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Machine learning approaches for the optimization of
packing densities in granular matter

Adrian Baule,∗a Esma Kurban,a Kuang Liu,b and Hérnan A. Makseb

The fundamental question of how densely granular matter can pack and how this density depends
on the shape of the constituent particles has been a longstanding scientific problem. Previous work
has mainly focused on empirical approaches based on simulations or mean-field theory to investigate
the effect of shape variation on the resulting packing densities, focusing on a small set of pre-defined
shapes like dimers, ellipsoids, and spherocylinders. Here we discuss how machine learning methods
can support the search for optimally dense packing shapes in a high-dimensional shape space. We
apply dimensional reduction and regression techniques based on random forests and neural networks
to find novel dense packing shapes by numerical optimization. Moreover, an investigation of the
regression function in the dimensionally reduced shape representation allows us to identify directions
in the packing density landscape that lead to a strongly non-monotonic variation of the packing
density. The predictions obtained by machine learning are compared with packing simulations. Our
approach can be more widely applied to optimize the properties of granular matter by varying the
shape of its constituent particles.

1 Introduction
Granular matter is ubiquitous in science and nature representing
one of the most common states of matter. While granular matter
seems conceptually simple, consisting of hard particles interacting
solely by steric repulsion and friction, understanding its proper-
ties from first principles has been a major challenge1,2. Already
the fundamental and seemingly simple question of how densely
granular matter can pack has a long and illustrious history in
mathematics and the sciences3. Considering a bulk region away
from any confining boundaries and a large number of hard parti-
cles, the packing density of the aggregate depends sensitively on
(i) particle shape; (ii) friction; and (iii) details of the prepara-
tion protocol which could lead to (partial) structural order. Much
work has been devoted to the study of packings of hard spheres,
for which the effect of (ii,iii) has been investigated in great de-
tail1,4–6. On the other hand, the effect of particle shape on pack-
ing densities is still only relatively poorly understood, owing to
the complexity and high-dimensionality of the shape space, which
makes any empirical work based on simulations computationally
costly.

Systematic explorations of the mapping between particle shape
and the associated packing density are usually constrained to a
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specific category of shapes with high symmetry so that the shape
parameter space is limited and can be fully explored. One then
finds, for example, that disordered monodisperse packings of
hard frictionless particles in the shape of ellipsoids, spherocylin-
ders, and dimers, can pack considerably denser than spheres,
achieving packing densities φ > 0.7, while spheres pack up to
φ ≈ 0.647. Moreover, for these shapes one observes a charac-
teristic peak in the packing density for aspect ratios of around
1.5 upon deforming from the spherical shape indicating the exis-
tence of particular optimally dense packings for these shape cat-
egories8–19. The densest disordered packings that have been re-
ported for these shapes have φ ≈ 0.740 (ellipsoids20), φ ≈ 0.722
(spherocylinders16), and φ ≈ 0.707 (dimers19). Regular polyhe-
dra such as tetrahedra and other platonic solids also pack denser
than spheres21,22 and can reach densities as high as φ ≈ 0.78 in
disordered arrangements21.

In order to go beyond the constraint of a specific shape cat-
egory, a much larger parameter-space of shapes has been con-
sidered by introducing a shape representation consisting of over-
lapping spheres of varying diameters17,23–25. Applying black-box
optimization methods based on evolutionary algorithms in this
high-dimensional shape space has identified a symmetric trimer,
see Fig. 1 as densest packing shape25 achieving φ = 0.729±0.003,
above the density of the densest packing ellipsoid20 packed with
the same protocol.

For comparison, crystalline packings of non-spherical parti-
cles typically achieve higher packing densities than in disordered
arrangements with maximal densities of φ = 0.770... for ellip-
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Fig. 1 The symmetric trimer identified in Ref.25 as densest packing
shape.
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0.740... for dimers27, and φ = 0.856... for tetrahedra28.
Here, we revisit the question of “which shape packs the dens-

est" in a disordered arrangement. Instead of using simulations
or mean-field theory2,17, we employ an approach based on ma-
chine learning to identify novel dense packing shapes. Machine
learning is increasingly used in materials discovery29–31 and has
the particular benefit that insight can be gained from “failures",
since such data is still useful as training data32. In the context
of granular matter, machine learning has, e.g., helped to identify
flow defects from structural data33, to optimally characterize per-
meability34, to predict the formation of crystalline phases35, and
to identify force chains36. In our approach, we first employ prin-
cipal component analysis to reduce the high-dimensional shape
space to a lower-dimensional representation and then apply ran-
dom forests and neural networks to construct regression functions
on this space. Optimizing the regression functions yields predic-
tions of new shapes, which we test using the same protocol used
for the training data. All shapes predicted by this approach are
different from the symmetric trimer, but pack slightly denser with
φ ≈ 0.733. We also investigate the packing density landscape that
results from the regression in the dimensionally reduced space
and identify directions with strongly non-monotonic variation of
the packing density.

2 Methods
The optimization of packing densities in the space of particle
shapes requires the following steps:

1. A suitable representation model of particle shapes captured
in a vector ααα

2. A method to determine the (protocol-specific) packing den-
sity φ for a given ααα

3. An optimization method to find the maximum of φ(ααα)

ααα
∗ = argmaxααα φ(ααα).

Clearly, exploring a sufficiently general shape space ααα requires a
high-dimensional representation, which, in turn, makes the opti-
mization step 3 challenging, since φ(ααα) is not guaranteed to be
a convex function. In terms of computational cost, step 2 is the
main problem, because for every query of a new function value
φ(ααα) a whole simulation of the packing needs to be performed,
which requires a sufficiently large number of particles to reduce
any effects due to boundaries and initial conditions. The fact that
the function to be optimized is in itself a complex “procedure"

limits the choice of possible optimization algorithms to gradient-
free black-box optimizers. An additional challenge is to constrain
the optimization to physical shapes only. For example, if we con-
sider the space of shapes consisting of two overlapping spheres
with different diameters (dimers), ααα is two-dimensional, but valid
shapes are constrained to the range of values for which the two
spheres overlap, imposing a nonlinear constraint. In higher di-
mensions, this becomes increasingly difficult to implement.

In order to improve on this approach, we use machine learning
including dimensional reduction and regression to replace step
2. Since we now optimize the regression function instead of the
actual φ , we also need to verify the predicted packing density at
the end. Overall, our optimization approach thus requires the
following:

1. A set of training data (φ1,ααα1), ...,(φN ,αααN) based on the real-
space shape representation ααα

2. A suitable dimensional reduction method ααα → α̃αα to simplify
both regression and optimization

3. A regression function φ̂(α̃αα) fitted to the training data

4. An optimization method to find the maximum of φ̂(α̃αα)

α̃αα
∗ = argmaxα̃αα φ̂(α̃αα). (1)

5. The inverse dimensional reduction α̃αα
∗→ ααα∗

6. A test of the new shape with the same simulation algorithm
as the training data

Further details on the different steps are given below. Machine
learning algorithms are implemented with the software platform
MATHEMATICA, while packing simulations are performed with the
molecular dynamics solver LAMMPS 37,38. All code and data gen-
erated for this work are publicly available39.

2.1 Shape representation model
We represent shapes in terms of a large number of overlapping
spheres (the upper limit of components is essentially set by com-
putational tractability), as used in the mean-field theory of Ref.17

and the optimization approaches of Refs.23–25. It is natural that
the first sphere sets both the origin of the coordinate system and
the length scale of the shape representation. The vector ααα thus
contains the positions and radii of all other spheres relative to
the first sphere. For a trimer consisting of three spheres as an
example, ααα is expressed as ααα = {r1− r0,r2− r0,

a1
a0
, a2

a0
}, where ri

and ai denote the position and radius of the ith sphere. In 3D,
the trimer is thus represented by an 8-dimensional vector ααα and
for a general shape consisting of n spheres, the dimensionality
of ααα is p = 4(n− 1). We note that the mapping between such a
vector and a shape is not unique: the same trimer shape can be
parametrized, e.g., aligned with the x̂xx-axis or with the ŷyy-axis, lead-
ing to different vectors ααα even though the shape is the same. In
fact, three degrees of freedom can in principle be further reduced
by rotation of each shape such that their vectors r1− r0 are all
parallel (reducing dimensionality by two) and the vectors r2− r0

are all in the same plane (reducing dimensionality by one).
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Such a shape representation is able to approximate a large
variety of convex and non-convex shapes17,23–25. In addition,
the representation model has the advantages: (i) it simplifies
overlap detection in simulations; (ii) it can be easily imple-
mented in LAMMPS to simulate granular aggregates of such par-
ticles; and (iii) it allows for the fully analytical description of the
Voronoi boundary between two particles, which facilitates a struc-
ture and void analysis in terms of a Voronoi tessellation2,17,40.
Even though this model does not strictly reproduce shapes with
flat sides or smooth non-spherical surfaces, it can provide good
approximations with large sphere numbers. In the following,
we also refer to particles consisting of overlapping spheres as
“molecules".

2.2 Dataset of Roth & Jaeger

As underlying dataset for our machine learning approach, we use
the data generated by Roth & Jaeger in Ref.25 for particle shapes
consisting of n = 5 overlapping spheres. The dataset consists of
N = 5800 distinct packings, i.e., {φi,ααα i} pairs, whereby the di-
mensionality of ααα is p = 4(n− 1) = 16 (the global rotations are
ignored). While Ref.25 also considered shapes consisting of 10
and 25 spheres, their result of the optimization did not vary sig-
nificantly. Moreover, the number of packings generated for 5, 10,
25 spheres is of the same order, thus the 5-sphere data is the
least sparse, while still not ideal for the high dimensionality of ααα.
We further improve on the “curse of dimensionality" problem by
using dimensional reduction techniques based on principal com-
ponent analysis, see below.

Ref.25 used a pouring protocol under gravity implemented in
LAMMPS to generate dense disordered packings of each shape.
For the symmetric trimer of Fig. 1, which has been identified as
the densest packing shape, it was further confirmed that the high
packing density is not related to significantly increased positional
or orientational ordering in the packing. For further details on
the data generation and their analysis, we refer to Ref.25.

A caveat of the dataset is that it is itself the output of an op-
timization algorithm (covariance matrix adaptive evolutionary
strategy or CMA-ES), which means that shapes in the training
data are not uniformly distributed in ααα space, but already clus-
tered in the region of high φ values. As we will see below, our
machine learning approach thus leads to different but quite simi-
lar shapes as those identified in Ref.25.

2.3 Machine learning implementations

We apply principal component analysis in order to reduce the di-
mensionality of the shape space ααα. We then perform regression in
the reduced α̃αα space using two common machine learning tech-
niques: random forests as a non-parametric regression method
and artificial neural networks as a parametric method41. The re-
gression functions are subsequently numerically optimized and
the maxima mapped back to the full shape space to identify novel
dense packing shapes.

2.3.1 Principal component analysis

Principal component analysis (PCA) is a common unsupervised
learning technique, which performs a linear transformation of the
data feature space to obtain a new basis with the properties41

1. The new basis vectors, called principal components (PC), are
eigenvectors of the covariance matrix and all orthogonal to each
other. 2. The PCs are ranked such that the projection of the
data onto the first PC has the largest variance, the projection on
the second PC the second-largest, etc. While the PC space has
the same dimensionality as the original data, we are now able
to select a smaller set of basis vectors, which still capture a large
proportion of the variance. Denoting by M a matrix that contains
as columns the first m PCs, we can transform every original shape
in the p-dimensional representation ααα i into a new m-dimensional
representation α̃αα i

α̃αα i = ααα i M , (2)

where M is a p×m matrix. For example, for our dataset p = 16,
but the first 6 PCs already contain around 80% of the total vari-
ance in the data. We will separately perform the analysis con-
sidering a reduced feature space α̃αα of m = 2,3, ...,6 dimensions
corresponding to the number of PCs used.

Due to the linearity of the transformation, any new data
point in the reduced space can be easily transformed back
to the original space by inverting Eq. (2), which allows us
to determine the corresponding shape in the original rep-
resentation. We implement PCA in MATHEMATICA with the
DimensionalReduction[] routine using the option Method →
"PrincipalComponentsAnalysis".

2.3.2 Random forest regression

Random forests (RFs) produce an ensemble of decision trees
which are trained independently on random variations of the
data. For regression, the prediction is obtained as the average
value of the tree ensemble for the given input. Overfitting is con-
trolled by bootstrap aggregation, which involves randomly select-
ing a subset of the feature space for the training of each deci-
sion tree and by performing an ensemble average over the pre-
dictions of each tree. We implement RF regression in MATHE-
MATICA with the Predict[] routine using the option Method →
"RandomForest". The following hyperparameters are calibrated
automatically by Predict[] to our data:

• Fraction of features randomly selected to train each tree: 1/3

• Maximum number of data points in each leaf of the tree: 4

• Number of trees in the forest: 100

Overfitting is automatically controlled in random forests since the
trees in the ensemble are trained independently on different sub-
sets of the features and the data.

2.3.3 Artificial neural network regression

Artificial neural networks (ANNs) currently achieve state-of-the-
art performance in industrial machine learning challenges such
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Table 1 The number of particles N, material parameter values, and time
step ∆t used in the packing simulations.

N Kn (mg/d) Kt/Kn γn
√

g/d γt
√

g/d ∆t (
√

d/g)
900 2×106 2/7 150 75 3×10−4

as speech and image recognition. Due to their flexible architec-
ture, ANNs form a universal basis to capture nonlinear relation-
ships, while avoiding overfitting and generalizing well to out-of-
sample data. ANNs consist of a series of nonlinear transforma-
tions applied to the input data in a sequence of layers, where
each layer contains a number of nodes which are connected to
nodes in the subsequent layer. Each node contains a nonlin-
ear activation function containing weight and threshold param-
eters, which are fitted to the training data by minimizing a suit-
able loss function. We implement ANN regression in MATHE-
MATICA with the Predict[] routine using the option Method →
"NeuralNetwork". Predict[] then performs an automatic selec-
tion and optimization of the various hyperparameters, which, for
our data, are calibrated as follows:

• Size of training set: 4930 (85% of the dataset)

• Size of validation set: 870 (15% of the dataset)

• Number of layers: 8

• Nodes per layer: 50

• Activation function: scaled exponential linear units (SELUs)

• Loss function: mean cross entropy

• Maximal training rounds: 10

The Predict[] routine with Method → "NeuralNetwork" is able
to control overfitting by (i) using a validation set; (ii) early stop-
ping of the training; (iii) regularization of the weights; (iv) in-
troducing dropout layers. For our data, Predict[] implements
(i,ii).

2.3.4 Numerical optimization

The numerical optimization of the regression function φ̂(α̃αα) in
the case of non-parametric RF requires gradient-free methods
to find the maximum α̃αα

∗. We use MATHEMATICA’s NMaximize[]
routine, which has built-in gradient-free options Method →
"NelderMead", "RandomSearch", "SimulatedAnnealing",
"DifferentialEvolution". None of these four methods is
guaranteed to converge to a global maximum, since the search
landscape is non-convex, but the risk of obtaining a local
maximum is mitigated by starting from an initial random
configuration and due to the fact that we select the maximum
from the outputs of these distinct methods.

2.4 Packing simulations
We apply the same gravitational packing protocol as used in
Ref.25 to verify the predicted packing densities with simulations.
In this protocol, N monodisperse particles are poured under grav-
ity into a three-dimensional box of side length ≈ 20d, where d = 1
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Fig. 2 Comparison of our packing simulation with that of Ref.25. We
randomly select 5 shapes across different packing density regimes from
the dataset and use the packing protocol outlined in Sec. 2.4. For all
shapes, our packing density measurements using two different methods
(see Sec. 2.5) agree with that of the dataset within errorbars. Note that
the dashed line only serves to guide the eye.

is the diameter of the first sphere in the molecule that sets the
length scale. The box is constrained in the ẑ-direction by a rough
surface at the bottom and an open top with periodic boundary
conditions in the x̂-ŷ-plane. Initially the molecules are placed at
random positions and with random orientations within a speci-
fied insertion region 30−40d above the bottom and then released
to settle in the box under gravity.

In order to perform the time-integration of the dynamical evo-
lution of the molecules, we use LAMMPS 37,38, which allows the
definition of rigid bodies consisting of overlapping spheres (using
the fix rigid/small command). Running a packing simulation
for a given molecule shape requires as input the positions and
diameters of each sphere, molecule volume, molecule mass (fol-
lowing directly from the volume since we consider a mass density
of 1), center of mass, and moment of inertia. The molecule vol-
ume, center of mass, and moment of inertia are calculated by
Monte-Carlo integration. LAMMPS assumes that the interaction
between two rigid composite particles is equal to the sum of the
pairwise interactions between its constituent spheres. The time-
integration for a rigid molecule then proceeds as follows42: (1.)
The forces and torques acting on all constituent spheres are com-
puted. (2.) Within each molecule, the forces and torques over
the constituent spheres are added. (3.) For each molecule the
position, orientation, and translational/rotational velocity are up-
dated. (4.) The position and velocity of each constituent sphere
are reset.

If a sphere is fully inside a molecule, then we exclude it
when defining the molecule before running the simulations. In-
tramolecular forces and torques in the simulations are also ex-
cluded, since they do not contribute to the external forces and
torques on the molecules. This prevents any possible numerical
issues in the existence of large overlaps.

In order to compute the pairwise contact interaction between
spheres, we assume a spring-dashpot model, where two contact-
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Fig. 3 (a) Individual and cumulative proportion of the total variance explained by a principal component (PC). PCs 17–20 do not contribute any
variance because these degrees of freedom are redundant. (b) Scatterplot of φ as a function of the first two PCs. (c) Scatterplot of φ as a function
of PC1.

ing spheres i of radius ai and j of radius a j having positions ri and
r j, respectively experience a relative normal compression with
overlap δ = ai + a j − ri j, where ri j = ri− r j and ri j = |ri j|. The
resulting force on sphere i is Fi j = Fn

i j +Ft
i j, where Fn,t

i j are the
normal and tangential contact forces, respectively, given as43:

Fn
i j =

√
δ

√
aia j

ai +a j
(Knδ ni j−meffγnvn) (3)

Ft
i j =

√
δ

√
aia j

ai +a j
(−Kt∆st −meffγtvt), (4)

where ni j = ri j/ri j, vn,t are the normal and the tangential compo-
nents of the relative velocity of the spheres i and j, and meff is the
effective mass of the two spheres, calculated as meff =

mim j
mi+m j

. We
note that the masses of the constituent spheres mi,m j are calcu-
lated from the sphere volumes and the mass density. The quanti-
ties ∆st, Kn,t and γn,t are the elastic tangential displacement, the
elastic and viscoelastic constants, respectively43. In a gravita-
tional field g =−g ẑ, the total force Ftot

i and torque τ tot
i on sphere

i is then given as:

Ftot
i = mi g+∑

i 6= j
Fn

i j +∑
i6= j

Ft
i j, (5)

τ
tot
i =−1

2 ∑
i 6= j

ri j×Ft
i j, (6)

where the sum runs over all j spheres in contact with sphere i.

Simulations are run until a static equilibrium is achieved when
the kinetic energy per particle is less than 10−9mgd, where m is the
mass of the first sphere in the molecule. The number of particles,
material parameter values, and time step used in the simulations
are given in Table 1. We run 10 independent simulations for each
shape and average packing densities with error bars given as the
standard deviation of the sample.

2.5 Packing density calculation

Since our packing protocol can result in some crystallization at
the bottom of the box, depending on many factors such as the
box width, the time step and the pouring height, we define a bulk
region by excluding particles within 5d from the boundaries in the

(a)

(b)

Fig. 4 Regression surfaces φ̂(α̃(2)). (a) Random forest regression. (b)
Artificial neural network regression leading to a smooth regression sur-
face.
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Table 2 The accuracy of the regression functions measured as the root-
mean-square error (RMSE) of the residuals of a 15% test set.

PCs RMSE (RF) (×10−3) RMSE (ANN) (×10−3)
2 8.13 7.88
3 6.95 6.81
4 6.64 6.29
5 6.43 6.31
6 6.47 6.76

ẑzz-direction. This definition of bulk region is consistent with that
used in Ref.25, where an investigation of the radial distribution
function and an orientational correlation function of the trimer
packing has confirmed that such a distance from the boundaries
ensures that no significant ordering effects occur.

We then determine the packing density in the bulk, which is
generally given as the number of particles Nb within the bulk
times the volume of a single molecule, divided by the bulk vol-
ume Vb:

φ =
NbV0

Vb
, (7)

where the volume of a single molecule V0 is calculated using
Monte-Carlo integration. Two methods are used to determine
Vb and Nb: (1.) A Voronoi method, which determines Vb as su-
perposition of the Voronoi cells Wl of the molecules in the bulk
within 5d of the boundaries: Vb = ∑

Nb
l=1 Wl . The superposition

is due to the fact that the Voronoi cells of the molecules pro-
vide a tessellation of the total volume. To consider a molecule
as part of the bulk, the centres of all constituent spheres should
be within the bulk, which leads to a straightforward calculation of
Nb. The Voronoi cell of a molecule is given as superposition of the
Voronoi cells of the constituent spheres. These in turn can be di-
rectly calculated in LAMMPS using the Voro++ package, which
implements a Voronoi tessellation, i.e., it determines the Voronoi
boundaries between all the spheres in the packing and outputs the
corresponding cell volumes. Since spheres that are fully inside a
molecule are excluded, the tessellation is exact.

We also employ (2.) a centroid method, for which the bulk
region is fixed as a rectangular volume of height 8d, i.e., Vb =

20d × 20d × 8d, which is at least 5d away from the boundaries
in ẑzz-direction. The number Nb is determined by counting all
molecules whose centroid is within the bulk region. Here, the
fact that molecules are overlapping at the boundaries generates
some uncertainty in the count of Nb, which varies depending on
the precise location of the bulk region in the packing. In order
to minimize the effect of this variation, we shift the rectangu-
lar volume stepwise in the vertical direction starting at 5d from
the bottom, determine for each step Nb and the packing density
via Eq. (7), and then average the packing densities over all steps
(which are taken as 50).

3 Results
We first confirm that our packing protocol is consistent with that
used in Ref.25 by comparing packing density measurements for
five randomly selected shapes across different packing density
regimes, see Fig. 2. For all shapes, our packing density measure-
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Fig. 5 Plot of the densest packing shapes found by numerical optimiza-
tion of the regression function for the indicated number of PCs. The
φ values and molecule shapes are shown in Table 3. The shaded re-
gion indicates the packing density of the symmetric trimer of Ref.25 with
φ = 0.729±0.003. Note that the displayed φ -values for the ML prediction
are not rounded and thus slightly vary compared with Table 3.

ments using the two different methods of Sec. 2.5 agree with that
of the dataset within errorbars.

The results from the PCA dimensional reduction are shown in
Fig. 3. In Fig. 3(a) we plot the cumulative variance of the PCs for
all 20 dimensions. Of these, 4 dimensions are trivially redundant,
since the first sphere sets the origin of the coordinate system and
the length scale. There is no variance due to these features, as
evident in Fig. 3(a), but PCA is not able to pick up the additional 3
redundant features that result from rotations. Since we anyways
only consider up to the first 6 PCs, which capture 80.8% of the
total variance, we do not impose a further reduction by these 3
degrees of freedom by hand. Fig. 3(b,c) then show scatter plots of
φ(α̃αα(2)) (here the superscript in α̃αα

(2) denotes that the first two PCs
are considered as reduced shape representation), which indicates
that the densest packing are clustered within a region of small
PC1-PC2 values.

Fig. 4 shows plots of the regression functions φ̂(α̃αα(2)) for RF
and ANN fitted to the data. We also fitted regression functions to
dimensionally reduced shape data with more PCs up to 6. The ac-
curacy of the regression functions is measured by evaluating the
root-mean-square error between the packing density predictions
and the true values of a 15% testset, see Table 2. As the dimen-
sionality increases, the accuracy also slightly increases, but the
error remains approximately twice as large as the error measured
in the simulations due to the run-to-run variability.

Results from the optimization of the various regression func-
tions, the resulting densest packing shape and the correspond-
ing actual packing density obtained from LAMMPS simulation
are summarized in Table 3 and displayed in Fig. 5. We note
that the numerical optimization in the reduced shape space does
not require any additional constraint equivalent to the overlap
constraint in physical space and always leads to overlapping
molecules. The numerical optimization highlights that, at every
level of PC retained in the regression, the RF regression func-
tion combined with the differential evolution optimization yields
the densest predicted packing density, which, if rounded to the
third digit, is φ = 0.734 throughout. Comparing with the actual
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PCs RF ANN Shape
2 NM: 0.734

RS: 0.732
SA: 0.732
DE: 0.734

NM: 0.729
RS: 0.729
SA: 0.729
DE: 0.729

0.732
± 0.004

3 NM: 0.732
RS: 0.731
SA: 0.731
DE: 0.734

NM: 0.731
RS: 0.730
SA: 0.731
DE: 0.731

0.732
± 0.004

4 NM: 0.731
RS: 0.729
SA: 0.730
DE: 0.734

NM: 0.731
RS: 0.730
SA: 0.730
DE: 0.731

0.733
± 0.003

5 NM: 0.733
RS: 0.729
SA: 0.729
DE: 0.734

NM: 0.733
RS: 0.732
SA: 0.731
DE: 0.733

0.733
± 0.002

6 NM: 0.731
RS: 0.728
SA: 0.728
DE: 0.734

NM: 0.733
RS: 0.731
SA: 0.731
DE: 0.733

0.732
± 0.004

<latexit sha1_base64="y+LkuK6hllU7I1RLKviyC6QKYHM=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0mKqMeCF48V7Ae0oWy2m2bp7ibsboQS+he8eFDEq3/Im//GTZqDtj4YeLw3w8y8IOFMG9f9diobm1vbO9Xd2t7+weFR/fikp+NUEdolMY/VIMCaciZp1zDD6SBRFIuA034wu8v9/hNVmsXy0cwT6gs8lSxkBJtcGnUiNq433KZbAK0TryQNKNEZ179Gk5ikgkpDONZ66LmJ8TOsDCOcLmqjVNMEkxme0qGlEguq/ay4dYEurDJBYaxsSYMK9fdEhoXWcxHYToFNpFe9XPzPG6YmvPUzJpPUUEmWi8KUIxOj/HE0YYoSw+eWYKKYvRWRCCtMjI2nZkPwVl9eJ71W07tueg9XjXarjKMKZ3AOl+DBDbThHjrQBQIRPMMrvDnCeXHenY9la8UpZ07hD5zPH9/hjhU=</latexit>

�

Table 3 Results of the regression optimization in the dimensionally reduced space, keeping only the indicated number of PCs. Algorithms used
in Mathematic’s NMaximize[] routine: Nelder-Mead (NM), random search (RS), simulated annealing (SA), and differential evolution (DE). We
display the shape that corresponds to the overall maximum found (indicated in boldface) and the corresponding φ value from the LAMMPS packing
simulations measured with the Voronoi method. All φ -values are rounded to the third digit.

simulated values, the ML prediction is systematically above the
measured mean value, but well within the error bars, see Fig. 5.
The densest packing molecule shape that we find packs slightly
denser than the symmetric trimer with up to φ = 0.733± 0.003,
while the symmetric trimer packs with φ = 0.729±0.00325.

The fact that the predictions do not improve with increas-
ing the number of PCs used indicates that already the first two
PCs, which capture around 40% of the variance in the data (see
Fig. 3a), provide a good representation of the densest packing
shapes. The PC1-PC2 representation of all the new shapes of Ta-
ble 3 is shown in Fig. 6a) together with the corresponding PCs
of all the molecules in the dataset that pack with φ > 0.73. All
these shapes occur in a narrow range of PC values with approxi-
mately PC1 ∈ [−2,0] and PC2 ∈ [−1,1] and are also visually very
similar, see Table 3, forming a family of asymmetric shapes that
pack slightly denser than the symmetric trimer.

We further investigate the packing density landscape of the
ANN regression function φ̂(α̃αα(2)), displayed in Fig. 6b). The
landscape clearly reveals the region of densest packing shapes,
but also indicates areas with non-monotonic behaviour. Focus-
ing on the PC1 = 4 path, indicated by a dashed line in Fig. 6b),
the packing density exhibits strongly non-monotonic behaviour
with a double peak structure, confirmed in the simulations, see
Fig. 6c). Visual inspection of the corresponding molecule shapes
reveals that the PC2 direction captures roughly the elongation
of the shapes, with the local minimum at PC2 ≈ 0 associated

with a sphere-like molecule. The plot in Fig. 6c) is thus remi-
niscent of the variation in packing density of monodisperse ellip-
soid packings when the shape is changed from oblate to prolate
ellipsoids, which also exhibits a double-peak structure with the
perfect sphere as local minimum10. Varying the two PCs over a
wider range shows that the inverse mapping α̃αα

(2)→ ααα leads to a
range of shapes from highly asymmetric elongated ones to more
symmetric compact ones, see Fig. 7. In general, PC2 seems to
be approximately associated with the elongation of the shape,
whereby for each PC1 the most compact shapes occur in the
regime PC2≈ 0.

We note that the simulated φ values in Fig. 6c) do not agree
well with the ANN regression function away from the central re-
gion. We believe that the underlying reason is the sparsity of dat-
apoints for large PC1 and PC2 values, which leads to a systematic
error in the regression.

4 Conclusions
Using a combination of dimensional reduction, regression, and
numerical optimization we have identified shapes that pack
slightly denser than the symmetric trimer of Ref.25. We note that
these new shapes are only slight variations of shapes that are al-
ready in the dataset and represent a family of asymmetric shapes
that pack with φ ≈ 0.733. Our results show that reducing the
shape representation to the first two PCs already allows for a clas-
sification of these dense packing shapes, which occur in a narrow
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Fig. 7 Shapes obtained by performing the inverse mapping α̃αα
(2)→ ααα and varying PC1 and PC2 over a range of values.
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range of PC1 ∈ [−2,0] and PC2 ∈ [−1,1]. Further investigation of
the ANN regression function has identified a range of PC values,
where a strong non-monotonic variation of the packing density
occurs, akin to that found in the variation of ellipsoidal shapes.

One caveat of the dataset is that it does not provide a uniform
sampling of the shape space, but is the output of a CMA-ES opti-
mization algorithm. As a consequence, the datapoints are already
clustered around the densest packing shapes and our regression
functions yield maxima within the same region. It would thus be
interesting to apply our methodology to a less biased dataset.

A crucial question is of course why this particular class of
shapes (Table 3) packs the densest? At this point we can only
speculate. It seems that these shapes combine several features
that are empirically known to pack dense: 1. They are slightly
elongated. Approximating the aspect ratio by dividing the longest
axis by the next longest one perpendicular to it, indicates an as-
pect ratio of ≈ 1.2. For comparison, the densest packings of el-
lipsoids, spherocylinders, and dimers are found at an aspect ratio
of ≈ 1.4− 1.5. 2. They are slightly tetrahedral. The projection of
these shapes onto the plane is triangular, but the largest sphere
in the shape gives it a tetrahedral appearance. Tetrahedra with
flat sides are the densest packing shapes known so far21 with
φ ≈ 0.78. 3. They are asymmetric. Leaving polyhedral shapes
aside, high symmetry of rounded shapes seems to be associated
with lower packing density. Examples are: spheres represent a
local minimum in the packing density44; asymmetric ellipsoids
pack denser than rotationally symmetric ones10; cubic-like su-
perellipsoids pack denser than ellipsoid-like ones46.

Our approach could be extended to a variety of other dimen-
sional reduction and regression techniques. Conceptual questions
concern, e.g., whether one should a priori restrict the choice of
base representation used in the regression based on physical con-
straints. After all, a non-parametric form like RF leads to a piece-
wise functional form of φ̂(ααα), which can not represent the “true"
(physical) φ(ααα) relationship. On the other hand the physical φ(ααα)

function is also not perfectly smooth, since empirical studies in-
dicate that at the sphere point shape variations lead to a cusp
singularity in the resulting φ as shown, e.g., for ellipsoids at the
transition between oblate and prolate ellipsoids of revolution10.
For ANNs this would actually imply that the activation functions
should not be chosen as smooth functions like the widely used
sigmoid form.

In Ref.7 a phase diagram of packings of non-spherical particles
has been suggested that provides in particular a phase boundary
for disordered packings in the φ -z plane, where z denotes the aver-
age number of contacts of a particle in the packing. General con-
siderations of mechanical stability5 would suggest that the asym-
metric shapes found here have z = 12, which locates our packings
just inside the phase boundary. Unfortunately, z can not be accu-
rately determined from our simulation data due to the presence of
so called “double contacts", i.e., unphysical contacts on a sphere
that is overlapping with another sphere. These occur as a con-
sequence of the soft particle model used in LAMMPS once the
molecule contains strongly overlapping spheres and have been
investigated in detail for packings of dimer-shaped particles gen-
erated by the same packing protocol19.

We highlight that our machine learning approach to find max-
imally dense packing shapes can be applied in a straightforward
way to other observables of granular matter that are tuned by
varying particle shape such as stiffness or diffusivity23,45. ML can
thus be an important tool to address general tasks in granular
materials design by identifying shapes that yield aggregates with
optimal or tailored properties47.
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