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Abstract

We propose a new method for computing the lasso path, using

the fact that the Manhattan norm of the coefficient vector is linear

over every orthant of the parameter space. We use simple calculus

and present an algorithm in which the lasso path is series of orthant

moves. Our proposal gives the same results as standard literature,

with the advantage of neat interpretation of results and explicit lasso

formulæ. We extend this proposal to elastic nets and obtain explicit,

exact formulæ for the elastic net path, and with a simple change, our

lasso algorithm can be used for elastic nets. We present computational

examples and provide simple R prototype code.
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1 Introduction

This paper is concerned with penalised estimation for the linear regression model

Y = Xβ + ϵ. (1)

The vector of response values is Y, the parameter vector is β; the covariate matrix

X has p linearly independent columns and n rows, one for every observation and ϵ
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is the vector of normal independent error terms with zero mean and variance σ2. In

this paper, Y and X refer to the observed response vector and covariate matrix,

respectively. Following lasso practice, both Y and columns of X are centered

around their sample means so the regression does not have intercept term.

1.1 Lasso regularization

For parameter estimation of model (1), the Lasso [1] minimizes the criterion

L =
1

2
||Y −Xβ||22 + λ||β||1, (2)

where ||·||2 and ||·||1 are the Euclidean and Manhattan norms. For fixed λ ≥ 0, the

lasso estimate β̂ = β̂(λ) minimizes L over Rp. As λ increases, β̂(λ) shrinks from

the least squares β̂(0) = (XTX)−1XTY towards zero. By this shrinking feature,

lasso works as a continuous method for subset selection [2].

The criterion L of Equation (2) is convex, but its second term makes the

estimates nonlinear as function of the observations, and apart from the case where

X has orthogonal columns, there is no general closed formula for the estimate

β̂(λ), see [1, 2]. Lasso estimation is a quadratic programming problem, and the

solution has been computed with a variation of Least Angle Regression (LAR) [3,

4]. Further developments on lasso estimation are the use of a descent algorithm and

homotopy as well as the use of duality [5, 6]. Lasso has been studied with Bayesian

principles for experimental screening using Laplace priors for the parameters [7]

and using prior information for generalized linear models [8]. Our paper does not

use Bayesian priors and is based on simple ideas that we describe next.

1.2 Contributions of this paper

We solve lasso estimation by noting that over every orthant, the Manhattan norm

||β||1 is a linear function of β . This allows the use of standard calculus to max-

imize L, considering the part of L in a given orthant as defined in Equation (5).

By construction, our proposal gives the exact minimization of L and no approx-
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imations are performed. We obtain exact, explicit formulæ for β̂ that minimizes

the lasso criterion and propose an algorithm to compute the lasso path.

We also analyse elastic nets using orthants. The criterion to be minimized is

E =
1

2
||Y −Xβ||22 + λα||β||1 + λ

1− α

2
||β||22. (3)

For our analyses, we define the part of E in a given orthant in Equation (11).

Similar to our lasso development, we minimize E and obtain explicit formulæ for

β̂. A simple change to our lasso algorithm allows the computation for elastic nets.

The gradients of criteria L and E are known in the statistical literature, see

[9] and [10]. Those computations are performed at non-zero estimates of the net

path, and coefficient updates are based upon computation of partial residuals and

use a soft thresholding operator. Our method is different and simpler; criteria L

and E are split in orthants using the local versions which are quadratic forms and

only require elementary computations of multivariate calculus.

1.3 Order of the paper

We introduce the orthant method to lasso in Section 2. We start with a single

parameter and then develop the multiple parameter case using orthants in Section

2.2 and apply standard calculus to obtain the minimizer β̂(λ). Although the lasso

method is a particular instance of the elastic net of Section 4, we present lasso

first as it is a simpler case with linear trajectories as function of λ and it is also

more stable for computations, when compared with elastic net.

In Section 3 construct the lasso path, which is the collection of β̂(λ) that

minimize L. The β̂(λ) are piecewise linear functions of λ, that change orthant at

certain values of λ known as breakpoints. We discuss an all orthant approach in

Section 3.1 and present our main algorithm in Sections 3.2 and 3.3. The algorithm

obtains breakpoints of the path, which are exit and entry points when moving

between orthants. We give a detailed example of the algorithm in Section 3.4.

In Section 4 we study elastic net with orthants. This development mirrors

what we did in lasso, with the important difference that the coefficient trajectories
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are nonlinear, piecewise functions of λ. Despite this, the computation of the elastic

net path still consists in determining exit and entry points for orthants and thus

for elastic nets we use the lasso algorithm, with a simple change that we describe.

A discussion of results is presented in Section 5. We comment upon the lars

implementation [11] and our algorithm in Section 5.1. In Section 5.2 we discuss

the numerical solution at the core of net orthant method, and in Section 5.3 we

compare the results between our proposal and the glmnet implementation [10].

This is done both by examples and with a simulation study. Finally, in Section

5.4 we survey future work directions to our method. This paper has an Appendix

with proofs, examples and R code prototype for lasso and elastic nets.

2 Lasso by orthants

The Lasso criterion L of Equation (2) is a convex function which, apart from λ = 0,

cannot be written as a quadratic form over the full range of potential parameter

values Rp. However, if we consider L over orthants in Rp, in each orthant the

problem is a quadratic form for which simple closed formulæ are available. We

start with one parameter and then describe the general methodology.

2.1 Single parameter case

This section is similar to part of the one parameter development of Equation (3)

and following text in [9]. However our treatment is simpler and we do not require

standardized variables nor use concepts like soft thresholding.

Consider X with a single column, i.e. X = (x11 x21 · · · xn1)
T with model

parameter β1. The Lasso criterion is L = 1
2

∑n
i=1 (yi − xi1β1)

2 + λ|β1|, to be

minimized for β1 over R. Trivially, for β1 > 0, the absolute value |β1| equals β1,

while for β1 < 0, we have |β1| = −β1. Each of these cases is one orthant of the

real line β1 ∈ R. To complete the full range of β1 we add the lower dimensional
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X1 X2 X3 Y
0 0 -1 1
-1 1 0 1
0 -1 -1 0
-1 0 0 -1
-1 1 0 1
-1 -1 -1 1
4 0 3 -3

X1 X2 X3 Y
-1 1 0 1
-1 1 -1 1
0 0 -1 0
0 1 -1 -1
1 -1 1 0
1 -2 2 -1

(a) (b)

Table 1: Simulated data for (a) Example 1 and (b) Example 3.

orthant β1 = 0 thus decomposing R = (−∞, 0)
⋃
{0}

⋃
(0,∞) and rewriting L as

L =


1
2

∑n
i=1 (yi − xi1β1)

2 + λβ1 if β1 > 0
1
2

∑n
i=1 y

2
i if β1 = 0

1
2

∑n
i=1 (yi − xi1β1)

2 − λβ1 if β1 < 0

The formulation above turns the minimization of L in a simple quadratic prob-

lem with a closed form solution for every orthant. The path is a collection of

orthant moves starting at λ = 0 with least squares β̂1(0), whose sign determines

the initial orthant. The lasso path proceeds in the direction of steepest descent

and we find λ at which the trajectory moves to a neighboring orthant.

For λ = 0 the estimate is β̂1(0) =
∑n

i=1 xi1yi/
∑n

i=1 x
2
i1 with orthant depending

on the sign of
∑n

i=1 xi1yi. If
∑n

i=1 xi1yi > 0, the path proceeds over orthant

β1 > 0 as β̂1(λ) = (
∑n

i=1 xi1yi − λ) /
∑n

i=1 x
2
i1 that minimizes L for λ > 0. When

λ =
∑n

i=1 xi1yi, the estimate becomes β̂1 = 0 at which point the solution leaves

the orthant β1 > 0. As the estimate has shrunk to zero, the lasso path ends. If∑n
i=1 xi1yi < 0, then β̂1(0) < 0 and the path is β̂1(λ) = (

∑n
i=1 xi1yi + λ) /

∑n
i=1 x

2
i1

which shrinks to zero when λ = |
∑n

i=1 xi1yi|. We give an example.

Example 1 Using columns Y and X1 of Table 1(a) as response and explanatory

variable, a regression model with parameter β1 is considered. For λ = 0 we have

β̂1(0) = −0.7, located in orthant β1 < 0, where the path starts. This is because
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∑n
i=1 xi1yi = −14 < 0, and the Lasso path is β̂1(λ) = (−14+λ)/20. For increasing

values of λ, β̂1(λ) shrinks towards zero and when λ ≥ |
∑n

i=1 xi1yi| = 14, the

estimate is zero. Figure 7 (Appendix) shows the criterion L for this example and

four values of λ. The location of the lasso estimate β̂1 is indicated by dashed lines.

2.2 Multiple parameters

In the unidimensional case, the parameter region was split into three orthants as

R = (−∞, 0)
⋃
{0}

⋃
(0,∞). We extend this idea with the Kronecker product of

unidimensional orthants Rp =
⊗p

i=1R =
⊗p

i=1 ((−∞, 0)
⋃
{0}

⋃
(0,∞)) . Each of

the 3p disjoint orthants is the interior of a polyhedral cone, which is identified with

a vector of p numbers taken from {±1, 0}. This vector compose the entries of a

diagonal matrix of size p, that we refer to as C. Using C, vectors inside an orthant

are Cu, where u is a positive vector, that is u ∈ Rp
>0. The matrix C is central in

this work, and we refer to the orthant determined by C as “orthant C”.

As example, consider β1 > 0, β2 = 0, β3 < 0, β4 > 0. This orthant is

(0,∞)
⊗

{0}
⊗

(−∞, 0)
⊗

(0,∞) = {Cu : u ∈ R4
>0} with C = diag(1, 0,−1, 1).

We refer to orthants with symbols +, -, 0 for the diagonal ofC so that e.g. +0-+

refers to the orthant with C = diag(1, 0,−1, 1). We consider strict inequalities for

non-zero elements so that the orthants are disjoint. If the analysis requires non-

strict inequalities, this is achieved by considering all disjoint orthants involved.

For example, if the desired region was β1 ≥ 0, β2 ≤ 0, β3 = 0, we would consider

the orthants 000, +00, 0-0 and +-0.

We formulate the parameter vector and lasso criterion over an orthant deter-

mined by matrix C. In orthant C, the parameter vector β is

β = Cu, (4)

with u ∈ Rp
>0, and the Lasso criterion of Equation (2) becomes

LC =
1

2
YTY − uTCXTY +

1

2
uTCXTXCu+ λuTC21, (5)
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where the symbol 1 is the vector of ones of dimension p× 1.

We have just turned the Lasso criterion (2) into a standard quadratic form (5)

by considering orthants. The lasso penalization ||β||1 =
∑p

i=1 |βi| of Equation (2)

becomes βTC1 = uTC21 in (5). The quantity uTC21 is non-negative, as it is the

sum of positive elements in u, and C21 automatically considers zeroes as needed

by the current orthant through its matrix C. For example with +0-+0-0 we have

uTC21 = u1 + u3 + u4 + u6 > 0 because the ui are all positive.

In orthant C, the quadratic form LC is well formulated because of linear inde-

pendence of columns in X. When we merge orthants, we recover L over all of Rp

and our development keeps the continuity and convexity properties of L.

2.3 Estimation of β per orthant

We next obtain closed form solutions for the minimization of Equation (5) us-

ing standard calculus techniques. Our development gives a simple interpretation

to the lasso estimates. With careful handling of the minimization solutions, we

reconstruct the lasso path in Sections 3.1 and 3.2.

To minimize LC, the vector of derivatives with respect to entries in u is

∂LC

∂u
= −CXTY +CXTXCu+ λC21.

Although LC is to be evaluated only with positive u, note that LC is a quadratic

form not formally constrained to this domain, and its derivative is well defined.

To determine critical points, the gradient is set to zero so that over the orthant

determined by C, the vector û that minimizes LC satisfies the linear system

CXTXCû = CXTY − λC21. (6)

When C is a full rank matrix, this is a standard linear system in u. Depending

on the number of of non-zero entries in the diagonal of C, the system may have

less than p active equations, with the non-active equations becoming tautologies

of the type 0 = 0 with no influence on the analysis.
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In what follows, we show that the active equations form a solvable, square

linear system. We require a Lemma about the orthant matrix C and a theorem

stating a property of the generalized inverse of CXTXC. The proof of the Lemma

is direct and it is not given, while the proof of the Theorem is in Appendix 1.

Lemma 1 Let C be a square diagonal matrix with entries from ±1, 0. Then C

equals its generalized inverse C−. Furthermore, C3 = C.

Theorem 2 Let S := CXTXC, where C is a diagonal matrix with entries from

0,±1. The generalized inverse S− of S satisfies SS− = S−S = C2.

Using Theorem 2, the solution of the system (6) is

C2û = S− (
CXTY − λC21

)
. (7)

Equation (7) is the equation of a line with starting point S−CXTY and direction

−λS−C21, which points in the direction of maximum change of the solution. To

be considered as a valid trajectory, C2û should be positive for all its components.

Not every C gives a valid solution, and we later describe how to determine which

orthants C correspond to the solution of the lasso minimization.

Although the vector C2û has dimension p × 1, the non-trivial entries on it

correspond to non-zero elements in the diagonal of C, that is non zero entries

in C2û are those for which the diagonal entry in C is one of ±1. That is, the

matrixC2 in Theorem 2 and following developments is like an identity matrix that,

depending on the entries of C, may contain some zero elements in its diagonal.

An example of computation of S− is given in Appendix 2.

The lasso estimate is obtained by left multiplying Equation (7) by C and using

C3 = C of Lemma 1, that is β̂ = CC2û = Cû. The estimate is

β̂ = CS−C
(
XTY − λC1

)
, (8)

which is composed of a linear function of observations CS−CXTY and a biasing

term −λCS−C21 that does not depend on observations. Because of this, the lasso
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estimate β̂ is a nonlinear function of Y. With orthonormal X, β̂ of Equation (8)

equals the lasso estimator of Equation (3) in [1]. We use Equation (8) to evaluate

β̂ in a segment of the lasso path, which we show next.

Example 2 The initial lasso path of Example 1 is retrieved with Equation (8) by

noting that XTX = 20 so S = CXTXC = 20 and S− = 1/20 because we are in

orthant - and C = −1. We use XTY = −14 to write β̂ = −1/20 · (14− λ).

Example 3 For the data of Table 1(b) and λ = 0, the least squares estimate of

β is (−1.25,−0.3333, 0.0833)T which is the first term of Equation (8) and is the

starting point of the lasso trajectory in the orthant --+. In this initial orthant, the

lasso path is β̂ = (−1.25,−0.3333, 0.0833)T − λ · (−2,−1.6667,−0.3333).

Apart from the beginning of the path, the first term of (8) may not lie inside

the orthant C, and only when adding the second term, β̂ lies in C. This has to be

checked, that is, for given C, λ, the coefficient β̂ = Cû of Equation (8) will only be

in its C-orthant when all the components of C2û of Equation (7) are non-negative.

This is a consequence of our development, where we computed for positive u and

moved back to the corresponding orthant by left multiplying by C. The following

example uses Equation (8) at an intermediate orthant in the path.

Example 4 For the data of Table 1(a), when 0.333 < λ < 1.419, the lasso path

crosses through orthant -+-. The trajectory is computed with Equation (8) yielding

β̂ = (0.1143, 0.8714,−1.1857)T −λ · (0.3429, 0.6143,−0.5571)T . None of two terms

are in -+-, but the sum lies in this orthant over the range of λ. The trajectory is

plotted in Figure 1, where solid lines show the transit of β̂ through -+-. Outside

the range of λ, the trajectories can still be computed, although these are not part

of lasso path and are indicated with dotted lines in the figure.

In summary, Equation (8) is the explicit formula for the lasso path, but it has

to be linked with a suitable orthant C and range for λ. The following section

discusses the computation of the path relative to orthant C and values of λ.
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Figure 1: (left) Lasso trajectories of Example 4; (right) elastic net trajectories
of Example 8. The plots also show that Equations (8) and (13) can be
evaluated for λ < 0. Line colors black, red and green are for β1, β2, β3,
respectively; grey lines indicate example values for λ and the zero line.

3 Lasso trajectory by orthants

For a matrix C and a value λ, substitution of β̂ = Cû into the criterion LC of

Equation (5) gives the smallest value of LC. This value is a polynomial function

of degree two in λ and we refer to it as L̂C:

L̂C =
1

2

(
YTY −YTXCS−CXTY + 2λYTXCS−1− λ21TS−1

)
. (9)

This formula can be evaluated for any pair C, λ, but not all evaluations of L̂C will

correspond to a path minimizing L. In what follows, we reconstruct the lasso path

by first presenting an exhaustive approach and then the recommended algorithm.
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3.1 All orthants lasso analysis

A simple approach to compute the estimate β̂(λ) at a given λ is to evaluate L̂C

over all orthants. This exhaustive method considers all cases for the diagonal of C

from
⊗p

i=1{−1, 0, 1} = {−1, 0, 1}p and excludes those cases of C2û that have one

or more negative entries which implies that β̂ is outside the orthant determined

by C. After removing unfeasible cases, we select the orthant C over which L̂C of

Equation (9) is minimized and retrieve the corresponding lasso estimate β̂.

The analysis for a single value of λ turns directly into the coefficients in the

lasso path as follows. Set Λ to be a collection of λ values of interest which are

positive and no larger than max{|(XTY)i|, i = 1, . . . , p}, i.e. the value at which

all the trajectories shrink to zero [1]. In the earlier expression (·)i means the

i−th element of the argument. For each λ ∈ Λ, select β̂ associated with C that

minimizes (9) over all orthants C. This collection of β̂ is the lasso path for λ ∈ Λ.

The exploration computes β̂ and L̂C for 3p cases of orthants C. The advantage

is that we retrieve the minimizer, but a big drawback is its cost 3p#Λ, and apart

from small values of p, we would not advise to use it in general.

3.2 Sequential lasso 1: Two types of moves

Assume that for a given λ, we are in orthant C and that by changing λ, we want

to move to a different orthant in the path. Equation (7) suggests two possible

moves available for us in the Lasso path: shrinkage and reactivation.

3.2.1 Shrinkage

Starting from orthant C, a list of candidate λ values for shrinking coefficients is

given by those values of λ that make the coordinates of the trajectory of Equation

(7) take value zero. At i−th coordinate, this occurs for a value λ∗
i computed as

λ∗
i =

(S−CXTY)i
(S−C21)i

. (10)
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This computation is done for i in 1, . . . , p such that the i−th diagonal element of

the current orthant C is not zero. Candidate values λ∗
i need to be screened, as

not all cases lead to valid solutions. We discard negative λ∗
i or smaller than the

current λ; those cases when the denominator (S−C21)i is zero; and those λ∗
i that

give negative entries in the candidate solution

C2û

∣∣∣∣
λ=λ∗

i

= S−CXTY − (S−CXTY)i
(S−C21)i

S−C21.

From candidates, we select the smallest positive λ∗
i that gives non negative C2û.

Example 5 Continuing with Example 3, we determine λ at which the lasso path

moves from --+ to a neighbor orthant. Using Equation (10), we compute candidate

λ values 0.625, 0.2, -0.25 that shrink coefficients β1, β2, β3, respectively. We screen

candidates: the negative λ is invalid so we are left with the first two candidates.

The first λ gives C2û with a negative entry and it is discarded and the second

candidate gives non-negative C2û and it is selected. Thus at λ = 0.2, the path

moves from --+ to the neighboring orthant -0+ by shrinking β2 to zero.

3.2.2 Reactivation

The majority of lasso steps involves coefficient shrinkage and the lasso path is a

series of shrinkages while keeping track of increasing λ and updating the orthant

matrix C. On occasion, a parameter that has been previously shrunk to zero

becomes active, i.e. the path moves to a neighboring higher dimensional orthant.

Reactivation can only take place when some entries in the diagonal of C are

zero. We reactivate by considering a new orthant matrix C′, obtained from C by

replacing a zero entry in the diagonal by +1 and checking if shrinking fromC′ gives

a valid λ. This move is also done by changing the zero to −1 so for every zero in the

diagonal of C we have two potential matrices C′. For every potential matrix C′,

computation of candidate λ with formula (10) is done for all coordinates non zero

entries in C′. For a given C, the number of neighboring orthants is 2(p−1TC21),

i.e. twice the number of zero entries in the diagonal of C.
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Example 6 Assume that the procedure is in orthant 0+-0. To reactivate, we

explore neighboring higher dimensional orthants ++-0, -+-0, 0+-+ and 0+-- and

see if we can reach 0+-0 by shrinking. As contrast, with direct shrink from 0+-0,

we see if the lasso path moves to lower dimensional orthants 0+00 or 00-0.

Ultimately, reactivation is another shrinkage step. That is, moving from C to

higher dimensional C′ is equivalent to shrinking from C′ to C. Of all computations

with C′ matrices, the smallest λ with a valid solution is selected.

3.3 Sequential lasso 2: the algorithm

We create the lasso path by sequentially using shrinkage and reactivation. We

require an algorithm for the shrinkage step, which is used in the main algorithm.

We next describe both algorithms.

Algorithm 1 implements Equation (10), which is the core of the lasso procedure.

In this algorithm, X and Y are the same values used in the main algorithm.

Example 5 was built with --+ for the diagonal of C and calling Algorithm 1

reiteratively with i = 1, 2, 3. The computed λ values of the example are those that

shrink each coordinate of β to zero. The value λc is not given in the example so we

could use λc = 0 to guarantee valid shrinkage moves. When in the lasso procedure,

the value λc is passed from the main algorithm to Algorithm 1.
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Input: Orthant of interest C′, index of coordinate to shrink the path i

and λc current value of parameter λ.

Output: Candidate values λ̂, β̂ and criterion L̂ corresponding to critical

change in orthant C′ for i-th coordinate.

1 Compute inverse S− = (C′XTXC′)−.

2 If (S−C21)i ̸= 0, compute

3 λ∗
i = (S−C′XTY)i/(S

−C21)i.

4 With λ∗
i , compute C′2û = S−C′XTY − λ∗

iS
−C21, β̂ = C′û and L̂C′ .

5 If (S−1)i = 0, or if there are negative entries in C′2û, or if λ∗
i ≤ λc then

set output RES := {}, otherwise set RES := {λ̂ := λ∗
i , β̂, L̂ := L̂C′}.

6 Return RES.

Algorithm 1: Shrinkage step for i-th coordinate

Algorithm 2 is our main procedure. The algorithm builds the path from the

ordinary least squares estimate and proceeds by a series of shrinkage and reactiva-

tion movements. At a given step in the path, the algorithm explores neighboring

orthants and moves in the direction of steepest descent determined by the smallest

valid candidate λ in step 16. Because this move is in the lasso path, the quantity

L∗ which was computed as L̂C is the minimal value of criterion L at λ = λ∗.

Algorithm 2 is guaranteed to always terminate because, in the worst case sce-

nario, it will visit the complete list of all orthants, which is finite. In practice, the

algorithm only visits a subset of all orthants.
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Input: Design model matrix X with p columns, vector of observations Y .

Output: Lasso path with λ, β(λ) and L at path breakpoints.

1 Initialization: Compute β̂ = (XTX)−1XTY. Set matrix

C := diag(sign(β̂)); compute L̂C; set λ := 0 and output

O := {{ λ, β̂, L̂C}}.
2 while C ̸= 0 do

3 for j ∈ {1, . . . , p} do

4 if Cj,j = 0 then

5 for k ∈ {−1, 1} do

6 Set C′ := C and update C ′
j,j := k.

7 for i ∈ {1, . . . , p such that C ′
i,i ̸= 0} do

8 Run Algorithm 1 with inputs C′, i, λc := λ. Nonempty

outputs {λ̂, β̂ and L̂} are kept until used in Step 16.

9 end

10 end

11 else

12 Set C′ := C.

13 Run Algorithm 1 with inputs C ′, i := j, λc := λ. Nonempty

outputs {λ̂, β̂ and L̂} are kept until used in Step 16.

14 end

15 end

16 From the set of all nonempty outputs {{λ̂, β̂, L̂}} of the loop in steps

3-15, select the smallest λ̂. Call this λ∗, with associated β∗, L∗.

17 Update output O with these values, i.e. O := O ∪ {λ∗, β∗, L∗}.
18 Update λ := λ∗ and C := diag(sign(β∗)).

19 end

Algorithm 2: Orthant lasso

3.4 Detailed lasso example

The lasso path we describe uses the data of Table 1(a) and was selected because it

requires a reactivation step despite its small size. The path has initial shrinkage,
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Lasso Elastic net
λ β L
0 0.114 0.871 −1.186 0.843
0.118 0 0.735 −1.029 1.074
0.333 0 0.667 −1 1.444
1.419 −0.372 0 −0.395 2.765
5.429 −0.429 0 0 5.163
14 0 0 0 7

λ β E
0 0.114 0.871 −1.186 0.843
0.146 0 0.732 −1.026 1.054
0.247 0 0.704 −1.013 1.181
2.687 −0.374 0 −0.359 2.898
16.961 −0.194 0 0 6.465
28 0 0 0 7

(a) (b)

Table 2: (a) Lasso path of the example of Section 3.4 and (b) Elastic net
path for the same data and α = 0.5, see Example 9.

reactivation of a variable and a final series of shrinkage steps. In Appendix 3 we

detail the moves of the algorithm as the path traverses through orthants.

Table 2(a) summarizes the breakpoints of the lasso path for this example. Each

row lists λ, vector of coefficients β and criterion L at a breakpoint of the path.

The list of orthants involved in the path is ++-, 0+-, -+-, -0-, -00, 000, which

can be seen from right to left in the standard plot of the lasso path of Figure 2(a).

Table 3 in Appendix 3 details all moves for this example. The table should be

read from the top, as rejection of candidates λ̂ depends on the current value of λ.

Figure 3(a) shows criterion L as a function of λ along the path, i.e. we plot

L̂C for the orthants in the path. Colors indicate orthants, with bold line when the

lasso path traverses along the orthant and L̂C becomes L, and with thin line when

L̂C is not in the path. Finally, Figure 6 in the Appendix shows potential lasso

moves after exhaustive orthant exploration and rejection of unsuitable moves.

4 Elastic net

Elastic net regularization combines model selection of lasso with improved predic-

tion features of L2 penalization. The criterion to be minimized is E of Equation

(3) in Section 1.2. The nonnegative λ controls the parameter penalization rela-
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Figure 2: Shrinkage results of Table 1(a) data. Panel (a) has Lasso of Table
2(a); panels (b) and (c) have the elastic net of Table 2(b). Panel (d) has
glmnet results, further described in Example 12. The colors black, red, green
in the plots correspond to trajectories of coefficients β1, β2, β3, respectively.
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Figure 3: (a) Criterion L of Lasso as the path moves along orthants. Panel
(b) has E of elastic net with α = 0.5. Both cases use data in Table 1(a).
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tive to residual sum of squares; while α is a fixed number in (0, 1] that balances

between the penalization ||β||1 of lasso, achieved when α = 1 and the quadratic

penalty ||β||22 used in ridge regression and reached when α → 0. We exclude α = 0

because at that point there is no shrinkage to zero for finite λ.

Elastic net [12] has been shown to improve over lasso when predictors are

heavily correlated [10]. Lasso methods can be used in estimation of elastic net [12],

and an implementation of the elastic net using coordinate descent is the R library

glmnet, see [10]. A recent version of the elastic net criterion uses s-estimators to

improve estimation and variable selection performance under heavy tailed error

distributions [13]. We next develop the orthant to estimation in elastic nets.

4.1 Elastic net by orthants

The orthant development for the elastic net mirrors what was done earlier for

lasso, setting β = Cu so that over the orthant determined by C the criterion is

EC =
1

2
YTY − uTCXTY +

1

2
uTCXTXCu+ λαuTC21+ λ

1− α

2
uTC2u. (11)

The entries of vector u are required to be positive, although there is no mathe-

matical restriction for the entries of u, which can be real numbers. In other words,

EC is a well formulated quadratic form, which was also the case for LC.

The solution to the minimization of EC is the system

(
CXTXC+ λ(1− α)C2

)
u = CXTY − λαC21.

The matrix CXTXC+λ(1−α)C2 is the orthant counterpart of regularising XTX

with a multiple of the identity matrix in ridge regression, also known as Tikhonov’s

regularization. The next theorem gives a property of the generalized inverse of this

matrix. We omit its proof, which is similar to that of Theorem 2.

Theorem 3 Let S(λ) := CXTXC+ λ(1− α)C2 and let S(λ)− be its generalized

inverse. Then S(λ)− satisfies S(λ)S(λ)− = S(λ)−S(λ) = C2.
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Using Theorem 3, we have the solution

C2û = S(λ)−
(
CXTY − αλC21

)
(12)

and by using β̂ = Cû, retrieve the elastic net estimate

β̂ = CS(λ)−C
(
XTY − αλC1

)
. (13)

The elastic net trajectory β̂ starts from the ridge estimate CS(λ)−CXTY and

moves in the direction −αλCS(λ)−C21. This trajectory minimizes EC over the

orthant determined by C, in other words, it is the exact elastic net path with no

approximations involved. When formulated as a näıve elastic net, β̂ of Equation

(13) coincides with estimator for orthonormal X of Equation (6) in [12].

The notation S(λ) in Theorem 3 and elsewhere emphasizes the main role of

λ: although S(λ) depends on α and λ, in analyses α is kept fixed. We give an

example of computation of S(λ)− in Appendix 2.

Given the dependence of direction of descent on λ through the matrix S(λ)−,

the trajectories of net coefficients are not piecewise linear functions of λ as with

lasso. The following example shows nonlinearity of β̂ even for a single explanatory

variable. Example 8 shows computation of β̂ for a given orthant and range of λ.

Example 7 Consider data of Table 1(a) with single explanatory variable X1 as

in Examples 1 and 2. The least squares estimator β̂ = −0.7 lies in orthant

- so C = −1. Using XTX = 20, the generalized inverse S(λ)− is the scalar

(20 + λ(1− α))−1, and the net path is β̂ = Cû = −1/ (20 + λ(1− α)) · (14− αλ) ,

where we used XTY = −14. By substituting α = 1 in the net path β̂, we retrieve

the lasso estimate of Example 1.

Example 8 In Figure 1 (right) we give part of the elastic net path for analysis of

Table 2(b). This segment is computed with Equation (13) and orthant -+-, that

corresponds to the path between rows 3 and 4 of the table. The trajectories are

shown in solid line as they cut through -+- for λ ∈ (0.247, 2.687), and in dashed

line outside the stated range of λ at which point the trajectories are outside -+-.
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For given λ and C, by substituting β̂ = Cû of Equation (13) into EC of

Equation (11), we obtain the smallest value of elastic net criterion EC. This is a

nonlinear function of λ and α with the following expression

ÊC =
1

2

(
YTY −YTXCS(λ)−CXTY − 2λα1TS(λ)−CXTY − λ2α21TS(λ)−1

+λ(1− α)YTXCS(λ)−S(λ)−CXTY − 2λ2α1TS(λ)−S(λ)−CXTY

+λ3α2(1− α) + 1TS(λ)−S(λ)−1
)
.

4.2 All orthants net analysis

The all orthant approach of Section 3.1 can be applied with little change to the

elastic net, i.e. for a given λ, consider all orthants and select the β̂ that minimizes

ÊC. The same screening considerations for orthant lasso must be used: discard

those cases for which C2û has negative entries, equivalently discard when β̂ is not

in orthant C. All orthant computations can be done for a collection Λ of values

of λ and has exponential cost, akin to the situation described in Section 3.1.

4.3 Sequential approach to elastic net

With a minor change, Algorithm 2 can be applied to the computation of the elastic

net path. Consider an elastic net path in orthant C. We find a breakpoint for

changing orthants for the i-th coordinate by solving (C2û)i = 0, i.e.

(S(λ)−CXTY)i − αλ(S(λ)−C21)i = 0, (14)

which has to be solved for λ. Rearranging this expression leads to

λ∗
i =

(S(λ∗
i )

−CXTY)i
α(S(λ∗

i )
−C21)i

, (15)

which generalizes Equation (10) and depends on λ∗
i on both sides. The modification

of Step 3 in Algorithm 1 is to solve numerically Equation (14), that is

3 Solve (S(λ)−CXTY)i − αλ(S(λ)−C21)i = 0 for λ and call λ∗
i to the solution.
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We give two examples of elastic net computation, and in sections 5.2 and 5.3

we discuss our implementation and compare against glmnet.

Example 9 An elastic net with α = 0.5 was fitted to data of Example 1(a) using

Algorithms 1 and 2 with the adaptation discussed above. Table 2(b) shows the

breakpoints at which the elastic net path changes orthant. The coefficients β̂ are not

piecewise linear functions of λ, however they are computed easily using Equation

(13) with the appropriate orthant C. In Figure 2 panels (b) and (c) we show the

elastic net path, and in Figure 3(b) we show the evolution of criterion E as it

crosses orthants of the elastic net path in its shrinking route towards zero.

Example 10 Figure 8 (Appendix) shows elastic net path fits for a synthetic dataset

of n = 12 observations in p = 10 variables. Two values of α were used for the

analysis and in both cases, the steps in the net trajectory were only shrinkage steps.

The criterion of elastic net can be studied plotting E against the shrinkage

parameter λ. Figure 3(b) shows the evolution of piecewise nonlinear criterion E

for the data of Example 9. Line colors indicate orthants in the path, with bold

whenever the net path is traversing the orthant and thin line for suboptimal curves,

that is when the elastic net path is in another orthant.

5 Conclusions and further discussion

We have presented a new orthant method for the computation of lasso and elastic

net estimates. Our proposal uses simple calculus techniques and gives exact re-

sults. We proposed an algorithm to build the path that avoids expensive orthant

evaluation and that has worked well in the examples we tried. We briefly elaborate

on issues still pending concerning implementation and theory development.

5.1 Lasso computations and implementation

The algorithm for lasso by orthants requires the iterative solution of Equation (7)

for the i-th component. This is a linear equation whose explicit solution is Equation
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(10) that has proved to be remarkably stable. A prototype R implementation

lassoq of our algorithm for lasso path is given in Appendix 4 of this paper.

Our code gives mostly the same results as the lars implementation of lasso

[11], although on some instances, it improves over it as in the following example.

Example 11 For the data of Table 1(b) and for 0 < λ < 0.0833, lars gives the

lasso path as (−1.25,−0.3333, 0.0833)T − λ · (0, 1, 1)T . This path makes the L1

norm of β̂ a constant in --+ and is not in the direction of maximum descent. The

orthant computation with the same data and initial lasso step of Example 3 gives

a trajectory in the direction of maximum descent.

5.2 Solving the orthant net equation

The elastic net path by orthants requires solving Equation (14), i.e. finding λ for

which the i-th component of C2û is zero. In essence, this is solving a univariate

non-linear equation and we survey classical approaches to this problem.

Simple iteration of Equation (15) starts from initial λ0 and for j = 1, 2, . . . com-

putes λj = (S(λj−1)
−CXTY)i/

(
α(S(λj−1)

−C21)i
)
. Another possibility is New-

ton’s method that iterates λj = λj−1 − (C2û)i/(S(λj−1)
−((1 − α)C2û − α1))i,

where C2û also depends on λj−1. In either approach, iteration continues until the

absolute difference between values |λj−λj−1| is within a specified threshold. In our

experience, these two iteration methods can lead in some cases, to λj oscillating

outside the allowable range [0,maxi |(XTY )i|/α] and have not pursued its use.

We have experimented with two other iterative methods that have proved more

stable in our numerical examples. One is the secant method, that does not require

derivative information, and the other is the bisection method. The latter method,

although it is not the most efficient, is the method that has worked best for the

orthant net method. We are exploring ways to improve the numerical stability

and accuracy of numerical solvers. This is work in progress, for which we have a

prototype R implementation elastiq given in Appendix 5 of this paper.
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5.3 Implementation of elastic net

We look at results obtained with the orthant net method and those of the R package

glmnet. This function regularizes generalized linear models, and we use the option

family=gaussian. Our comparison is not about the speed of computations nor

about the dimensionality of data, but about the quality of results obtained.

We emphasize that results obtained with the orthant net method are not ap-

proximations but are exact solutions to the minimization of criterion E. In con-

trast, glmnet appears designed not for precise results but for fast approximate

analysis. We compare net methods through examples and discuss a simulation.

Example 12 Two glmnet analyses were carried out with the data of Table 1(a)

and α = 0.5: one analysis without supplying λ values and another uses λ break-

points from the orthant net of Table2(b). Both results are shown in Figure 2(d),

where bold lines are for the first analysis and thin lines are for the second analysis.

We compare results with orthant net results of Figure 2(c). When λ is not

supplied in glmnet, the patterns of β1, β2 are similar to the exact orthant values.

However, the shrinkage pattern of β3 is not correctly recovered and this parameter

shrinks to zero later than should be. When λ breakpoints are supplied, glmnet

analysis produces trajectories that differ substantially from the orthant solution,

with β2, β3 shrinking later than needed. It is also surprising that even the least

squares estimate from glmnet for both cases only agrees with the correct value

when rounded to a single digit.

As for orthants covered, glmnet generally recovers less orthants than the cor-

rect orthant solution. The elastic net orthant solution of Table 2(b) goes through

orthants ++-, 0+-, -+-, -0-, -00, 000. Without specifying λ, the glmnet path tra-

verses through less orthants ++-, 0+-, -+-, -0-, 000, and finally, when specifying

λ breakpoints, the glmnet path only crosses the orthants ++-, -+-, 000.

Example 13 We carried out elastic net orthant and glmnet analyses for synthetic

data. Both analyses used α = 0.5 and glmnet was used without specifying λ. De-

fault glmnet analysis does 93 steps with redundancy as they only cover 40 orthants,
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Figure 4: Analysis of scaled diabetes data with (a) the elastic net orthant of
this paper and (b) glmnet.

while the net orthant method yields 56 steps with no redundant orthants retrieved.

The orthants visited with each methodology are given in Figure 10 (Appendix). The

glmnet agrees with 55.4% of the orthants of the net orthant approach.

Example 14 An elastic net analysis of the diabetes data set [1] with α = 0.5

was performed. Two methods were used: elastic net orthant and glmnet without

specifying λ. The data for both analyses was scaled by a constant k = 25000. This

scaling was used to stabilize the elastic net orthant computation. Figure 4 shows

the paths for both analyses, and despite some similarities, glmnet tends to collapse

most trajectories at a single step of the trajectory, contrary to the orthant method

in which the trajectories shrink to zero at different points in the path. Figure 9

(Appendix) shows orthant traverses for each method. The glmnet path has an

agreement of only 20% with the orthant method.

The examples suggest that glmnet results may differ with the orthant net

method and we compared with simulation experiment. We simulated data with
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Figure 5: Agreement between orthant method and glmnet for simulated
data. In green, agreement between orthant and glmnet analysis without
specifying λ; in light blue, agreement when glmnet uses λ provided by the
orthant. The horizontal axis is the dimension p.

dimensions p from 3 to 15, for each dimension simulating 42 data sets. For each

set we fitted elastic net using the orthant method as well as glmnet, using α from

0.3 to 0.9. We recorded the orthants visited by every method, and computed

the percentage of glmnet orthants that agree with the orthant net method. Two

versions of glmnet were compared: without providing λ and using breakpoints

from the orthant net method. The agreement decreases with increasing p; and the

agreement is lower when we provide breakpoint values of λ, see Figure 5. There is

not much change of agreement as function of α (plot not shown).

5.4 Further work

Orthant work can be extended in several directions. Firstly, expectation of Equa-

tion (8) for lasso or (13) for elastic net allows exact bias computation which could

be used to compare results under model misspecification. This analysis is con-
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tingent on choice of λ and C, and theory developments should consider ways of

removing this dependence from bias results.

A second line of work is the comparison of our algorithm with the modified

LARS algorithm [3] used to compute lasso. By construction, our proposal already

gives the optimal path, but we still have to study the equivalence against the LARS

algorithm, which we have already pointed that has substandard performance in

some instances. A related development is the removal of the reactivation step in

Algorithm 2. This would make orthant computations much faster and should be

compared with the unmodified LARS algorithm.

A modified approach to lasso considers constraints on parameters to achieve

polynomial hierarchy along the path [14], generalizing hierarchical lasso work by

[15]. The constrained approach to the path is carried out by numerical minimiza-

tion over cones, with no apparent closed formulæ available. Two possibilities arise

here. One is the development over the cones themselves, while would be to project

the path into the constrained region to create an approximate constrained path

which would be compared with the correct lasso or elastic net paths.

Orthant methods can be adapted to different ways of regularizing. A direct case

is the näıve elastic net with penalty λ1||β||1+λ2||β||22/2, implemented in LassoNet,

see [16, 17]; or adaptive lasso [18] in which coefficients are weighed in the penalty

function
∑p

j=1wj |βj |. In both cases the orthant approach can be used, see an

example of adaptive lasso in Appendix 6. However, fused lasso [19] with penalty

λ1||β||1+λ2
∑n

j=2 |βj−βj−1| and the penalty λ||Dβ||1 of generalized lasso [4] would

require careful consideration. These two latter cases are still quadratic forms, not

defined over orthants, but rather over polyhedral cones. The computation of λ

breakpoints should consider entry and exit points of paths between cones.
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Appendixes

Appendix 1 - Proof of Theorem 2

Proof. The proof is by construction. Without lack of generality, we assume that

all non-zero entries in the diagonal of C take value one, and to avoid a trivial case,

there is at least one non-zero entry in the diagonal of C.

The matrix XC has the same size as X, but with some columns of X replaced

by zero columns. The matrix S = CXTXC is the same size as XTX and its

contents are equal those of XTX except for some zero rows and columns. The

location of the zero columns ofXC and the zero rows and columns of S corresponds

to the zeroes in the diagonal of C. The rank of XC equals the number of non-zero

entries in the diagonal of C, because the non-zero columns of XC are linearly

independent. The non-zero submatrix of CXTXC has also the same rank as XC

and is invertible. The inverse S− is the ordinary matrix inverse of the non-zero

submatrix of S, located according to non-zero entries in the diagonal of C.

If C is full rank, then C = I and the inverse is S− = S−1 so that SS− = I =

C2. In general, when we multiply SS−, we are doing the product of the smaller,

nonzero invertible submatrix of CXTXC with its inverse, hence we always obtain

an submatrix of the identity which is precisely C2, that is SS− = C2 which has

ones in the positions of non-zero entries in the diagonal of C. A similar argument

is used to show that S−S = C2.

In the case of non-zero entries of C taking value −1, the development described

holds because the rank of both XC and S is not altered by some columns of XC

reversing sign and for some sign changes in columns and rows of S.

The construction gives a unique matrix S− which is a Moore-Penrose inverse

as it satisfies SS−S = S, S−SS− = S− and both S−S and SS− are diagonal.

Theorem 2 is still valid for the trivial case in the last step of lasso when C has

all zeroes in its diagonal in which case S− = C. The proof for Theorem 3 follows

the rationale above as S(λ) = CXTXC+λ(1−α)C2 involves a submatrix of XTX

regularized with a multiple of identity with corresponding dimensions.
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Appendix 2 - Examples of S− and S(λ)−

We give one example of the computation of the inverse S− and another of S(λ)−.

Both examples use the matrix X of Table 1(a).

Example 15 Consider the orthant 0+-, i.e. the matrix C has diagonal entries

0, 1,−1 and for computations we only use the columns 2, 3 of X. The inverse S−

is built with the usual inverse of the lower 2× 2 block. We have

S =


0 0 0

0 4 −2

0 −2 12

 , S− =
1

44


0 0 0

0 12 2

0 2 4

 and SS− =


0 0 0

0 1 0

0 0 1

 .

Example 16 Consider C of orthant -0-. For λ = 10 and α = 0.5 we have

S(λ) =


25 0 13

0 0 0

13 0 17

 , S(λ)− =
1

256


17 0 −13

0 0 0

−13 0 25

 and S(λ)S(λ)− =


1 0 0

0 0 0

0 0 1

 .

Appendix 3 - Orthant moves for Section 3.4

We detail the algorithm moves for the data of Table 1(a).

1. Initialization

The least squares estimate is β̂ = (0.114, 0.871,−1.186)T . We have orthant

++-; compute L = 0.843 and set λ = 0.

2. Current orthant ++- with λ = 0

Matrix C has no zero elements in its diagonal so no reactivation is done.

We proceed to shrink every coordinate using Algorithm 1 with i = 1, 2, 3.

Of the candidate λ̂, only λ∗ = 0.118 is valid and we have β∗ = (0, 0.735,−1.029)T ;

criterion L = 1.074 and update the orthant to 0+-.

3. Current orthant 0+- with λ = 0.118
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The diagonal of C has a zero and we reactivate, i.e. substitute C1,1 with

each of ∓1. Using −1 leads to orthant -+-, and shrinking from this orthant

gives two valid candidates λ̂. Reactivating with +1 creates orthant ++-, and

shrinking from ++- repeats the computation of step 2 above, only this time

there are no valid λ̂ candidates because of the current value λ = 0.118.

Shrinking from 0+- with i = 2, 3 gives two λ̂, of which only one is valid.

We have three valid λ̂ candidates. We select λ∗ = 0.333 with β∗ = (0, 0.667,−1)T

and criterion L = 1.444. We remain in orthant 0+- because of β∗.

4. Current orthant 0+- with λ = 0.333

The moves are a second pass of what was already done in step 3: reactivation

to -+- and ++-; shrinkage from 0+-. Given the current value of λ, one earlier

candidate from step 3 is not valid and we have two valid λ̂ candidates.

We select λ∗ = 1.419 with parameter vector β∗ = (−0.372, 0,−0.395)T ,

criterion L = 2.765 and update orthant to -0-.

5. Current orthant -0- with λ = 1.419

The orthant has a zero in the second position so we carry a reactivation

step, i.e. substituting C2,2 with each of ∓1, then shrink. When reactivating

the second entry with −1, we shrink from ---. None of the three candidate

λ̂ values are suitable. We reactivate with +1 to -+- and here we repeat part

of step 3. Given the current value λ, none of the candidate λ̂ are valid.

After reactivation, we shrink from -0-. Of two λ̂, only one is valid.

We have a single candidate λ̂ which we select: λ∗ = 5.429 with β∗ =

(−0.429, 0, 0)T , criterion L = 5.163 and updated orthant -00.

6. Current orthant -00 with λ = 5.429

Orthant -00 has two zeroes and thus the reactivation step will explore four

orthants obtained by substituting ∓1 in each of the positions 2 and 3.

Reactivating to --0 leads to no valid λ̂ candidates. We have a similar situa-

tion when reactivating to -+0 and at this point we have no valid λ̂ candidates.
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Figure 6: Potential moves over all orthants: lasso (green) and moves not
minimizing L (grey). We only show valid moves with C2û ≥ 0 and λ ≥ 0.

Reactivating to -0- and shrinking repeats part of step 5, with no valid can-

didates given current λ. Reactivation to -0+ does not give valid candidates.

We do the only shrinkage move left from -000. This gives a valid λ̂ that we

select so λ∗ = 14 with β∗ = (0, 0, 0)T and criterion value L = 7. At this

point the diagonal of C is the zero vector 000 and the procedure ends.

Table 3 details all moves of Algorithm 2 for the example in Section 3.4. Recall

that both moves R(eactivate) and S(hrink) use Algorithm 1 for shrinkage, and the

third column of the table gives the index i used in every local shrinkage call of

Algorithm 1 inside Algorithm 2. Note revisited orthants in the table, suggesting

ways to improve the algorithm and provided R code.

Figure 6 shows nine potential moves for this data, when searching over all 54

orthant moves with Equation (10) and screening valid moves only. Besides five

lasso moves, two other moves also appear in Table 3, while another two arise only

with exhaustive orthant search. Many invalid orthant moves are excluded from

the figure, for example from -+0 shrinking the first coordinate to 0+0.
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Current C, λ Move and candidate λ̂ i Comment

++-, 0
S from ++- to 0+- 0.118 1 Accepted move
S from ++- to +0- 0.753 2 Reject, non positive C2û
S from ++- to ++0 0.893 3 Reject, non positive C2û

0+-, 0.118

R to -+- then 0+- 0.333 1 Accepted move

R to -+- then -0- 1.419 2 Reject, valid move but not minimum for λ̂
R to -+- then -+0 2.128 3 Reject, non positive C2û

R to ++- then 0+- 0.118 1 Reject, λ̂ ≤ λ (this was an earlier step)
R to ++- then +0- 0.753 2 Reject, non positive C2û
R to ++- then ++0 0.893 3 Reject, non positive C2û

S from 0+- to 00- 2.426 2 Reject, valid move but not minimum λ̂
S from 0+- to 0+0 7.666 3 Reject, non positive C2û

0+-, 0.333

R to -+- then 0+- 0.333 1 Reject, λ ≤ λc (this was an earlier step)
R to -+- then -0- 1.419 2 Accepted move
R to -+- then -+0 2.128 3 Reject, non positive C2û

R to ++- then 0+- 0.118 1 Reject, λ̂ ≤ λ (this was an earlier step)
R to ++- then +0- 0.753 2 Reject, non positive C2û
R to ++- then ++0 0.893 3 Reject, non positive C2û

S from 0+- to 00- 2.426 2 Reject, valid move but not minimum for λ̂
S from 0+- to 0+0 7.666 3 Reject, non positive C2û

-0-, 1.419

R to --- then 0-- −0.571 1 Reject, non positive C2û

R to --- then -0- −2.179 2 Reject, λ̂ ≤ λ

R to --- then --0 −5.929 3 Reject, λ̂ ≤ λ

R to -+- then 0+- 0.333 1 Reject, λ̂ ≤ λ (this was an earlier step)

R to -+- then -0- 1.419 2 Reject, λ̂ ≤ λ (this was an earlier step)
R to -+- then -+0 2.128 3 Reject, non positive C2û

S from -0- to 00- −25.000 1 Reject, λ̂ ≤ λ
S from -0- to -00 5.429 3 Accepted move

-00, 5.429

R to --0 then 0-0 11.000 1 Reject, non positive C2û

R to --0 then -00 −0.286 2 Reject, λ̂ ≤ λ
R to -+0 then 0+0 18.333 1 Reject, non positive C2û

R to -+0 then -00 0.316 2 Reject, λ̂ ≤ λ

R to -0- then 00- −25.000 1 Reject, λ̂ ≤ λ

R to -0- then -00 5.429 3 Reject, λ̂ ≤ λ (this was an earlier step)
R to -0+ then 00+ 1.000 1 Reject, non positive C2û

R to -0+ then -00 −1.151 3 Reject, λ̂ ≤ λ
S from -00 to 000 14.000 1 Accepted move, end of path

Table 3: Lasso computations for the example of Section 3.4.
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Appendix 4 - Lasso R code and example

Four functions are used: lassoq is Algorithm 2; shrink is Algorithm 1, with the

crucial step 3 that implements Equation (10) in the line SMCXTY/SM1; pseudo does

S− of Theorem 2 and Lhat evaluates L̂C of Equation (9).

The code is provided without guarantee. We do not accept responsibility for

the accuracy of results nor for use or misuse of the code or results from it.

## Pseudoinverse of S=CX^TXC, with C a diagonal of {+-1,0} entries

pseudo<-function(XM,CM){ ## Define S, result SM, nonzero indices and invertible part of S

S<-CM%*%t(XM)%*%XM%*%CM; Sm<-S*0; nonzero<-diag(CM%*%CM)==1; LM<-S[nonzero,nonzero];

if(sum(nonzero)==0) LM<-0*LM else LM<-solve(LM) ## Inverse

Sm[nonzero,nonzero]<-LM; return(Sm) ## Substitute inverse in result SM and return

}

## Evaluation of the criterion L at C,\lambda

Lhat<-function(XM,YM,CM,lambda, SM=pseudo(XM,CM), CXTY=CM%*%t(XM)%*%YM)

-sum(SM)/2*lambda^2+ sum(SM%*%CXTY)*lambda+sum(YM^2)/2-t(CXTY)%*%SM%*%CXTY/2

## Compute all possible candidate shrinkage moves at orthant CM and \lambda = Lm

shrink<-function(XM,YM,CM,Lm,TOL=10){ ## Variables for results, S^-, S^-CXTY, S^- 1

ucc<-lambdacc<-result<-c(); SM<-pseudo(X=XM,C=CM); SMCXTY<-SM%*%CM%*%t(XM)%*%YM;

SM1<-apply(X=SM,MARGIN = 1,FUN=sum )

lambdacc<-round(SMCXTY/SM1,TOL); ## << Equation (9) to compute candidate lambda >>

for(lj in lambdacc) ucc<-cbind(ucc, round(SMCXTY-lj*SM1,TOL) ) ## The candidate \hat{u} solutions

### Filter results: clear NA, Inf, \beta<0, <=\lambda ; apply filter and adapt size

filtroc<-(!is.na(lambdacc)) & (!is.infinite(lambdacc)) & (apply(ucc>=0,2,prod)==1) & (lambdacc>Lm);

lambdacc<-lambdacc[filtroc]; ucc<-ucc[,filtroc]; if(length(ucc)==ncol(XM)) ucc<-matrix(ncol=1,ucc)

if(length(lambdacc)>=1) ## For valid lambda, compute \beta,L from every column \hat{u}

for(ik in 1:ncol(ucc))

result<-rbind(result, c(lambdacc[ik], CM%*%matrix(ncol=1,ucc[,ik]),

Lhat(XM=XM,YM=YM,CM=CM,lambda=lambdacc[ik]) ) ) ## {lambda,beta,L}

return(result)

}

## Lasso by orthants

lassoq<-function(XM,YM, TOL=10){ ## Initialization, beta_ols, matrix C

res<-c(); Lm<-0; p<-ncol(XM); Beta0<-lm(YM~XM-1); ## lambda, number of variables, Beta_ols

Cm<-diag(sign(round(Beta0$coefficients,TOL))); Cm[is.na(diag(Cm)),is.na(diag(Cm))]<-0

res<-c(Lm,Beta0$coefficients,sum(Beta0$residuals^2)/2) ## initial step (lambda=0, beta, L)

while(!identical(diag(Cm),rep(0,p))){ ###################### main loop

## candidates to shrink, reactivate, temporary results

jc<-(1:p)[diag(Cm%*%Cm)!=0]; jcc<-(1:p)[diag(Cm%*%Cm)==0]; cand<-c()
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if(length(jc)<p) ### If there are zeroes in C, first try to reactivate

for(kk in jcc) ## kk indexes which variable to reactivate

for(candvalue in c(-1,1)){ ## candvalue gives -+1 signs, pdate C' to reactivate

Cmc<-Cm; Cmc[kk,kk]<-candvalue; cand<-rbind(cand,shrink(XM = XM,YM = YM,CM = Cmc,Lm=Lm,TOL=TOL))

} ## end of -+1 loop, end of reactivate

## then perform shrinkage step

Cm->Cmc; cand<-rbind(cand,shrink(XM = XM,YM = YM,CM = Cmc,Lm=Lm,TOL=TOL))

## Using the reactivation/shrinkage results, select the next move

Ind<-which.min(cand[,1]); Lm<-cand[Ind,1] ## select smallest lambda, update Lm

res<-rbind(res, cand[Ind,] ); Cm <-diag(sign(cand[Ind,1+1:p])) ## update path, orthant

} #################### end of main loop

return(unname(res)); ## output is (lambda, beta, L)

}

As example of the lassoq code, we compute the path for data of Table 1(a) and

reproduce Table 2(a). The code needs preloading the functions of this Appendix.

X<-c(0,0,-1,1,-1,1,0,1,0,-1,-1,0,-1,0,0,-1,-1,1,0,1,-1,-1,-1,1,4,0,3,-3)

X<-matrix(X,byrow=TRUE,ncol=4); XM<-X[,-4]; YM<-matrix(ncol=1,X[,4])

lassoq(XM=XM,YM=YM) ## Columns are lambda, betas, L; each row a breakpoint

## [,1] [,2] [,3] [,4] [,5]

## [1,] 0.0000000 0.1142857 0.8714286 -1.1857143 0.8428571

## [2,] 0.1176471 0.0000000 0.7352941 -1.0294118 1.0743945

## [3,] 0.3333333 0.0000000 0.6666667 -1.0000000 1.4444444

## [4,] 1.4186047 -0.3720930 0.0000000 -0.3953488 2.7652785

## [5,] 5.4285714 -0.4285714 0.0000000 0.0000000 5.1632653

## [6,] 14.0000000 0.0000000 0.0000000 0.0000000 7.0000000

The function lassoqw is a simple adaptation of lassoq to perform adaptive

lasso. We perform the analysis of the same data with weights wi = 1/|β̂OLS
i |γ ,

where γ is fixed and β̂OLS
i is the i-th coefficient of the least squares fit to the data.

We give results below for γ = 0.25, 1.

37



lassoqw(XM=XM,YM=YM,adaptive = TRUE,gamma=0.25)

## [,1] [,2] [,3] [,4] [,5]

## [1,] 0.00000000 0.1142857 0.8714286 -1.1857143 0.8428571

## [2,] 0.09594963 0.0000000 0.7414637 -1.0325815 1.0352911

## [3,] 1.03873325 0.0000000 0.4342734 -0.9060934 2.4139669

## [4,] 2.07061914 -0.1135323 0.0000000 -0.6283158 3.0895394

## [5,] 3.05595699 0.0000000 0.0000000 -0.6726211 3.9085728

## [6,] 11.47856765 0.0000000 0.0000000 0.0000000 6.9904572

lassoqw(XM=XM,YM=YM,adaptive = TRUE,gamma=1)

## [,1] [,2] [,3] [,4] [,5]

## [1,] 0.00000000 0.1142857 0.8714286 -1.1857143 0.8428571

## [2,] 0.03374469 0.0000000 0.7608727 -1.0411072 0.9141630

## [3,] 2.19961666 0.0000000 0.0000000 -0.7620751 3.7633227

## [4,] 13.04285714 0.0000000 0.0000000 0.0000000 6.8261139

Appendix 5 - Elastic net R code and example

The code has the same structure of orthant lasso: Algorithm 2 is implemented

in main function elastiq. The shrinking step 3 of Algoritm 1 is the call to the

numerical solution of Equation (14), with two alternatives given: bisection and

secant implementations in bisect and secant. The rest of functions are pseudomu

and SM to compute S(λ)−; C2u for C2û of Equation (12) and Ehat to compute ÊC.

This code is provided without accepting any responsibility for its accuracy, use

or misuse of code or results.

## Pseudo inverse of CX^TXC + \mu C^2, here C is diagonal of {+-1,0} entries

pseudomu<-function(XM,CM,mu){

S<-CM%*%t(XM)%*%XM%*%CM + mu*CM%*%CM; Sm<-S*0 ## big matrix

nonzero<- diag(CM%*%CM)==1; LM<-S[nonzero,nonzero] ## invertible submatrix

if(sum(nonzero)==0) LM<-LM*0 else LM<-solve(LM)
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Sm[nonzero,nonzero]<-LM; return(Sm) ## Substitute inverse in result Sm and return

}

### Call to pseudomu() to compute generalized inverse S(lambda)^-

SM<-function(XM,CM,alpha=0.5,lambda) pseudomu(XM=XM,CM=CM,mu=lambda*(1-alpha))

## Evaluate C^2\hat{u}

C2u<-function(XM,YM,CM,alpha=0.5,lambda)

SM(XM=XM,CM=CM,alpha=alpha,lambda = lambda)%*%(CM%*%t(XM)%*%YM - alpha*lambda)

## Evaluation of criterion \hat E_C, i.e. value of E at \hat{beta}=CC^2\hat{u}=C\hat{u}

Ehat<-function(CM,XM,YM,lambda,alpha,betahat=CM%*%C2u(XM=XM,YM=YM,CM=CM,alpha=alpha,lambda=lambda))

sum((YM-XM%*%betahat)^2)/2+lambda*alpha*sum(t(betahat)%*%CM)+lambda*(1-alpha)*sum(betahat^2)/2

## Secant to solve Equation (12) for \lambda

secant<-function(XM,YM,CM,alpha=0.5,lambda=0,l1=1.01*lambda+0.01,lhigh=max(abs(t(XM)%*%YM))/alpha,

Nmax=15,TOL=6,ii=1){

i<-1; l0<-lambda; rango<-c(0, lhigh); FLAG<-TRUE; ## counter, lambda values and exit flag

while(FLAG){

lnew<-l1 - C2u(XM=XM,YM=YM,CM=CM,alpha=alpha,lambda = l1)[ii] * (l1-l0) /

( C2u(XM=XM,YM=YM,CM=CM,alpha=alpha,lambda = l1)[ii]-C2u(XM=XM,YM=YM,CM=CM,alpha=alpha,lambda = l0)[ii] )

l0<-l1; l1<-lnew; i<-i+1 ## update lambda values then exit conditions

if(i>Nmax) FLAG<-FALSE

if( abs(l0-l1)<10^-TOL ) FLAG<-FALSE

if( (abs(lnew)>10*max(rango))|| (lnew<0)){

FLAG<-FALSE; l1<-100*abs(lnew)

}

}

if( prod(round(C2u(XM=XM,YM=YM,CM=CM,alpha=alpha,lambda = l1),TOL)>=0 )==0) l1<--1 ## check C2u>0

return(l1)

}

## Bisection to solve Equation (12) for \lambda

bisect<-function(XM,YM,CM,alpha=0.5,lambda=0,llow=lambda,lhigh=max(abs(t(XM)%*%YM))/alpha,

Nmax=55,TOL=6,ii=1){ ## initial values

i<-1; FLAG<-TRUE ## index, exit flag

while(FLAG){ ## try and vtry are values of lambda and the respective ii-th coordinate of C2u

try<-c(llow,mean(c(llow,lhigh)),lhigh); vtry<-c();

for(l in try) vtry<-c(vtry, C2u(XM=XM,YM=YM,CM=CM,alpha=alpha,lambda = l)[ii])

vtry<-sign(vtry); i<-i+1; ## update index, lambdas to try then exit conditions

if( prod(vtry[1:2])==-1 ) lhigh<-try[2] else llow<-try[2]

if( abs(llow-lhigh)<10^-TOL ) FLAG<-FALSE

if(i>Nmax) FLAG<-FALSE

}

l1<-mean(try) ## Candidate lambda

if( prod(round(C2u(XM=XM,YM=YM,CM=CM,alpha=alpha,lambda = l1),TOL)>=0 )==0) l1<--1 ## check C2u>0
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return(l1)

}

## Elastic net by orthants

elastiq<-function(XM,YM,TOL=8,alpha=0.5){## Initialization

Beta0<-lm(YM~XM-1); Cm<-diag(sign(Beta0$coefficients)); p<-ncol(XM)

res<-matrix(nrow=1, round( c(0,Beta0$coefficients,Ehat(CM=Cm,XM=XM,YM=YM,lambda=0,alpha=alpha)) , TOL) )

while(!identical( diag(Cm),rep(x=0,times=p))){ ###### main loop

cand<-c()

for(i in 1:p){

if(Cm[i,i]==0){ ## first try to reactivate

for(k in c(-1,1)){

Cmc<-Cm; Cmc[i,i]<-k

for(j in (1:p)[diag(Cmc)!=0]){ ## shrink all coordinates in new orthant

##secant(XM=XM,YM=YM,CM=Cmc,alpha=alpha,ii=j,TOL=TOL)->lambdac ## uncomment one method

bisect(XM=XM,YM=YM,CM=Cmc,alpha=alpha,ii = j,llow = max(res[,1]),TOL=TOL)->lambdac ## uncomment one method

Cmc%*%C2u(XM=XM,YM=YM,CM=Cmc,alpha=alpha,lambda = lambdac)->betatemp

cand<-rbind(cand,c(lambdac,betatemp,Ehat(CM=Cmc,XM=XM,YM=YM,lambda=lambdac,alpha=alpha))) ## 1 reactivate

}

}

} else { ## then perform shrinkage moves

Cmc<-Cm; #Cmf[i,i]<-0; #Cmc[i,i]<-0;

##secant(XM=XM,YM=YM,CM=Cmc,alpha=alpha,ii=i,TOL=TOL)->lambdac ## uncomment one method

bisect(XM=XM,YM=YM,CM=Cmc,alpha=alpha,ii = i,llow = max(res[,1]),TOL=TOL)->lambdac ## uncomment one method

Cmc%*%C2u(XM=XM,YM=YM,CM=Cmc,alpha=alpha,lambda = lambdac)->betatemp

cand<-rbind(cand,c(lambdac,betatemp,Ehat(CM=Cmc,XM=XM,YM=YM,lambda=lambdac,alpha=alpha))) ## -1 shrink

}

}

cand<-round(cand,TOL); if(!is.matrix(cand)) cand<-matrix(nrow=1,cand)

## Remove $\lambda$ that repeat past steps then select smallest valid \lambda, update results and orthant

ff<-cand[,1]>max(res[,1])+10*10^-(TOL); cand<-cand[ff,]; if(!is.matrix(cand)) cand<-matrix(nrow=1,cand)

Ind<-which.min(cand[,1]); res<-rbind(res, cand[Ind,]); diag(Cm)<-sign(cand[Ind,1+1:p])

} ###### end of main loop

return(unname(res))

}
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The example uses elastiq with α = 0.5 for the data of Table 1(a). We use

the provided R functions, and XM and YM of Appendix 4 to reproduce Table 2(b).

We also give another case of elastic net for the same data and α = 0.9.

## Columns are lambda, betas, L; each row a breakpoint

elastiq(XM=XM,YM=YM,TOL=8)

## [,1] [,2] [,3] [,4] [,5]

## [1,] 0.0000000 0.1142857 0.8714286 -1.1857143 0.8428571

## [2,] 0.1459742 0.0000000 0.7315377 -1.0262653 1.0539203

## [3,] 0.2471659 0.0000000 0.7039861 -1.0132639 1.1811668

## [4,] 2.6872073 -0.3743399 0.0000000 -0.3589718 2.8979158

## [5,] 16.9614814 -0.1937892 0.0000000 0.0000000 6.4652136

## [6,] 28.0000000 0.0000000 0.0000000 0.0000000 7.0000000

elastiq(XM=XM,YM=YM,TOL=8,alpha=0.9)

## [,1] [,2] [,3] [,4] [,5]

## [1,] 0.0000000 0.1142857 0.8714286 -1.1857143 0.8428571

## [2,] 0.1223731 0.0000000 0.7346599 -1.0288828 1.0709295

## [3,] 0.3125817 0.0000000 0.6760267 -1.0032808 1.3801569

## [4,] 1.5631239 -0.3732292 0.0000000 -0.3900203 2.7791579

## [5,] 6.5623470 -0.3918375 0.0000000 0.0000000 5.4142556

## [6,] 15.5555555 0.0000000 0.0000000 0.0000000 7.0000000
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Appendix 6 - Additional figures
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Figure 7: Lasso criterion L for Example 1.
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Figure 8: (a) and (b) elastic net paths for synthetic data and α values 0.4
and 0.8, respectively. The horizontal shrinkage in the plots is the average of
L1 and L2 norms.
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Figure 9: Orthant excursion for the scaled diabetes data set, computed with
(a) the orthant method and (b) glmnet.
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Figure 10: Orthant excursion for simulated data with n = 55 observations
and p = 45 variables, computed with (a) the orthant method and (b) glmnet.
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