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MULTIVOLUME DEVICES, KITS AND 
RELATED METHODS FOR 

QUANTIFICATION AND DETECTION OF 
NUCLEIC ACIDS AND OTHER ANALYTES 

2 
resolve a 3-fold (i.e., appx. 0.5 log10

) change in HIV RNA 
viral load, which change is considered clinically significant. 
Accordingly, there is a long-felt need in the art for devices 
and methods for quantitative measurement, estimates, and/ 

5 or even detection of viral load or other parameters. 
CROSS-REFERENCE 

This application is a divisional application of application 
Ser. No. 13/467,482, filed May 9, 2012, which is a continu
ation-in-part application of application Ser. No. 13/440,371, 10 

filed on Apr. 5, 2012, which is a continuation-in-part appli
cation of application Ser. No. 13/257,811, filed Sep. 20, 
2011; which is the National Stage of International Applica
tion No. PCT/US2010/028361, filed on Mar. 23, 2010, 
which claims the benefit under 35 U.S.C. § 119(e) of U.S. 15 

Provisional Application 61/262,375, filed on Nov. 18, 2009, 
and U.S. Provisional Application No. 61/162,922, filed on 
Mar. 24, 2009, and U.S. Provisional Application No. 61/340, 
872, filed on Mar. 22, 2010; application Ser. No. 13/467,482 
claims the benefit of U.S. Provisional Application No. 20 

61/518,601, filed May 9, 2011; application Ser. No. 13/440, 
371 claims the benefit of U.S. Provisional Application No. 
61/516,628, filed Apr. 5, 2011 and U.S. Provisional Appli
cation No. 61/518,601, filed May 9, 2011; the content of all 
of which except application Ser. No. 13/467,482 are hereby 25 

incorporated by reference in their entireties for any and all 
purposes. 

STATEMENT OF GOVERNMENT RIGHTS 

SUMMARY 

In meeting the described challenges, the present disclo
sure first provides devices. These devices comprise a first 
component comprising a population of first areas; a second 
component comprising a population of second areas; the first 
and second components being engageable with one another 
such that relative motion between the first and second 
components exposes at least some of the first population of 
areas to at least some of the second population of areas so 
as to form a plurality of analysis regions. At least some of 
the analysis regions suitably differ in volume from others of 
the analysis regions. 

Also disclosed are devices. The devices suitably include 
a first component comprising a population of first areas; a 
second component comprising a population of second areas; 
the first and second components being engageable with one 
another such that when the first and second components are 
in a first position relative to one another a fluidic path is 
formed between at least some of the first areas and at least 
some of the second areas, and when the first and second 
components are in a second position relative to one another, 
the fluidic path is interrupted so as to isolate at least some of 

30 the first areas from at least some of the second areas. 

This invention was made with government support under 
grant numbers EB012946, GM074961, and OD003584 
awarded by the National Institutes of Health and grant 
number CHE-0526693 awarded by the National Science 
Foundation. The government has certain rights in the inven
tion. 

SEQUENCE LISTING 

The instant application contains a Sequence Listing which 
has been submitted electronically in ASCII format and is 
hereby incorporated by reference in its entirety. Said ASCII 
copy, created on Apr. 28, 2014, is named 45546-
702.401_SL.txt and is 2,061 bytes in size. 

TECHNICAL FIELD 

The present application relates to the field of microfluidics 
and to the fields of detection and amplification of biological 
entities. 

BACKGROUND 

Real-time quantitative RT-PCR is an existing technique 
for monitoring viral load for HIV, HCV, and other viral 
infections. However, this test is cost-prohibitive in some 
resource-limited settings and can require multiple instru
ments, skilled technicians, and isolated rooms to prevent 
contamination. The test can thus be inaccessible to patients 

Additionally provided are methods. These methods 
include distributing one or more target molecules from an 
original sample into a plurality of analysis regions, the 
distribution being effected such that at least some of the 

35 analysis regions are statistically estimated to each contain a 
single target molecule, at least two of the analysis regions 
defining different volumes; and effecting, in parallel, a 
reaction on at least some of the single target molecules. 

Other methods presented in this disclosure include intro-
40 ducing an amount of a target molecule from an original 

sample into a device; effecting distribution of the amount of 
the target molecule into at least two isolated areas of the 
device, the at least two isolated areas defining volumes that 
differ from one another; effecting a reaction on the target 

45 molecule so as to give rise to a reaction product in the at least 
two isolated areas; and estimating, from the reaction prod
uct, the level of a target in the original sample. 

Also provided are methods, comprising distributing a 
plurality of target molecules-suitably nucleic acids-from 

50 an original sample into a plurality of analysis regions, the 
distribution being effected such that at least some of the 
analysis regions are estimated to each contain a single target 
molecule, at least two of the analysis regions defining 
different volumes; and effecting, in parallel, a nucleic acid 

55 amplification reaction on at least some of the single target 
molecules. 

in some resource-limited settings. Moreover, the efficiency 60 

of RT-PCR, the quality of sample and selection of targets, 
and the methods for interpretation of the data may in some 
cases present concerns for the accuracy of quantifying RNA 
using RT-PCR. 

Also disclosed are devices, comprising a first component 
comprising a population of first wells formed in a first 
surface of the first component, the population of wells being 
arranged in a radial pattern; a second component comprising 
a population of second wells formed in a first surface of the 
second component, the population of wells being arranged 
in a radial pattern; the first and second components being 
engageable with one another such that relative rotational 
motion between the first and second components exposes at 
least some of the first population of wells to at least some of 
the second population of wells so as to form a plurality of 

Although dipstick-type devices may provide semiquanti- 65 

tative measurements of viral load after amplification in 
resource limited settings, no quantitative test exists to 
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analysis regions, an analysis region comprising a first well 
and a second well in pairwise exposure with one another. 

BRIEF DESCRIPTION OF THE DRAWINGS 

4 
mL. The confidence intervals (CI) for the combined system 
(solid curves) indicate where 95% of the experiments should 
fall. CI curves for the individual volumes (dashed curves) 
are also provided to indicate over what range of concentra-

5 tion each volume contributes; and 
FIG. 17 illustrates a separate analysis of 10 experimental 

results for different well volumes with an input concentra
tion of 30,000 molecules/mL, showing distribution of mea
sured concentrations for each volume and the overall agree-

The surmnary, as well as the following detailed descrip
tion, is further understood when read in conjunction with the 
appended drawings. For the purpose of illustrating the 
invention, there are shown in the drawings exemplary 
embodiments of the invention; however, the invention is not 
limited to the specific methods, compositions, and devices 
disclosed. In addition, the drawings are not necessarily 
drawn to scale. In the drawings: 

10 ment of results. 

FIG. 1 illustrates a rotationally-configured multivolume 
device according to the present disclosure; 

FIG. 2 illustrates end-point fluorescence images of mul
tivolume digital RT-PCR performed on a rotational device 
according to the present disclosure; 

15 

FIG. 3 illustrates performance of digital RT-PCR with 
synthetic RNA template on an exemplary multivolume 20 

device over a 4 log10 dynamic range; 
FIG. 4 illustrates performance of an exemplary device; 
FIG. 5 illustrates an exemplary device for multiplexed, 

multivolume digital RT-PCR with high dynamic range; 
FIG. 6 illustrates representative multivolume digital RT- 25 

PCR for quantification of HIV viral load in two patients' 
samples; 

DETAILED DESCRIPTION OF ILLUSTRATIVE 
EMBODIMENTS 

The present invention may be understood more readily by 
reference to the following detailed description taken in 
connection with the accompanying figures and examples, 
which form a part of this disclosure. It is to be understood 
that this invention is not limited to the specific devices, 
methods, applications, conditions or parameters described 
and/or shown herein, and that the terminology used herein is 
for the purpose of describing particular embodiments by 
way of example only and is not intended to be limiting of the 
claimed invention. Also, as used in the specification includ
ing the appended claims, the singular forms "a," "an," and 
"the" include the plural, and reference to a particular 
numerical value includes at least that particular value, unless 
the context clearly dictates otherwise. 

The term "plurality" as used herein, means more than one. 
FIG. 7 illustrates a representative experiment performing 

RT-PCR of HIV viral RNA at an expected concentration of 
51 molecules/mL in a RT-PCR mix; 

FIG. 8 illustrates a representative negative control for 
HIV viral load; 

FIG. 9 illustrates in tabular form detection and quantifi
cation data; 

30 When a range of values is expressed, another embodiment 
includes from the one particular value and/or to the other 
particular value. Similarly, when values are expressed as 
approximations, by use of the antecedent about, it will be 

FIG. 10 presents a tabular summary of HIV quantification 35 

performance; 
FIG. 11 presents a tabular summary of detection range 

data; 

understood that the particular value forms another embodi
ment. All ranges are inclusive and combinable. All docu
ments cited herein are incorporated herein by reference in 
their entireties for any and all purposes. 

In one embodiment, the present disclosure provides 
devices. These devices suitably include a first component FIG. 12 shows an image, obtained with a iPhone 4S™ 

camera, of an exemplary multivolume device filled with 
LAMP reaction mix; 

FIG. 13 shows a close-up of the center of the image in 
FIG. 12; 

40 comprising a population of first areas and a second compo
nent comprising a population of second areas. The first and 
second components are suitably engageable with one 
another such that relative motion between the first and 
second components exposes at least some of the first popu
lation of areas to at least some of the second population of 
areas so as to form a plurality of analysis regions. As 
described herein, at least some of the analysis regions may 
suitably differ in volume from other analysis regions. 

In some embodiments, the first and second components 

FIG. 14 presents a schematic view of a radially-arranged 
device for performing MV digital PCR, the device design 45 

consisting of 160 wells each at 125, 25, 5, and 1 nL. A 
sample is loaded from the center and after filling the device 
components are relatively rotated so as to isolate wells
after reaction, wells containing template have enhanced 
signal and are counted; 50 are engaged so as to permit rotational motion of one com

ponent relative to the other component. This may be in the 
form of two plates that are rotatably engaged with one 
another, as shown in exemplary FIG. 1. As shown in panels 

FIG. 15 presents, in tabular form, a summary of the 
specifications of an exemplary device according to the 
present disclosure; 

FIG. 16 presents experimental results for MV digital PCR 
on an exemplary device using control DNA. Representative 55 

false color (shaded) images (lighter shading represents posi
tive wells that showed at least a 3-fold increase in intensity 
compared to negative wells) for solutions with input con
centrations of (a) 1500 molecules/mL and (b) 600,000 
molecules/mL (zoomed in on smaller wells). ( c, d) Graphical 60 

surmnary of all experiments comparing the input concen
tration, based on UV-vis measurements (black curve), and 
observed concentrations using MV digital PCR (x and +) 
over the entire dynamic range. Represented as ( c) the actual 
concentration and ( d) as a ratio to better show distribution of 65 

results. Stock samples were approximately 500, 1500, 8000, 
20,000, 30,000, 100,000, 600,000, and 3,000,000 molecules/ 

A-D of that figure, the two plates may be rotatably engaged 
such that relative rotation between the plates gives rise to 
wells formed in the plates aligning with one another (i.e., 
being placed into at least partial register) or de-aligning from 
one another. 

Also as shown in that exemplary figure (FIG. 1, panel G), 
a device may provide analysis regions that differ from one 
another in volume. For example, the analysis regions 
(formed between FIG. 1 panels F and G by relative rota
tional motion between two plates that gives rise to pairwise 
exposure of wells formed in the plates to one another) shown 
in FIG. 1 have volumes of about 1, 5, 25, and 125 nL. 

Although the analysis regions shown in FIG. 1 increase in 
volume with increasing radial distance outward from axis of 
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In some embodiments (e.g., exemplary FIG. SA), a com
ponent comprises a conduit that places at least some of the 
first population of wells into fluidic communication with the 
environment exterior to the component. In some embodi-

rotation between the plates, there is no requirement that 
analysis regions vary such a size and/or spatial manners. 
Other embodiments of the disclosed devices feature first and 
second components engaged so as to permit linear move
ment of one component relative to the other component. 5 ments, a population of wells is characterized as being 

radially disposed relative to a location on the first compo
nent, as shown in exemplary FIG. 5. Populations of wells 
may also be present in a circular pattern, a grid pattern, or 
virtually any other conformation. In some embodiments, a 

10 device (e.g., exemplary FIG. 5) may include several popu
lations of wells that are each in fluid communication with 

It should be understood that although exemplary FIG. 1 
shows first and second components engaged with one 
another, the present disclosure is not limited to devices that 
have only two components. For example, a user may con
struct a device that has first, second, and third components 
that are engageable with one another. As but one example, 
the device shown in FIG. 1 may include a first well-bearing 
component that is engaged with one face of a second 
well-bearing component. The second face of the second 
well-bearing component may, in tum, be engageable with a 15 

third well-bearing component, such that the wells of the 
third component may be placed into overlap with the wells 
of the second face of the second well-bearing component. 
Such a structure may be in a layer-cake or sandwich form. 
These configurations enable increased information density, 20 

as such configurations allow creation of additional areas on 
a device where reactions and analysis may take place. 

In an alternative embodiment, one surface of a component 
may be engaged with two other components. For example, 
a base component having formed thereon first and second 25 

circular banks of wells that are separate from one another 
may be engageable with [1] a first component that features 
wells that may be placed into overlap with the first bank of 
wells of the base component and [2] a second component 
that features wells that may be placed into overlap with the 30 

second bank of wells of the base component. In this way, a 
single device may feature multiple components so as to 
increase the number and diversity of reaction and/or analysis 
locations on the device. 

The first and second components may be of a range of 35 

sizes. In some embodiments, at least one of the first or 
second components has a thickness in the range of from 
about 10 micrometers to about 5000 micrometers, or in the 
range of from about 50 micrometers to about 1000 microm
eters, or even from about 200 micrometers to about 500 40 

micrometers. These dimensions are particularly useful in 
applications where a user may desire a reduced-size device 
or a device having a relatively compact form factor. Com
ponents may be formed of a glass, a polymer, and the like. 

Soda-lime glass is considered especially suitable; other 45 

component materials may also be used. Exemplary fabrica
tion methods for such devices are set forth in Du et al., Lab 
Chip 2009, 9, 2286-2292. In some embodiments, compo
nents of the device are fabricated from a glass substrate by 
way of wet etching. In some other embodiments, the device 50 

can be fabricated from plastic materials, such as polycar
bonate, Poly(methyl methacrylate) (PMMA), polypropyl
ene, polyethylene, cyclo olefin copolymer (COC), cyclo 
olefin polymer (COP), and fluorinated polymers including 
but not limited to fluorinated ethylene-propylene FEP (fluo- 55 

rinated ethylene-propylene), perfluoroakoxy (PFA) and 
polytetrafluoroethylene (PTFE). Surfaces may be treated 
with methods such as silanization and physical deposition, 
such as vapor deposition techniques. As one example, a 
surface of the device may be treated with dichlorodimeth- 60 

ylsilane by vapor silanization. The surface of the device can 
be coated with silicone or fluorinated polymers. Reaction 
fluids used in the devices may also include ingredients 
related to the surfaces of the devices. As one such example, 
bovine serum albumin is added to a PCR mixture to prevent 65 

adsorption and denaturation of molecules on a surface of the 
device. 

their own conduits, which in turn enables a user to introduce 
different materials to different populations of wells. Exem
plary FIG. 5 shows this by reference to a device having five 
separate banks of wells, each separate bank of wells con
taining a different sample (samples I-V). As shown in this 
exemplary figure, the banks of wells may be configured such 
that a given bank of wells maintains a sample (e.g., sample 
I) in isolation from other samples ( e.g., sample II). In the 
exemplary FIG. Sa, each bank of separate wells in in a form 
that is roughly a wedge or a pie-slice in shape; banks of wells 
may have other layouts (grids, lines, and the like), depending 
on the device and on the user's needs. The device may be 
configured such that each bank of wells has an inlet con
figured to supply material ( e.g., sample) to that bank of wells 
only. In this way, a device may have five banks of wells, 
each bank of wells being supplied by one or more separate 
inlet. A bank of wells may, of course, be supplied by one, 
two, three, or more inlets, depending on the user's needs. A 
device may also be configured such that a given inlet 
supplies material to at least some wells in two or more 
separate banks of wells. 

Certain embodiments of the disclosed devices feature 
components where the first areas are wells formed on ( or in) 
a component. In some embodiments, a well suitably has a 
volume in the range of from about 0.1 picoliter to about 10 
microliters. In some variations, the second areas may be 
wells. Such wells suitably have volumes in the range of from 
about 0.1 pico liter to about 10 microliters. 

When areas are placed into exposure with one another so 
as to give rise to analysis regions, an analysis region may, in 
some embodiments, have a volume in the range of from 
about 0.1 picoliter to about 20 microliters. The volumes of 
two analysis regions may differ from one another. As one 
example, the ratio of the volumes defined by two analysis 
regions is in the range of from about 1: 1 to about 1: 1,000, 
000, or from about 1:50 to about 1:1,000, or from about 
1:100 to about 1:500. In the example shown in FIG. 1, the 
ratio between some of the analysis region volumes is 1 
nl:125 nL=l:125. 

The devices may also include an imager configured to 
capture at least one image of an analysis region. The imager 
may be a camera, CCD, PMT, or other imaging device. 
Portable imagers, such as digital cameras and cameras on 
mobile devices such as smartphones/mobile phones are 
considered suitable imagers. The device may be configured 
such that the imager is positioned such that it may capture 
an image of some of the analysis regions of a device or even 
an image of all of the analysis regions. 

The devices may also be configured to display an image 
of an analysis region for capture of at least one image by an 
imager. As one example, the device may be configured, as 
shown in exemplary FIG. 2, to present or otherwise display 
the analysis regions in such a manner that the analysis 
regions (including their contents) may be imaged. Exem-
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plary images are shown in FIGS. 12 and 13, which images 
were obtained using the camera of an iPhone 4S™ mobile 
device. 

8 
sample in individual analysis regions formed from first and 
second wells exposed to one another. 

The present disclosure provides other devices. These 
devices suitably include a first component comprising a The devices may also include a processor configured to 

estimate a concentration of an analyte residing in one or 
more analysis regions. The processor may be present in the 
device itself; in such cases, the device may include the 
imager and a processor that is configured to estimate a 
concentration of an analyte residing in one or more analysis 
regions. This may be effected by, for example, a computer 
imaging routine configured to take as an input an image of 
the analysis regions of a device and then operate on that 
input (as described elsewhere herein) to estimate the con
centration of an analyte in the one or more analysis regions. 

5 population of first areas and a second component comprising 
a population of second areas, with the first and second 
components suitably being engageable with one another 
such that when the first and second components are in a first 
position relative to one another a fluidic path is formed 

10 between at least some of the first areas and at least some of 

In one exemplary embodiment, the processor operates on an 15 

image of the analysis regions of the device and, from that, 
estimates the presence of an analyte in a sample. 

As one example, a user may extract a blood sample from 
a subject to determine whether a particular virus is present 

the second areas. The devices are also suitably configured 
such that when the first and second components are in a 
second position relative to one another, the fluidic path is 
interrupted so as to isolate at least some of the first areas 
from at least some of the second areas. 

One such exemplary embodiment is shown by FIG. 1. As 
shown in that figure, first and second components (well
bearing plates, in this figure) are engaged with one another 
(right side of panel A). In a first position (panels B and C), 
wells formed in the upper component (shown with dotted 
lines) and wells formed in the lower component (shown by 
solid lines) form a fluidic path, which path is shown by the 
fluid filling illustrated in panel C. The filling may be effected 
by an inlet (not shown in FIG. 1) that is formed in (or 

in the subject. The user may then process the blood sample 20 

(e.g., cell isolation, cell lysis, and the like) and assay the 
sample (e.g., via PCR) for the presence of a particular 
nucleic acid that is a marker for the virus of interest. The 
processor may then, by analyzing the image of the analysis 
regions in which the nucleic acid may be present, statisti
cally estimate the presence (if any) of the virus in the 
subject. The processor may, alternatively, be configured to 
detect the presence of the analyte in a yes/no fashion; this 
may be useful in situations where the user is interested only 

25 through) a component so as to connect a well of the 
component to the exterior of the device. 

In a second position (shown in panel D), the fluidic path 
is interrupted by way ofrelative motion of the well-bearing 
components so as to isolate some of the wells that formerly 

in knowing whether the subject has a virus and is less 
interested in knowing the level of that virus in the subject. 
Further information regarding exemplary processing meth
ods is found in Kreutz et al., JACS 2011 133: 17705-17712; 
Kreutz et al., Anal. Chem. 2011 83: 8158-8168; and Shen et 
al., Anal. Chem. 2011 83: 3533-3540. 

30 defined the fluidic path from one another. In this way, the 
device allows a user to [ 1] introduce a material into multiple 
areas ( e.g., wells) and then [2] isolate those areas from one 
another so as to allow processing of that material in indi
vidualized quantities. Suitable components and the charac-

35 teristics of these components (e.g., wells, well volumes) are 
described elsewhere herein. It should be understood that the The disclosed devices are suitably configured to permit 

formation of 5, 10, 100, 500 or more analysis regions. In 
some embodiments, the devices are adapted to place at least 
about 10 first areas into pairwise exposure with at least 10 
second areas. This pairwise exposure in turn effects forma- 40 

tion of 10 analysis regions. The devices may also be adapted 
so as to be capable of placing at least about 100 first areas 
into pairwise exposure with at least 100 second areas, or 
even placing at least about 200 first areas into pairwise 
exposure with at least 200 second areas. Exemplary FIG. 1 45 

shows (by way of the "slip" rotational motion shown 
between FIG. 1 panels C and D) placement of filled wells 
( darkened circles) into exposure with unfilled wells (unfilled 
circles). 

Devices according to the present disclosure may also 50 

include a quantity of a reagent disposed within the device. 
The reagent may be a salt, a buffer, an enzyme, and the like. 
Reagents that are useful in an amplification reaction are 
considered especially suitable. Such reagents may be dis
posed within an area of the device in dried or liquid form. 55 

Reagents may also be disposed within the device within a 
well; fluid reagents may be preloaded into wells where the 
reagents remain until the device is used. 

In one such embodiment, a sample is loaded into a first 
population of wells on a first component of a device. The 60 

device may also include a second population of wells on a 
second component of the device, the second population of 
wells being pre-filled with a reagent selected to react with 
the sample. Relative motion between the first and second 
components exposes at least some of the first population of 65 

wells to at least some of the second population of wells (e.g., 
FIG. 1), and the pre-stored reagent may then react with the 

devices may include embodiments where two or more first 
areas may differ from one another in terms of volume. For 
example, a first component may include wells of 1 nL, 10 
nL, and 100 nL formed therein. Likewise, the devices may 
include embodiments where two or more second areas may 
differ from one another in terms of volume. For example, a 
second component may include wells of 1 nL, 10 nL, and 
100 nL formed therein. As shown by exemplary panel C of 
FIG. 1, the fluidic path may comprise at least one first area 
at least partially exposed to (e.g., overlapping with) at least 
one second area. The overlap between first and second areas 
may give rise to analysis regions, which analysis regions 
may (as described elsewhere herein) have different volumes 
from one another. 

In some particularly suitable embodiments, the fluidic 
path is configured to permit the passage of aqueous media. 
This may be accomplished, for example, by placing a layer 
of material ( e.g., lubricating fluid or oil) between the first 
and second components. As explained in the other docu
ments cited herein, the layer of lubricating oil may act to 
isolate a well formed in the first component from other wells 
formed in the first component and also from wells formed in 
the second component, except when those wells are exposed 
(e.g., placed into at least partial register) to one another. The 
lubricating oil may be chosen such that it does not permit the 
passage of aqueous media. In some embodiments, the lubri
cating fluid may be mineral oil, tetradecane, long chain 
hydrocarbon, silicone oil, fluorocarbon, and the like, as well 
as combinations of the foregoing. 

It should be understood that in some embodiments, an oil 
or other non-aqueous material may also be disposed within 
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a well. This may be shown by reference to exemplary FIG. 
1. In one embodiment, certain first and second wells may be 
filled with an aqueous material (panel C in FIG. 1). Other 
wells on the device that are not filled with the aqueous 
material may be filled with an oil (not shown). When the 5 

fluidic path between the aqueous-filled wells is broken 
(panels C and D), the aqueous-filled wells are exposed 
pairwise to wells that are filled with oil. 

In some of devices, an analysis region may include an 
isolated first area or an isolated second area. In one such 10 

embodiment, the first component comprises wells formed 
therein and the second compartment comprises wells formed 
therein. The components may be positioned such that (e.g., 
FIG. 1, panel C) at least some of the first and second wells 

15 
form a fluidic path. The components may then be positioned 
such that the fluidic path is interrupted and, further, that 
some of the first wells are (not shown) positioned opposite 
to a flat (i.e., non-well bearing) portion of the second 
component, and some of the second wells are positioned 20 

opposite to a flat (i.e., non-well bearing) portion of the first 
component. In other embodiments, an analysis region may 
comprise an isolated first area and an isolated second area 
that are exposed only to one another. This is shown by panel 

10 
In some embodiments, the target molecule comprises a 

target nucleic acid, and the method is capable of estimating 
the concentration of the target nucleic acid in the original 
sample with at least about 3-fold resolution for original 
samples with concentrations of about 500 molecules or more 
of target nucleic acid per milliliter. 

Nucleic acids and proteins are considered especially suit-
able target molecules. In some embodiments, the reaction is 
an amplification, such as a nucleic acid amplification. The 
amplification may be performed within 5, 10, 20, 50, 100, 
500, or even 1000 analysis regions. The amplification may 
be performed in such a way that amplification occurs in at 
least two analysis regions at the same time, although it is not 
necessary that amplification begin or end at the same time in 
the different analysis regions. The amplification may be 
performed in an essentially isothermal manner such that the 
process takes place within a temperature range of plus or 
minus about 10 degrees C. For example, the amplification 
may take place at within 10 degrees C. of ambient condi
tions. 

A variety of amplification techniques may be used, as 
described elsewhere herein. Some such suitably techniques 
include a polymerase chain reaction, a room-temperature 

D of non-limiting FIG. 1. 25 polymerase chain reaction, a nested polymerase chain reac
tion, a multiplex polymerase chain reaction, an arbitrarily 
primed polymerase chain reaction, a nucleic acid sequence
based amplification, a transcription mediated amplification, 

Also provided are methods. These methods suitably 
include distributing one or more target molecules from an 
original sample into a plurality of analysis regions, the 
distribution being effected such that at least some of the 
analysis regions are statistically estimated to each contain a 30 

single target molecule. Embodiments where at least two of 
the analysis regions have different volumes from another are 
considered especially suitable. In some embodiments, the 
methods include effecting a reaction on at least some of the 
single target molecules. The reaction may take place in 35 

parallel, i.e., the reaction occurs on two or more target 
molecules at the same time. The reaction may be also 
performed in multiple analysis regions at the same time. It 
should be understood that different types reactions ( e.g., 
amplification, lysing) may take place at the same time at 40 

different analysis regions. 
The distribution may be effected by dividing an area 

within which one or more target molecules resides into at 
least two analysis regions. Panels C and D of FIG. 1 are 
illustrative of this aspect of the method. In panel C, a fluid 45 

containing one or more target molecules is introduced into 
a fluidic path that comprises, as described elsewhere herein, 
wells formed in first and second components. When the 
fluidic path is interrupted (panel D of FIG. 1), the fluid is 
subdivided into various analysis regions. The volumes of the 50 

analysis regions and the target-molecule containing fluid 
itself may be configured such that at least some of the 
analysis regions each contain ( or at estimated to each 
contain) a single target molecule. 

The user may also estimate the concentration of a target 55 

compound in the original sample. This estimation may be 
effected by application of most probable number theory, as 
described in Shen et al., JACS 2011 133: 17705-17712, 
Kreutz et al., Analytical Chemistry 2011 83: 8158-8168, and 
Shen et al., "Digital Isothermal Quantification of Nucleic 60 

Acids via Simultaneous Chemical Initiation ofRecombinase 
Polymerase Amplification Reactions on SlipChip", Analyti-
cal Chemistry 2011 83:3533-3540. The estimation may be 
performed such that the estimation has a lower detection 
limit, at a 95% confidence value, of more than about 0.1 65 

molecules/mL, and an upper level of quantification of less 
than about 1012 molecules/mL. 

a strand displacement amplification, a branched DNA probe 
target amplification, a ligase chain reaction, a cleavase 
invader amplification, an anti DNA-RNA hybrid antibody 
amplification, and the like. 

An analysis region may, as described elsewhere herein, 
comprise first and second areas in pairwise exposure with 
one another. The user may effect relative motion between a 
first component comprising a plurality of first areas and a 
second component comprising a plurality of second areas, 
the relative motion placing at least one first area and at least 
one second area into pairwise exposure with one another to 
define at least one analysis region. This is illustrated in FIG. 
1, panels C and D, where first and second areas are placed 
into pairwise exposure with one another so as to define 
analysis regions. The relative motion may place at least 
about 10 first areas into pairwise exposure with at least about 
10 second areas, or may even place at least about 100 first 
areas into pairwise exposure with at least about 100 second 
areas. 

The instant disclosure also provides methods. These 
methods include introducing an amount of a target molecule 
from an original sample into a device; effecting distribution 
of the amount of the target molecule into at least two isolated 
areas of the device, the at least two isolated areas defining 
volumes that differ from one another; effecting a reaction on 
the target molecule so as to give rise to a reaction product in 
the at least two isolated areas; and estimating, from the 
reaction product, the level of target molecule in the original 
sample. 

The target molecule may be, for example, a nucleic acid. 
The methods may also include contacting an amplification 
reagent-such as a reagent useful in PCR-with the nucleic 
acid. In some embodiments, at least one isolated area is 
estimated to contain one nucleic acid molecule, as described 
elsewhere herein. One particularly suitable reaction to per
form within the disclosed methods is nucleic acid amplifi
cation; suitable amplification techniques are described else
where herein. The nucleic acid amplification may be 
essentially isothermal, as described elsewhere herein. 
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The methods may also include estimating the level of a 
nucleic acid in the original sample. In some embodiments, at 
least one of the isolated areas is estimated to comprise about 
one molecule of nucleic acid. This facilitates application of 
the estimation methods described in Kreutz et al., JACS 5 

2011133: 17705-17712; Kreutz et al., Anal. Chem. 2011 83: 
8158-8168; and Shen et al., Anal. Chem. 2011 83: 3533-
3540. The disclosed methods may be capable of estimating 
the concentration of target nucleic acid in the original 
sample with at least about 3-fold resolution for original 10 

samples with concentrations of about 500 molecules or more 
of target nucleic acid per milliliter. 

An isolated area, e.g., a well, may suitably have a volume 
in the range of from about 1 pico liter to about 10 micro liters, 
as described elsewhere herein. Volumes in the range of from 15 

about 1 nL to about 500 nL, or even from about 5 nL to about 
100 nL are considered suitable. 

12 
those of ordinary skill in the art, including Maxam-Gilbert 
sequencing, chain-termination sequencing, polony sequenc
ing, 454 Sequencing™, SOLiD Sequencing™, ion semicon-
ductor sequencing, nanoball sequencing, Helioscope™ 
sequencing, nanopore sequencing, single-molecule 
SMRT™ sequencing, single molecule real time sequencing 
(RNAP), and the like. 

The present disclosure also provides devices. These 
devices include a first component comprising a population 
of first wells formed in a first surface of the first component, 
the population of wells being arranged in a radial pattern; a 
second component comprising a population of second wells 
formed in a first surface of the second component, the 
plurality of wells being arranged in a radial pattern; the first 
and second components being engageable with one another 
such that relative rotational motion between the first and 
second components exposes at least some of the first popu
lation of wells to at least some of the second population of 
wells so as to form a plurality of analysis regions, an analysis 

Distribution of some amount of target molecules may be 
effected by effecting relative motion between a first and 
second component so as to distribute the amount of the 
target molecule into at least two isolated areas, as described 
elsewhere herein and as shown by exemplary FIG. 1 panels 
B-D. The relative motion may give rise to the amount of the 
target molecule being divided among at least 10 isolated 
areas, or even among at least 50 isolated areas. 

20 region comprising a first well and a second well in pairwise 
exposure with one another. 

According to the disclosed methods, a reaction may be 
effected at two or more areas essentially simultaneously. The 
reactions need not necessarily (but can be) the same in two 

In some embodiments, at least two analysis regions have 
volumes that differ from one another, as described elsewhere 
herein. The first component may include a channel having an 

25 inlet, the channel configured so as to place at least some of 
the first wells into fluid communication with the environ-

or more areas. For example, a user may effect an amplifi
cation reaction at three areas while effecting a different 30 

reaction (e.g., denaturing) at three other areas. 
Other disclosed methods include distributing a plurality of 

target molecules from an original sample into a plurality of 
analysis regions, the distribution being effected such that at 
least some of the analysis regions are estimated to each 35 

contain a single target molecule, and at least two of the 
analysis regions defining different volumes; effecting, in 
parallel, a nucleic acid amplification reaction on at least 
some of the single target molecules. Suitable amplification 
techniques are described elsewhere herein. The amplifica- 40 

tion may, in some embodiments, be effected essentially 
isothermally. 

In some embodiments, the methods further include 
removing a product of the nucleic acid amplification reac
tion. Such recovery may be carried out, in some embodi- 45 

ments, by accessing individual wells of a device. In some 
embodiments, recovery is achieved by combining material 
from multiple wells, for example by placing a device into the 
loading position and using a carrier fluid (including a gas) to 
expel the material from the device. Recovery may also be 50 

accomplished by pipetting material out of a device. Such 
recovery may be used for additional analysis of nucleic acid 
products, such as sequencing, genotyping, analysis ofmeth
ylation patterns, and identification of epigenetic markers. 

Recovered material may be removed from the device. In 55 

some embodiments, recovered material may be transferred 
to another device, or another region of the same device. 
Amplification may be carried out by the methods described 
herein or by other methods known in the art or by their 
combinations. As one non-limiting example, a user may 60 

detect the presence of a target nucleic acid, e.g., by PCR. 
Once the presence of the target is confirmed, the user may 
remove the product from the device. This may be accom
plished by pipetting the product out of an individual well and 
transferring that product to another device or container. The 65 

recovered product may be further processed, e.g., 
sequenced. A variety of sequencing methods are known to 

ment exterior to the channel. The inlet may reside in a 
surface of the first component other than the surface of the 
first component in which the first wells are formed. In this 
way, when the two components are assembled together such 
that the wells of the first component face the wells of the 
second component, the user may fill the wells of the first 
component without dissembling the device. 

It should be understood that the second component may 
also include a channel and inlet, configured such that the 
channel inlet is formed in a surface of the second component 
other than the surface of that component in which the wells 
reside. 

The devices may include, e.g., from about 10 to about 
10,000 first wells. The devices may also include, e.g., from 
about 10 to about 10,000 second wells. 

The disclosed methods may further include estimating the 
level, presence, or both of the one or more nucleic acids in 
the biological sample. Estimating may comprise (a) estimat
ing the presence or absence of the one or more nucleic acids 
in two or more wells of different volumes and (b) correlating 
the estimated presence or absence of the one or more nucleic 
acids in the two or more wells of different volumes to a level 
of the one or more nucleic acids in the biological sample, or, 
alternatively, to the level of some other target in a biological 
sample or even in a subject. Exemplary estimation methods 
are described elsewhere herein. 

The present disclosure provides estimating the level of a 
target present in a sample ( e.g., estimating viral load in a 
subject by determining the presence or concentration of a 
nucleic acid marker in a sample). The present disclosure, 
however, also provides detecting the presence of a target in 
a sample so as to provide the user with a yes/no determi
nation concerning whether a particular analyte is present in 
a subject. In these embodiments, the user may perform a 
reaction ( e.g., amplification, labeling) on a sample and 
merely assay for the presence of a "positive" result of the 
reaction. 

One estimation method is provided in Kreutz et al., Anal. 
Chem. 2011 83: 8158-8168. As explained in that publica
tion, theoretical methods may be used-in conjunction with 
software analysis tools-to design and analyze multivolume 
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analysis devices. Multivolume digital PCR ("MV digital 
PCR") is a reaction that is especially amenable to these 
methods. MV digital PCR minimizes the total number of 
wells required for "digital" (single molecule) measurements 
while also maintaining high dynamic range and high reso- 5 

lution. 
As one illustrative example, a multivolume device having 

fewer than 200 total wells is predicted to provide dynamic 
range with a 5-fold resolution. Without being bound to any 
particular theory, this resolution is similar to that of single- 10 

volume designs that use approximately 12,000 wells. 
Mathematical techniques, such as application of the Pois

son distribution and binomial statistics, may be used to 
process information obtained from an experiment and to 
quantify performance of devices. These techniques were 15 

experimentally validated using the disclosed devices. 
MV digital PCR has been demonstrated to perform reli

ably, and results from wells of different volumes agreed with 
one another. In using the devices, no artifacts due to different 
surface-to-volume ratios were observed, and single mo!- 20 

ecule amplification in volumes ranging from 1 to 125 nL was 
self-consistent. 

14 

(n) n! 
where = -bl -b 1 b .(n ). 

(3) 

An incomplete analysis of multivolume systems may be 
performed by simply selecting a single volume and analyz
ing it as described above; this is the approach that has 
typically been taken in serial dilution systems. The single 
volume that minimizes the standard error is generally cho
sen; this typically occurs when 10-40% of wells are nega
tive. This method, however, does not utilize the information 
from the other "dilutions" ( or volumes), and would require 
using different dilutions for different sample concentrations. 
Combining the results from wells of different volumes fully 
minimizes the standard error and provides high-quality 
analysis across a very large dynamic range. This is achieved 

An exemplary device according to the present disclosure 
was constructed to meet the testing requirements for mea
suring clinically relevant levels of HIV viral load at the 
point-of-care (in plasma, <500 molecules/mL to> 1,000,000 
molecules/mL). The predicted resolution and dynamic range 
was experimentally validated using a control sequence of 
DNA, as described in Kreutz et al., Anal. Chem. 2011 83: 
8158-8168. 

25 by properly combining the results of multiple binomial 
distributions (one for each volume); specifically, the prob
ability of a specific experimental result P ( defined above) is 
the product of the binomials for each volume (eq. 4), where 
Pis defined as a function of the bulk concentration A, P=f(A ), 

30 

The estimation theory applied in the above publication 
may be summarized as follows. First, there are two assump
tions that are maintained: (1) having at least one target 
molecule in a well is necessary and sufficient for a positive 
signal, and (2) target molecules do not interact with one 35 

another or device surfaces, to avoid biasing their distribu
tion. At the simplest level of analysis, when molecules are at 
low enough densities that there is either 0 or 1 molecule 
within a well, concentrations can be estimated simply by 
counting wells displaying a "positive" signal. Under the 40 

above assumptions, Poisson and binomial statistics may be 
used to obtain quantitative results from experiments result
ing in one positive well to experiments resulting in one 
negative well. The Poisson distribution ( eq. 1 ), in the context 
of digital PCR, gives the probability, p, that there are k target 45 

molecules in a given well based on an average concentration 
per well, v·A, where vis the well volume (mL) and A is the 
bulk concentration (molecules/mL). In digital PCR, the 
same readout occurs for all k>0, so if k=0, then eq. 1 
simplifies to give the probability, p, that a given well will not 50 

contain target molecules (the well is "negative"). 

And for k=O (empty well), p=e-(vA) (l) 55 

(4) 

For a given set of results, the MPN is found by solving for 
the value of A that maximizes P. In general, taking the 
derivative of an equation and solving for zero provides the 
maximum and/or minimum values of that equation; as a 
binomial distribution (and subsequently the product of bino
mials) has only a single maximum, solving the derivative of 
eq. 4 for zero provides the "most probable" concentration. 
The standard deviation, a, is more appropriately applied to 
ln(A) than to A, because the distribution of P based on ln(A) 
is more symmetrical than that for A. In addition, this 
approach provides better accuracy for low concentrations by 
enforcing the constraint that concentrations must be posi
tive. Thus, a change of variables is needed during the 
derivations so a can be found for ln(A). Therefore, f(A) (eq. 
4) is converted to F(/\) (eq. 5), where 8=e-v and /\=ln(A). 

(5) 

In single-volume systems, the number of negative wells, 
b, out of total wells, n, can serve as an estimate for p, so 
expected results can be estimated from known concentra
tions, or observed results can be used to calculate expected 
concentrations (eq. 2). 

The derivative is easier to handle if the natural log is 
applied to eq. 5, as the individual components are separated, 

60 but the overall result is unchanged (eq. 6). 

(2) 

The binomial equation is used to determine the probabil
ity, P, that a specific experimental result (with a specific 
number of negatives, b, and positives, n-b, out of the total 65 

number of wells, n, at each volume) will be observed, on the 
basis of A (eq. 3), 

L(A) = lnF(A) = .! (1n( :: ) + b; · eA -ln(0;) + (n; -b;)· ln(l -0()) 
i=l 

(6) 
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The first derivative is then 

(8) 

ln(8i) can be replaced with vi: 

The standard error, a, for a result can be found using the 
Fisher information, I(X), for ln(A), 44 requiring the change 
of variable to/\. The Fisher information is defined in eq. 9, 

10 where E[ ] represents the expected value of the given 
variable. 

substituting (n,-t,) for b, (where t, 1s the number of 
positive wells): 

A ti. Vj -0j m ( A) 
=e -~ -n;·V;+t;·V;+ (l-0fA) 

15 

20 

1 1 J8
2

/(A) 
-.- = - =/(A)= - --f(x; 0)dx 
vanance cr2 a A 2 

(9) 

= [- a
2 

L(AJ] 
E aA2 

In eq. 10, the second derivative of eq. 6 is found. 

(10) 

rearranging to put all t,' s over the denominator 
45 

Using this expression in eq. 9 to then find the inverse 
variance gives eq. 11 

50 

and simplifying and rearranging in terms of b, 

55 
(7) 

60 
Setting eq. 7 equal to 0, re-substituting A, and rearranging 

then gives eq. 8. By solving eq. 8 for A, the expected 
concentration can be determined from the number of empty 
wells. This can be done using any solver function; the code 
MVdPCR_MLE.m (described in Kreutz et al., Analytical 65 

Chemistry 2011 83: 8158-8168) performs this step using a 
globalized Newton method. 

(11) 
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-continued 

With E[ b;] corning from eq 2 

This ultimately gives the standard error (eq. 12), from 
which confidence intervals can be generated (eq. 13), where 
Z is the upper critical value for the standard normal distri
bution. 

(12) 

Cl= ln(J.) ±Z·cr (13) 

One aspect of the disclosed devices achieves a certain 
resolution (that is, to distinguish a certain difference in 
concentration) at certain concentrations. As mentioned 
above for HIV viral load monitoring, a system suitably 
achieves a 3-foldresolution for as low as 500 molecules/mL. 
To correctly resolve two different concentrations, the poten
tial for false positives (Type I error) and false negatives 
(Type II error) may be considered. Samples suitably give 
results at the desired confidence level (1-a, measure of Type 
I error) and demonstrate this confidence level again and 
again (Power: 1-~, measure of Type II error). 

When comparing two results, the null hypothesis is that 
the results come from samples that have statistically the 
same concentration. a is the probability that two results that 
are determined to be statistically different are in fact from 
the same sample, thus resulting in a false positive. A 95% 
confidence level would correspond to a=0.05 and an 
accepted false positive rate of 5%. The power level measures 
the probability, ~' that samples that are statistically different 
at the desired confidence level give results that fall below 
this confidence level. A 95% power level would correspond 

18 
measure the confidence level, where A and a are calculated 
using eqs. 8 and 12, respectively, for a set of two results (the 
specific number of negatives, b,, out of the total number of 
wells, n,, at each volume i of wells). The Z-test measures the 

5 probability that results are statistically different, by assum
ing that the test statistics (left side of eq. 14) can be 
approximated by a standard normal distribution, so Z cor
responds to a known probability. Power level is measured by 
simulating results from two different samples and determin-

lO ing the probability that they will give results that at least 
meet the desired confidence level. 

15 
~-~ ~-~ 

- Z for 95% confidence ~ > 1.96 
✓ af.+c?,_ - , \ICTT.+c?,_ 

(14) 

A multivolume device was designed with 160 wells each 

20 at volumes of 125, 25, 5, and 1 nL (FIG. 15). A radial layout 
of wells (FIG. 14) provides an efficient use of space when 
wells of significantly different volumes are used. In the 
initial orientation of the radial multivolume device, the wells 
are aligned to create a continuous fluidic path that allows all 

25 of the sample wells to be filled in one step using dead end 
filling. The components of the device can then be rotation
ally slipped or translated (by -8° to simultaneously isolate 
each well and also overlap the well with an optional corre
sponding thermal expansion well (FIG. 14). This device has 

30 a LDL of 120 molecules/mL and a dynamic range where at 
least 3-fold resolution is achieved from 520 to 3,980,000 
molecules/mL (FIG.15).Acontrol 631 bp sequence of DNA 
was used to validate the MV digital PCR approach. The 
initial concentration of this stock solution was determined 

35 by UV-vis, and the stock was then diluted to levels required 
for testing of the chip. Concentrations were tested across the 
entire dynamic range of the device: approximately 500, 
1500, 8000, 20,000, 30,000, 100,000, 600,000, and 3,000, 
000 molecules/mL. A total of 80 experiments and 29 addi-

40 tional controls were performed, and the observed concen
trations showed excellent agreement with the expected 
concentrations and demonstrated the accuracy of the device 
performance over the entire dynamic range (FIG. 16). The 
experimental results consist of a "digital" pattern of positive 

45 and negative wells. At an input concentration of 1500 
molecules/mL (FIG. 3a), the larger 125 and 25 nL wells 
provide the majority of the information to determine the 
concentration. As expected, at a higher concentration of 
600,000 molecules/mL, positives were found in the smaller 

50 5 and 1 nL wells also (FIG. 16b), and these smaller wells 
provide the majority of the information used to determine 
the concentration. Excellent agreement was found between 
the input concentration and the measured concentration over 
4 orders of magnitude (FIG. 16c, d). In this multivolume 

55 design, the 95% confidence interval is narrow at a consistent 
level over a very large range of concentrations: the CI is 
within 13.8-15% of the expected value from 9500 to 680, 
000 molecules/mL and within 13.8-17.5% from 5400 to 

to ~=0.05 and thus an accepted false negative rate of 5%. For 60 

the exemplary analysis described herein, the 3-fold resolu
tion is defined such that samples with a 3-fold difference in 
concentration (e.g., 500 and 1500 molecules/mL) gives 
results that are statistically different with at least 95% 
confidence (a<0.05, less than 5% false positives) at least 65 

95% of the time (power level of 95%, ~<0.05, no more than 
5% false negatives). The Z-test (eq. 14) was chosen to 

1,700,000 molecules/mL. The experimental data closely 
tracked the theoretically predicted CI (FIG. 16d). 

As expected, the largest wells (125 nL) provided the 
largest contribution to the overall confidence interval for 
samples in the 102 -104 molecules/mL range while the use of 
smaller and smaller wells down to 1 nL in volume extended 
the dynamic range with a 95% confidence interval above 106 

molecules/mL (FIG. 16c, d). For each concentration, there 
was excellent agreement among the individual results 
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C such that the contents of well C may react with the 
contents of well A (which well included the contents of well 
A and well B). 

Also provided are kits. The kits suitably include device as 
set forth elsewhere herein, and also a supply of a reagent 
selected to participate in nucleic acid amplification. The 
reagent may be disposed in a container adapted to engage 
with a the conduit of the first component, the conduit of the 
second component, or both. Such a container may be a 

obtained from the wells of different volumes, consistent with 
the accuracy of the overall device. This agreement is illus
trated for an input concentration of 30,000 molecules/mL 
(FIG. 17). At this concentration, the wells of all volumes 
provided a reasonable number of positives and negatives for 5 

quantification, and we found that the concentration calcu
lated from the results fell within the 95% confidence inter
vals for individual volumes of wells (38 of 40 results), and 
also, the averages from wells of each volumes were inter
nally consistent (FIG. 17). 10 pipette, a syringe, and the like. 

The disclosed devices and kits may also include a device 
capable of supplying or removing heat from the first and 
second components. Such devices include heaters, refrig
eration devices, infrared or visible light lamps, and the like. 

The estimation may, in some embodiments, have a lower 
detection limit, at a 95% confidence value, in the range of 
between about 40 molecules/mL sample to about 120 mol
ecules/mL of sample. The methods may suitably be capable 
of resolving a three-fold difference in viral load of the 
biological sample based on an estimate of the level of the 
one or more nucleic acids. 

In other embodiments, the methods include estimating the 
level, presence, or both of a protein in the biological sample. 
This estimation may be effected by (a) contacting the sample 
with a detection moiety capable of binding to the protein so 
as to give rise to a population of labeled proteins, the 
detection moiety comprising the one or more nucleic acids, 
(b) disposing the labeled proteins into two or more wells of 
different volumes, ( c) amplifying the one or more nucleic 
acids of the detection moiety in the two or more wells of 
different volumes, and ( d) correlating an estimated presence 
or absence of the one or more nucleic acids in the two or 
more wells of different volumes to a level of the protein in 
the biological sample. 

As one example, anti-PSA capture antibody coated fluo
rescent magnetic beads are used to capture the target PSA 
molecule. The concentration of PSA may be controlled so 
there was less than one molecule on one bead. A dsDNA tag 
is attached to an anti-PSA detection antibody and used as 
signal probe. After incubation between antibodies and anti
gen, magnetic beads with captured/labeled PSA are loaded 
into pL wells with PCR supermix. Each well contains either 
one or no bead. After amplification, only wells containing 
beads are counted. The ratio between "on" wells and the 
total number of wells is used to determine the concentration 
of target. 

As explained above, relative motion between first and 
second components effects distribution of any contents of 
the population of first wells between the first population of 
wells and an additional population of wells. The relative 
motion may effect distribution of any contents of the popu
lation of second wells between the second population of 
wells and an additional population of wells. 

It should be understood that the methods may include one, 
two, or more applications of relative motion between com
ponents. For example, a first relative motion (e.g., rotation) 
may be applied so as to place first and second sets of wells 
into fluid communication with one another. After the con
tents of the first and second wells contact one another, 
additional rotation may be applied to place the wells with 
mixed contents into fluid communication with another set of 
wells with different contents, which in turns enables the user 
to effect processes that require separate and/or sequential 
mixing steps of two, three, or more sample volumes. This 
may be done, for example, to (1) mix materials in well A and 
well B in well A; and then (2) to contact the mixed materials 
in well A with a buffer in well C so as to dilute the contents 
of well A. Alternatively, the mixed contents of well A may 
be contacted (via relative motion of components) with well 

15 The kits may also include a device capable of collecting an 
image of at least some of the first population of wells, the 
second population of wells, or both. 

Amplification Techniques 
A non-exclusive listing of suitable isothermal amplifica-

20 tion techniques are provided below. These techniques are 
illustrative only, and do not limit the present disclosure. 

A first set of suitable isothermal amplification technolo
gies includes NASBA, and RT-RPA. These amplification 
techniques can operate at 40 deg. C. (a lower temperature 

25 preferred for certain POC devices): NASBA (product: 
RNA), RT-RPA (product: DNA), RT-LAMP using one of 
LAMP HIV-RNA 6-primer sets, transcription-mediated 
amplification (TMA, 41 deg. C.), helicase dependent ampli
fication (HAD, 65 deg. C.), and strand-displacement ampli-

30 fication (SDA, 37 deg. C.), 
In addition to standard PCR techniques, the disclosed 

methods and devices are also compatible with isothermal 
amplification techniques such as loop-mediated amplifica
tion (LAMP), Recombinase polymerase amplification 

35 (RPA), nucleic acid sequence based amplification 
(NASBA), transcription-mediated amplification (TMA), 
helicase-dependent amplification (HAD), rolling circle 
amplification (RCA), and strand-displacement amplification 
(SDA). The disclosed multivolume devices can be used to 

40 digitize such platforms. 
Other isothermal amplification methods are also suitable. 

Isothermal exponential amplification reaction (EXPAR) 
may amplify a 10-20 bp trigger oligonucleotide generated 
from a genomic target more than 106 times in less than 10 

45 minutes at 55 deg. C. by repeating cycles of polymerase and 
endonuclease activity, and has been coupled with DNA
functionalized gold nanospheres for the detection of herpes 
simplex virus. Isothermal and chimeric primer-initiated 
amplification of nucleic acids (ICAN s) amplify target DNA 

50 at 55 deg. C. using a pair of 50-DNA-RNA-30 primers and 
the activity of RNase H and strand displacing polymerase. 

Signal-mediated amplification of RNA technology 
(SMART) produces copies of an RNA signal at 41 deg. C. 
in the presence of an RNA or DNA target by way of the 

55 three-way junction formed between the target and two 
probes, one of which contains the RNA signal sequence and 
a T7 promoter sequence for T7 RNA polymerase. The single 
stranded RNA product may be detected by hybridization
based methods and because the signal is independent of the 

60 target, SMART may be used for detection of different target 
sequences. Cyclic enzymatic amplification method (CEAM) 
detects nucleic acids in the picomolar range in less than 20 
minutes at 37 deg. C. using a displacing probe and Exonu
clease III (Exo III) to generate amplification of fluorescent 

65 signal in the presence of a target. Isothermal target and 
signaling probe amplification (iTPA) combines the principle 
ofICAN and the inner-outer probe concept of LAMP along 
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with fluorescence resonance energy transfer cycling probe 
technology (FRET CPT) for simultaneous target and signal 
amplification in 90 minutes at 60 deg. C., and has been 
shown to detect Chlamydia trachomatis at single copy level. 

Other suitable amplification methods include ligase chain 5 

reaction (LCR); amplification methods based on the use of 
Q-beta replicase or template-dependent polymerase; heli
case-dependent isothermal amplification; strand displace
ment amplification (SDA); thermophilic SDA nucleic acid 
sequence based amplification (3SR or NASBA) and tran- 10 

scription-associated amplification (TAA). 
Non-limiting examples of PCR amplification methods 

include standard PCR, AFLP-PCR, Allele-specific PCR, 
Alu-PCR, Asymmetric PCR, Biased Allele-Specific (BAS) 

15 
Amplification, Colony PCR, Hot start PCR, Inverse PCR 
(IPCR), In situ PCR (ISH), Intersequence-specific PCR 
(ISSR-PCR), Long PCR, Multiplex PCR, Nested PCR, 
Quantitative PCR, Reverse Transcription PCR (RT-PCR), 
Real Time PCR, Single cell PCR, Solid phase PCR, Uni- 20 

versa! Size-Specific (USS-PCR), branched-DNA technol
ogy, and the like 

Further amplification techniques are described below. 
Each of these techniques is suitably performed by the 
disclosed devices and methods. Allele-specific PCR is a 25 

diagnostic or cloning technique based on single-nucleotide 
polymorphisms (SNPs) (single-base differences in DNA). It 
requires some knowledge of a DNA sequence, including 
differences between alleles, and uses primers whose 3' ends 
encompass the SNP. PCR amplification may be less efficient 30 

in the presence of a mismatch between template and primer, 
so successful amplification with an SNP-specific primer 
signals presence of the specific SNP in a sequence. 

Assembly PCR or Polymerase Cycling Assembly (PCA) 

22 
cold-finish PCR is achieved with new hybrid polymerases 
that are inactive at ambient temperature and are activated at 
elongation temperature. 

Inter-sequence-specific PCR (ISSR) is a PCR method for 
DNA fingerprinting that amplifies regions between simple 
sequence repeats to produce a unique fingerprint of ampli
fied fragment lengths. 

Inverse PCR is commonly used to identify the flanking 
sequences around genomic inserts. It involves a series of 
DNA digestions and self-ligation, resulting in known 
sequences at either end of the unknown sequence. 

Ligation-mediated PCR: uses small DNA linkers ligated 
to the DNA of interest and multiple primers annealing to the 
DNA linkers; it has been used for DNA sequencing, genome 
walking, and DNA footprinting. 

Methylation-specific PCR (MSP) is used to detect meth
ylation of CpG islands in genomic DNA. DNA is first treated 
with sodium bi sulfite, which converts unmethylated cytosine 
bases to uracil, which is in tum recognized by PCR primers 
as thymine. Two PCRs are then carried out on the modified 
DNA, using primer sets identical except at any CpG islands 
within the primer sequences. At these points, one primer set 
recognizes DNA with cytosines to amplify methylated 
DNA, and one set recognizes DNA with uracil or thymine to 
amplify unmethylated DNA. MSP using qPCR can also be 
performed to obtain quantitative rather than qualitative 
information about methylation. 

Miniprimer PCR uses a thermostable polymerase (S-Tbr) 
that can extend from short primers ("smalligos") as short as 
9 or 10 nucleotides. This method permits PCR targeting to 
smaller primer binding regions, and is used to amplify 
conserved DNA sequences, such as the 16S ( or eukaryotic 
18S) rRNA gene. 

Multiplex Ligation-dependent Probe Amplification 
(MLPA) permits multiple targets to be amplified with only 
a single primer pair, as distinct from multiplex-PCR. 

Multiplex-PCR: consists of multiple primer sets within a 
single PCR mixture to produce amplicons of varying sizes 
that are specific to different DNA sequences. By targeting 

is an artificial synthesis oflong DNA sequences by perform- 35 

ing PCR on a pool of long oligonucleotides with short 
overlapping segments. The oligonucleotides alternate 
between sense and antisense directions, and the overlapping 
segments determine the order of the PCR fragments, thereby 
selectively producing the final long DNA product. 40 multiple genes at once, additional information may be 

gained from a single test-run that otherwise would require 
several times the reagents and more time to perform. 
Annealing temperatures for each of the primer sets may be 

Asymmetric PCR preferentially amplifies one DNA 
strand in a double-stranded DNA template. It is used in 
sequencing and hybridization probing where amplification 
of only one of the two complementary strands is required. 
PCR is carried out as usual, but with a great excess of the 45 

primer for the strand targeted for amplification. Because of 
the slow (arithmetic) amplification later in the reaction after 
the limiting primer has been used up, extra cycles of PCR are 
required. A recent modification on this process, known as 
Linear-After-The-Exponential-PCR (LATE-PCR), uses a 50 

limiting primer with a higher melting temperature (Tm) than 
the excess primer to maintain reaction efficiency as the 
limiting primer concentration decreases mid-reaction. 

Helicase-dependent amplification is similar to traditional 
PCR, but uses a constant temperature rather than cycling 55 

through denaturation and annealing/extension cycles. DNA 
helicase, an enzyme that unwinds DNA, is used in place of 
thermal denaturation. 

optimized to work correctly within a single reaction, and 
amplicon sizes. That is, their base pair length may be 
different enough to form distinct bands when visualized by 
gel electrophoresis. 

Nested PCR: increases the specificity of DNA amplifica
tion, by reducing background due to non-specific amplifi
cation of DNA. Two sets of primers are used in two 
successive PCRs. In the first reaction, one pair of primers is 
used to generate DNA products, which besides the intended 
target, may still consist of non-specifically amplified DNA 
fragments. The product(s) are then used in a second PCR 
with a set of primers whose binding sites are completely or 
partially different from and located 3' of each of the primers 
used in the first reaction. 

Overlap-extension PCR or Splicing by overlap extension 
(SOE): a genetic engineering technique that is used to splice 

60 together two or more DNA fragments that contain comple
mentary sequences. The technique is used to join DNA 
pieces containing genes, regulatory sequences, or mutations; 
the technique enables creation of specific and long DNA 
constructs. 

Hot start PCR is a technique that reduces non-specific 
amplification during the initial set up stages of the PCR. It 
may be performed manually by heating the reaction com
ponents to the denaturation temperature (e.g., 95° C.) before 
adding the polymerase. Specialized enzyme systems have 
been developed that inhibit the polymerase's activity at 
ambient temperature, either by the binding of an antibody or 65 

by the presence of covalently bound inhibitors that dissoci-
ate only after a high-temperature activation step. Hot-start/ 

Quantitative PCR (Q-PCR): used to measure the quantity 
of a PCR product ( commonly in real-time). It quantitatively 
measures starting amounts of DNA, cDNA, or RNA. Q-PCR 
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is commonly used to determine whether a DNA sequence is 
present in a sample and the number of its copies in the 
sample. Quantitative real-time PCR can have a high degree 
of precision. QRT-PCR (or QF-PCR) methods use fluores
cent dyes, such as Sybr Green, EvaGreen or fluorophore- 5 

containing DNA probes, such as TaqMan, to measure the 
amount of amplified product in real time. It is also some
times abbreviated to RT-PCR (Real Time PCR) or RQ-PCR. 
QRT-PCR or RTQ-PCR are more appropriate contractions, 
as RT-PCR commonly refers to reverse transcription PCR 10 

(see below), often used in conjunction with Q-PCR. 
Reverse Transcription PCR (RT-PCR): for amplifying 

DNA from RNA. Reverse transcriptase reverse transcribes 
RNA into cDNA, which is then amplified by PCR. RT-PCR 
is widely used in expression profiling, to determine the 15 

expression of a gene or to identify the sequence of an RNA 
transcript, including transcription start and termination sites. 
If the genomic DNA sequence ofa gene is known, RT-PCR 
can be used to map the location of exons and intrans in the 
gene. The 5' end of a gene ( corresponding to the transcrip- 20 

tion start site) is typically identified by RACE-PCR (Rapid 
Amplification of cDNA Ends). 

Solid Phase PCR: encompasses multiple meanings, 
including Polony Amplification (where PCR colonies are 
derived in a gel matrix, for example), Bridge PCR (primers 25 

are covalently linked to a solid-support surface), conven
tional Solid Phase PCR (where Asymmetric PCR is applied 
in the presence of solid support bearing primer with 
sequence matching one of the aqueous primers) and 
Enhanced Solid Phase PCR (where conventional Solid 30 

Phase PCR can be improved by employing high Tm and 
nested solid support primer with optional application of a 
thermal step to favor solid support priming). 

Thermal asymmetric interlaced PCR (TAIL-PCR) may be 
useful for isolation of an unknown sequence flanking a 35 

known sequence. Within the known sequence, TAIL-PCR 
uses a nested pair of primers with differing armealing 
temperatures; a degenerate primer is used to amplify in the 
other direction from the unknown sequence. 

Touchdown PCR (Step-down PCR) is a variant of PCR 40 

that aims to reduce nonspecific background by gradually 
lowering the annealing temperature as PCR cycling pro
gresses. The annealing temperature at the initial cycles is 
usually a few degrees (3-5° C.) above the Tm of the primers 
used, while at the later cycles, it is a few degrees (3-5° C.) 45 

below the primer Tm. The higher temperatures give greater 
specificity for primer binding, and the lower temperatures 
permit more efficient amplification from the specific prod
ucts formed during the initial cycles. 

PAN-AC uses isothermal conditions for amplification, 50 

and may be used in living cells. 
Universal Fast Walking is useful for genome walking and 

genetic fingerprinting using a more specific two-sided PCR 
than conventional one-sided approaches (using only one 
gene-specific primer and one general primer) by virtue of a 55 

mechanism involving lariat structure formation. Streamlined 
derivatives of UFW are LaNe RAGE (lariat-dependent 
nested PCR for rapid amplification of genomic DNA ends), 
5' RACE LaNe, and 3' RACE LaNe. 

COLD-PCR (co-amplification at lower denaturation tern- 60 

perature-PCR) is a modified Polymerase Chain Reaction 
(PCR) protocol that enriches variant alleles from a mixture 
of wildtype and mutation-containing DNA. 

Another alternative isothermal amplification and detec
tion method that is isothermal in nature is described at 65 

http://www.invaderchemistry.com/(Invader Chemistry™) 
This method may be performed by the disclosed devices and 

24 
methods. Another alternative amplification technique (so
called qPCR) is disclosed by MNAzyme (http://www.speed
x.com.au/MNAzymeqPCR.html), which technique is also 
suitable for the presently disclosed devices and methods. 

One may also effect amplification based on nucleic acid 
circuits (which circuits may be enzyme-free). The following 
references ( all of which are incorporated herein by reference 
in their entireties) describe exemplary circuits; all of the 
following are suitable for use in the disclosed devices and 
methods: Li et al., "Rational, modular adaptation of enzyme
free DNA circuits to multiple detection methods," Nucl. 
Acids Res. (2011) doi: 10.1093/nar/gkr504; Seelig et al., 
"Enzyme-Free Nucleic Acid Logic Circuits," Science (Dec. 
8, 2006), 1585-1588; Genot et al, "Remote Toehold: A 
Mechanism for Flexible Control of DNA Hybridization 
Kinetics," JACS 2011, 133 (7), pp 2177-2182; Choi et al., 
"Progranimable in situ amplification for multiplexed imag
ing of mRNA expression," Nature Biotechnol, 28:1208-
1212, 2010; Benner, Steven A., and A. Michael Sismour. 
"Synthetic Biology." Nat Rev Genet 6, no. 7 (2005): 533-
543; Dirks, R. M., and N. A. Pierce. "Triggered Amplifica
tion by Hybridization Chain Reaction." Proceedings of the 
National Academy of Sciences of the United States of 
America 101, no. 43 (2004): 15275; Graugnard, E., A. Cox, 
J. Lee, C. Jorcyk, B. Yurke, and W. L. Hughes. "Kinetics of 
DNA and Rna Hybridization in Serum and Serum-Sds." 
Nanotechnology, IEEE Transactions on 9, no. 5 (2010): 
603-609; Li, Bingling, Andrew D. Ellington, and Xi Chen. 
"Rational, Modular Adaptation of Enzyme-Free DNA Cir
cuits to Multiple Detection Methods." Nucleic Acids 
Research, (2011); Li, Q., G. Luan, Q. Guo, and J. Liang. "A 
New Class of Homogeneous Nucleic Acid Probes Based on 
Specific Displacement Hybridization." Nucleic Acids 
Research 30, no. 2 (2002): e5-e5; Picuri, J.M., B. M. Frezza, 
and M. R. Ghadiri. "Universal Translators for Nucleic Acid 
Diagnosis." Journal of the American Chemical Society 131, 
no. 26 (2009): 9368-9377; Qian, Lulu, and Erik Winfree. 
"Scaling up Digital Circuit Computation with DNA Strand 
Displacement Cascades." Science 332, no. 6034 (2011 ): 
1196-1201; Tsongalis, G. J. "Branched DNA Technology in 
Molecular Diagnostics." American journal of clinical 
pathology 126, no. 3 (2006): 448-453; Van Ness, Jeffrey, 
Lori K. Van Ness, and David J. Galas. "Isothermal Reactions 
for the Amplification of Oligonucleotides." Proceedings of 
the National Academy of Sciences 100, no. 8 (2003): 
4504-4509; Yin, Peng, Harry M. T. Choi, Colby R. Calvert, 
and Niles A. Pierce. "Programming Biomolecular Self
Assembly Pathways." Nature 451, no. 7176 (2008): 318-
322; Zhang, D. Y., and E. Winfree. "Control of DNA Strand 
Displacement Kinetics Using Toehold Exchange." Journal 
of the American Chemical Society 131, no. 47 (2009): 
17303-17314; Zhang, David Yu, Andrew J. Turberfield, 
Bernard Yurke, and Erik Winfree. "Engineering Entropy
Driven Reactions and Networks Catalyzed by DNA." Sci
ence 318, no. 5853 (2007): 1121-1125; Zhang, Z., D. Zeng, 
H. Ma, G. Feng, J. Hu, L. He, C. Li, and C. Fan. "A 
DNA-Origami Chip Platform for Label-Free SNP Genotyp
ing Using Toehold-Mediated Strand Displacement." Small 
6, no. 17 (2010): 1854-1858. 

It should also be understood that the present disclosure is 
not limited to application to molecules, as the disclosed 
devices and methods may be applied to organisms (e.g., 
those described in paragraph 0133 of priority application 
PCT/US2010/028316 and also elsewhere in that applica
tion), single cells, single biological particles ( e.g., bacteria), 
single vesicles, single exosomes, single viruses, single 
spores, lipoprotein particles, and the like, and single non-
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biological particles. One exemplary analysis of lipoprotein 
particles may be found at www.liposcience.com. Further
more, it should also be understood that the disclosed devices 
and methods may be applied to stochastic confinement 
( described in, for example, "Stochastic Confinement to 5 

Detect, Manipulate, And Utilize Molecules and Organisms," 
patent application PCT/US2008/071374), and reactions and 
manipulations of stochastically confined objects. As one 
non-limiting example, biological samples may be assessed 
for the presence or level of certain bacteria, such as those 10 

organisms that serve as markers for bacterial vaginosis. This 
assessment may be performed by amplifying nucleic acids 
that may be present in the sample and correlating the levels 
of those nucleic acids to the presence or absence of the 
marker organisms. One exemplary analysis is found at 15 

http://www.viromed.com/client/cats/BV %20LAB.pdf. 
It should be understood that "nucleic acid" is not limited 

26 
example by actuating a device to the loading position and 
using a carrier fluid to expel the material from the device. 

EXEMPLARY EMBODIMENTS 

The following illustrates an exemplary embodiment of the 
disclosed devices. The embodiment comprises a rotation
ally-configured device for quantifying RNA with a large 
dynamic range by using multivolume digital RT-PCR (MV 
digital RT-PCR). 

Quantitative detection of RNA provides valuable infor
mation for study of gene expression, and has the potential to 
improve evaluation of diseases (including stroke, leukemia, 
and prostate cancer), analysis of graft rejection in transplan
tation, and vaccine development. Quantification of viral 
RNA has also become useful for monitoring the progression 
of viral infection and efficacy of applied treatment. 

One such instance is in the treatment of HIV. More than 
33 million people worldwide are living with HIV, and a large 

to DNA. "Nucleic acid" should be understood as referring to 
RNA and/or a DNA. Exemplary RNAs include, but are not 
limited to, mRNAs, tRNAs, snRNAs, rRNAs, retroviruses, 
small non-coding RNA, microRNAs, ploysomal RNAs, 
pre-mRNAs, intromic RNA, and viral RNA. Exemplary 
DNAs include, but are not limited to, genomic DNA, 
plasmid DNA, phage DNA, nucleolar DNA, mitochondrial 
DNA, chloroplast DNA, cDNA, synthetic DNA, yeast arti
ficial chromosomal DNA, bacterial artificial chromosomal 
DNA, other extrachromosomal DNA, and primer extension 
products. 

20 number of them are in developing countries and resource
limited areas. First-line antiretroviral treatment is becoming 
widely available, and it greatly increases both the duration 
and quality of life of HIV patients. However, this first-line 
treatment can fail as the virus mutates and develops drug 

In some embodiments, a nucleic acid comprises PNA 
and/or LNA (locked nucleic acid). In still other embodi
ments, a nucleic acid comprises one or more aptamers that 
can be in the form of single stranded DNA, RNA, or 
modified nucleic acids. Nucleic acid aptamers may be single 
stranded or double stranded. In some embodiments, nucleic 
acid contains nucleotides with modified synthetic or unnatu

25 resistance. In order to stop the global spread of drug resis
tance and provide proper treatment for patients, it is critical 
to evaluate the HIV viral load at regular intervals ( every 3 
to 4 months) after initial treatment is shown to be effective. 
HIV viral load measurement is a particularly useful tool for 

30 diagnosing and evaluating the status of HIV infection in 
children under age 18 months. 

The hepatitis C virus (HCV) infection is also a significant 
global healthcare burden, as it has been identified as one of 
the major causes of liver disease and is one of the most 

35 common co-infections of HIV. HCV viral load may also 
need to be monitored to determine the effectiveness of ral bases, including any modification to the base, sugar or 

backbone. Further information is found in U.S. Pat. No. 
7,790,385 and also in United States patent application 
publications US2008/0032310, US2008/0050721, and 
US2005/0089864, all of which are incorporated herein by 40 

reference in their entireties for any and all purposes. 
It should also be understood that in some embodiments, 

the disclosed devices and methods provide for detection of 
target molecules with or without quantification ( or estimated 
quantification) of the target molecules. Accordingly, it is not 45 

necessary for a user to estimate the concentration or level of 
a target in a sample; the disclosed devices and methods may 
be used to detect the presence of a target in a yes/no fashion. 
This is especially useful in applications where the user may 
desire only to know whether a particular target ( e.g., a virus) 50 

is present; in such cases, the precise level of the target is of 
lesser importance. 

Such detection can be carried out by physical, chemical, 
and biological reactions, such as hybridization, nucleic acid 
amplification, immunoassays, and enzymatic reaction. In 55 

some embodiments, this detection method can be used for 
qualitative analysis of one or more target molecules. As 
describe above, in some embodiments material may, after a 
reaction, processing, or even a detection step, be transferred 
to another device, or even transferred to another region of 60 

the same device. In some embodiments, recovered material 
may be removed from the device. In some embodiments, 
material after detection may be recovered from device and 
further analyzed. Such recovery may be carried out, in some 
embodiments, by accessing individual wells of a device, 65 

e.g., by a pipettor. In some embodiments, recovery may be 
achieved by combining material from multiple wells, for 

treatment. 
The viral load for chronic HCV can range from about 

50,000 to about 5 million international units per mL (IU/ 
mL ), while for patients responding to antiviral treatment the 
load will be lower. Successful treatment should result in 
essentially undetectable levels of HCV viral RNA, and the 
assessment of such treatment may require HCV viral load 
measurements capable of a wide dynamic range. 

As explained previously, real time quantitative RT-PCR is 
one standard for monitoring viral load for HIV, HCV, and 
other viral infections. However, this test is cost-prohibitive 
under resource-limited settings and usually requires multiple 
instruments, highly skilled technicians, and isolated rooms 
to prevent contamination. Moreover, the efficiency of RT
PCR, the quality of sample and selection of targets, and the 
methods for interpretation of the data present concerns for 
the accuracy of quantifying RNA using RT-PCR. 

While a dipstick device has been developed that provides 
semiquantitative measurements of HIV viral load after 
amplification in resource limited settings, no quantitative 
test exists to resolve a 3-fold (0.5 log10

) change in HIV RNA 
viral load, which is considered to be clinically significant. 
Digital PCR is one method that performs quantitative analy
sis of nucleic acids by detecting single molecule of DNA or 
RNA and can provide an absolute count of the nucleic acid 
copy number with potentially higher accuracy compared to 
real time PCR. Existing applications of digital PCT, how
ever, require significant skill and resource commitments. 

The exemplary, disclosed devices present a microfluidic 
platform that can manipulate liquid samples from picoliter
to-microliter scales by relative movement of different plates 
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without the need for complex control systems. These devices 
may be used for multiplex PCR, digital PCR, and digital 
isothermal amplification (RPA). 

In place of using wells of uniform size, using wells of 
multiple volumes to achieve the same dynamic range can 5 

reduce the total number of wells and increase the spacing 
among wells to simplify imaging and downstream analysis. 
A mathematical approach for experimental design and sta
tistical analysis for multivolume digital PCR (MV digital 
PCR) has been characterized using DNA in Kreutz et al., 10 

Anal. Chem. 2011, DOI 10.1021/ac201658s, incorporated 
herein by reference for all purposes. 

A disclosed devices was applied, as set forth below, to 
quantitative analysis of RNA with large dynamic range by 

15 
MV digital RT-PCR. This device was characterized with a 
serial dilution of a synthetic control RNA molecule of 906 
nucleotides (906 nt). Also described is a second design of the 
platform that maintains a large dynamic range for five 
samples simultaneously, allowing for multiplexed experi- 20 

ments. This system was validated by using HCV control 
viral RNA and HIV viral RNA together with internal con
trols. The system also displayed the use of multivolume 
designs to quantify HIV viral load at a large dynamic range 
by quantifying purified HIV viral RNA from clinical 25 

patients' samples. 
Results 
First characterized was a multivolume digital device 

(Design 1, Table 1, FIG. 11) with a large dynamic range 
suitable for viral load testing. This device contained four 30 

different volumes (1 nL, 5 nL, 25 nL, 125 nL) with 160 wells 
each (FIG. lA) for a theoretical dynamic range (lower 
dynamic range, LDR, to upper limit of quantification, ULQ) 

28 

CT=--;====== 

To validate the performance of the multivolume device 
with RNA, digital RT-PCR ws performed using a six order
of magnitude serial dilution of synthetic control RNA tem
plate (906 nt). This control RNA was synthesized from a 
control plasmid and purified by using a commercial purifi
cation kit. The concentration of the stock solution of control 
RNA was measured spectrophotometrically by a Nano-
Drop™ device to be -1.8 ng/µL, corresponding to -4.lx 
1012 molecules/mL, which may contain some background 
signal. 

Using the device and through statistical analysis of all 
MV digital RT-PCR results (FIG. 3), a nominal real con
centration of the control RNA in solution was obtained, 
2.2xl012 molecules/mL, which value was used as the true 
concentration of all MV digital RT-PCR results reported in 
FIG. 3. A RT-PCR master mix containing EvaGreen Super
Mix, RT-transcriptase, bovine serum albumin (BSA), and 
primers was mixed with the RNA template solution. 
EvaGreen, an intercalating dye, was used for end-point 
fluorescent imaging after thermal cycling (FIG. 2). 

FIG. 1 illustrates a rotational multivolume device (well 
volumes: 1 nL, 5 nL, 25 nL, 125 nL). (A) Bright field image 
of the rotational device after slipping to form isolated 
compartments, shown next to a U.S. quarter. (B-D) Sche
matics and (E-G) bright field microphotograph show (B, E) of 5.2xl02 to 4.0xl06 molecules/mL at 3-fold resolution and 

a lower detection limit (LDL) of 1.2xl02 molecules/mL in 
the final RT-PCR mixture. The LDR corresponds to the 
lowest concentration that can be resolved from a 3- or 5-fold 
higher concentration; the ULQ is the concentration that has 
a 95% chance of generating at least one negative well and is 
equal to the concentration calculated from three negative 
wells; the LDL is the concentration that has a 95% chance 
of generating at least one positive well and is equal to the 
concentration calculated from three positive wells. 

35 the assembled rotational device. (C, F) The device filled with 
food dye after dead-end filling. (D, G) The device after 
rotational slipping: 640 aqueous droplets of four different 
volumes (160 wells with volumes of 1 nL, 5 nL, 25 nL, 125 
nL each) were formed simultaneously. In the schematics, 

40 dotted lines indicate features in the top plate, and black solid 
lines represent the features in the bottom plate. 

Continuous fluidic paths are generated by partially over
lapping the wells in the top plate and the wells in the bottom 
plate ( e.g., FIG. 18, FIG. lE; FIG. 15). The design of this 
device follows the general principles of dead-end filling for 
complete filling of aqueous reagents (FIG. lC,F). After 
complete loading, the top plate is slipped (rotated) clockwise 

FIG. 2 shows end-point fluorescence images of multivol
ume digital RTPCR performed on a rotational device for 
synthetic RNA template at five different concentrations. (A) 

45 Control, containing no RNA template. (B-F) Serial dilution 
of906 nt RNA template from 2.2xl02 to 2.2xl06 molecules/ 
mL in the RT-PCR mix. 

by -8° to break the fluidic path and overlay the wells filled 50 

with solution with the wells in the facing plate used to 
control thermal expansion (FIG. lD, FIG. lG). The device 
is then placed on a flat in situ adaptor for thermal cycling. 

The theory for design and analysis of this multivolume 
device are described in detail and validated by using digital 55 

PCR for DNA. Briefly, concentrations were calculated based 
on Most Probable Number (MPN) theory by combining the 
results from each volume (i=l, 2, 3, 4) in the first equation 
below and solving for A (concentration, molecules/mL), 
where n, is the total number of wells at each volume, b, is the 60 

number of negative wells at that volume, and v, is the well 
volume (mL). Combining results allows for more precise 
identification of the "most probable" concentration and also 
improves the confidence interval. To find the confidence 
interval, the standard deviation, a, for ln(A) is determined 65 

using the second equation below, which was derived based 
on the Fisher information. 

No false positives were observed after amplification in 
four negative control experiments, as there was no signifi
cant increase of fluorescent intensity in wells (FIG. 2A). As 
the concentration of RNA template increased (the dilution 
factor decreased), the fraction of positive wells in each set 
of individual volumes was counted and the concentration of 
template in the RT-PCR mix was calculated as described 
above (FIG. 2B-F). The glass device was reused after being 
thoroughly cleaned with piranha acid (3: 1 sulfuric acid: 
hydrogen peroxide), plasma cleaned, and resilanized with 
dichlorodimethylsilane. Four to five experiments were per
formed for each concentration of template, and the calcu
lated concentration of template RNA showed good agree
ment within the expected statistical distribution at each 
concentration and scaled linearly with the expected concen
tration (FIG. 3A). The results at the concentrations of 
2.2xl06

, 2.2xl05
, 2.2xl04

, 2.2xl03
, 2.2xl02

, and 7.3xl01 

molecules/mL in the RT-PCR mix were used to estimate an 
initial stock concentration of control RNA of approximately 
2.2xl012 molecules/mL. The experimental results across the 



US 10,196,700 B2 
29 

concentrations agree well with the theoretically predicted 
distribution (FIG. 3A,B). Of the 26 experiments, 19 fall 
within the 95% confidence interval and 22 fall within the 
99% confidence interval. 

FIG. 3 presents the performance of digital RT-PCR with 5 

synthetic RNA template on the multivolume device over a 4 
log10 dynamic range, comparing the expected concentration 
of RNA in RT-PCR mix to (A) the observed concentration, 
and (B) the ratio of the observed/expected concentration. 
Individual experimental results (crosses) and average results 10 

(crosses) for concentration were plotted against the dilution 
level of the RNA stock solution. Four to five experiments 
were performed at each concentration, and some experimen-

30 
2.0xl 02 molecules/mL and lower dynamic range with 3-fold 
resolution at 1.8xl03 molecules/mL in the RT-PCR mix 
(FIG. SA). The higher upper limit of quantification is 
required to quantify HCV viral RNA, and the lower dynamic 
range and lower detection limit are required for the HIV 
viral load test. Five different solutions can be introduced into 
the device simultaneously (FIG. SA) for multiplexed analy
sis. 

As HCV is one of the most common co-infections for HIV 
patients, validation was performed on the multiplexed 
device with a five-plex panel: measurement of HIV viral 
RNA, measurement of HCV control viral RNA, a negative 
control for HIV, a negative control for HCV, and measure
ment of 906 nt control RNA in HCV sample for quantifi-
cation of sample recovery rate (FIG. SB,C). The 906 nt 
control RNA was the same one characterized by using 
digital RT-PCR on the device (design 1; see FIGS.1 and 11). 
HIV viral RNA was purified from an archived sample of 
plasma containing HIV (viral RNA estimated to be -1.5xl 06 

tal results are overlapping. The experimental results show a 
linear relationship with the dilution level and fit within the 15 

expected distribution. The experimental results were used to 
estimate an initial stock concentration, whose distribution 
was then fit to the dilution level to provide the expected 
value (black curve) and 95% confidence interval (gray 
curves). 20 molecules/mL) from a de-identified patient sample, and 

HCV control viral RNA was purified from a commercial 
sample containing control HCV virus (25 million IU/mL, 
OptiQuant-S HCV Quantification Panel, Acrometrix) using 
the iPrep purification instrument, as described elsewhere 

Over the dynamic range of the device, the contribution of 
wells with different volumes to the calculated concentration 
varies, approximated in FIG. 4A. As the concentration of 
control RNA template increases (the dilution decreases), the 
major contribution to the calculated final concentration 
shifts from wells of large volume (125 nL) to wells of 
medium volume (25 nL and 5 nL) and then to wells of small 
volume (1 nL). The percent that the result from each volume 
contributes to a serves as an estimate of the relative con
tribution of that volume to the concentration determined by 
all volumes on the entire chip. In FIG. 4A, the data bars for 
the 125 nL volume are for (left to right) 2.2xl02 molecules/ 
mL, 2.2xl 03 molecules/mL, and 2.2xl04 molecules/mL. For 

25 herein. As the final elution volume of purified nucleic acid 
is generally smaller than the starting volume of plasma, there 
is a concentrating effect on viral RNA after sample purifi
cation. To characterize this concentrating effect, the 906 nt 
control RNA with known concentration was added to the 

30 lysed plasma and was quantified again after sample prepa
ration. The ratio of the concentration of 906 nt control RNA 
after/before sample preparation is defined as the concentrat
ing factor. The concentrating factors after sample purifica
tion were approximately 6.6 for HIV viral RNA and approxi
mately 4.5 for HCV control viral RNA. Primers for HIV and 
HCV were selected. Only one pair of primers was added to 
each sample, and the experiment was repeated six times. In 
those six experiments, no false positives were observed in 
either HIV or HCV negative control panels after thermal 
cycling, and no crosscontamination was observed among 
different panels. From these six experiments, the average 
calculated concentration of HIV viral RNA after purification 
was 7.9xl06 molecules/mL with standard deviation of 2.5x 
106 molecules/mL, corresponding to 1.2x 106 molecules/mL 

25 nL, data bars are (left to right) 2.2xl02 molecules/mL, 
2.2xl03 molecules/mL, 2.2xl04 molecules/mL, 2.2xl05 

35 

molecules/mL, and 2.2xl06 molecules/mL. For 5 nL vol
umes, the data bars are (left to right) 2.2xl 02 molecules/mL, 
2.2xl03 molecules/mL, 2.2xl04 molecules/mL, 2.2xl05 

molecules/mL, and 2.2xl06 molecules/mL. For 1 nL vol
umes, the data bars are (left to right) 2.2xl 04 molecules/mL, 40 

2.2xl05 molecules/mL, and 2.2xl06 molecules/mL. The 
concentration calculated from analysis of positive and nega
tive wells of each of the volumes on the individual device 
was selfconsistent and was consistent with the calculated 
concentration determined by combining all wells with dif
ferent volumes (FIG. 4B). This result indicates that multi
volume digital approach is fully compatible with analysis of 
RNA by RT-PCR. 

45 with standard deviation of 3.7xl05 molecules/mL in the 
original plasma sample. The average concentration of HCV 
control viral RNA after purification was I .Ox 108 molecules/ 
mL with standard deviation of 4.4xl07 molecules/mL, cor-

FIG. 4A shows that for each dilution, the approximate 
contributions of the results from each well volume toward 50 

responding to 2.3xl07 molecules/mL with standard devia
tion of 9. 7xl 06 molecules/mL in the original control plasma 
sample. (Additional information may be found in "Multi-calculating the final concentration were calculated based on 

the contributions of each volume to the standard deviation, 
a. FIG. 4(8), showing the concentration of RNA template 
calculated from the overall chip (combining all well vol
umes, solid bars) and individual volumes (patterned bars) is 
self-consistent on the MV digital RT-PCR device. Four 
experiments were performed with 2.2xl04 molecules/mL of 
control RNA template (906 nt) in the RT-PCR mix. 

To illustrate incorporation of multiplexing into the device 
while maintaining the high dynamic range, the design of the 
multivolume device was modified by adding two additional 
volumes (FIG. 11, Design 2A): 0.2 nL (160 wells) and 625 
nL (80 wells). When the rotational chip is split into five 
sections to quantify five different analytes, the 0.2 nL wells 
extend the upper limit of quantification with 3-fold resolu
tion to 1.2xl07 molecules/mL in the RT-PCR mix, and the 
625 nL wells maintain a reasonable lower detection limit of 

plexed Quantification of Nucleic Acids," Shen et al., JACS 
2011.) 

There is no universal conversion factor from international 
55 units to copy number for HCV viral load; it is a value that 

depends on the detection platform, including the protocols 
and equipment used. Because the HCV concentration in the 
original commercial sample was stated to be 2.5xl07 IU/mL, 
the conversion factor from international units to copy num-

60 ber for HCV viral load in the test is approximately 0.9. The 
same conversion number (0.9) was published for the Roche 
Amplicor HCV Monitor v2.0 test when using a manual 
purification procedure. 

FIG. S illustrates a device for multiplexed, multivolume 
65 digital RT-PCR with high dynamic range. (A) A photograph 

of a multiplex device for up to five samples corresponding 
to designs 2A and 2B in Table 1 (FIG. 11) with a total of 80 
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wells of 625 nL, 160 wells of 125 nL, 160 wells of 25 nL, 
160 wells of 5 nL, 160 wells of 1 nL, and 160 wells of 0.2 
nL. (B) Fluorescent photograph of a multiplexed digital 
RT-PCR detection panel: (I) measurement of internal control 

32 
treated as the standard for characterization. The data from 
device were self-consistent for both patients (FIG. 6). Three 
negative control experiments using the same primers but no 
HIV template did not show false positive, as no increase of 
fluorescent intensity was observed (see FIG. 10). 

For patient 1, the results (FIG. 6, crosses) were on average 
approximately 40% lower than that predicted by the single
point measurement of the HIV viral load using Roche 
CAP/CTM v2.0 (see FIG. 7). There were differences in the 

of 906 nt RNA template in HCV sample; (II) HCV control 5 

viral RNA measurement; (III) negative control for HIV 
(HIV primers with no loaded HIV RNA template); (IV) HIV 
viral RNA measurement; (V) negative control for HCV 
(HCV primers with no loaded HCV RNA template). Inset 
shows an amplified area from HCV viral load test. 

FIG. 6 shows multivolume digital RT-PCR for quantifi
cation of HIV viral load in two patients' samples. Input 
concentration was calculated from a single clinical measure
ment for each patient using the Roche CAP/CTM v2.0 
system and was assumed to be the true concentration. Each 15 

concentration was measured at least four times, and each 
individual experiment is plotted as single point on the graph. 
The black solid line is the predicted concentration based on 
the assumption that the clinical measurement gave a true 
concentration. The gray solid lines were calculated using 20 

MPN theory and represent the 95% confidence interval for 
the predicted concentration. 

10 test designs: while the present experiment targets a single 
LTR region of HIV RNA, the Roche CAP/CTM v2.0 test 
includes two HIV sequences: one in gag and another in LTR 
region. Further, the two tests use different detection methods 

The tabular summary in FIG. 9 present the detection and 
quantification data and dynamic range for the two designs 
investigated here. Without being bound to any single theory, 25 

the dynamic range of design 1 can be easily extended by 
adding a set of wells smaller than 1 nL in volume and a set 
of wells larger than 125 nL in volume. Therefore, if a larger 
dynamic range is required, the multiplexed design (Design 
2A, FIG. 11) may be used for a single sample (Design 2B, 30 

FIG. 11). When using the entire chip for one sample, the 160 
smallest wells (0.2 nL in volume) extend the upper limit of 
quantification with 3-fold resolution to 2.0xl07 molecules/ 
mL in the RT-PCR mix and the 80 largest wells (625 nL in 
volume) extend the lower detection limit to 40 molecules/ 35 

mL and lower dynamic range with 3-fold resolution to 
1.7xl02 molecules/mL in the RT-PCR mix (Table 1, Design 
2B, FIG. 11). This large dynamic range is useful for quan
tification of viral load. 

A RT-PCR mix containing an HIV viral RNA sample 40 

(prepared as described above and then serially diluted) with 

(EvaGreen in the present experiment vs TaqMan probes in 
the Roche CAP/CTM v2.0 test) and different internal con
trols. For patient 2, excellent agreement with the Roche 
clinical measurement was observed over the entire range 
(FIG. 6, plus marks; see also FIG. 10 (tabular summary). 
Without being bound to any single theory, this difference in 
agreement between the two methods for the two samples is 
not surprising, given that each patient has a unique HIV viral 
genome, and the primers, internal controls, and detection 
method used in one method may be better suited to detect 
one patient's viral genome than another's. Overall, taking 
into consideration the concentrating effect during sample 
preparation, the lowest concentration of serially diluted HIV 
viral RNA detected on the device corresponded to 37 
molecules/mL in the patient plasma, and the highest con
centration corresponded to 1.7 million molecules/mL in the 
patient plasma. 

Results Summary 
Motivated by the problem of quantifying viral load under 

point-of-care and resource-limited settings, here is shown 
successful testing of the applicability of multivolume digital 
assays to quantitative analysis of RNA over wide dynamic 
range via digital RT-PCR on two rotational devices (Table 
1). The first device has a dynamic range (at 95% CI) of 
5.2xl02 to 4.0xl06 molecules/mL with 3-foldresolution and 
lower detection limit of 1.2xl02 molecules/mL. The device 
was characterized using synthetic control RNA, demonstrat
ing that MV digital RT-PCR performs in agreement with 
theoretical predictions over the entire dynamic range (FIG. 
3). Results from wells of different volumes were mutually 
consistent and enabled quantification over a wide dynamic 
range using only 640 total wells (FIG. 4). This chip was also 
validated with viral RNA from two HIV patients (FIG. 6), 
demonstrating good agreement with single-point measure
ments performed on a Roche CAP/CTM v2.0 clinical instru
ment. Using this chip, positive wells were detected that 

an expected concentration of 51 molecules/mL was used to 
test the lower detection limit of design 2B (FIG. 11). Three 
negative control experiments were performed (without HIV 
viral RNA) in parallel, and no false positives were observed. 45 

Six experiments were performed to quantify the viral RNA 
concentration (see FIG. 7), and the average calculated HIV 
viral RNA concentration in the RT-PCR mix was 70 mol
ecules/mL with standard deviation of 20 molecules/mL, 
corresponding to 32 molecules/mL with standard deviation 50 corresponded to a concentration of 81 molecules/mL HIV 

viral RNA purified from patient plasma in the RT-PCR mix, 
which corresponds to around 37 molecules/mL in the origi
nal plasma samples. While below the detection limit at 95% 
confidence interval, this concentration should give at least 

of 9 molecules/mL in the original plasma sample. 
To further validate the feasibility of using a rotational 

multivolume device to quantify HIV viral load, Design 1 
(FIG. 11) was used to measure HIV viral RNA purified from 
two archived samples of HIV-infected blood plasma from 
two different anonymous patients. The HIV viral RNA from 
each patient sample was extracted and purified automatically 
using the iPrep purification instrument, and concentrating 
factors of 7.1 and 6.6 were achieved for the two different 
patient samples. Each patient sample of purified HIV viral 
RNA was serially diluted and characterized by MV digital 
RT-PCR on the device using previously published primers, 
and each experiment was repeated at least four times (FIG. 

55 one positive well 86% of the time, so it is not surprising that 
all four of the experiments had at least one positive well at 
this concentration. 

A second chip was used to test the scalability and flex
ibility of the multivolume approach by introducing both 

60 multiplexed and higher-range quantification. Additional 
wells were added with volumes of 0.2 nL and 625 nL and 

6). The same plasma samples were characterized in a single 
experiment using the Roche COBAS AmpliPrep/COBAS 65 

TaqMan HIV-1 Test, v2.0 (CAP/CTM v2.0) according to the 
manufacturer's recommendation, and these values were 

divided the device into five individual regions. There was no 
evidence of cross-contamination among samples on this 
rotational design, in agreement with previous results on a 
translational device. This multiplexed device was designed 
to test five samples, each at a dynamic range (3-fold reso
lution) from 1.8xl03 to 1.2xl07 molecules/mL with a lower 
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Chemicals and Materials 
All solvents and salts obtained from commercial sources 

were used as received unless otherwise stated. SsoFast 
EvaGreen SuperMix (2x) was purchased from Bio-Rad 
Laboratories (Hercules, Calif.). One-Step SuperScript® III 
Reverse Transcriptase, iPrep™ purification instrument, and 
iPrep™ PureLink™ virus kit were purchased from Invitro
gen Corporation (Carlsbad, Calif.). All primers were pur
chased from Integrated DNA Technologies (Coralville, 
Iowa). Bovine serum albumin (20 mg/mL) was ordered from 
Roche Diagnostics (Indianapolis, Ind.). Mineral oil, tetra
decane, and DEPC-treated nuclease-free water were pur-
chased from Fisher Scientific (Hanover Park, Ill.). Dichlo
rodimethylsilane was ordered from Sigma-Aldrich (St. 
Louis, Mo.). PCR Mastercycler and in situ adapter were 
purchased from Eppendorf (Hamburg, Germany). Spectrum 
food color was purchased from August Thomsen Corp (Glen 
Cove, N.Y.). Soda-lime glass plates coated with layers of 
chromium and photoresist were ordered from Telic Com
pany (Valencia, Calif.). Photomasks were designed using 

detection limit of 2.0xl02 molecules/mL. Multiplexing 
capability (FIG. 5) enables a number of features on the same 
chip, including (i) incorporating negative controls, (ii) mea
suring levels of control RNA to quantify the quality of 
sample preparation, (iii) monitoring co-infections, (iv) 5 

designing customized arrays for multiple targets, i.e. for 
nucleic acid targets that require measurements with different 
dynamic ranges and resolution, using wells of different sizes 
with customized numbers of wells at each size for each 
target, and (v) allowing for flexibility depending on techni- 10 

cal and economic constraints by using the same device to 
perform either more analyses of lower quality, but at pro
portionally lower cost, or a single analysis of high quality 
including wider dynamic range and higher resolution. If this 

15 
multiplexed device is used for a single sample, the dynamic 
range of the device with 3-fold resolution is designed to be 
1.7xl02 to 2.0xl07 molecules/mL with a lower detection 
limit of 40 molecules/mL. Even with only a modest con
centrating effect during sample preparation, this device 
would enable detecting targets at 10-20 molecules/mL in the 
original sample. 

20 AutoCAD (San Rafael, Calif.) and ordered from CAD/Art 
Services, Inc. (Bandon, Oreg.). Microposit™ MF™-CD-26 
developer was purchased from Rohm and Hass Electronic 
Materials LLC (Marlborough, Mass.). Amorphous diamond 
coated drill bits were purchased from Harvey Tool (0.030 

The high sensitivity of the this MV digital RT-PCR 
platform is valuable for a number of applications beyond 
viral load, including detecting rare cells and rare mutations, 
prenatal diagnostics, and monitoring residual disease. 
Besides monitoring the HIV viral load of patients on anti
retroviral treatments, this approach is a method to screen 
newborns whose mothers are carrying HIV, where maternal 
HIV antibodies would potentially interfere with the antibody 
test. In addition, similar molecular diagnostics methods may 
be used to measure proviral DNA in infants. This approach 
can also be applied to investigation of copy number varia
tion and gene expression, both for both for research and 
diagnostic settings. 

The rotational format of the device is useful for resource
limited settings because the movement is easy to control 
even manually; for a chip with a 2 in. (50 mm) diameter, a 
8° rotation moves the outer edge of the chip by -3.5 mm, a 
distance that is easily done by hand, especially with internal 
stoppers and guides. At the same time, that rotation moves 
the wells which are 2.8 mm from the center by 0.39 mm. 
This feature is ideal for multivolume formats but also can be 
taken advantage of in single-volume formats. The devices 
are also particularly attractive for multivolume formats due 
to its lack of valves and ease of operation. A number of 
additional developments will increase the usefulness this 
chip. The considerations among resolution, dynamic range, 
and the extent of multiplexing of the multivolume device are 
described (Kreutz et al., Anal. Chem. 2011, DOI 10.1021/ 
ac201658s). The exemplary designs presented here were 
fabricated in glass, and a functional device of a different 
design made from plastic by hot embossing was previously 
demonstrated. 

For applications to resource-limited settings, devices 
made with inexpensive materials such as plastics are suit
able. The disclosed devices are compatible with other ampli
fication chemistries, including polymerization and depo
lymerization methods, toe-hold initiated hybridization
based amplification, and other amplifications including 
silver-based amplification. When combined with isothermal 
amplification methods, such as recombinase polymerase 
amplification, loop-mediated amplification, strand-displace
ment amplification, helicase-dependent amplification, roll
ing circle amplification, and visual readout methods, the MV 
digital RT-PCR device makes quantitative molecular diag
nostics accessible in resource-limited settings. 

25 inch cutter diameter, Rowley, Mass.). Adhesive PDMS film 
(0.063 inch thick) was purchased from McMaster (Atlanta, 
Ga.). The MinElute PCR purification kit and QIAamp Viral 
RNA mini kit were purchased from Qiagen Inc. (Valencia, 
Calif.). The OptiQuant®-S HCV RNA quantification panel 

30 was purchased from AcroMetrix (Benicia, Calif.). 
Fabrication of Devices for Multivolume Digital RT-PCR 
The procedure for fabricating the devices from soda lime 

glass was based on procedures described in previous work. 
To fabricate devices for multivolume digital RT-PCR, wells 

35 of two different depths were etched using a two-step expos
ing-etching protocol. The soda lime glass plate pre-coated 
with chromium and photoresist was first aligned with a 
photomask containing the design for wells of 25 nL and 125 
nL for Design 1 (Table 1, FIG. 11). For Design 2, this 

40 photomask also contained the designs of the additional wells 
of 625 nL. The glass plate was then exposed to UV light 
using standard exposure protocols. After exposure, the glass 
plate was detached from the photomask and immersed in 
developer to immediately remove the photoresist that was 

45 exposed to UV light. The underlying chromium layer that 
was exposed was removed by applying a chromium etchant 
(a solution of 0.6:0.365 mol/L HC1O4/(NH4 ) 2 Ce(NO3 ) 6). 

The glass plate was thoroughly rinsed with water and dried 
with nitrogen gas. The glass plate was then aligned with a 

50 second photomask containing the designs of wells of 1 nL 
and 5 nL for Design 1 (Table 1, FIG. 11) by using a mask 
aligner. For Design 2 (FIG. 11), this second photomask also 
contained the designs of the additional wells of0.2 nL. The 
glass plate was then exposed to UV light a second time. 

55 After the second exposure, the photomask was detached 
from the glass plate, and the back side of the glass plate was 
protected with PVC sealing tape. The taped glass plate was 
then immersed in a glass etching solution (1 :0.5:0.75 mol/L 
HF/NH4 F/HNO3 ) to etch the glass surface where chromium 

60 coating was removed in the previous step (areas containing 
wells of 25 nL, 125 nL, and 625 nL), and the etching depth 
was measured by a profilometer. After the larger features 
were etched to a depth of 70 µm, the glass plate was placed 
in the developer again to remove the previously exposed 

65 photoresist in areas containing the patterns for the smaller 
features (1 nL and 5 nL wells, and the additional wells of0.2 
nL for Design 2, FIG. 11). The underlying chromium layer 
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was removed by using the chromium etchant as describe 
above, and a second glass etching step was performed to 
etch all features to a further depth of30 µm. The final device 
contained wells of depths of 100 µm and 30 µm was 
fabricated. 

36 
The final concentrating factor was 4.5 for HCV and 6.6 for 
HIV in the multiplex RT-PCR amplification (FIG. 5). The 
concentrating factors for the two HIV samples were 7 .1 and 
6.6 for the experiments in FIG. 6. 

Primer Sequences for RT-PCR Amplification 
Primers for the control RNA (906 nt) were: GAA GAG 

TTG GCG AAA GAT CCA CG (SEQ ID NO: 1) and CGA 
GCT CGA ATT AGT CTG CGC (SEQ ID NO: 2). The 
control RNA template was serially diluted in 1 mg/mL BSA 

After the two-step etching, the glass plate was thoroughly 
rinsed with Millipore water and ethanol and then dried with 
nitrogen gas. The glass plate was oxidized using a plasma 
cleaner and immediately placed in a desicator with dichlo
rodimethylsilane for gas-phase silanization. For Design 2A 
(FIG. 11), circular inlet reservoirs (4 mm inner diameter and 

10 solution. The RT-PCRmix contained the following: 30 µLof 
2x EvaGreen SuperMix, 1 µL of each primer (10 µmol/L), 
3 µL of BSA solution (20 mg/mL ), 1.5 µL of SuperScript® 
III Reverse Transcriptase, 17 .5 µL of nuclease-free water, 

6 mm outer diameter) were made by cutting adhesive PDMS 
film, then fixing the reservoirs around the five inlets before 
plasma cleaning. After one hour, the silanized glass plate 
was thoroughly rinsed with chloroform, acetone, and etha- 15 

no!, and then dried with nitrogen gas. 

and 6 µL of template solution. 
Primer sequences for HIV viral RNA was selected from a 

previous publication:4 GRAACC CAC TGC TTAASS CTC 
AA (SEQ ID NO: 3); GAG GGA TCT CTA GNY ACC AGA 
GT (SEQ ID NO: 4). Primer sequences for control HCV 
viral RNA were selected from a previous publication:5 GAG 

To re-use the glass devices, each device was thoroughly 
cleaned with piranlia acid (3:1 sulfuric acid: hydrogen 
peroxide), then oxidized using a plasma cleaner and 
silanized as described above. 

Device Assembly 
20 TAG TGT TGG GTC GCG AA (SEQ ID NO: 5); GTG CAC 

GGT CTA CGA GAC CTC (SEQ ID NO: 6). 
RT-PCR Amplification on the Devices 
To amplify HIV viral RNA in FIG. 5, the RT-PCR mix 

contained the following: 15 µL of 2x EvaGreen SuperMix, 

Devices were assembled under de-gassed oil (mineral oil: 
tetradecane 1 :4 v/v). The bottom plate was immersed into 
the oil phase with the patterned wells facing up, and the top 
plate was then immersed into the oil phase and placed on top 
of the bottom plate with the patterned side facing down. The 
two plates were aligned under a stereoscope (Leica, Ger
many) as shown in FIG. lAand stabilized using binder clips. 

Device Loading 

25 0.6 µL of each primer (10 µmol/L), 1.5 µL of BSA solution 
(20 mg/mL), 0.75 µL of SuperScript® III Reverse Tran
scriptase, 10.05 µL of nuclease-free water, and 1.5 µL of 
template solution. The template solution used here was 
diluted 250-fold from the original HIV viral RNA stock 

A through-hole was drilled in the center of the top plate 30 solution purified from Patient sample 2 using 1 mg/mL BSA 
solution. to serve as the solution inlet for Design 1 and Design 2B. 

The reagent solution was loaded through the inlet by 
pipetting. For Design 2A, five through-holes were drilled at 
the top left corner of the top plate to serve as fluid inlets 
(FIG. SA). For multiplex experiments, five different reaction 
solutions were placed in the inlet reservoirs, and a dead-end 
filling adapter was placed on top of the devices to cover all 
the inlets. A pressure of 18 mmHg was applied to load all the 
solutions simultaneously. The principle and detailed method 
for dead-end filling are described in a previous work. 3 

40 

Reservoirs were removed after the solution was loaded. 

To amplify control HCV viral RNA in FIG. 5, the RT-PCR 
mix contained the following: 15 µL of 2x EvaGreen Super
Mix, 0.25 µL of each primer (10 µmol/L), 1.5 µL, of BSA 

35 solution (20 mg/mL), 0.75 µL of SuperScript® III Reverse 
Transcriptase, 10.25 µL of nuclease-free water, and 2 µL of 
template solution. The template solution was diluted 5-fold 
from the original control HCV viral RNA stock solution 

Synthesis and Purification of Control RNA (906nt) 

purified from OptiQuant-S HCV Quantification Panel. 
To amplify the control RNA (906 nt) in FIG. 5, the 

RT-PCR mix contained the following: 15 µL of 2x Eva Green 
SuperMix, 0.25 µL of each primer (10 µmol/L), 1.5 µL of 
BSA solution (20 mg/mL), 0.75 µL of SuperScript® III 
Reverse Transcriptase, 10.25 µL of nuclease-free water, and 

The control RNA (906 nucleotide) was synthesized from 
the LITMUS 28iMal Control Plasmid using a HiScribe™ T7 
In Vitro Transcription Kit with the manufacture's recom
mended procedures (New England Biolabs, Ipswich, Mass.) 
and purified using MinE!ute PCR purification kit with 
manufacture recommended protocols. 

45 2 µL of template solution. The template solution was diluted 
5-fold from the original control HCV viral RNA stock 
solution purified from OptiQuant-S HCV Quantification 
Panel. 

Automatic Viral RNA Purification from Plasma Sample 
Plasma samples containing the HIV virus were obtained 50 

from deidentified patients at the University of Chicago 
Hospital. Plasma containing a modified HCV virus as a 
control (25 million IU/mL, part of OptiQuant-S HCV Quan
tification Panel) was purchased from AcroMetrix (Benicia, 
Calif.). A plasma sample of 400 µL was mixed with 400 µL 55 

lysis buffer (Invitrogen Corporation, Carlsbad, Calif.) to lyse 
the virus. Then 2 µL of control RNA (906 nt) was added to 
characterize the purification efficiency and concentrating 
factor. The mixed sample was then transferred into the 
iPrep™ PureLink™ virus cartridge. The cartridge was 60 

placed in the iPrep™ purification instrument and the puri
fication protocol was performed according to the manufac
turer's instructions. The final elution volume was 50 µL, 
therefore a theoretical eight-fold concentrating factor was 
expected. The initial concentration of control RNA and the 65 

concentration of control RNA in the purified sample after 
preparation were characterized on the device (Design 1 ). 

The experiment in FIG. 5 was repeated six times, and the 
resultant data were used to calculate the target concentration. 

To amplify HIV viral RNA with expected final concen
tration above 1000 molecules/mL in the RT-PCR mix in 
FIG. 6, the RT-PCR mix contained the following: 20 µL of 
2x EvaGreen SuperMix, 1 µL of each primer (10 µmol/L), 
2 µL of BSA solution (20 mg/mL ), 1 µL of SuperScript® III 
Reverse Transcriptase, 13 µL, of nuclease-free water, and 2 
µL of template solution. The template was serially diluted in 
1 mg/mL BSA solution. For experiments with HIV viral 
RNA concentration below 1000 molecules/mL in the final 
RT-PCR mix, the RT-PCR mix contained the following: 30 
µL of 2x EvaGreen SuperMix, 1.5 µL of each primer (10 
µmol/L), 2 µL of BSA solution (20 mg/mL), 1.5 µL of 
SuperScript® III Reverse Transcriptase, 3.5 µL ofnuclease
free water, and 20 µL of template solution. 

To amplify the control RNA (906 nt) in the HIV sample 
in FIG. 5 and FIG. 6, the RT-PCR mix contained the 
following: 20 µL of 2x EvaGreen SuperMix, 1 µL of each 
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primer (10 µmol/L), 2 µL of BSA solution (20 mg/mL), 1 µL 
of SuperScript® III Reverse Transcriptase, 13 µL of nucle
ase-free water, and 2 µL of HIV viral RNA stock solution 
after sample preparation. 

The concentration of control RNA (906 nt) before sample 5 

preparation was characterized on device Design 1 (FIG. 11) 
with the RT-PCR mix contained the following: 20 µL of 2x 
EvaGreen SuperMix, 1 µL of each primer (10 µmol/L), 2 µL 
of BSA solution (20 mg/mL), 1 µL of SuperScript® III 
Reverse Transcriptase, 13 µL of nuclease-free water, and 2 10 

µL of template solution. The template was prepared by 
diluting 2 µL of stock control RNA (906nt) solution into 400 
µL of 1 mg/mL BSA solution. 

To amplify HIV viral RNA in FIG. 7, the RT-PCRmix for 
HIV viral RNA contained the following: 90 µL of 2x 15 

EvaGreen SuperMix, 3.6 µL of each primer (10 µmol/L), 6 
µL of BSA solution (20 mg/mL), 4.5 µL ofSuperScript® III 
Reverse Transcriptase, 12.3 µL of nuclease-free water, and 
60 µL of template solution. The template solution used here 
was diluted 62500-fold from the original HIV viral RNA 20 

stock solution purified from Patient sample 2 using 1 mg/mL 
BSA solution. This experiment was repeated six times and 
all data was used to calculate HIV viral RNA concentration. 
Three negative control experiments were performed with the 
same primer pairs but no HIV viral RNA, and showed no 25 

false positives. 
The amplifications were performed using a PCR master

cycler machine (Eppendorf). To amplify the RNA, an initial 
30 min at 50° C. was applied for reverse transcription, then 
2 min at 95° C. for enzyme activation, followed by 35 cycles 30 

of 1 min at 95° C., 30 sec at 55° C. and 45 sec at 72° C. After 
the final cycle, a final elongation step was applied for 5 min 

38 
concentration in patient plasma (with or without dilutions) 
using the purification concentrating factor. 

FIG. 10 (table) shows performance of quantification of 
HIV viral RNA concentration from patient 2 on device 
comparing to Roche COBAS® AmpliPrep/COBAS® Taq
Man® HIV-1 Test, v2.0 system (CAP/CTM v2.0). Each 
experiment was repeated at least four times on device. Only 
2 significant digits are shown. The expected HIV concen
tration of patient plasma was calculated based on dilution 
factors and a single result from Roche CAP/CTM v2.0. The 
results from device are obtained with serial diluted purified 
patient HIV viral RNA and are converted to the original 
concentration in patient plasma (with or without dilutions) 
using the purification concentrating factor. 

LAMP Amplification 
Digital reverse transcription loop mediated isothermal 

amplification (RT-LAMP) can be performed on a device 
according to the present disclosure. In some embodiments, 
digital RT-LAMP is performed on a multivolume device. In 
one embodiment, one-step digital RT-LAMP is carried out 
by mixing template, primers, detection reagent, reaction mix 
and enzyme, then loading the solution onto a device and 
heating up the device to a proper temperature for a period of 
time. 

For example, the following mixture of reagents has been 
used: 20 µL reaction mix, 2 µL enzyme mix (Loopamp RNA 
Amplification Kit from Eiken Chemical Co., LTD.), 2 µL 
detection reagent (Eiken Chemical Co., LTD.), 2 µL, 20 
mg/mL BSA, 8 µL RNase free water, 4 uL primer mix and 
2 µL HIV RNA purified from AcroMetrix® HIV-1 Panel 
1E6. The final concentration of primers was 2 µM for 
BIP/FIP, 1 µM for LOOP primers, 0.25 µM for B3/F3. All 
solutions were operated on ice. 

The solution was loaded onto a multivolume device 
at 72° C. This thermal cycling program was applied to all 
experiments except for those in FIG. 7, where 39 cycles 
were adapted instead of 35 cycles. 

Image Acquisition and Analysis 
35 (design published in Shen et al., JACS 2011 133: 17705) and 

the relative position of the plates of the device were fixed by 
wax. The whole device was heated on a thermal cycler block 
(Eppendorf) for about 1 hour then terminated at 95° C. for 

Bright-field images in FIG. 1 and FIG. 5 were acquired 
using a Canon EOS Rebel XS digital SLR camera (Lake 
Success, N.Y.). Other bright-field images were acquired 
using a Leica stereoscope. All fluorescence images were 40 

acquired by Leica DMI 6000 B epi-fluorescence microscope 
with a 5x/0.15 NA objective and L5 filter at room tempera
ture. All fluorescence images were corrected for background 

2 minutes. The fluorescence image was acquired by Leica 
DMI 6000 B epi-fluorescence microscope with a 5x/0.15 
NA objective and L5 filter at room temperature. The mea-
sured concentration of digital RT-LAMP was 10% of that 
from digital RT-PCR using B3/F3 as primers. 

by using an image acquired with a standard fluorescent 
control slide. All the images were then stitched together 45 

using MetaMorph software (Molecular Devices, Sunnyvale, 
Calif.). 

In another embodiment, two-step digital RT-LAMP is 
carried out in two separate steps. Reverse Transcription is 
done by mixing template, BIP/FIP primers, reverse tran
scriptase, and reaction mix in a tube, and heating to a proper 
temperature. Digital LAMP is performed by mixing cDNA 
solution with all other components, loading the solution onto 

FIG. 7 shows a representative experiment performing 
RT-PCR of HIV viral RNA at an expected concentration of 

a device, and heating the device at a proper temperature for 
a period of time. 

51 molecules/mL in RT-PCR mix on the Design 2B device 50 

to test the lower detection limit of the device. This experi
ment was repeated six times to quantify the viral RNA 
concentration. 

In another embodiment, digital RT-LAMP is performed 
by running the reverse transcription step on the device in a 
digital format, mixing the product with other components of 

55 LAMP on-chip and heating the device. The result of this 
protocol has been experimentally observed to be the same as 
when performing the RT step in a test tube. 

FIG. 8 shows a representative negative control for HIV 
viral load (HIV primers with no loaded HIV RNA template) 
on device Design 1, corresponding to experiments shown in 
FIG. 6. 

FIG. 9 (table) presents performance of quantification of 
HIV viral RNA concentration from patient 1 on device 
comparing to Roche COBAS® AmpliPrep/COBAS® Taq
Man® HIV-1 Test, v2.0 system (CAP/CTM v2.0). Each 
experiment was repeated at least four times on device. Only 
2 significant digits are shown. The expected HIV concen
tration of patient plasma was calculated based on dilution 
factors and a single result from Roche CAP/CTM v2.0. The 
results from device are obtained with serial diluted purified 
patient HIV viral RNA and are converted to the original 

In one set of experiments performed with two-step digital 
RT-LAMP, 10 µLreactionmix, 1 µL20mg/mLBSA, 0.5 µL 

60 Superscript III reverse transcriptase (Invitrogen), 6 µL 
RNase free water, 0.5 uL BIP/FIP primer mix (10 µM) and 
2 µL HIV RNA purified from AcroMetrix® HIV-1 Panel 
1E6 were mixed together in a test tube. All solutions were 
operated on ice. The solution was heated to 50° C. for 15 min 

65 for reverse transcription. 
All other components of LAMP mixture (2 µL enzyme 

mix, 2 µL detection reagent, 10 µL reaction mix, 1 µL 20 



US 10,196,700 B2 
39 40 

shining blue light on a device at an oblique angle of 
approximately 30°. The light source was a blue LED 
(LIU003) equipped with a blue short-pass dichroic filter 
FDlB (Thorlabs, Newton, N.J.). Excitation light reached the 
sample in two ways: by direct illumination and by multiple 
reflections between the device plates. 

mg/mL BSA, all other primers and RNase free water to 
make up the volume to 20 µL.) were mixed together with the 
solution obtained from reverse transcription and loaded on a 
device immediately. The whole device was heated on a 
thermal cycler block (Eppendorf) for about 1 hour then 5 

terminated at 95° C. for 2 minutes. Imaging settings were the 
same as described for the one-step RT-LAMP experimental 
protocol above. The measured concentration obtained after 
performing digital RT-LAMP was found to be 30% of that 
from digital RT-PCR using B3/F3 as primers. 

In another set of experiments, the efficiency of two-step 
digital RT-LAMP was found to be improved by adding only 
BIP/FIP primer in the RT step, adding RNase Hafter the RT 
step and removing B3 from the primer mixture. 

A device of a design described in a previous publication 
(Shen et al., JACS 2011 133: 17705) was imaged in the 
experiments. Soda-lime glass plates with chromium and 

10 photoresist coating (Telic Company, Valencia, Calif.) were 
used to fabricate devices. The method for making a glass 
device described in a previous publication (Du, Lab Chip 
2009, 2286-2292), was used. Briefly, the photoresist-coated 

For example, 10 µL reaction mix, 1 µL 20 mg/mL BSA, 15 

0.5 µL Superscript III reverse transcriptase (Invitrogen), 6 
µL RNase free water, 0.5 uL BIP/FIP primer mix (10 µM) 
and 2 µL HIV RNA purified from AcroMetrix® HIV-1 Panel 
1 E6 were mixed together. All solutions were operated on ice. 
The solution was heated to 50° C. for 15 min for reverse 20 

transcription then followed by the addition of0.5 µL RNase 
H (NEB) and incubation at 37° C. for 10 minutes. 

All other components of LAMP mixture (2 µL enzyme 
mix, 2 µL detection reagent, 10 µL reaction mix, 1 µL 20 
mg/mL BSA, all other primers except for B3 and RNase free 25 

water to make up the volume to 20 µL) were mixed together 
with the solution obtained from reverse transcription and 
loaded on a device immediately. Heating and imaging set
tings were the same as described for the two-step RT-LAMP 
experimental protocol above. The measured concentration 30 

after performing digital RT-LAMP was found to be 60% of 
that obtained via digital RT-PCR using B3/F3 as primers. 

In another set of experiments, the efficiency of two-step 
digital RT-LAMP was found to be improved by adding only 
BIP/FIP primer in the RT step, adding thermostable RNase 35 

H into the LAMP mixture and removing B3 from the primer 
mixture. 

glass plate was exposed to ultraviolet light covered by a 
photomask with designs of the wells and ducts. Following 
removal of the photoresist using 0.1 M NaOH solution, the 
exposed chromium coating was removed by a chromium
etching solution. The patterns were then etched in glass 
etching solution in a 40° C. shaker. After glass etching, the 
remaining photoresist and chromium coatings were removed 
by ethanol and chromium-etching solution, respectively. The 
surfaces of the etched glass plates were cleaned and sub
jected to an oxygen plasma treatment, and then the surfaces 
were rendered hydrophobic by silanization in a vacuum 
desiccator as previously described (Roach, Analytical 
Chemistry 2005, 785-796). Inlet holes were drilled with a 
diamond drill bit 0.035 inch in diameter. 

A fluorescent reaction mix for digital LAMP was pre
pared, loaded in the device, and allowed to react, as 
described elsewhere in this application. 

An image was produced using an iPhone application, 
Camera+™ (obtained via taptaptap.com) in automatic 
mode; no tripod was used. The excitation light was shined 
from one side of the device under an oblique angle of 
approximately 30°. The resulting illumination was relatively 
uniform, suggesting that light spreads by multiple reflections 
inside the analysis device. 

FIG. 12 shows an image of a multivolume device filled 
For example, 10 µL reaction mix, 1 µL 20 mg/mL BSA, 

0.5 µL Superscript III reverse transcriptase (Invitrogen), 6 
µL, RNase free water, 0.5 uL BIP/FIP primer mix (10 µM) 
and 24 HIV RNA purified from AcroMetrix® HIV-1 Panel 
1 E6 were mixed together. All solutions were operated on ice. 
The solution was heated to 50° C. for 15 min for reverse 
transcription. 

40 with LAMP reaction mix obtained with a iPhone 4S™ 
camera. Image size is 8 MP. The total number of wells of 
each kind is 160. In total there are 122 positive largest wells, 
42 of the second largest positive wells, 5 of the second 
smallest positive wells and 2 of the smallest positive wells. 

45 Well count was done automatically using Metamorph soft
ware. The signal/noise ratio is over 20 even for the smallest 
wells. 

All other components of LAMP mixture (2 µL enzyme 
mix, 2 µL detection reagent, 10 µL reaction mix, 1 µL 20 
mg/mL BSA, all other primers except for B3 and RNase free 
water to make up the volume to 20 µL) and 0.5 uL Hybri
dase™ Thermostable RNase H (Epicenter) were mixed 
together with the solution obtained from reverse transcrip- 50 

tion and loaded on a device immediately. The heating and 
imaging settings were the same as described for the two-step 
RT-LAMP experimental protocols above. The measured 
concentration after performing digital RT-LAMP was found 
to be 60% of that obtained from digital RT-PCR using B3/F3 55 

as primers. 
Imaging with Mobile Device Camera 
In one embodiment, an imaging device with wireless 

communication capability may be used to capture the results 
of both isothermal and non-isothermal methods such as 60 

digital LAMP and digital NASBA performed on a micro
fluidic device as disclosed herein. 

As one example, an iPhone 4S™ is used to capture results 
on a disclosed device. The fluorescence readout is achieved 

FIG. 13 shows a magnified portion of the image in FIG. 
12. In this image, the smallest wells in the image are 
approximately 15-20 pixels wide and the signal/noise ratio 
is over 20. 

Additional information may be found in the following 
references, each of which is incorporated by reference in its 
entirety. 
(1) Marcus, J. S.;Anderson, W. F.; Quake, S. R.Anal. Chem. 

2006, 78, 3084-3089. 
(2) Stahlberg, A.; Bengtsson, M. Methods 2010, 50, 282-
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(3) Grond-Ginsbach, C.; Hummel, M.; Wiest, T.; Horst

mann, S.; Pfleger, K.; Hergenhahn, M.; Hollstein, M.; 
Mansmann, U.; Grau, A. J.; Wagner, S. J. Neural. 2008, 
255, 723-731. 

(4) Kern, W.; Schoch, C.; Haferlach, T.; Schnittger, S. Crit. 
Rev. Oncol./Hematol. 2005, 56, 283-309. 

by a standard iPhone 4S™ 8MP camera equipped with a 
yellow dichroic long-pass filter l0CGA-530 (Newport, 
Franklin, Mass.). Fluorescence excitation was achieved by 

65 (5) Schmidt, U.; Fuessel, S.; Koch, R.; Baretton, G. B.; 
Lohse, A.; Tomasetti, S.; Unversucht, S.; Froehner, M.; 
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<223> OTHER INFORMATION, Description of Artificial Sequence, Synthetic 
primer 

<400> SEQUENCE, 1 

gaagagttgg cgaaagatcc acg 

<210> SEQ ID NO 2 
<211> LENGTH, 21 
<212> TYPE, DNA 
<213> ORGANISM, Artificial Sequence 
<220> FEATURE, 

23 
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-continued 

<223> OTHER INFORMATION, Description of Artificial Sequence, Synthetic 
primer 

<400> SEQUENCE, 2 

cgagctcgaa ttagtctgcg c 

<210> SEQ ID NO 3 
<211> LENGTH, 23 
<212> TYPE, DNA 
<213> ORGANISM, Artificial Sequence 
<220> FEATURE, 

21 

<223> OTHER INFORMATION, Description of Artificial Sequence, Synthetic 
primer 

<400> SEQUENCE, 3 

graacccact gcttaassct caa 

<210> SEQ ID NO 4 
<211> LENGTH, 23 
<212> TYPE, DNA 
<213> ORGANISM, Artificial Sequence 
<220> FEATURE, 

23 

<223> OTHER INFORMATION, Description of Artificial Sequence, Synthetic 
primer 

<220> FEATURE, 
<221> NAME/KEY, modified_base 
<222> LOCATION, (14) .. (14) 
<223> OTHER INFORMATION, a, c, t, g, unknown or other 

<400> SEQUENCE, 4 

gagggatctc tagnyaccag agt 

<210> SEQ ID NO 5 
<211> LENGTH, 20 
<212> TYPE, DNA 
<213> ORGANISM, Artificial Sequence 
<220> FEATURE, 

23 

<223> OTHER INFORMATION, Description of Artificial Sequence, Synthetic 
primer 

<400> SEQUENCE, 5 

gagtagtgtt gggtcgcgaa 

<210> SEQ ID NO 6 
<211> LENGTH, 21 
<212> TYPE, DNA 
<213> ORGANISM, Artificial Sequence 
<220> FEATURE, 

20 

<223> OTHER INFORMATION, Description of Artificial Sequence, Synthetic 
primer 

<400> SEQUENCE, 6 

gtgcacggtc tacgagacct c 

What is claimed is: 
1. A method, comprising: 
a) introducing a sample comprising a target molecule into 

a device comprising 

55 

a first component comprising a plurality of first areas, 
60 

a second component comprising a plurality of second 
areas, 

wherein the first and second components are configured 
to slip relative to the other between 

a first position, wherein the plurality of first areas and 65 

the plurality of second areas overlap to form a 
continuous fluidic path, and 

21 

a second position, wherein at least two areas of said 
plurality of first areas and second areas are iso
lated from each other; 

b) in said first position, distributing an amount of said 
target molecule into said at least two areas of the 
plurality of first areas and second areas via the con
tinuous fluidic path extending through the overlapping 
plurality of first areas and second areas and which 
connects the at least two areas, wherein said at least two 
areas define volumes that differ from one another; 

c) slipping said first or second component relative to the 
other to the second position, thereby isolating the at 
least two areas; 
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( d) effecting a reaction on said amount of said target 
molecule in said at least two isolated areas and thereby 
producing a reaction product in said at least two 
isolated areas; 

( e) detecting said reaction product optically in said at least 5 

two areas; and 
(f) estimating, from said reaction product, a level of said 

target molecule in said sample. 
2. The method of claim 1, wherein said target molecule 

comprises a nucleic acid. 10 

3. The method of claim 2, wherein effecting the reaction 
comprises contacting an amplification reagent with said 
nucleic acid. 

4. The method of claim 2, wherein at least one of said at 
least two areas is estimated to comprise about one molecule 15 

of nucleic acid. 
5. The method of claim 1, wherein at least one of said at 

least two areas is estimated to contain only target molecule. 
6. The method of claim 1, wherein said reaction comprises 

nucleic acid amplification. 20 

7. The method of claim 6, wherein said nucleic acid 
amplification comprises polymerase chain reaction, room
temperature polymerase chain reaction, nested polymerase 
chain reaction, multiplex polymerase chain reaction, arbi
trarily primed polymerase chain reaction, nucleic acid 25 

sequence-based amplification, transcription mediated ampli
fication, strand displacement amplification, branched DNA 
probe target amplification, ligase chain reaction, cleavase 
invader amplification, anti DNA-RNA hybrid antibody 
amplification, or any combination thereof. 

46 
8. The method of claim 6, wherein said nucleic acid 

amplification is essentially isothermal. 
9. The method of claim 1, wherein at least one of said at 

least two areas defines a volume in the range of from about 
1 picoliter to about 1 microliter. 

10. The method of claim 1, wherein distribution com
prises effecting relative motion between the first and second 
component so as to distribute said amount of said target 
molecule into said at least two areas. 

11. The method of claim 10, wherein said relative motion 
gives rise to said amount of said target molecule being 
divided among at least 10 areas. 

12. The method of claim 11, wherein said relative motion 
gives rise to said amount of said target molecule being 
divided among at least 50 areas. 

13. The method of claim 1, wherein said reaction is 
effected at two or more areas essentially simultaneously. 

14. The method of claim 1, wherein effecting the reaction 
comprises heating said amount of said target molecule. 

15. The method of claim 1, wherein the introducing the 
sample comprising a target molecule into the device com
prises introducing into an inlet in at least one of the first or 
second components of the device the sample comprising the 
target molecule. 

16. The method of claim 1, wherein effecting the reaction 
comprises contacting an amplification reagent with said 
amount of said target molecule in said at least two areas by 
effecting relative motion between the first and second com
ponents of the device. 

* * * * * 


