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Abstract—Most existing near-field (NF) source localization
algorithms are developed based on the Fresnel approximation
model, and assume that the spatial amplitudes of the target at
the sensors are equal. Unlike these algorithms, an NF source
parameter estimation algorithm is proposed, based on the exact
spatial propagation geometry model, for bistatic multiple-input
multiple-output (MIMO) radar deployed with a linear concen-
tered orthogonal loop and dipole (COLD) array at both the
transmitter and receiver. The proposed method first compresses
the output signal of the matched filter at the receiver into a
third-order parallel factor (PARAFAC) data model, on which
a trilinear decomposition is performed, and subsequently three
factor matrices can be obtained. Then, multiple parameters
of interest, including direction-of-departure (DOD), direction-of-
arrival (DOA), range from transmitter to target (RFTT), range
from target to receiver (RFTR), two-dimensional (2-D) transmit
polarization angle (TPA) and 2-D receive polarization angle (R-
PA), are estimated from the spatial amplitude ratio exploiting the
rotation invariant property and the Khatri-Rao product. Finally,
the phase uncertainties of transmit and receive arrays can be
extracted from additional phase items. The proposed algorithm
avoids spectrum peak search, and the estimated parameters in
closed forms can be automatically matched unambiguously. In
addition, it is suitable for non-uniform linear arrays (NLA) with
arbitrary array element spacing and phase uncertainty. Advan-
tages of the proposed method are demonstrated by simulation
results.

Index Terms—MIMO radar, Near-field, COLD array, parallel
factor, spatial amplitude ratio.

I. INTRODUCTION

Compared to the traditional phased array radar, multiple-
input multiple-output (MIMO) radar can achieve a significant-
ly improved performance by exploiting waveform diversity and
spatial diversity [1–3]. There are different designs for MIMO
radar depending on layouts of the transmit array and receive
array, and in this work, we focus on the bistatic MIMO radar.

Many methods have been proposed for target localization
and parameter estimation in bistatic MIMO radar. In [4],
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a reduced-dimension multiple signal classification (MUSIC)
algorithm was proposed to jointly estimate the direction of
departure (DOD) and direction of arrival (DOA) of the targets,
but it involves spectral peak search operations which are
computationally demanding. By making use of the rotation
invariant property, estimation of signal parameters via rota-
tional invariance technique (ESPRIT)-based algorithms were
presented to jointly estimate the transceiver angles [5, 6],
where no spectral peak search is required. In [7], a method
for joint estimation of DOD and DOA based on parallel factor
(PARAFAC) decomposition was proposed, in which automat-
ically paired DOAs and DOAs are achieved by exploiting the
strong algebraic structure of array measurements. However, all
the above algorithms assume that the targets are located in the
far-field (FF), and the impinging wavefront is planar.

When the target is located in the near-field (NF), the signal
wavefront becomes spherical and the range information of
the target should be considered. For NF source localization
with bistatic MIMO radar, a four-dimensional (4-D) parameter
estimation algorithm was proposed in [8] based on centro-
symmetric transmit and receive arrays, resorting to the idea
of rotation invariance. Further, a mixed-order statistics based
method was proposed in [9] to achieve joint estimation of
DOA, range and reflectivity for a symmetrical MIMO radar
system. However, both algorithms proposed in [8] and [9]
are based on the approximated model called Fresnel approx-
imation [10–12]. Although this approximation can simplify
the system model, it introduces systematic errors, resulting
in reduced estimation accuracy. Using the accurate spherical
wavefront model, tensor-based NF source localization algo-
rithms were proposed in [13] and [14], by extracting the
angle and range parameters from the estimates of the steering
matrices, with improved estimation accuracy as compared to
Fresnel approximation adopted in [8, 9]. In [15], the condi-
tional and unconditional Cramer-Rao bounds (CRBs) for NF
source parameter estimation are analyzed based on the exact
spherical wavefront model for bistatic MIMO radar systems.

The transmit and receive arrays of the MIMO radar system
considered above are scalar arrays, which only exploits the
spatial information of the FF or NF sources, ignoring the
polarization information of signals. On the contrary, vector
sensor arrays, such as the electromagnetic vector (EMV) array,
can provide not only the angle information of the source, but
also the polarization information. Therefore, various direction-
finding methods using EMV sensors (EMVS) have been
presented [16–20], bringing new insights into the parameter
estimation problem in MIMO radar. A two-dimensional (2D)
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DOA estimation method was proposed in [21] for a MIMO
radar system equipped with multiple EMV antennas and a
single EMV antenna in transmit and receive ends, respectively.
As a generalization of the EMVS-MIMO framework in [22],
multiple EMV antennas are arranged in both transmitters
and receivers, 2D DOD, DOA and associated polarization
parameters can be jointly estimated, followed by a pairing pro-
cedure. However, it requires eigenvalue decomposition (EVD)
and additional pairing operations with a high computational
cost, as demonstrated in [23]. Based on rotation invariance
and vector cross product, a joint estimation algorithm for
2D DOD/DOA and polarization parameters was proposed for
bistatic EMV-MIMO radar based on PARAFAC decomposition
[23], which has a more accurate estimation performance, but
with reduced complexity compared to [22]. To make full use of
spatial diversity of EMV’s components, a MIMO radar system
composed of spatially spread dipole quints was developed in
[24] to obtain the 2D-DOD/DOA and polarization parameters,
which is based on non-uniform linear arrays (NLAs) with a
spacing larger than half a wavelength, instead of uniform linear
arrays (ULAs) in [21–23].

However, the methods proposed in [21–24] are mainly
focused on FF sources, while existing NF MIMO radar
localization methods in [8, 9, 13, 14] ignore variation of the
received signal’s amplitude from sensor to sensor; as shown in
[25–30], the attenuation of the signal’s amplitude is inversely
proportional to the source-sensor distance. In addition, each
concentered orthogonal loop and dipole (COLD) antenna con-
sists of a pair of spatially co-located but orthogonal magnetic
loop and electric dipole [31]. By employing the COLD array,
a second-order statistics based near-field source parameter
estimation method was proposed in [32]. However, it requires
spectral peak search, leading to a high computational complex-
ity. Using the same array as in [32], a search-free algorithm
was presented in [33] based on an exact source-sensor spatial
propagation geometry. So far, to our best knowledge, no
research has been reported on near-field source parameter
estimation for bistatic MIMO radar composed of linear COLD
arrays at both the transmitter and receiver. To this end, in this
paper, an NF source parameter estimation method considering
amplitude attenuation is proposed for bistatic MIMO radar
composed of a linear COLD array at both the transmitter and
receiver. The following is a list of main contributions of the
work:

(1) An exact spatial propagation geometry model is adopted
in the proposed NF source localization method, which ef-
fectively avoids the systematic error caused by the Fresnel
approximation and the assumption that the spatial amplitude
distribution of the NF signals among different sensors is
uniform.

(2) The spatial amplitude ratio is utilized to estimate the pa-
rameters in the NF bistatic MIMO radar scenario with COLD
arrays, which imposes less restrictions on the configuration of
the transmit/receive array sensors; the closed-form estimation
results are achieved without spectrum peak search, and they
are automatically matched without phase ambiguities.

Notations: (·)−1, (·)T , (·)+ and (·)H represent inverse,
transpose, pseudo-inverse, and conjugate transpose, respective-

ly; Ip stands for the p×p identity matrix; ◦, ⊗, ⊙ and ⊕ are the
vector outer product, Kronecker product, Khatri-Rao product
and Hadamard product, respectively; 1p represents an all-one
p × 1 column vector; ∥·∥F is the Frobenius norm. abs {·},
angle {·}, Re {·}, diag {·}, vec {·} and unvec {·} denote the
operations of taking absolute value, phase, real part, diag-
onalization, vectorization and de-vectorization, respectively;
round {·} gives the nearest integer to its argument {·}.

II. SIGNAL MODEL
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Fig. 1. Geometry of the studied bistatic MIMO radar.
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Fig. 2. Illustration of receive polarization parameters [16].

Fig. 1 shows a bistatic MIMO radar system equipped
with NLAs of 2M + 1 and 2N + 1 COLD sensors at the
transmitter and the receiver, respectively. Assume that K
NF targets are located on the y − z plane, parameterized by
(θt1, θr1, rt1, rr1, γt1, γr1, ηt1, ηr1), · · · , (θtK , θrK , rtK , rrK ,
γtK , γrK , ηtK , ηrK), where θtk and θrk are the DOD and
DOA angles of the k-th target, rtk and rrk are the range from
the center of the transmitting array to the k-th target and the
range from the k-th target to the center of the receiving array,
γtk and γrk are the transmit and receive auxiliary polarization
angles, ηtk and ηrk are the transmit and receive polarization
phase differences. Taking the receive array as an example, the
geometric relationship and details of the auxiliary polarization
angles and polarization phase differences are illustrated in
Fig. 2.

Note that the target-to-sensor range varies from sensor to
sensor, and thus the range between the k-th target and the
m-th transmit and n-th receive sensor is denoted as rm,tk

and rn,rk, respectively, for m = −M, · · · , 0, · · · ,M , and
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n = −N, · · · , 0, · · · , N . Considering the centers of the
transmit and receive arrays to be the amplitude and phase
reference points, we have r0,tk = rtk and r0,rk = rrk. Based
on the geometric relationship in Fig. 1, rm,tk and rn,rk can
be expressed as

rm,tk =
√

r2tk + d2m,t − 2rtkdm,t sin (θtk) (1)

rn,rk =
√
r2rk + d2n,r − 2rrkdn,r sin (θrk) (2)

where dm,t and dn,r represent the range between the m-th
transmit sensor and the reference transmit sensor, and the
range between the n-th receiver sensor and the reference
receive sensor, respectively.

Based on the exact target-array propagation geometry, the
spatial amplitude-phase factors between the k-th target and the
m-th transmit and n-th receive sensor can be expressed as [33]

am,tk (θtk, rtk) = bm,tke
j(δm,tk+εm,t)

= rtk
rm,tk

e
j
[
2π
λ (rtk−rm,tk)+εm,t

] (3)

an,rk (θrk, rrk) = bn,rke
j(δn,rk+εn,r)

= rrk
rn,rk

e
j
[
2π
λ (rrk−rn,rk)+εn,r

] (4)

where εm,t and εn,r are the additional phase factors repre-
senting unknown phase uncertainty of the m-th transmit and
n-th receive sensor, respectively, uniformly distributed in the
range of [0, 2π]; bm,tk = rtk

rm,tk
and bn,rk = rrk

rn,rk
represent

the spatial magnitude attenuation; δm,tk and δn,rk denote the
spatial phase factor due to the propagation delay, and λ is the
wavelength of the signals.

Denote the signals transmitted by the transmit array in
each pulse period as S = [sT−M , · · · , sT−1, sT0 , sT1 , · · · , sTM ] ∈
C2(2M+1)×Q, where Q is the number of codes, sm =
[sm,1, sm,2]

T , and they are received by the receive array after
being reflected by the targets. Due to orthogonality of the
transmitted signals [7], we have

sHm,ism′,j =

{
Q,m = m′ & i = j

0, otherwise
(5)

for m,m′ = −M, · · · ,M and i, j = 1, 2. With a non-
dispersive propagation environment [7], the received signal
matrix at the l-th snapshot can be expressed as

X(l) = Qr(θr, rr, γr, ηr)diag{b(l)}QT
t (θt, rt, γt, ηt)S +W(l),

(6)
where b(l) = [b

(l)
1 , b

(l)
2 , · · · , b(l)K ] contains the reflection coef-

ficients including the Doppler effect and radar cross section
(RCS) fading loss. For the Swerling II target model [7, 34], the
reflection coefficient of the k-th target at the l-th pulse index
can be expressed by b

(l)
k = β

(l)
k ej(l−1)fk , with β

(l)
k being RCS

coefficient varying independently from pulse to pulse and fk
being the Doppler frequency of the k-th target. W(l) is the
white Gaussian noise matrix with zero mean and variance σ2

w.

Qt(θt, rt, γt, ηt) = [qt(θt1, rt1, γt1, ηt1), qt(θt2, rt2, γt2, ηt2),

· · · , qt(θtK , rtK , γtK , ηtK)]
(7)

Qr(θr, rr, γr, ηr) = [qr(θr1, rr1, γr1, ηr1), qr(θr2, rr2, γr2, ηr2),

· · · , qr(θrK , rrK , γrK , ηrK)]
(8)

are the steering matrices of the transmit and receive arrays,
respectively, where the steering vector of the transmit array
for the k-th target is

qt(θtk, rtk, γtk, ηtk) = atk(θtk, rtk)⊗ vtk(γtk, ηtk) (9)

with atk(θtk, rtk) = [a−M,tk(θtk, rtk), · · · a0,tk(θtk, rtk), · · · ,
aM,tk(θtk, rtk)] being the k-th angle-range-related steering
vector at the transmit end, and vtk(γtk, ηtk) being the k-th
polarization vector, denoted as [23]

vtk(γtk, ηtk) =

(
sin γtke

jηtk

cos γtk

)
(10)

Similarly, the steering vector at the receive end for the k-th
target is

qr(θrk, rrk, γrk, ηrk) = ark(θrk, rrk)⊗ vrk(γrk, ηrk), (11)

where ark(θrk, rrk) = [a−N,rk(θrk, rrk), · · · a0,rk(θrk, rrk),
· · · , aN,rk(θrk, rrk)] is the k-th angle-range-related steering
vector and vrk(γrk, ηrk) is the k-th polarization vector, de-
noted as [23]

vrk(γrk, ηrk) =

(
sin γrke

jηrk

cos γrk

)
(12)

After matched filtering (i.e., right-multiplying X(l) by
1
QSH ), the output vector can be written as

Y(l) = Qr(θr, rr, γr, ηr)diag{b(l)}QT
t (θt, rt, γt, ηt) + N(l)

(13)
where N(l) = 1

QW(l)SH is the new noise vector after matched
filtering.

Performing a vectorization operation on Eq. (13), and taking
L snapshots into account, Eq. (13) can be written as

Y = (Qt(θt, rt, γt, ηt)⊙ Qr(θr, rr, γr, ηr))B + N, (14)

where Qt(θt, rt, γt, ηt) = At(θt, rt) ⊙
Vt(γt, ηt), Qr(θr, rr, γr, ηr) = Ar(θr, rr) ⊙
Vr(γr, ηr),Y = [vec(Y(1)), vec(Y(2)), · · · , vec(Y(L))],
B = [b(1), b(2), · · · , b(L)], N =
[vec(N(1)), vec(N(2)), · · · , vec(N(L))].

III. THE PROPOSED ALGORITHM

A. Trilinear decomposition

According to Eq. (14), Y can be rearranged into a fifth-order
tensor as follows

Y =
K∑

k=1

at ◦ vt ◦ ar ◦ vr ◦ b + Ñ

=G5,K×1At×2Vt×3Ar×4Vr×5B + Ñ
(15)

where G5,K×1 is a K ×K ×K ×K ×K identity tensor, i.e.,
its (k, k, k, k, k)-th element is one, and zeros elsewhere. Ñ is
the tensor form of N.

Then, in order to obtain estimates of multiple factor matrices
in Eq. (15), a direct method is to exploit the pentalinear
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alternating least squares (ALS) technique [35], which tries to
optimize

min
At,Vt,Ar,Vr,B

∥Y − G5,K×1At×2Vt×3Ar×4Vr×5B∥F (16)

However, ALS suffers from a slow convergence speed, so
the COMplex parallel FACtor analysis (COMFAC) algorithm
is employed to speed up the process in this work [36].
Further, in order to apply the COMFAC algorithm, we need
to compress Y into a third-order tensor Z .

Definition 1 (Generalized Tensorization of a PARAFAC
model [23]): For an N th-order tensor R with rank-K, given
by R = GN,K×1(A1)×2(A2)×3 · · · (AN−1)×N (AN ), let the
order sets Qj = {oj,1, oj,2, · · · , oj,M} for j = 1, 2, · · · , J be
a partition of the dimensions Q = {1, 2, · · · , N}, and then
the generalized tensorization of R is denoted by a new tensor
RQ1,Q2,··· ,QJ

with

RQ1,Q2,··· ,QJ = GN,×1(B1)×2(B2)×3 · · · (BJ−1)×J (BJ)
(17)

where BJ = Aoj,1 ⊙ Aoj,2 ⊙ Ao,Mj .
According to Definition 1, with O1 = {1, 2},O2 = {3, 4},

and O3 = {5} , Y can be rearranged into a third-order tensor
as follows

Z = G3,K×1Qt×2Qr×3B +N , (18)

where G3,K×1 is a K ×K ×K identity tensor, and N is the
corresponding tensor form.

Definition 2 (PARAFAC decomposition [23]): For an N th-
order model of Definition 1, it can be expressed in a matrix
form as

[R]n = An[AN ⊙ · · ·An+1 ⊙ An−1 · · ·A1]
T (19)

Taking a third-order tensor R ∈ CI×J×K in N factors as
an example, its PARAFAC decomposition can be represented
in Fig. 3.
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Fig. 3. Schematic representation of PARAFAC decomposition.

Then, according to Definition 2, Z can be unfolded in
matrix form as

[Z](1) = (Qr ⊙ B)QT
t (20)

[Z](2) = (B ⊙ Qt)Q
T
r (21)

[Z](3) = (Qt ⊙ Qr)B
T . (22)

Let Ẑ represent the estimate of Z , and define Ẑn =
[Ẑ](n), (n = 1, 2, 3). The factor matrices Qt,Qr,B can be
obtained by the following joint optimizations

min
Qt,Qr,B

∥ Ẑ1 − (Qr ⊙ B)QT
t ∥F (23)

min
Qt,Qr,B

∥ Ẑ2 − (B ⊙ Qt)Q
T
r ∥F (24)

min
Qt,Qr,B

∥ Ẑ3 − (Qt ⊙ Qr)B
T ∥F . (25)

The optimization problem of Eqs. (23)-(25) is generally
solved through the trilinear alternating least squares (TALS)
method [37], the basic idea of which is to assume that any two
of Qt,Qr and B are known during each iteration process, and
then update the remaining one based on the least squares (LS)
method until the algorithm converges. Therefore, according to
Eq. (23), if Qr and B are known, the LS update of Qt can be
represented as

Q̂
T

t = (Qr ⊙ B)+Ẑ1 (26)

Likewise, according to Eq. (24), if B and Qt are obtained,
the LS update of Qr can be denoted as

Q̂
T

r = (B ⊙ Qt)
+Ẑ2 (27)

Similarly, according to Eq. (25), if Qt and Qr are known,
the LS solution of B is updated as

B̂
T
= (Qt ⊙ Qr)

+Ẑ3. (28)

In the TALS method, Qt, Qr and B are updated sequentially
according to Eqs. (26)-(28), and the process is repeated until
convergence. Finally, the estimates of Qt, Qr and B can be
obtained. Since the convergence speed of TALS is slow, the
COMFAC algorithm is employed to speed up the process in
this work [36].

Let the Kruskal ranks of Qt, Qr and B be kQt
, kQr

, and
kB, respectively. According to the Kruskal’s theorem [7, 23],
if

kQt
+ kQr

+ kB ≥ 2K + 3, (29)

then the estimates of Q̂t, Q̂r and B̂ are unique up to some
permutation and scaling of the columns. In other words, the
estimates of Q̂t, Q̂r and B̂ satisfy

Q̂t = QtΠ∆1 + N1 (30)

Q̂r = QrΠ∆2 + N2 (31)

B̂ = BΠ∆3 + N3 (32)

where Π is a permutation matrix, ∆1, ∆2 and ∆3 represent
scaling effects, which are K×K real-valued diagonal matrices,
satisfying ∆1∆2∆3 = IK , and N1, N2 and N3 are the fitting
error matrices.
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B. DOD and TPA Estimation

To proceed, construct the following transformation matrix

Ct =



1 0

1 0

. . .

1 0

0 1

0 1

. . .

0 1


︸ ︷︷ ︸

2M+1

 2M + 1

 2M + 1

. (33)

Then, ignoring the error term in Eq. (30), we can obtain

CtQ̂t ≈ CtQtΠ∆1. (34)

Since Qt = At ⊙ Vt, Eq. (34) can be rewritten as

CtQ̂t ≈

(
AtΦt1

AtΦt2

)
Π∆1, (35)

where Φt1 = diag(sin γt1e
jηt1 , · · · , sin γtKejηtK ), Φt2 =

diag(cos γt1, · · · , cos γtK),. Let Dt1 = AtΦt1Π∆1 and
Dt2 = AtΦt2Π∆1 with Π∆1 = ∆1Π

−1 [23], and we have

D+
t1Dt2 = Π(Φ−1

t1 Φt2)Π
−1 (36)

where Φ−1
t1 Φt2 = diag(cot γt1e

−jηt1 , · · · , cot γtKe−jηtK ).
Perform eigenvalue decomposition on D+

t1Dt2 to obtain its
eigenvalues as Ψ = diag(τt1, · · · τtK), and the corresponding
eigenvectors as P = [ot1, · · · , otK ]. As a result, the transmit
polarization parameters can be estimated through

η̂tk = −angle(τtk) (37)

γ̂tk = cot−1(abs(τtk)). (38)

The estimate of the permutation matrix Π can be expressed
as

Π̂ = round{Re(P)}. (39)

With the estimates of ηtk and γtk, we can calculate the
estimate of vtk via

v̂tk =

(
sin γ̂tke

jη̂tk

cos γ̂tk

)
(40)

Since Qt = [qt1, · · · , qtK ] = At ⊙ Vt =
[vec(vt1aTt1), · · · , vec(vtKaTtK)], atk can be estimated as

âtk = [v̂+tkunvec(q̂tk)]
T . (41)

Note that âtk is correct up to an unknown complex-valued
scalar, and thus the scaling ambiguity of the estimate âtk
can be easily solved by the normalization operation, i.e.,
normalizing each element âm,tk(m ̸= 0) in âtk with respect
to the reference element â0,tk. Then, for any m ̸= 0, we can
obtain

b̂m,tk =
r̂tk
r̂m,tk

=
r̂tk√

r̂2tk + d2m,t − 2r̂tkdm,t sin(θ̂tk)
. (42)

Rearranging Eq. (42), we have

(1− b̂2m,tk)r̂
2
tk + 2b̂2m,tkdm,tr̂tk sin(θ̂tk) = b̂2m,tkd

2
m,t. (43)

This is an overdetermined system of linear equations in
r̂2tk and r̂tk sin(θ̂tk), which can be solved by the total least
squares method. Let [v1k, v2k, v3k] denote the right singular
vector corresponding to the smallest singular value of the
coefficient matrix of the overdetermined system of equations
in (43) with m = −M, · · · − 1, 1, · · · ,M . Then, rtk and θtk
can be estimated via

r̂tk = sqrt(v1k/v3k) (44)

θ̂tk = sin−1(v2k/r̂tk). (45)

C. DOA and RPA Estimation

Similar to Eq. (33), let

Cr =



1 0

1 0

. . .

1 0

0 1

0 1

. . .

0 1


︸ ︷︷ ︸

2N+1

 2N + 1

 2N + 1

. (46)

Then, ignoring the error term in Eq. (31), we have

CrQ̂r ≈ CrQrΠ∆2. (47)

With Qr = Ar ⊙ Vr, we further have

CrQ̂r ≈

(
ArΦr1

ArΦr2,

)
Π∆2 (48)

where Φr1 = diag(sin γr1e
jηr1 , · · · , sin γrKejηrK ), and

Φr2 = diag(cos γr1, · · · , cos γrK).
Let Dr1 = ArΦr1Π∆2 and Dr2 = ArΦr2Π∆2, and then,

D+
r1Dr2 = Π(Φ−1

r1 Φr2)Π
−1, (49)

where Φ−1
r1 Φr2 = diag(cot γr1e

−jηr1 , · · · , cot γrKe−jηrK ).
From Eq. (36) and Eq. (49), it can be seen that D+

t1Dt2 and
D+

r1Dr2 have the same eigenvectors Π. Thus, the estimate of
Φ−1

r1 Φr2 can be directly obtained as

T = Π̂−1D+
r1Dr2Π̂. (50)

Then, the receive polarization parameters can be estimated
via

η̂rk = −angle(T(k)) (51)

γ̂rk = cot−1(abs(T(k)). (52)

Performing operations similar to Eqs. (39)-(45), finally we
obtain the estimates r̂rk and θ̂rk.
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D. Unknown Phase Uncertainty Estimation

As mentioned before, only the spatial amplitude ratio of
the array steering vector is exploited for the angle and range
parameters in both transmit and receive arrays, not the phase,
which is subject to additional unknown phase uncertainty. With
the estimates r̂tk, θ̂tk, r̂rk and θ̂rk, the array steering vectors
without phase error can be reconstructed. By denoting the
phase errors of transmitter and receiver as εm,t and εn,t, we
can estimate εm,t and εn,t through the follow phase-taking
and averaging operations,

ε̂m,t =
1

K

K∑
k=1

angle

 âm,tk (θtk, rtk)

ām,tk

(
θ̂tk, r̂tk

)
 (53)

and

ε̂n,r =
1

K

K∑
k=1

angle

 ân,rk (θrk, rrk)

ān,rk

(
θ̂rk, r̂rk

)
 (54)

where ām,tk

(
θ̂tk, r̂tk

)
= r̂tk

r̂m,tk
e
j
[
2π
λ (r̂tk−r̂m,tk)

]
and

ān,rk

(
θ̂rk, r̂rk

)
= r̂rk

r̂n,rk
e
j
[
2π
λ (r̂rk−r̂n,rk)

]
.

Remark 1: The motivation for using the amplitude infor-
mation is that, as pointed out in [25], amplitude attenuation
cannot be ignored for the NF propagation model. As amplitude
attenuation is related to both angle and range parameters, it
provides useful information for parameter estimation usually
achieved from spatial phase information. In addition, due to
the existence of phase error in the signal model, it is difficult
to estimate DOD, DOA, RFTT, and RFTR from the spatial
phase information directly. Therefore, in this work, the spatial
amplitude information is exploited to obtain the estimates
of DOD, DOA, RFTT, and RFTR, while the spatial phase
information is exploited for estimation of phase errors.

IV. ALGORITHM ANALYSIS

A. Cramer-Rao bound (CRB)

In this section, the deterministic Cramer-Rao bound (CRB)
is derived for the studied bistatic MIMO system in which
both the transmitter and the receiver are equipped with COLD
sensor arrays.

First, define a real-valued vector of unknown parameter-
s as Θ = [θT

t ,θ
T
r , rTt , rTr ,γT

t ,γ
T
r ,η

T
t ,η

T
r ]

T with θt =
[θt1, θt2, · · · , θtK ]T , θr = [θr1, θr2, · · · , θrK ]T , rt =
[rt1, rt2, · · · , rtK ]T , rr = [rr1, rr2, · · · , rrK ]T , γt =
[γt1, γt2, · · · , γtK ]T , γr = [γr1, γr2, · · · , γrK ]T , ηt =
[ηt1, ηt2, · · · , ηtK ]T and ηr = [ηr1, ηr2, · · · , ηrK ]T . Then, the
(p, q)th entry of the 8K×8K CRB matrix for the parameters
in Θ is given by

[CRB−1(Θ)]p,q =
2L

σ2
n

Re

{
∂QH

∂Θp
P⊥

Q
∂Q
∂Θq

RB

}
, (55)

where Q = Qt⊙Qr, P⊥
D = I4(2M+1)(2N+1)−Q(QHQ)−1QH ,

and RB = 1
LBHB.

Define

Q̃ = [Qθt ,Qθr ,Qrt ,Qrr ,Qγt
,Qγr

,Qηt
,Qηr

] (56)

with Qθt =
[

∂Q
∂θt1

, · · · , ∂Q
∂θtK

]
, Qθr =

[
∂Q
∂θr1

, · · · , ∂Q
∂θrK

]
,

Qrt =
[

∂Q
∂rt1

, · · · , ∂Q
∂rtK

]
, Qrr =

[
∂Q
∂rr1

, · · · , ∂Q
∂rrK

]
,

Qγt
=
[

∂Q
∂γt1

, · · · , ∂Q
∂γtK

]
, Qγr

=
[

∂Q
∂γr1

, · · · , ∂Q
∂γrK

]
, Qηt

=[
∂Q
∂ηt1

, · · · , ∂Q
∂ηtK

]
and Qηr

=
[

∂Q
∂ηr1

, · · · , ∂Q
∂ηrK

]
. After a series

of simplifications, the closed-form expression for the CRB is
given by

CRB(Θ) =
σ2
n

2L

{
Re
[(

Q̃
H

P⊥
Q Q̃
)
⊕
(

18 ⊗ 1T8 ⊗ RT
B

)]}−1

(57)

B. The maximum number of identifiable targets

Assume that the maximum number of identifiable targets is
K. The value of K depends on the condition of the uniqueness
of the PARAFAC decomposition, which can be determined
by the Kruskal’s theorem. It can be found that max(kQt

) =
2(2M + 1), max(kQr

) = 2(2N + 1), and max{kB} = L. As
a result, the value of K can be obtained as

K =
2(2M + 1) + 2(2N + 1) + L− 3

2
. (58)

Besides, the value of K relies also on the rotation invariant
relationship in Eq. (36) and Eq. (49), satisfying the following
constraints {

K ≤ 2M + 1

K ≤ 2N + 1
. (59)

According to Eq. (58) and Eq. (59), if M > N , then K =
2N + 1; if M < N , K = 2M + 1. Therefore, the maximum
number of identifiable targets is

K = min{2M + 1, 2N + 1}. (60)

C. Computational Complexity

In this subsection, the computational complexity of the
proposed method is analyzed by considering the number
of multiplications required in PARAFAC decomposition and
eigenvalue decomposition. Specifically, we analyze the follow-
ing major computations:

(1) Q̂t, Q̂r and B̂ can be obtained via PARAFAC decom-
position.

(2) Construct Ct, get D+
t1Dt2, and then perform eigenvalue

decomposition to it.
(3) Construct Cr to get D+

r1Dr2, and then obtain T via Eq.
(50).

The required number of multiplications for PARAFAC de-
composition is 2(2M + 1)K2 + 2(2N + 1)K2 + LK2. The
number of multiplication operations involved in the eigen-
value decomposition of D+

t1Dt2 is 2K(2M + 1)2 + (2M +
1)K2 + K3. Besides, the number of multiplications needed
in eigenvalue decomposition of D+

r1Dr2 and calculating T is
2K(2N + 1)2 +K2(2N + 1) + 2K3.
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Fig. 4. Scatter results of the proposed method.

V. SIMULATION RESULTS

In this section, we evaluate the performance of the proposed
method by Monte Carlo simulations. Unless otherwise stated,
the number of snapshots is set to 1000. The following scenar-
ios are considered:

Scenario 1: K = 5, with their pa-
rameters (θtk, θrk, rtk, rrk, γtk, γrk, ηtk, ηrk)
being

(
30◦, 50◦, 2

√
3λ, 2λ, 5◦, 15◦, 10◦, 10◦

)
,(

80◦, 50◦, 2
√
2λ, 2

√
2λ, 10◦, 20◦, 15◦, 25◦

)
,

(50◦, 60◦, 2λ, 1.8λ, 15◦, 25◦, 20◦, 30◦),
(20◦, 30◦, 3λ, 2.5λ, 20◦, 30◦, 25◦, 35◦) and
(10◦, 15◦, 2.5λ, 3.5λ, 25◦, 35◦, 30◦, 40◦). M = N = 2,
with dt = [−0.8,−0.3, 0, 0.3, 0.8]λ, dr =
[−0.8,−0.3, 0, 0.3, 0.8]λ, εm,t = [40◦,−20◦, 0◦, 60◦, 80◦],
εn,r = [30◦,−10◦, 0◦, 20◦, 50◦].

Scenario 2: K = 2, with their param-
eters (θtk, θrk, rtk, rrk, γtk, γrk, ηtk, ηrk) being
(30◦, 60◦, 2

√
3λ, 3.5λ, 10◦, 42◦, 50◦, 17◦) and

(45◦, 45◦, 4λ, 4λ, 22◦, 33◦, 55◦, 28◦). M = N = 4,
with dt = [−1.5,−1.2,−0.8,−0.3, 0, 0.3, 0.8, 1.2, 1.5]λ,
dr = [−1,−0.8,−0.5,−0.3, 0, 0.3, 0.5, 0.8, 1]λ,
εm,t = [10◦, 30◦, 40◦,−20◦, 0◦, 60◦, 80◦, 25◦, 55◦],
εn,r = [5◦,−60◦, 30◦,−10◦, 0◦, 20◦, 50◦, 22◦, 56◦].

Scenario 3: K = 2, with their param-
eters (θtk, θrk, rtk, rrk, γtk, γrk, ηtk, ηrk) be-
ing (60◦, 30◦, 2λ, 2

√
3λ, 10◦, 42◦, 50◦, 17◦) and

(45◦, 45◦, 3λ, 3λ, 22◦, 33◦, 55◦, 28◦). M = N = 4, with
dt = [−1,−0.75,−0.5,−0.25, 0, 0.25, 0.5, 0.75, 1]λ,
dr = [−1,−0.75,−0.5,−0.25, 0, 0.25, 0.5, 0.75, 1]λ,
εm,t = [10◦, 30◦, 40◦,−20◦, 0◦, 60◦, 80◦, 25◦, 55◦],
εn,r = [5◦,−60◦, 30◦,−10◦, 0◦, 20◦, 50◦, 22◦, 56◦].
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Fig. 5. Scatter results of sensor phase uncertainties.

Scenario 4: K = 2, with their param-

eters (θtk, θrk, rtk, rrk, γtk, γrk, ηtk, ηrk) be-
ing (60◦, 30◦, 2λ, 2

√
3λ, 10◦, 42◦, 50◦, 17◦) and

(45◦, 45◦, 3λ, 3λ, 22◦, 33◦, 55◦, 28◦). N = 4 with
dr = [−1,−0.75,−0.5,−0.25, 0, 0.25, 0.5, 0.75, 1]λ
and εn,r = [5◦,−60◦, 30◦,−10◦, 0◦, 20◦, 50◦, 22◦, 56◦].
Set two cases for the number of transmit elements for
comparison: M = 2 with dt = [−1,−0.5, 0, 0.5, 1]λ
and εm,t = [40◦,−20◦, 0◦, 60◦, 80◦]; M = 4 with
dt = [−1,−0.75,−0.5,−0.25, 0, 0.25, 0.5, 0.75, 1]λ and
εm,t = [10◦, 30◦, 40◦,−20◦, 0◦, 60◦, 80◦, 25◦, 55◦].

According to the previous analysis, the maximum number of
identifiable targets is the same as the number of transmit array
antennas or receive array antennas. Therefore, the number of
targets is set to be equal to the number of transmit/ receive
array antennas in Scenario 1. Then, in order to demonstrate
the applicability of the proposed method to non-uniform linear
arrays, the transmit/ receive arrays are set to be non-uniform
linear arrays in Scenario 2. Since Singh’s method is only
suitable for ULAs with restrictions on inter-element spacing,
ULA is considered in Scenario 3. Finally, to evaluate the
performance of the proposed method under different number
of transmit antennas, two numbers of transmit antennas are set
in Scenario 4.

Simulation 1: In the first simulation, to demonstrate the
maximum number of identifiable targets by the proposed
method, Fig. 4 provides some estimation results through 50
Monte-Carlo trials, where the signal-to-noise ratio (SNR) is
set to 40dB, the number of snapshots is set to 50000, and
Scenario 1 is considered. It can be observed that, when both
the transmit array and the receive array have 5 antennas, the
proposed method can effectively identify 5 targets, which is in
accordance with the analysis in part B of Sec. IV, and the eight-
dimensional (8-D) parameters can be automatically paired. In
addition, Fig. 5 shows the proposed method can accurately
estimate the sensors’ unknown phase uncertainties.

In the following simulations, the estimation performance is
evaluated through the root-mean-square error (RMSE) defined
as follows

RMSE =

√√√√ 1

500K

K∑
k=1

500∑
p=1

(ϑ̂p,k − ϑk)
2
, (61)

where ϑ̂p,k represents the estimates of the parameters
θtk, θrk, rtk, rrk, γtk, γrk, ηtk, and ηrk at the p-th Monte-Carlo
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Fig. 6. Estimation performance comparison versus SNR.

0 10 20 30 40
SNR(dB)

10-4

10-2

100

R
M

S
E

(d
e

g
re

e
)

Angle estimation

RMSE-d: L=100
RMSE-d: L=500
RMSE-d: L=1000
CRB-d: L=100
CRB-d: L=500
CRB-d: L=1000

(a) Angle estimation.

0 10 20 30 40
SNR(dB)

10-4

10-3

10-2

10-1

100
R

M
S

E
(

)
Range estimation

RMSE-r: L=100
RMSE-r: L=500
RMSE-r: L=1000
CRB-r: L=100
CRB-r: L=500
CRB-r: L=1000

(b) Range estimation.

0 10 20 30 40
SNR(dB)

10-2

100

R
M

S
E

(d
e

g
re

e
)

Polarization estimation
RMSE-p: L=100
RMSE-p: L=500
RMSE-p: L=1000
CRB-p: L=100
CRB-p: L=500
CRB-p: L=1000

(c) Polarization estimation.

Fig. 7. RMSE results of the proposed method under different numbers of snapshots.
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Fig. 8. RMSE results of the proposed method under different transmit element spacings.
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Fig. 9. RMSE results of the proposed method under different numbers of transmit elements.
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trial, while ϑk denotes the true value, and the results are
obtained based on 500 Monte-Carlo trials.

Simulation 2: In the second simulation, the estimation
performance of the proposed method is compared to that of
Singh’s method [13] and He’s method [33], and the CRB
is provided as a benchmark. Since Singh’s method is only
suitable for ULAs with restrictions on inter-element spacing,
Scenario 3 is considered in this simulation. Figs. 6 (a) and
(b) illustrate the DOD/DOA and range’s estimation result with
SNR varying from 0dB to 40dB. As can be seen, the RMSE
results of the proposed method decrease significantly with
the increase of SNR, while that of the Singh’s method stays
almost the same with the increase of SNR due to model
mismatch errors in the method, i.e., ignoring propagation
loss. In addition, it can be seen from Figs. 6 (a), (b) and
(c) that the proposed method is more effective than He’s
method. The reason for a better angle and range estimation
performance by the proposed method is that the proposed one
utilizes all elements of the transmit/receive arrays, while He’s
method only utilizes any two elements of the transmit/receive
arrays. As for polarization parameter estimation, the estimation
performance by employing the PARAFAC method is better
than that of the subspace method, which makes fully use of
advantages of the PARAFAC model, such as suppressing noise
of a strong multi-dimensional nature in array measurements,
etc., as indicated in [23]. The estimation performance of phase
errors is also examined, and as shown in Fig. 6 (d), the
corresponding RMSE decreases as SNR increases.

Simulation 3: In this simulation, performance of the pro-
posed method is examined under different numbers of snap-
shots (L), where Scenario 2 is considered. It can be observed
from Fig. 7 that the estimation accuracy of angle, range and
polarization parameters by the proposed method is the worst
for a small number of snapshots L=100. As the number of
snapshots increases from L=500 to L=1000, the performance
for all parameters improves, as an increasing L provides more
time diversity gain.

Simulation 4: In this simulation, the effect of dif-
ferent transmit array element spacings is studied, where
Scenario 3 is considered with additional transmit ar-
ray element spacing λ/2 for comparison, that is dt =
[−2,−1.5,−1,−0.5, 0, 0.5, 1, 1.5, 2]λ. Fig. 8 presents the an-
gle, range and polarization estimation results with different
transmit array element spacings. It can be clearly seen that the
estimation error of angle and range parameters obtained by the
proposed method decreases with the increase of the transmit
array element spacing, which expands the array aperture.
At the same time, it can be observed from Fig. 8 (c) that
the performance of polarization estimation remains almost
unchanged with increasing transmit array element spacing,
which is in consistent with the observation in [33]. In addition,
the proposed method has no ambiguity problem with the
transmit sensor spacing as large as half wavelength, as only the
spatial amplitude ratio is exploited to obtain all the parameters.
And the same conclusion can be drawn for different receive
array element spacings.

Simulation 5: The performance versus number of transmit
antennas is shown in Fig. 9, where Scenario 4 is considered.

It can be seen that when the number of receive array antennas
is the same, the estimation error, related to angle, range
and polarization parameters, respectively, decreases with the
increase of the number of transmit antennas, which improves
the space diversity gain for the MIMO system. The same
conclusion can be drawn for different numbers of receive
antennas, given a fixed number of transmit array antennas.

VI. CONCLUSION

In this paper, a novel estimation algorithm has been pro-
posed for a bistatic MIMO system considering the exact spatial
propagation model, where both the transmitter and the receiver
are equipped with COLD arrays to achieve estimation of
parameters including DOD, DOA, RFTT, RFTR, TPA, RPA,
and phase uncertainties of the transmit and receive arrays. The
8-D parameters are automatically paired and accurately esti-
mated through trilinear decomposition. Besides, the proposed
algorithm is suitable for NULAs, and the element spacing does
not need to be limited to a quarter or half wavelength as in
many cases of traditional methods.
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