure 
[36], for checking the actual classification capabilities 
of the framework. Choosing an actual unsupervised 
clustering metric, such as Silhouette Score would not 
provide direct insight into the accuracy of the 
predictions. The training, however, remains fully 
unsupervised.  

As detailed as the first step, we have to build and 
train the network. However, building and tuning 
neural networks to be well-performing but also to 
comply with hardware requirements is a difficult task. 
Hence, we employ an extended implementation of a 
NAS framework [6] oriented towards optimizing 
accuracy, model size, maximum feature map (working 
memory), and latency. An important note is that, as the 
search space is composed of conditional variables, we 
use an implementation of the Arc Kernel [37], which 
is especially suited for conditional spaces. By 
decomposing the space using and using a cylindrical 
embedding, it is able to assess the conditionality 
among variables. The embedding , :	 	→ , 
where 	is the original dimension i space, can be used 
with any distance and covariance method: 
 
 

= [0, 0] 																	 	 =sin − , cos − 				 ℎ , 
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Fig. 3. Best architectures resulting from the optimization procedures for both the CNN and FC autoencoders. The elements 
in the image represent the feature maps. In the convolution case, the size of the feature map is indicated by the vertical and 
depth numbers, while the horizontal number indicates the number of feature maps. In the FC case, the number indicates the 

number of neurons in each step and the images are flattened at the beginning and reshaped at the end. 

 
 

where ∈  and 	 ∈ [0, 1] are the radius and 
angle factor of the cylindrical space, −  
establishes the length scale of the dimension i, and  
is a delta function establishing the existence of 
coupling among dimensions x. 

The framework works, in each architecture case, 
CA or DE, with a configuration space composed of 
both training hyperparameters and architectural 
parameters, including post-training linear static 
quantization and L1-Norm based pruning. Once the 
search space has been defined, the framework 
sequentially searches for solutions that minimize the 
following objectives 
 	 Ω = 1 − Ω  Ω = 	 ‖ ‖  Ω = max ‖ ‖ ‖ ‖ ‖ ‖  Ω = 	 , 

 
where Ω  is the specific configuration of the search 
space,  is the specific layer of the network,  the 
weights of layer ,  the output of that layer and  the 
input. In our present case, the accuracy corresponds to 
the correct classification of each pixel of the output 
with regards to the input.  

Once we have the best model found and trained by 
our NAS framework, we can proceed with the next 

steps of training the KM model and obtaining  
test results. 

 
 

5. Results 
 

The models established, CAE and DAE, are both 
developed in PyTorch and the NAS procedure is 
developed under Ax [38] and BoTorch [39].  

First, we illustrate the optimization procedure for 
the CAE with SpArseMod in Fig. 4. As seen, while the 
optimization procedure advances there is a decrease in 
the model size. Also, one can observe the trade-off 
between the model size and the error: while we 
continue to obtain smaller architectures the error 
worsens, obtaining in some cases a compromise. 

The final result is an election of the best points of 
the search: the Pareto frontier. With the best-chosen 
model, we train and test the K-Means unsupervised 
clustering and classification. We present the 
optimization results for the AEs, which correspond to 
the results for model size, maximum feature map, and 
latency, and detailed in Table 1, as well as the test 
results for the K-Means unsupervised classification. 
As seen, the CAE outperforms the DAE in almost all 
metrics, except for latency where DAE is a little bit 
faster. The results for the model size and maximum 
feature map sizes are low enough to be able to embed 
the model in a low resource microcontroller.  
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After the optimization result and after training the 
KM model with the feature maps obtained, we obtain 
the test results for the unsupervised classification. In 
this case, the CAE model performs much better than 
the DAE, achieving a good result regarding the  
V-Measure. This indicates the feasibility of this 
method to provide unsupervised classification. 

 
 

 
 

Fig. 4. Optimization procedure for CAE. The y axis 
represents the Model size and the x-axis the error (per pixel 

classification). Both axes are in logarithmic scale. The 
color illustrates the evolution procedure as each of the steps 

of the Bayesian optimization procedure. 
 
 

Table 1. Results for the optimization procedure  
with SpArSeMod. MF corresponds to maximum feature 

map size, MS to model size, L to latency, and V-M to the 
V-Measure. 

 

Model 
MF 
(kB) 

MS 
(kB) 

L (ms) 
V-M 
(%) 

CNN 2.69 6.13 5.53 87.18 
FC 18.32 39.67 4.08 58.63 

 
 

As the final step of our development, we further 
embed the best model with CMSIS-NN in an NXP-
S32K142 microcontroller to perform inference. To 
perform inference and obtain test results in the 
embedded implementation, we only need the encoder 
part of the CAE model and the centroids of KM. We 
proceed in the following manner: first and for each 
input, we obtain the feature vector by forwarding the 
input through the encoder, and second, we measure the 
distance to all the centroids and choose the nearest one 
to assign a class.  

It is important to note that, in CMSIS-NN legacy 
API, the quantization used is the power of two based 
and in the case of PyTorch is linear, enforcing thus a 
loss of precision. This changes the accuracy of the 
model but not the size since in both cases we use 8-bit 
integers. We obtain a V-Measure of 84.08 %, hence 
resulting in a loss of around 3.10 % in the V-measure, 
but also validating our embedded deployment. 

Finally, to have a visual representation of the 
clusters, we embed with t-SNE [40] all the encoded 

features from the training set and also the centroids. 
As can be seen in Fig. 5, the clusters are well separated 
identifying each one as a group of gestures 
corresponding to a specific number. 

 
 

 
 

Fig. 5. Cluster visualization of the different gesture 
numbers through t-SNE. 

 
 

6. Conclusions 
 
We have shown a full pipeline of work for 

unsupervised classification of gestures. We have 
employed a CAE plus KM as a model, and a multi-
objective NAS to find a proper embeddable model. 
Finally, we have been able to embed that model into 
an embedded platform with CMSIS-NN, obtaining 
good performance results, and thus validating our 
approach. There are two next important steps to be 
able to improve the gesture recognition system. First, 
to change the quantization to linear instead of power 
of two based to reduce the drop in performance and 
also to improve. Second, to improve the clustering by 
adding a Kullback-Leibler divergence component in 
the loss, hence separating more the feature vectors 
corresponding to different numbers [41]. 
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