1	Association of longer leukocyte telomere length with cardiac size, function, and
2	heart failure
3	Nay Aung, MBBS, PhD ^{a,b,c} , Qingning Wang, PhD ^{d,e} , Stefan van Duijvenboden, PhD ^{a,b,f} ,
4	Richard Burns, MSc ^g , Svetlana Stoma, PhD ^d , Zahra Raisi-Estabragh, MBBS, PhD ^{a,b,c} , Selda
5	Ahmet, MSc, MBBS, MRCP ^c , Elias Allara, MD, PhD ^{h,i,j} , Angela Wood, PhD ^{h,i,j,k,l,m} ,
6	Emanuele Di Angelantonio, FMedSci ^{h,i,j,k,l,n} , John Danesh, FMedSci ^{h,i,j,k,l,o} , Patricia B
7	Munroe, PhD ^{a,b} , Alistair Young, PhD ^g , Nicholas C Harvey, PhD ^{p,q} , Veryan Codd, PhD ^d ,
8	Christopher P Nelson, PhD ^d , Steffen E Petersen, MD, DPhil, MSc, MPH ^{a,b,c} , Nilesh J
9	Samani, MD ^d
10	
11	Running Title: leukocyte telomere length and cardiovascular imaging phenotypes
12	
13	Affiliations
14	
15	^a William Harvey Research Institute, Barts and The London School of Medicine and
16	Dentistry, Queen Mary University of London, London, United Kingdom
17	^b National Institute for Health and Care Research Barts Cardiovascular Biomedical Research
18	Centre, Queen Mary University of London, London, United Kingdom
19	^c Barts Heart Centre, St Bartholomew's Hospital, Barts Health NHS Trust, West Smithfield,
20	London, United Kingdom
21	^d Department of Cardiovascular Sciences, University of Leicester and NIHR Leicester
22	Biomedical Research Centre, Glenfield Hospital, Leicester, United Kingdom
23	^e National Institute for Health and Care Research Leicester Biomedical Research Centre,
24	Glenfield Hospital, Leicester, UK
25	^f Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom

- ^g School of Biomedical Engineering and Imaging Sciences, King's College London
- ^h British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health
- and Primary Care, University of Cambridge, Cambridge, United Kingdom
- ²⁹ ⁱ Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge,
- 30 Cambridge, United Kingdom
- ^j National Institute for Health and Care Research Blood and Transplant Research Unit in
- 32 Donor Health and Genomics, University of Cambridge, Cambridge, United Kingdom
- ³³ ^k British Heart Foundation Centre of Research Excellence, University of Cambridge,
- 34 Cambridge, United Kingdom
- ¹Health Data Research UK Cambridge, Wellcome Genome Campus and University of
- 36 Cambridge, Cambridge, United Kingdom
- ^m Cambridge Centre of Artificial Intelligence in Medicine, Cambridge, United Kingdom
- 38 ⁿ Health Data Science Centre, Human Technopole, Milan, Italy
- ^o Department of Human Genetics, Wellcome Sanger Institute, Wellcome Genome Campus,
- 40 Hinxton, UK
- 41 ^pMRC Lifecourse Epidemiology Centre, University of Southampton, Southampton, United
- 42 Kingdom
- 43 ^q NIHR Southampton Biomedical Research Centre, University of Southampton and
- 44 University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
- 45
- 46 Date of revision: 18th May 2023
- 47 Word count: 2,873

- 49 Corresponding author
- 50 Dr Nay Aung

51	William Harvey Research Institute, NIHR Barts Biomedical Research Centre, Queen Mary
52	University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom.
53	Email: <u>n.aung@qmul.ac.uk</u>
54	Telephone: 02073777000 (ext : 10656)
55	Twitter: @NayAungMD
56	
57 58	
59	Key Points
60	
61	Question: Is leukocyte telomere length (LTL) associated with alterations in cardiovascular
62	structure and function?
63	
64	Findings: Longer LTL is associated with higher left ventricular mass, larger ventricular and
65	atrial sizes and higher stroke volumes. Mendelian Randomisation analysis demonstrates the
66	causal genetic association between LTL on left ventricular mass, ventricular size and left
67	ventricular stroke volume. We also provide confirmatory evidence that longer LTL is
68	associated with a lower risk of incident heart failure after accounting for potential
69	confounders.
70	
71	Meaning: These findings highlight that modulation of LTL dynamics may have a role in
72	improving cardiovascular structure and function which could potentially explain the observed
73	lower future risk of heart failure.
74	
75	Tweet: "Longer telomere length is associated with a larger heart with better cardiac function
76	and a lower risk of heart failure."

77 A	bstract
------	---------

79	Importance: Longer leukocyte telomere length (LTL) is associated with a lower risk of
80	adverse cardiovascular outcomes. The extent to which variation in LTL is associated with
81	intermediary cardiovascular phenotypes is unclear.
82	Objective: To evaluate the relationships between LTL and a diverse set of cardiovascular
83	imaging phenotypes
84	Design: This is a cross-sectional study of UK Biobank participants recruited from 2006 to
85	2010. LTL was measured using a quantitative polymerase chain reaction method.
86	Cardiovascular measurements were derived from cardiovascular magnetic resonance (CMR)
87	using machine learning. The median (interquartile range) duration of follow-up was 12.0
88	(1.4) years. The associations of LTL with imaging measurements and incident heart failure
89	(HF) were evaluated by multivariable regression models. Genetic associations between LTL
90	and significantly associated traits was investigated by Mendelian Randomisation.
91	Setting: Population-based cohort study
92	Participants: UK Biobank participants with CMR and LTL data
93	Exposure: LTL
94	Main Outcomes and Measures: Cardiovascular imaging traits and heart failure
95	Results: The mean age of the cohort ($n = 40,459$) was 55 ± 7.6 years; 48.3% were men.
96	Longer LTL was independently associated with a pattern of positive cardiac remodelling
97	(higher left ventricular mass (LVM), larger global ventricular size and volume, and higher
98	ventricular and atrial stroke volumes) and a lower risk of incident HF (Hazard ratio, 95%
99	confidence interval [CI]: 0.86, $0.81 - 0.91$ for LTL 4 th quartile vs 1 st quartile). Mendelian
100	Randomisation analysis suggested a causal association between LTL and LVM, global
101	ventricular volume and left ventricular stroke volume.

- 102 **Conclusions and Relevance:** Longer LTL is associated with a larger heart with better
- 103 cardiac function in middle age, which could potentially explain the observed lower risk of
- 104 incident heart failure.
- 105
- 106 Key words:
- 107 Leukocyte telomere length, cardiovascular remodelling, heart failure
- 108
- 109

110 Abbreviations

- 111
- 112 LTL, leukocyte telomere length
- 113 CAD, coronary artery disease
- 114 HF, heart failure
- 115 LVM, left ventricular mass
- 116 UKB, UK Biobank
- 117 CMR, cardiovascular magnetic resonance
- 118 LVSV, left ventricular stroke volume
- 119 LVMVR, left ventricular mass to end-diastolic volume ratio
- 120 RVSV, right ventricular stroke volume
- 121 HF, heart failure
- 122 LA, left atrium/atrial
- 123 RA, right atrium/atrial
- 124 WBC, white blood cell
- 125 SBP, systolic blood pressure
- 126 MET, metabolic equivalent of task
- 127 MR, Mendelian Randomisation
- 128 GWAS, genome-wide association study
- 129 CVD, cardiovascular disease
- 130
- 131
- 132
- 133
- 134

135 Background

136

137 Telomeres are protective caps at the end of chromosomes that progressively shorten with each cell division.¹⁻³ When telomeres reach a critical length, cells enter senescence; hence 138 telomere length is a marker of cellular replicative capacity and history.² At population level, 139 140 there is a considerable inter-individual variation in mean telomere length, usually measured in leukocytes (leukocyte telomere length, LTL), but also present in other tissues and manifest 141 142 from an early age.³ In epidemiological studies, we and others have shown that shorter LTL is associated with risk of incident coronary artery disease (CAD) as well as heart failure (HF).4-143 ⁶ Mendelian Randomisation (MR) analyses have strongly suggested that the association of 144 145 shorter LTL with CAD is genetically causal although evidence for an association with HF is less certain.⁴ 146 147 148 Cardiac imaging measurements such as left ventricular mass (LVM) are intermediary 149 phenotypes whose variability has also been shown to influence adverse cardiovascular outcomes, including CAD and HF.⁷ Two previous studies have investigated the association of 150 LTL with LVM.^{8,9} The first by Vasan et al⁸ investigated 850 Framingham Heart Study 151 participants and the second by Kuznetsova and colleagues⁹ examined 334 volunteers from the 152 153 Flemish Study on Environment, Genes and Health Outcomes. Both studies used the LVM 154 estimated by measurements from M-mode echocardiography and reported a positive 155 association between LTL and LVM. However, neither study examined whether the 156 relationship was consistent with a causal association. 157 158 UK Biobank (UKB) is a large population cohort established between 2006 and 2010 of

159 participants aged 40-69 years at recruitment.¹⁰ Participants have been characterised in detail

160	using questionnaires, physical measurements, urinary and plasma biomarker measurements,
161	genomic assays and longitudinal linkage with multiple health record systems. ¹¹ A sub-set of
162	participants have also undergone cardiovascular magnetic resonance (CMR) scans. We have
163	recently completed a large-scale measurement of LTL in UKB participants and identified a
164	large number of genetic variants associated with LTL which are useful for causal inference
165	(Mendelian Randomisation) analyses. ^{4,12} We have also derived measurements of cardiac
166	structure and function from the CMR scans using automated artificial intelligence-based
167	protocols. ^{13,14} Here, using these datasets we have examined (i) observational associations
168	between LTL and cardiac morphology, function and geometry including LVM, global
169	ventricular volume and size, left and right ventricular stroke volume (LVSV and RVSV),
170	LVM to end-diastolic volume ratio (LVMVR), atrial maximum volume and atrial emptying
171	volume, (ii) the genetic association between LTL and observationally associated CMR
172	measurements using Mendelian Randomisation, and (iii) the relationship between LTL and
173	future development of HF.
174	
175	Methods
176	
177	Subjects
178	
179	From participants with valid LTL measurements in UKB (n=474,074) ¹² , we excluded
180	genetically related samples, randomly excluding one from each pair based on a kinship
181	coefficient of K>0.088 and samples with no genetic data or those that failed quality control.
182	We also excluded participants who lacked information on ethnicity or white blood cell
183	(WBC) count, which are both associated with LTL^{12} and were used together with age and sex
184	to adjust the trait associations. Ethnicity was self-reported by the participants using a

185	touchscreen questionnaire at the assessment centre. Among the remaining subjects with LTL
186	measurements (n=422,797), 40,459 individuals participated in the ongoing CMR sub-study
187	(Figure 1). We followed the reporting guidelines outlined in the STROBE (Strengthening the
188	Reporting of Observational Studies in Epidemiology) statement from the EQUATOR
189	(Enhancing the QUAlity and Transparency Of health Research) network. This study received
190	the overall ethical approval for UK Biobank studies from the NHS National Research Ethics
191	Service on 17th June 2011 (Ref 11/NW/0382) which was extended on 18 June 2021 (Ref
192	21/NW/0157). All study participants provided written informed consent.
193	
194	Measurement of leukocyte telomere length
195	
196	Details of LTL measurements including extensive quality checks and the adjustment for
197	technical factors in the UK Biobank participants have been described previously by our
198	group ¹² . In brief, LTL was measured as the ratio of telomere repeat copy number (T) relative
199	to that of a single copy gene (S, HBG) from the peripheral blood leukocyte DNA, extracted
200	from blood collected at baseline, using a multiplex quantitative polymerase chain reaction
201	(PCR) method. LTL measurements (T/S ratios) were log _e -transformed due to non-normality
202	(log _e -LTL) and Z-standardised for all analyses (UKB field code: 22192).
203	
204	Derivation of CMR parameters and arterial stiffness
205	
206	Detailed CMR protocol and analysis methods have been described in prior publications ^{13–16} .
207	Out of ~500,000 original UK Biobank participants, those living within a reasonable travelling
208	distance to one of the four imaging assessment centres were invited back for imaging
209	enhancement substudy with a target sample size of 100,000 individuals. The CMR scans

210 available for the current study (n~40,000) were obtained on average 9.0 ± 1.7 years after the 211 baseline visit. Segmentation of the left and right ventricular and atrial cavities and left 212 ventricular myocardium and aortic luminal area were performed by automated machine learning algorithms as detailed previously¹³. Global ventricular volume was defined as the 213 214 sum of the right and left ventricular end-diastolic volumes. LVSV, RVSV and atrial stroke 215 volumes were calculated by the difference between respective end-diastolic volume and end-216 systolic volume. LVMVR was derived by dividing LVM with LV end-diastolic volume. Enddiastolic bi-ventricular shape models were obtained as described previously¹⁷. These models 217 218 were compiled into a statistical shape atlas through principal component analysis, with 219 principal components capturing the largest sources of variation in cardiac shape amongst the 220 cohort. Through plotting these principal components, we can estimate biological features that 221 they represent. The first principal component (PC1) represents the overall size of the heart 222 (higher scores having larger hearts) which was the greatest source of variation in heart shape amongst individuals (eFigure 1). 223

224

225 Statistical analyses

226

227 The descriptive statistics are presented as mean \pm standard deviation [SD] for continuous 228 variables and number (percentage) for categorical variables. The trends across the LTL 229 quartiles were examined by Cuzick's extension of the Wilcoxon rank-sum test for continuous 230 variables and the Chi-square test for trend for ordinal variables. We removed the confounding 231 influence of chronological age at baseline, white blood cell count and self-reported ethnicity 232 by taking the residuals of log_e LTL regressed on these variables. Participants with missing 233 data were excluded from the analysis. The relationships between log_e LTL residuals 234 (independent variable) and CMR measures were evaluated in multivariable linear regression

235	models adjusted for age at the imaging visit, sex, height and weight. Significant associations
236	were additionally adjusted for traditional cardiovascular risk factors (systolic blood pressure
237	[SBP], diabetes mellitus, dyslipidaemia, smoking status and physical activity expressed in
238	total metabolic equivalent of task [MET] minutes per week) to interrogate the potential
239	confounding effects. Given the time lag between LTL sampling and CMR data acquisition, a
240	sensitivity analysis investigating the interaction between the time lag between these two dates
241	and LTL was conducted. We sought to identify the association between LTL and incident HF
242	by performing survival analyses using Cox proportional hazards models adjusted for age, sex,
243	body mass index (BMI), hypertension, hyperlipidaemia, diabetes mellitus, and smoking
244	status. We also explored the mediating effect of LTL and LVM on incident HF by
245	introducing an interaction term. The effect sizes were represented by one SD increase in log _e
246	LTL residuals. All analyses were conducted in R version $4.0.2^{18}$.
247	
217	
248	Mendelian Randomisation
248 249	Mendelian Randomisation
248 249 250	<i>Mendelian Randomisation</i> To investigate the causality and directionality of the relationships of LTL with
248249250251	Mendelian Randomisation To investigate the causality and directionality of the relationships of LTL with observationally associated imaging traits and with HF, we undertook Mendelian
 248 249 250 251 252 	Mendelian Randomisation To investigate the causality and directionality of the relationships of LTL with observationally associated imaging traits and with HF, we undertook Mendelian Randomisation (MR) analysis, using large–scale genome-wide association study (GWAS)
 248 249 250 251 252 253 	Mendelian Randomisation To investigate the causality and directionality of the relationships of LTL with observationally associated imaging traits and with HF, we undertook Mendelian Randomisation (MR) analysis, using large–scale genome-wide association study (GWAS) datasets. ^{4,14,19} To assess whether the associations between LTT and imaging parameters and
 248 249 250 251 252 253 254 	Mendelian Randomisation To investigate the causality and directionality of the relationships of LTL with observationally associated imaging traits and with HF, we undertook Mendelian Randomisation (MR) analysis, using large–scale genome-wide association study (GWAS) datasets. ^{4,14,19} To assess whether the associations between LTT and imaging parameters and HF were consistent with a causal association, we used 130 conditionally independent, non-
 248 249 250 251 252 253 254 255 	Mendelian RandomisationTo investigate the causality and directionality of the relationships of LTL with observationally associated imaging traits and with HF, we undertook MendelianRandomisation (MR) analysis, using large-scale genome-wide association study (GWAS) datasets. ^{4,14,19} To assess whether the associations between LTT and imaging parameters and HF were consistent with a causal association, we used 130 conditionally independent, non- pleiotropic genetic variants that we have recently reported to be associated with LTL in UK
 248 249 250 251 252 253 254 255 256 	Mendelian Randomisation To investigate the causality and directionality of the relationships of LTL with observationally associated imaging traits and with HF, we undertook Mendelian Randomisation (MR) analysis, using large–scale genome-wide association study (GWAS) datasets. ^{4,14,19} To assess whether the associations between LTT and imaging parameters and HF were consistent with a causal association, we used 130 conditionally independent, non- pleiotropic genetic variants that we have recently reported to be associated with LTL in UK Biobank. ⁴
 248 249 250 251 252 253 254 255 256 257 	Mendelian Randomisation To investigate the causality and directionality of the relationships of LTL with observationally associated imaging traits and with HF, we undertook Mendelian Randomisation (MR) analysis, using large–scale genome-wide association study (GWAS) datasets. ^{4,14,19} To assess whether the associations between LTT and imaging parameters and HF were consistent with a causal association, we used 130 conditionally independent, non- pleiotropic genetic variants that we have recently reported to be associated with LTL in UK Biobank. ⁴

random effect and also reported the p-value for the intercept from MR Egger²¹ as a check for

horizontal pleiotropy. As sensitivity analyses, we undertook MR analyses using the Weighted
Median method ²² which is additionally robust in the presence of outliers and the MR Raps
method ²³ which overcomes challenges related to measurement error, weak or invalid (due to
pleiotropy) measurements and selection bias (due to weak instrument). We also applied
Steiger filtering implemented in the steiger_filtering() function in the R package
'TwoSampleMR' to our genetic instruments which removed variants that explain more
variance in the outcome (i.e. imaging measurements or heart failure) than the exposure (LTL)
to minimise the risk of reverse causality. A combination of these approaches provides the
best evidence for the presence of a genetic association consistent with a causal relationship.
Results

272 The baseline characteristics of the study cohort (N = 40,459) stratified by the LTL quartiles 273 are presented in Table 1. The average age \pm SD was 55 \pm 7.6 years and 48.3% were men. 274 Individuals in the higher LTL quartiles were more likely to be chronologically younger and 275 female with a more favourable traditional cardiovascular risk profile. The vast majority of study cohort had CMR measurements within normal ranges²⁴; the proportion of LVH was 276 277 2%. LVM trended downwards across the LTL quartiles in the overall cohort but when 278 stratified by sex, LVM was higher in the higher LTL quartiles for both men and women 279 (eTables 1 and 2). Our study cohort of UK Biobank participants who had CMR assessment 280 were marginally younger, slightly more likely to be male and white and had a lower 281 prevalence of cardiometabolic risk factors than those participants who did not receive CMR 282 examination (eTable 3).

283

284 Observational associations between LTL and cardiovascular measurements

286	After accounting for the differences in age, sex, height and weight, a positive association was
287	observed between LTL and LVM (β = 0.47 mg, 95% confidence interval [CI]: 0.34 – 0.60
288	mg per 1SD increment in log _e LTL, $p = 4.0 \times 10^{-12}$) (Table 2). Similarly, longer LTL was
289	associated with larger global ventricular volume (β [95% CI] = 1.33 [0.87 – 1.79] ml, p = 1.8
290	x 10 ⁻⁸), larger overall ventricular size based on shape modelling (β [95% CI] = 0.01 [0.006 –
291	0.02], $p = 1.2 \times 10^{-4}$), higher LVSV (β [95% CI] = 0.35 [0.19 - 0.50] ml, $p = 8.7 \times 10^{-6}$),
292	higher RVSV (β [95% CI] = 0.34 [0.18 – 0.50] ml, p = 3.2 x 10 ⁻⁵), larger LA maximal
293	volume (β [95% CI] = 0.23 [0.05 – 0.41] ml, p = 1.4 x 10 ⁻²), higher LA emptying volume (β
294	$[95\% \text{ CI}] = 0.12 [0.02 - 0.23] \text{ ml}, p = 2.2 \text{ x } 10^{-2})$. Additional adjustment with cardiovascular
295	risk factors (SBP, diabetes, dyslipidaemia, smoking status and physical activity level) slightly
296	attenuated the effect sizes while retaining the statistical significance (Table 2). In contrast,
297	there were no significant associations of LTL with LVMVR, an adverse remodelling
298	phenotype, after adjusting for age, sex, height and weight. A sensitivity analysis investigating
299	the interaction between LTL and the time lag (between LTL sampling date and imaging visit
300	date) did not find any significant results.
301	
302	Longitudinal association between LTL and incident HF
303	

304 Among 406,602 UKB participants with valid LTL measurements free from prevalent

305 cardiovascular diseases, 7,827 individuals had incident HF over a median (interquartile

306 range) follow-up of 12.0 (1.4) years. In Cox proportional hazards analysis adjusted for age,

- 307 sex and other cardiovascular risk factors, longer LTL was associated with a lower future risk
- 308 of heart failure (LTL 4th quartile hazard ratio [HR] = 0.86, 95% CI = 0.81 0.91, p = 1.8 x
- 10^{-6}) (Figure 2). Formal mediation analysis of LTL on the relationships between LVM (or

310	other imaging traits) and HF was not feasible due to the low event rates in the CMR sub-
311	cohort (total N ~ 40K, event N ~ 100) at this stage. Our exploratory interaction analysis of
312	LTL and LVM on incident HF showed an association with lower risk (interaction $HR = 0.87$,
313	p = 0.038).

· 1 0 0

314

. . .

315 Mendelian randomisation analyses

• 、

1

- 316
- 317 Using 130 genetic variants independently associated with LTL as instruments (eTable 4), we
- 318 observed genetic associations of LTL with LVM, LVSV, global ventricular volume and
- 319 biventricular overall size from shape model with inverse variance weighted [IVW] β [95%
- 320 CI] = 0.13 [0.07 0.19], p = <0.0001, β [95% CI] = 0.08 [0.02 0.14], p = 0.013, β [95% CI]

321 = 0.08 [0.02 - 0.14], p = 0.014 and $\beta [95\% \text{ CI}] = 0.04 [0.0002 - 0.07]$, p = 0.049,

322 respectively (Figure 3). Other imaging traits and heart failure did not achieve a statistically

323 significant association with LTL although the overall effect directions were concordant with

- 324 observational results. There was no evidence of confounding by directional horizontal
- 325 pleiotropy (MR-Egger intercept p > 0.05). Sensitivity analyses with the weighted median and
- 326 MR RAPS methods gave similar estimates as our primary MR IVW models. Furthermore,
- 327 Steiger filtering which removed genetic variants that explain more variance in the outcomes
- 328 did not materially alter our findings (eTable 5).
- 329

330 Discussion

331

332 This is the first and largest study to investigate the relationship between LTL and a

- 333 comprehensive set of cardiac structure and function, robustly measured with CMR. Our
- 334 principal findings are that in a middle-aged population: (i) longer LTL is associated with

335	higher LVM, larger global ventricular volume and overall size, and higher ventricular and
336	atrial stroke volumes, (ii) confirmation that longer LTL is associated with a lower risk of
337	incident HF even after accounting from traditional cardiovascular risk factors, and (iii) the
338	genetic associations between LTL and LVM, LVSV and global ventricular volume are
339	concordant with the observational results.
340	
341	Our findings of an association of longer LTL with increased LVM are consistent with two
342	previous reports ^{8,9} which assessed LVM using echocardiography and build on these findings.
343	We advanced this insight by highlighting that longer LTL is also associated with larger global
344	ventricular volume and size and higher LVSV. Our finding of better LV systolic function
345	with longer LTL in a general population parallels the data from two small prior studies which
346	reported the associations between shorter LTL and reduced LV ejection fraction a
347	hypertensive mouse model ²⁵ and in a human heart failure cohort ²⁶ . The overall pattern of
348	cardiac morpho-functional differences observed with longer LTL (higher LVM, larger global
349	ventricular volume, static LVMVR, larger atria and higher ventricular and atrial stroke
350	volumes) closely resembles beneficial "balanced" myocardial remodelling frequently seen
351	with the physiological adaptation to exercise (i.e. athlete's heart) ²⁷ . We also provide
352	compelling genetic evidence, based on multiple MR approaches, that the associations of LTL
353	with LVM, global ventricular volume and LVSV are consistent with a causal association.
354	
355	The impact of LTL on cardiac structure and function could have clinical relevance. We
356	demonstrated in this work that longer LTL is associated with a reduced observed incidence of
357	HF in UKB (HR 0.86, 95% CI = $0.81 - 0.91$). The MR analysis, although trending in the
358	same direction, was non-significant (MR odds ratio 0.96 (95% CI 0.89-1.03) per 1SD longer
359	LTL) possibly related to low power. However, no firm conclusion can be drawn based on this

360	data and future studies using information from larger GWAS are needed. Other studies have
361	shown that LTL is shorter in patients with HF and is associated with poor prognosis. ^{6,28–30}
362	Experimental studies also directly support a role of telomere dynamics in cardiac structure
363	and function. With ageing, telomerase knockout mice hearts showed shortening of telomeres,
364	attenuated proliferation and increased apoptosis of cardiomyocytes, and greater cardiac
365	remodelling and left ventricular failure ^{31,32} . On the other hand, enhanced expression of
366	telomerase reverse transcriptase in rat cardiomyocytes preserved telomere length, and
367	induced cardiomyocyte proliferation, hypertrophy and survival ³³ . While it is recognised that
368	LV hypertrophy and LV dilatation in isolation are associated with adverse outcomes, through
369	access to a more comprehensive set of imaging features, our study demonstrated a more
370	global positive pattern of cardiac remodelling in association with longer LTL, which could
371	explain the lower incidence of HF.

373 Limitations

374

375 Our study benefited from several important advantages including: (i) access to the largest 376 sample size to date of LTL data and the diversity and accuracy of cardiovascular imaging 377 measurements using the reference standard CMR and (ii) application of Mendelian 378 Randomisation for causal inference analysis using the data from recent large genome-wide 379 association studies. Nevertheless, several limitations need to be acknowledged. First, there is 380 a "healthy volunteer" selection bias in the UK Biobank with the participants being older, 381 more affluent and having a healthier lifestyle with fewer comorbid conditions than the UK general population.³⁴ The imaging substudy cohort is even slightly healthier than the overall 382 383 UK Biobank cohort. In line with this observation, the majority of our study cohort had 384 imaging measurements within normal physiological ranges and the applicability of our

385	findings in disease states leading to left ventricular hypertrophy is uncertain. Second, the
386	majority of our cohort (97%) is of European descent which may limit the generalisability of
387	our findings in under-represented ethnicities. Third, telomere length was quantified in blood
388	leukocytes which may not reflect cell or tissue-specific telomere length. Finally, the LTL and
389	CMR measurements were obtained at different time points. The impact of this on the findings
390	is uncertain but, if anything, is likely to have blunted the magnitude of the observed
391	associations. Furthermore, our findings from Mendelian randomisation which circumvents
392	the issues of confounding, measurement errors and reverse causation in observational studies,
393	provide concordant results for the key findings.
394	
395	Conclusion
396	
397	Longer LTL is associated with higher LVM, larger global ventricular size and better cardiac
398	function and a lower risk of incident heart failure. Further investigations into the prognostic
399	relevance of LTL in adverse cardiac remodelling and the related mechanistic pathways could
400	provide insights into the novel risk stratification approaches and therapeutic targets for heart
401	failure.
402	
403	Data Sharing Statement
404	
405	The individual-level data can be requested from the UK Biobank via the standard access
406	request process (https://www.ukbiobank.ac.uk/enable-your-research/apply-for-access). the
407	Additional supporting information (statistical/analytic code) are available upon request.
408	
409	Acknowledgements

411	N.A. acknowledges the National Institute for Health and Care Research (NIHR) Integrated
412	Academic Training programme which supports his Academic Clinical Lectureship post and
413	the funding support from the Academy of Medical Sciences Clinical Lecturer Starter Grant.
414	N.A. and S.v.D recognise the support from the QMUL Impact Acceleration Account funded
415	by Engineering and Physical Sciences Research Council. Z.R.E recognizes the National
416	Institute for Health and Care Research (NIHR) Integrated Academic Training programme
417	which supports her Academic Clinical Lectureship post and was also supported by British
418	Heart Foundation Clinical Research Training Fellowship No. FS/17/81/33318. Cambridge
419	University investigators are supported by core funding from the: British Heart Foundation
420	(RG/13/13/30194; RG/18/13/33946); NIHR Cambridge Biomedical Research Centre (BRC-
421	1215-20014; NIHR203312) [*]; and Cambridge BHF Centre of Research Excellence
422	(RE/18/1/34212). E.A was supported by the EU/EFPIA Innovative Medicines Initiative Joint
423	Undertaking BigData@Heart grant 116074 and is currently funded by a British Heart
424	Foundation programme grant (RG/18/13/33946). A.W is part of the BigData@Heart
425	Consortium, funded by the Innovative Medicines Initiative-2 Joint Undertaking under grant
426	agreement No 116074. A.W is supported by the BHF-Turing Cardiovascular Data Science
427	Award (BCDSA\100005). J.D holds a British Heart Foundation Professorship and a NIHR
428	Senior Investigator Award [*]. *The views expressed are those of the authors and not
429	necessarily those of the NIHR or the Department of Health and Social Care. N.C.H
430	acknowledges support from the UK Medical Research Council [MC_PC_21003;
431	MC_PC_21001] and NIHR Southampton Biomedical Research Centre, University of
432	Southampton, and University Hospital Southampton. S.E.P and P.B.M acknowledge support
433	from the National Institute for Health and Care Research (NIHR) Biomedical Research
434	Centre at Barts. S.E.P acknowledge the British Heart Foundation for funding the manual

435	analysis to create a cardiovascular magnetic resonance imaging reference standard for the UK
436	Biobank imaging resource in 5,000 CMR scans (www.bhf.org.uk; PG/14/89/31194). S.E.P
437	acknowledges support from the SmartHeart EPSRC programme grant (www.nihr.ac.uk;
438	EP/P001009/1).

- 439 Telomere length measurements were funded by the UK Medical Research Council (MRC),
- 440 Biotechnology and Biological Sciences Research Council and British Heart Foundation
- 441 (BHF) through MRC grant MR/M012816/1 to N.J.S. C.P.N is funded by the BHF
- 442 (SP/16/4/32697). Q.W., L.L., V.C., C.P.N. and N.J.S. are supported by the National Institute
- 443 for Health and Care Research (NIHR) Leicester Cardiovascular Biomedical Research Centre
- 444 (BRC-1215-20010). Cambridge University investigators are supported by the BHF
- 445 (RG/13/13/30194; RG/18/13/33946), Health Data Research UK, NIHR Cambridge BRC
- 446 (BRC-1215-20014), NIHR Blood and Transplant Research Unit in Donor Health and
- 447 Genomics (NIHR BTRU-2014-10024) and MRC (MR/L003120/1). J.N.D. holds a BHF

448 Personal Professorship and NIHR Senior Investigator Award.

- 449 This research has been conducted using the UK Biobank Resource under Application
- 450 2964. We thank all UK Biobank participants and staff.

451

- 452 The funders had no role in design and conduct of the study; collection, management, analysis,
- 453 and interpretation of the data; preparation, review, or approval of the manuscript; and
- 454 decision to submit the manuscript for publication. N.A. and Q.W. had full access to all the
- 455 data in the study and takes responsibility for the integrity of the data and the accuracy of the
- 456 data analysis.

457

458 Disclosures

- 460 S.E.P provides consultancy to Circle Cardiovascular Imaging, Inc., Calgary, Alberta, Canada.
- 461 J.D. serves on scientific advisory boards for AstraZeneca, Novartis, and UK Biobank, and has
- 462 received multiple grants from academic, charitable and industry sources outside of the
- 463 submitted work. Other authors have no disclosures to make.
- 464
- 465 **References**
- 466
- Harley CB, Futcher AB, Greider CW. Telomeres shorten during ageing of human fibroblasts. *Nature*. 1990;345(6274):458-460. doi:10.1038/345458a0
- 469 2. Allsopp RC, Vaziri H, Patterson C, et al. Telomere length predicts replicative capacity of
 470 human fibroblasts. *Proc Natl Acad Sci U S A*. 1992;89(21):10114-10118.
- 471 3. Demanelis K, Jasmine F, Chen LS, et al. Determinants of telomere length across human tissues. *Science*. 2020;369(6509):eaaz6876. doi:10.1126/science.aaz6876
- 473 4. Codd V, Wang Q, Allara E, et al. Polygenic basis and biomedical consequences of
 474 telomere length variation. *Nat Genet*. 2021;53(10):1425-1433. doi:10.1038/s41588-021475 00944-6
- 476 5. Haycock PC, Heydon EE, Kaptoge S, Butterworth AS, Thompson A, Willeit P.
 477 Leucocyte telomere length and risk of cardiovascular disease: systematic review and 478 meta-analysis. *BMJ*. 2014;349:g4227. doi:10.1136/bmj.g4227
- 479 6. van der Harst P, van der Steege G, de Boer RA, et al. Telomere length of circulating
 480 leukocytes is decreased in patients with chronic heart failure. *J Am Coll Cardiol.*481 2007;49(13):1459-1464. doi:10.1016/j.jacc.2007.01.027
- 482 7. de Simone G, Gottdiener JS, Chinali M, Maurer MS. Left ventricular mass predicts heart
 483 failure not related to previous myocardial infarction: the Cardiovascular Health Study.
 484 *Eur Heart J.* 2008;29(6):741-747. doi:10.1093/eurheartj/ehm605
- 485
 486
 486
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
- 488
 489
 489 and Telomere Length in a Population Study. *Am J Epidemiol*. 2010;172(4):440-450.
 490 doi:10.1093/aje/kwq142
- 491 10. Sudlow C, Gallacher J, Allen N, et al. UK biobank: an open access resource for
 492 identifying the causes of a wide range of complex diseases of middle and old age. *PLoS*493 *Med.* 2015;12(3):e1001779. doi:10.1371/journal.pmed.1001779

- 494 11. Bycroft C, Freeman C, Petkova D, et al. The UK Biobank resource with deep
 495 phenotyping and genomic data. *Nature*. 2018;562(7726):203-209. doi:10.1038/s41586496 018-0579-z
- 497 12. Codd V, Denniff M, Swinfield C, et al. A Major Population Resource of 474,074
 498 Participants in UK Biobank to Investigate Determinants and Biomedical Consequences
 499 of Leukocyte Telomere Length.; 2021:2021.03.18.21253457.
 500 doi:10.1101/2021.03.18.21253457
- 501 13. Bai W, Sinclair M, Tarroni G, et al. Automated cardiovascular magnetic resonance image
 502 analysis with fully convolutional networks. *J Cardiovasc Magn Reson*. 2018;20(1):65.
 503 doi:10.1186/s12968-018-0471-x
- 14. Aung Nay, Vargas Jose D., Yang Chaojie, et al. Genome-Wide Analysis of Left
 Ventricular Image-Derived Phenotypes Identifies Fourteen Loci Associated With Cardiac
 Morphogenesis and Heart Failure Development. *Circulation*. 2019;140(16):1318-1330.
 doi:10.1161/CIRCULATIONAHA.119.041161
- 508 15. Petersen SE, Matthews PM, Francis JM, et al. UK Biobank's cardiovascular magnetic
 509 resonance protocol. J Cardiovasc Magn Reson. 2016;18(1):8. doi:10.1186/s12968-016510 0227-4
- 511 16. Biasiolli L, Hann E, Lukaschuk E, et al. Automated localization and quality control of the
 512 aorta in cine CMR can significantly accelerate processing of the UK Biobank population
 513 data. Grisan E, ed. *PLOS ONE*. 2019;14(2):e0212272. doi:10.1371/journal.pone.0212272
- 514 17. Mauger C, Gilbert K, Lee AM, et al. Right ventricular shape and function: cardiovascular
 515 magnetic resonance reference morphology and biventricular risk factor morphometrics in
 516 UK Biobank. J Cardiovasc Magn Reson. 2019;21(1):41. doi:10.1186/s12968-019-0551-6
- 517 18. R Core Team. *R: A Language and Environment for Statistical Computing.*; 2020.
 518 https://www.R-project.org/
- 519 19. Shah S, Henry A, Roselli C, et al. Genome-wide association and Mendelian
 520 randomisation analysis provide insights into the pathogenesis of heart failure. *Nat*521 *Commun.* 2020;11(1):163. doi:10.1038/s41467-019-13690-5
- 522 20. Burgess S, Butterworth A, Thompson SG. Mendelian randomization analysis with
 523 multiple genetic variants using summarized data. *Genet Epidemiol*. 2013;37(7):658-665.
 524 doi:10.1002/gepi.21758
- 525 21. Bowden J, Davey Smith G, Burgess S. Mendelian randomization with invalid
 526 instruments: effect estimation and bias detection through Egger regression. *Int J* 527 *Epidemiol.* 2015;44(2):512-525. doi:10.1093/ije/dyv080
- 528 22. Bowden J, Davey Smith G, Haycock PC, Burgess S. Consistent Estimation in Mendelian
 529 Randomization with Some Invalid Instruments Using a Weighted Median Estimator.
 530 *Genet Epidemiol.* 2016;40(4):304-314. doi:10.1002/gepi.21965
- 23. Zhao Q, Wang J, Hemani G, Bowden J, Small DS. Statistical inference in two-sample
 summary-data Mendelian randomization using robust adjusted profile score. Published
 online January 1, 2019. doi:10.48550/arXiv.1801.09652

- 24. Petersen SE, Aung N, Sanghvi MM, et al. Reference ranges for cardiac structure and
 function using cardiovascular magnetic resonance (CMR) in Caucasians from the UK
 Biobank population cohort. *J Cardiovasc Magn Reson*. 2017;19(1):18.
- 537 doi:10.1186/s12968-017-0327-9
- 538 25. Brandt M, Dörschmann H, Khraisat S, et al. Telomere Shortening in Hypertensive Heart
 539 Disease Depends on Oxidative DNA Damage and Predicts Impaired Recovery of Cardiac
 540 Function in Heart Failure. *Hypertension*. 2022;79(10):2173-2184.
- 541 doi:10.1161/HYPERTENSIONAHA.121.18935
- 542 26. Sharifi-Sanjani M, Oyster NM, Tichy ED, et al. Cardiomyocyte-Specific Telomere
 543 Shortening is a Distinct Signature of Heart Failure in Humans. *J Am Heart Assoc*.
 544 6(9):e005086. doi:10.1161/JAHA.116.005086
- 545 27. De Innocentiis C, Ricci F, Khanji MY, et al. Athlete's Heart: Diagnostic Challenges and
 546 Future Perspectives. *Sports Med Auckl NZ*. 2018;48(11):2463-2477. doi:10.1007/s40279547 018-0985-2
- 548 28. Haver VG, Mateo Leach I, Kjekshus J, et al. Telomere length and outcomes in ischaemic
 549 heart failure: data from the COntrolled ROsuvastatin multiNAtional Trial in Heart Failure
 550 (CORONA). *Eur J Heart Fail*. 2015;17(3):313-319. doi:10.1002/ejhf.237
- 29. van der Harst P, de Boer RA, Samani NJ, et al. Telomere length and outcome in heart
 failure. *Ann Med.* 2010;42(1):36-44. doi:10.3109/07853890903233887
- 30. Romaine SPR, Denniff M, Codd V, et al. Telomere length is independently associated
 with all-cause mortality in chronic heart failure. *Heart*. 2022;108(2):124-129.
 doi:10.1136/heartjnl-2020-318654
- 556 31. Leri A, Franco S, Zacheo A, et al. Ablation of telomerase and telomere loss leads to
 557 cardiac dilatation and heart failure associated with p53 upregulation. *EMBO J*.
 558 2003;22(1):131-139. doi:10.1093/emboj/cdg013
- 32. Wong LSM, Oeseburg H, de Boer RA, van Gilst WH, van Veldhuisen DJ, van der Harst
 P. Telomere biology in cardiovascular disease: the TERC-/- mouse as a model for heart
 failure and ageing. *Cardiovasc Res.* 2009;81(2):244-252. doi:10.1093/cvr/cvn337
- 33. Bär C, Bernardes de Jesus B, Serrano R, et al. Telomerase expression confers
 cardioprotection in the adult mouse heart after acute myocardial infarction. *Nat Commun.*2014;5:5863. doi:10.1038/ncomms6863
- 565 34. Fry A, Littlejohns TJ, Sudlow C, et al. Comparison of Sociodemographic and Health566 Related Characteristics of UK Biobank Participants With Those of the General
 567 Population. Am J Epidemiol. 2017;186(9):1026-1034. doi:10.1093/aje/kwx246
- 568
- 569

572	
573	
574	
575	
576	
577	
578	
579	
580	
581	
582	
583	
584	
585	Figure Legend
586	Figure 1. Sample selection flowchart
587	UKB, UK Biobank; LTL, leukocyte telomere length; WBC, white blood cell count; LVM, left
588	ventricular mass; LVSV, left ventricular stroke volume; LVMVR, left ventricular mass to end-
589	diastolic volume ration; LA, left atrial; RA, right atrial; RVSV, right ventricular stroke
590	volume
591	
592	Figure 2. Longitudinal association between LTL and incident heart failure
593	LTL, leukocyte telomere length; SD, standard deviation; BMI, body mass index
594	
595	Figure 3. Mendelian Randomisation associations between LTL and cardiac imaging traits and
596	heart failure

- 597 MR, Mendelian Randomisation; LTL, leukocyte telomere length; LV, left ventricular; RV,
- 598 right ventricular, LA, left atrial; HF, heart failure

	600	Table 1	. Study	cohort	characteristics
--	-----	---------	---------	--------	-----------------

		LTL quartiles				
	Full cohort	1 st	2 nd	3 rd	4 th	P trend
N	40459	10115	10115	10114	10115	
Age telomere visit (year)	55.1 (7.6)	56.9 (7.4)	55.6 (7.4)	54.7 (7.5)	53.3 (7.5)	< 0.0001
Age imaging visit (year)	64.2 (7.8)	65.8 (7.6)	64.6 (7.6)	63.8 (7.7)	62.4 (7.7)	< 0.0001
Male sex	19529 (48.3)	5558 (54.9)	5132 (50.7)	4655 (46.0)	4184 (41.4)	< 0.0001
Height (cm)	169.2 (9.3)	169.6 (9.2)	169.3 (9.3)	169.1 (9.3)	168.7 (9.2)	< 0.0001
Weight (kg)	75.9 (15.0)	76.9 (15.0)	76.1 (15.1)	75.7 (15.1)	74.8 (15.0)	< 0.0001
Ethnicity						
Asian	416 (1.0)	94 (0.9)	110 (1.1)	101 (1.0)	111 (1.1)	0.3545
Black	258 (0.6)	32 (0.3)	54 (0.5)	60 (0.6)	112 (1.1)	< 0.0001
Chinese	115 (0.3)	25 (0.2)	16 (0.2)	25 (0.2)	49 (0.5)	0.0007
Mixed	189 (0.5)	40 (0.4)	40 (0.4)	46 (0.5)	63 (0.6)	0.0145
Other	204 (0.5)	39 (0.4)	43 (0.4)	48 (0.5)	74 (0.7)	0.0006
White	39277 (97.1)	9885 (97.7)	9852 (97.4)	9834 (97.2)	9706 (96.0)	< 0.0001
SBP (mmHg)	139.1 (18.7)	140.1 (18.7)	139.5 (18.5)	138.9 (18.6)	137.7 (18.8)	< 0.0001
Diabetes mellitus	2359 (5.8)	731 (7.2)	624 (6.2)	523 (5.2)	481 (4.8)	< 0.0001
Hyperlipidaemia	14191 (35.1)	3920 (38.8)	3696 (36.5)	3447 (34.1)	3128 (30.9)	< 0.0001
Smoking status	1323 (6.4)	328 (6.2)	345 (6.7)	345 (6.7)	305 (5.9)	0.5363
Physical activity (Total MET minutes per week)	2750.4 (2432.8)	2706.1 (2408.5)	2796.3 (2474.2)	2759.4 (2441.1)	2740.1 (2406.7)	0.2028
WBC (mmol/L)	6.5 (1.5)	6.6 (1.5)	6.6 (1.5)	6.5 (1.5)	6.4 (1.5)	< 0.0001
LV mass (g)	86.0 (22.4)	87.3 (22.3)	86.4 (22.5)	85.7 (22.4)	84.7 (22.3)	< 0.0001
Indexed LV mass (g/m ²)	45.3 (8.6)	45.6 (8.7)	45.5 (8.7)	45.2 (8.5)	45.0 (8.6)	< 0.0001
Global ventricular volume (ml)	303.2 (68.6)	304.3 (68.0)	303.4 (68.7)	303.2 (68.9)	302.1 (68.8)	0.0011
Indexed global ventricular volume (ml/m ²)	160.6 (28.0)	159.8 (28.0)	160.5 (28.2)	160.8 (27.9)	161.3 (28.0)	0.0003

LVMVR (g/ml)	0.59 (0.09)	0.59 (0.09)	0.59 (0.09)	0.58 (0.09)	0.58 (0.09)	< 0.0001
LVSV (ml)	87.0 (19.2)	86.9 (19.0)	87.1 (19.3)	86.9 (19.3)	87.0 (19.0)	0.4253
Indexed LVSV (ml/m ²)	46.2 (8.5)	45.8 (8.4)	46.2 (8.6)	46.2 (8.5)	46.6 (8.4)	< 0.0001
Overall ventricular size from shape model	0.01 (0.98)	0.05 (0.98)	0.03 (0.98)	0.01 (0.99)	-0.03 (0.98)	< 0.0001
RVSV (ml)	88.5 (20.2)	88.5 (20.2)	88.6 (20.1)	88.6 (20.4)	88.3 (20.0)	0.1665
Indexed RVSV (ml/m ²)	47.0 (8.9)	46.6 (9.0)	47.0 (8.9)	47.1 (9.0)	47.3 (8.8)	< 0.0001
LA maximum volume (ml)	44.3 (17.1)	44.5 (17.5)	44.2 (17.2)	44.4 (17.2)	44.2 (16.5)	0.2063
Indexed LA maximum volume (ml/m^2)	23.8 (9.1)	23.7 (9.2)	23.7 (9.2)	23.9 (9.2)	24.0 (8.9)	< 0.0001
LA emptying volume (ml)	28.0 (9.8)	27.8 (9.9)	27.9 (9.9)	28.1 (9.9)	28.1 (9.6)	< 0.0001
Indexed LA emptying volume (ml/m ²)	15.1 (5.4)	14.8 (5.3)	15.0 (5.4)	15.2 (5.4)	15.3 (5.4)	< 0.0001
RA maximum volume (ml)	49.8 (20.6)	50.2 (21.4)	49.6 (20.0)	49.8 (20.8)	49.7 (20.2)	0.6762
Indexed RA maximum volume (ml/m ²)	26.9 (11.2)	26.8 (11.4)	26.7 (10.9)	26.9 (11.4)	27.0 (11.1)	0.0096
RA emptying volume (ml)	24.4 (10.8)	24.3 (11.1)	24.3 (10.6)	24.4 (10.8)	24.5 (10.8)	0.0061
Indexed RA emptying volume (ml/m ²)	13.2 (6.0)	13.1 (6.1)	13.1 (5.9)	13.2 (6.1)	13.4 (6.1)	< 0.0001

SBP, systolic blood pressure; MET, metabolic equivalent of task; WBC, white blood cell count; LV, left ventricle; LVMVR, LV mass to end-diastolic volume ratio; LVSV, LV stroke volume; RVSV, right ventricular stroke volume; LA, left atrium; RA, right atrium; Other ethnicity category refers participants who selected "Other ethnic group" in the self-reported questionnaire.

607

609 610

Table 2. Multivariable regression results for the association between LTL and cardiovascular measurements

	Model 1			Model 2			
	beta	95% CI	p value	beta	95% CI	p value	
LV mass (g)	0.47	0.34 to 0.60	3.97E-12	0.37	0.24 to 0.50	2.31E-08	
Global ventricular volume (ml)	1.33	0.87 to 1.79	1.84E-08	1.17	0.70 to 1.63	9.37E-07	
Overall ventricular size from shape model	0.01	0.006 to 0.02	1.23E-04	0.01	0.004 to 0.02	7.98E-04	
LVSV (ml)	0.35	0.19 to 0.50	8.67E-06	0.30	0.15 to 0.46	1.26E-04	
LVMVR (g/ml)	6.90×10^{-4}	$-1.05 \text{ x}10^{-4} \text{ to } 1.49 \text{ x}10^{-3}$	8.90E-02	-	-	-	
RVSV (ml)	0.34	0.18 to 0.50	3.15E-05	0.27	0.11 to 0.43	8.76E-04	
LA maximum volume (ml)	0.23	0.05 to 0.41	1.36E-02	0.19	0.01 to 0.38	3.68E-02	
LA emptying volume (ml)	0.12	0.02 to 0.23	2.24E-02	0.09	-0.01 to 0.20	8.6E-02	
RA maximum volume (ml)	0.15	-0.06 to 0.35	1.62E-01	-	-	-	
RA emptying volume (ml)	0.09	-0.02 to 0.20	9.19E-02	-	-	-	

LV, left ventricle; LVSV, LV stroke volume, LVMVR, LV mass to end-diastolic volume ratio; RVSV, right ventricular stroke volume; LA, left

atrial; RA, right atrial; CI, confidence interval

Model 1: Adjusted for age, sex, height and weight

Model 2: Adjusted for age, sex, height, weight, systolic blood pressure, diabetes mellitus, hyperlipidaemia, current smoking, total MET minutes 622 623 624 625 626 627 628 629 630 per week

(N = 474,074)	with LIL measurements	Missing or extreme LTL (N = 37,825)
		Missing or extreme WBC (N = 34,420)
		Nilssing or discordant sex (N = $3/3$)
		O(R) = 2,777
		~
UKB imaging cohort with LT	↓ L measurements (N = 40,459))))
LVM N = 40,332	RVSV N = 40,353	
Global ventricular size N =	LA max volume N = 35,348	
40,329		
LVSV N = 40,332	LA emptying volume N = 35,34	8
LVMVR N = 40,332	RA max volume N = 37,854	
Overall ventricular size (shape model) N = 35,295	RA emptying volume N = 37,85	54

Figure 1. Sample selection flowchart

638 UKB, UK Biobank; LTL, leukocyte telomere length; WBC, white blood cell count; LVM, left ventricular mass; LVSV, left ventricular stroke

639 volume; LVMVR, left ventricular mass to end-diastolic volume ration; RVSV, right ventricular stroke volume; LA, left atrial; RA, right atrial

Variable		Ν	Hazard ratio		р
LTL quartiles	Q1 (shortest)	101668	1 	Reference	
	Q2	101618	┝═┥	0.93 (0.88, 0.99)	0.03
	Q3	101652	⊨∎⊣ I	0.88 (0.83, 0.94)	<0.001
	Q4 (longest)	101664		0.86 (0.81, 0.91)	<0.001
Age (per SD)		406602	-	2.26 (2.20, 2.33)	<0.001
Sex	female	226913	1 	Reference	
	male	179689	HEH	1.65 (1.58, 1.73)	<0.001
BMI (per SD)		406602	•	1.39 (1.36, 1.42)	<0.001
Hypertension	no	302831		Reference	
	yes	103771	I I ⊢≣ +	1.61 (1.53, 1.69)	<0.001
Hyperlipidaemia	no	300840		Reference	
	yes	105762	-	0.99 (0.94, 1.04)	0.66
Diabetes mellitus	no	386753	, H	Reference	
	yes	19849	, , ⊢∎-(1.74 (1.63, 1.86)	<0.001
Ever smoked	no	167391		Reference	
	yes	239211	H E H	1.21 (1.16, 1.27)	<0.001
			1 1.2 1.4 1.61.8 22.2		

Figure 2. Longitudinal association between LTL and incident heart failure

643 LTL, leukocyte telomere length; SD, standard deviation; BMI, body mass index

647 Figure 3. Mendelian Randomisation associations between LTL and cardiac imaging traits and heart failure

649 MR, Mendelian Randomisation; LTL, leukocyte telomere length; LV, left ventricular; RV, right ventricular, LA, left atrial; HF, heart failure

Variable		Ν	Hazard ratio		р
LTL quartiles	Q1 (shortest)	101668	÷	Reference	
	Q2	101618	⊢æ-{	0.93 (0.88, 0.99)	0.03
	Q3	101652	HEH	0.88 (0.83, 0.94)	<0.001
	Q4 (longest)	101664		0.86 (0.81, 0.91)	<0.001
Age (per SD)		406602	-	2.26 (2.20, 2.33)	<0.001
Sex	female	226913	÷	Reference	
	male	179689	HEH	1.65 (1.58, 1.73)	<0.001
BMI (per SD)		406602	•	1.39 (1.36, 1.42)	<0.001
Hypertension	no	302831		Reference	
	yes	103771	I I H∰H	1.61 (1.53, 1.69)	<0.001
Hyperlipidaemia	no	300840	÷	Reference	
	yes	105762	-	0.99 (0.94, 1.04)	0.66
Diabetes mellitus	no	386753	i i	Reference	
	yes	19849	. ⊢ ∎⊣	1.74 (1.63, 1.86)	<0.001
Ever smoked	no	167391		Reference	
	yes	239211		1.21 (1.16, 1.27)	<0.001

1 1.2 1.4 1.61.8 2 2.2

			_	
	(N = $474,074$)	with LIL measurements		Missing or extreme LTL (N = 37,825) Missing or extreme WBC (N = 34,420) Missing or discordant sex (N = 373)
(
	UKB imaging cohort with LI	L measurements (N = $40,4$	159)	
	LVM N = 40,332	↓ RVSV N = 40,353		
	Global ventricular size N = 40,329	LA max volume N = 35,348		
	LVSV N = 40,332	LA emptying volume N = 35	,348	
	LVMVR N = 40,332	RA max volume N = 37,854		
	Overall ventricular size (shape model) N = 35,295	RA emptying volume N = 37	,854	