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Chaotic attractors commonly contain periodic solutions with unstable manifolds of different di-
mensions. This allows for a zoo of dynamical phenomena not possible for hyperbolic attractors.
The purpose of this Letter is to emphasise the existence of these phenomena in the border-collision
normal form. This is a continuous, piecewise-linear family of maps that is physically relevant as
it captures the dynamics created in border-collision bifurcations in diverse applications. Since the
maps are piecewise-linear they are relatively amenable to an exact analysis. We explicitly identify
parameter values for heterodimensional cycles and argue that the existence of heterodimensional
cycles between two given saddles can be dense in parameter space. We numerically identify key
bifurcations associated with unstable dimension variability by studying a one-parameter subfamily
that transitions continuously from where periodic solutions are all saddles to where they are all
repellers. This is facilitated by fast and accurate computations of periodic solutions; indeed the
piecewise-linear form should provide a useful test-bed for further study.

1. DIFFERING DIMENSIONS OF INSTABILITY

Chaotic attractors of one-dimensional non-invertible
maps and two-dimensional invertible maps have one un-
stable direction locally. For higher dimensional maps the
dimensions of the unstable manifolds of periodic orbits
within a chaotic attractor can differ, and this can occur
also for ODEs. This phenomenon is known as unstable

dimension variability (UDV). It generates non-hyperbolic
dynamics [1] and is expected to be common for chaotic
attractors in mathematical models with sufficiently many
variables [2–4]. UDV implies the existence of orbits that
spend arbitrarily long times close to an unstable mani-
fold of one dimension, and arbitrarily long times close to
an unstable manifold of another dimension [5]. It follows
that finite-time Lyapunov exponents fluctuate about zero
as the system evolves [6, 7]. It further follows that numer-
ical solutions may differ wildly from actual orbits. This
lack of ‘shadowing’ is problematic for the applicability of
mathematical models [8, 9].
One mechanism that implies UDV is the existence of a

heterodimensional cycle — a heteroclinic connection be-
tween saddle objects with unstable manifolds of different
dimensions. If an attractor contains a heterodimensional
cycle, then it has UDV [10]. A given heterodimensional
cycle is at least codimension-one, and recent advances in
numerical methods have led to the identification of het-
erodimensional cycles in an ODE model of intracellular
calcium dynamics [11, 12].
Constructions of robust non-hyperbolic chaotic invari-

ant sets in diffeomorphisms often use the idea of a blender
[1, 13]. These are transitive hyperbolic sets whose sta-
ble manifold acts geometrically (in terms of its inter-
sections with other manifolds) as an object with dimen-
sion greater than the stable index of the hyperbolic set,

and for which this property persists for all sufficiently
close diffeomorphisms [10, 14]. Blenders can be used
to construct heterodimensional cycles by providing ro-
bust intersections between stable and unstable manifolds
[15, 16], and have recently been identified numerically
[17, 18].

This paper treats maps that are neither invertible nor
C1 so the formal definition of a blender, including its
persistence property, do not directly apply. Previous
works have considered specific piecewise-linear maps [19];
in this Letter we demonstrate the prevalence of differing
dimensions of instability in a normal form. For invert-
ible maps the above notions require at three dimensions
[20–22]; for non-invertible maps (Sections 3 and 4) two
dimensions are sufficient [23].

2. THE BORDER-COLLISION NORMAL FORM

Border-collision bifurcations (BCBs) occur when a
fixed point of a piecewise-smooth map collides with a
boundary (switching manifold) where the functional form
of the map changes. They have been identified as the on-
set of chaos and other dynamics in applications including
power electronics [24], mechanical systems with stick-slip
friction [25, 26], and economics [27]. Near a BCB the dy-
namics are well-approximated by a piecewise-linear map
[28]. The border-collision normal form (BCNF) then re-
sults from a change of coordinates [29, 30]. In two di-
mensions this form is

x 7→

{

ALx+ b, x1 ≤ 0,

ARx+ b, x1 ≥ 0,
(1)
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FIG. 1. A phase portrait of an invertible instance of the
two-dimensional BCNF (1)–(2); specifically (τL, δL, τR, δR) =
(1.7, 0.3,−1.7, 0.3). In black we show 8000 consecutive iter-
ates of a typical forward orbit with transients removed (this
represents the attractor of the map). The green circles are
fixed points; the blue lines show the stable manifold (grown
outwards numerically some amount) of the right-most fixed
point.

where

AL =

[

τL 1
−δL 0

]

, AR =

[

τR 1
−δR 0

]

, b =

[

1
0

]

, (2)

and x = (x1, x2) ∈ R
2. Here τL, δL, τR, δR ∈ R are pa-

rameters; the BCB parameter, usually denoted µ, has
been scaled to 1.
The dynamics and bifurcation structure of (1)–(2) is

incredibly rich [31–33]. It exhibits robust chaos [34] in
the sense that chaotic attractors exist throughout open
regions of (four-dimensional) parameter space, even with
δLδR > 0 where the map is invertible. Fig. 1 shows a
phase portrait of such an attractor. The attractor con-
tains a saddle fixed point whose stable manifold is dense
in an open region of phase space. This denseness prop-
erty holds throughout an open region of parameter space,
proved in [35] via a series of geometric arguments by
bounding the rate at which line segments expand. A sim-
ilar result was obtained earlier by Misiurewicz [36] for the
Lozi family (the special case τL = −τR and δL = δR).
We believe the chaotic attractor and denseness of the

stable manifold is robust to C1 perturbations to the
pieces of (1). This is because piecewise-smooth maps lack
smooth turning points where derivatives vanish, and in-
deed we proved a result of this type in [37]. Also, stable
periodic solutions are typically absent near structurally
unstable homoclinic connections [38].

3. TRANSITION THROUGH UNSTABLE

DIMENSION VARIABILITY

The parameter space of the two-dimensional BCNF
has regions where the map has a chaotic attractor in
which (the dense set of) periodic solutions are all saddles,
and other regions where the map has a chaotic attractor

in which periodic solutions are all repellers. In this sec-
tion we interpolate between two such regions and provide
numerical evidence for robust UDV.
Let x ∈ R

2 be a period-n point of (1)–(2) and suppose
its forward orbit does not intersect the switching mani-
fold (as is generically the case). Each point in the orbit
has a neighbourhood in which the map is differentiable
(in fact affine). Thus it has two stability multipliers, and
if neither of these has modulus 1, the orbit is hyperbolic.
In this case let k ∈ {0, 1, 2} denote the number of sta-
bility multipliers with modulus greater than 1 (k is the
unstable index). Then x is asymptotically stable if k = 0,
a saddle if k = 1, and a repeller if k = 2.
We now explore a one-parameter family of examples.

In (2) we use

τL = (1− a)τL,0 + aτL,1 ,

δL = (1− a)δL,0 + aδL,1 ,

τR = (1− a)τR,0 + aτR,1 ,

δR = (1− a)δR,0 + aδR,1 ,

(3)

with 0 ≤ a ≤ 1 and

τL,0 = 0.8, τL,1 = 0.8,

δL,0 = −0.8, δL,1 = −1.2,

τR,0 = −2.8, τR,1 = −1,

δR,0 = 0.8, δR,1 = 2.4.

(4)

This one-parameter family has been chosen for three rea-
sons. First, with a = 0 all periodic solutions are saddles,
Fig. 2-a. This is because with |δL|, |δR| < 1 both pieces
of (1) are area-contracting so repellers are not possible,
while stable periodic solutions are not possible because
an invariant expanding cone can be constructed in tan-
gent space [39]. Second, with a = 1 all periodic solutions,
except the left-most fixed point, appear to be repellers,
Fig. 2-c. This has been proved for nearby parameter com-
binations where there exists a simple Markov partition
[40, 41]. Third, the map appears to have a unique at-
tractor for all 0 ≤ a ≤ 1. The two Lyapunov exponents
of the attractor are shown in Fig. 3. These were com-
puted numerically using the standard QR-factorisation
method [42, 43].
For any 0 ≤ a ≤ 1, let N (k, n; a) denote the number

of period-n points that have k stability multipliers with
modulus greater than 1. The sum of these numbers up to
n = 25 is plotted in Fig. 4-a. This figure was computed
by brute-force. We used Duval’s algorithm [44, 45] to
generate all sequences of L’s and R’s of length n ≤ 25.
Interpreting these as applications of (1) on the left or on
the right respectively, the (generically) unique point that
has period n in the order specified by each sequence was
identified for each value of a [28]. We then checked by
iterating the map whether the order of the images of the
point matched the order of the specified sequence (an ad-

missibility condition). For those admissible sequences the
stability multipliers were evaluated to determine whether
the periodic solution is a saddle or a repeller.
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FIG. 2. Phase portraits of non-invertible instances of the two-dimensional BCNF (1)–(2). The parameter values are given by
(3) with (4) and three different values of a. The black dots show iterates of a typical forward orbit with transients removed.
Periodic points (up to period 10) are shown with triangles, except fixed points are shown with circles. Saddles are coloured
green; repellers are coloured red. The stable (blue) and unstable (red) manifolds of the left-most fixed point are also shown
(grown outwards a small amount).

FIG. 3. Numerically computed Lyapunov exponents of the
attractor of (1)–(2) with (3) and (4).

FIG. 4. Plots involving N (k, n; a): the number of period-n
points (saddles for k = 1; repellers for k = 2) of (1)–(2) with
(3) and (4). Panel (b) includes lines of best fit.

For an intermediate range of values of a, the attractor
contains both saddles and repellers, thus exhibits UDV.
The point of cross-over, where saddles and repellers exist
in the same proportion, is close to a = 0.5 and matches
well to where the lower Lyapunov exponent becomes pos-
itive. Fig. 2-b shows a phase portrait with a = 0.5; Fig. 4-
b shows that here the number of saddles and repellers
appears to increase exponentially with n. This suggests

that saddles and repellers are both dense in the attractor.

Saddles and repellers can arise in different ways. As
the value of a is decreased from 1, saddles are created in
a BCB of two saddle period-five solutions at a ≈ 0.9592.
Here infinitely many saddle periodic points are created
because the BCB also creates robust heteroclinic connec-
tions between the period-five solutions. This appears to
be where saddles are first created and explains the large
discontinuity in the number of saddle points in Fig. 4-a.
In contrast, as the value of a is increased from 0, repellers
are created and destroyed in many bifurcations. For ex-
ample a saddle period-nine solution (with only one point
in x1 < 0) becomes repelling at a ≈ 0.3278 when one
of its stability multipliers decreases through −1, then is
destroyed in a BCB at a ≈ 0.3321.

Since the maps are non-invertible, repelling sets may
have preimages, i.e. they may have zero-dimensional sta-
ble manifolds leading to phenomena such as snap-back
repellers [46]. Such a stable manifold may intersect an
unstable manifold of a saddle resulting in a heterodimen-
sional cycle, assuming their other invariant manifolds in-
tersect as can be expected. We conjecture that the BCB
at a ≈ 0.9592 is the boundary for the existence of het-
erodimensional cycles in our example. This is because
the unstable manifold of the saddle chaotic set associ-
ated with the period-five heteroclinic connection and the
stable manifolds of the innumerable repellers should be
sufficiently voluminous to intersect for a dense set of val-
ues of a. The analogous transition at lower values of a is
less clear. It may be that ‘enough’ repellers are needed
before heterodimensional cycles can occur for dense set
of values of a, or possibly over an interval.
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FIG. 5. A phase portrait of a non-invertible instance of the
two-dimensional BCNF, (1)–(2) with (5). The black dots
show iterates of a typical forward orbit with transients re-
moved. The blue line is the initial part of the stable manifold
of the left-most fixed point (green circle). The red lines show
part of the unstable manifold of a period-three solution (green
triangles). The value of τL has been chosen so that this man-
ifold intersects the right-most fixed point (red circle).

4. AN EXPLICIT HETERODIMENSIONAL

CYCLE

We now provide a simple example of a heterodimen-
sional cycle. Fig. 5 shows a phase portrait of (1) with

τL ≈ 0.8716, δL = −1, τR = −1.5, δR = 2, (5)

where the exact value of τL will be clarified in a moment.
With these values the right-most fixed point (red circle),
call it xR, is repelling. There also exists a saddle period-
three solution (green triangles). The value of τL has been
chosen so that the unstable manifold of the period-three
solution intersects xR. By using computer algebra to
analytically find where a certain fourth preimage of xR

lies on the initial linear part of the unstable manifold, we
found that τL is a root of

108τ6L+495τ5L+258τ4L+1184τ3L−5800τ2L−4907τL+7454.
(6)

The (two-dimensional) unstable manifold of xR ap-
pears to intersect the stable manifold of the period-three
solution (as one would expect), thus these orbits have
a heteroclinic connection. This is a heterodimensional
cycle because xR and the period-three solution have un-
stable manifolds of different dimensions. This cycle is
codimension-one because their dimensions differ by one;
indeed the cycle was obtained by carefully adjusting the
value of one parameter (namely τL).
Fig. 5 is the simplest example of a heterodimensional

cycle that we have found for (1)–(2) where the cycle is
contained in an attractor. This suggests that, as in Fig. 2-
b, the attractor exhibits UDV.

5. UNSTABLE DIMENSION VARIABILITY IN

INVERTIBLE MAPS

For an invertible map to have a heterodimensional cy-
cle, the map needs to be at least three dimensional. This
can also be demonstrated with the BCNF. In three di-
mensions the BCNF is (1) with

AL =





τL 1 0
−σL 0 1
δL 0 0



, AR =





τR 1 0
−σR 0 1
δR 0 0



, b =





1
0
0



,

(7)

and x = (x1, x2, x3) ∈ R
3, and has been studied previ-

ously for instance in [47, 48].
Fig. 6 shows a phase portrait using

τL = 0.7228540306, σL = −1, δL = −0.2,

τR = −1.5, σR = 2, δR = −0.2.
(8)

These values were obtained by adding a dimension to
the example of Fig. 5, varying δL and δR from 0 to cre-
ate fully three-dimensional dynamics, and lastly adjust-
ing the value of τL (to 10 decimal places) so that the one-
dimensional unstable manifold of the period-three solu-
tion approximately intersects the one-dimensional stable
manifold of xR. The pink square in Fig. 6 shows this
approximate point of intersection. Since the invariant
manifolds appear to be embedded in an attractor, the
other invariant manifolds presumably intersect forming
a heterodimensional cycle. Hence this attractor too has
UDV.
Numerically we have grown the unstable manifold of

the period-three solution outwards much further than
that shown in Fig. 6. Fig. 7 shows the intersections of
this manifold with the switching manifold x1 = 0 and
reveals a quasi-one-dimensional structure. We have ob-
served this structure appears to persist as parameters are
varied and for different cross-sections. This suggests that
the unstable manifold intersects a given one-dimensional
stable manifold for a dense set of parameter values. That
is, heterodimensional-cycles between two given saddles
can be expected to occur on dense subsets of parameter
space.

6. DISCUSSION

The existence of UDV due to blenders has been es-
tablished numerically in three-dimensional generalisa-
tions of the Hénon map [2]. We have considered a re-
lated piecewise-linear family and by interpolating be-
tween parameters with only saddles and parameters with
only repellers we have provided strong numerical evi-
dence for the existence of UDV in the two-dimensional
non-invertible BCNF and the three-dimensional invert-
ible BCNF. Since the BCNF describes BCBs in gen-
eral piecewise-smooth systems, the existence of UDV in
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FIG. 6. A phase portrait of an invertible instance of the three-dimensional BCNF, (1) with (7) and (8). The black dots
show iterates of a typical forward orbit with transients removed. The one-dimensional stable manifold of a fixed point (red
circle) approximately intersects the one-dimensional unstable manifold of a period-three solution (green triangles). One point
of intersection is indicated with a pink square.

FIG. 7. Intersections of the one-dimensional unstable mani-
fold of the period-three solution of Fig. 6 with x1 = 0. This
was computed by growing the manifold much further than
that shown in Fig. 6.

these examples shows that UDV has broader significance
within the study of piecewise-smooth dynamical systems
and their applications.
We have also identified a possible mechanism for the

onset of UDV through the creation of saddle chaotic sets
(as the parameter a in Fig. 4 decreases) and snap-back
repellers (as a increases). It is possible that bifurcation
theory approaches [49, 50] are sufficient to prove persis-
tent UDV without persistent HD-cycles in these exam-
ples. On the other hand the bifurcations may provide sta-
ble and unstable manifolds of the appropriate dimensions
and complexity to create dense sets of parameter values
with heterodimensional-cycles. This is weaker than the
robustness provided by a blender, but much simpler and
possibly sufficient for persistent UDV.
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