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Quantum systems of indistinguishable particles are commonly described using the formalism of second
quantization, which relies on the assumption that any admissible quantum state must be either symmetric
or antisymmetric under particle permutations. Coherence-induced many-body effects such as superradiance,
however, can arise even in systems whose constituents are not fundamentally indistinguishable as long as
all relevant dynamical observables are permutation-invariant. Such systems are not confined to symmetric or
antisymmetric states and therefore require a different theoretical approach. Focusing on noninteracting systems,
here we combine tools from representation theory and thermodynamically consistent master equations to
develop such a framework. We characterize the structure and properties of the steady states emerging in
permutation-invariant ensembles of arbitrary multilevel systems that are collectively weakly coupled to a thermal
environment. As an application of our general theory, we further explore how these states can in principle be used
to enhance the performance of quantum thermal machines. Our group-theoretical framework thereby makes it
possible to analyze various limiting cases that would not be accessible otherwise. In addition, it allows us to
show that the properties of multilevel ensembles differ qualitatively from those of spin ensembles, which have
been investigated earlier using the standard Clebsch-Gordan theory. Our results have a large scope for future
generalizations and pave the way for systematic investigations of collective effects arising from permutation
invariance in quantum thermodynamics.
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I. INTRODUCTION

Permutation symmetry plays a fundamental role in many-
body quantum mechanics. According to the principle of
indistinguishability, quantum states that differ only by inter-
changes of identical particles cannot be distinguished by any
measurement [1,2]. As a result, any dynamical observable
of a system of identical particles, including its Hamiltonian,
must be invariant under particle permutations. The eigenstates
of such observables can be divided into linearly independent
sets according to their symmetry type under permutations; for
two particles, the eigenstates of a permutation-invariant ob-
servable can be chosen as either symmetric or antisymmetric;
for more than two particles, additional, partially symmetric
types arise. These symmetry types are preserved under the
time evolution of the system. Moreover, they give rise to
superselection rules which forbid transitions between states of
different types and imply that coherences between such states
cannot be observed.

The symmetrization postulate is more restrictive than the
principle of indistinguishability. It states that, depending on
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the sort of particle, only quantum states with one specific sym-
metry type exist: identical bosons are described by symmetric
states, identical fermions by antisymmetric ones [2]. This re-
striction has profound consequences. It implies, for example,
that the particles of an ideal quantum gas must be dis-
tributed in energy space according to either Bose-Einstein or
Fermi-Dirac statistics, which lead to fundamentally different
physical properties. On a mathematical level, the symmetriza-
tion postulate is elegantly accommodated by the formalism
of second quantization, which inherently restricts the Hilbert
space of a many-body system to its fully symmetric or anti-
symmetric subspace.

Here we focus on many-body systems that are not subject
to the symmetrization postulate but whose relevant dynam-
ical observables are still permutation-invariant. Specifically,
we consider collections of noninteracting multilevel systems
which are coupled to an environment that cannot distinguish
between their constituents. The particles may be not funda-
mentally identical as an observer may still be able to tell them
apart through an external degree of freedom; see Fig. 1. For
clarity, we will refer to this type of many-body system as
permutation-invariant ensembles. Such settings can be real-
ized, for instance, with cold atoms [4,5], ions [6], or artificial
atoms [7] and can host remarkable phenomena with superra-
diance being a prime example [3].

Such collective effects in many-body systems have recently
received much attention in quantum thermodynamics, both
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FIG. 1. Permutation-invariant ensembles. A collection of two-
level atoms, which can be externally distinguished by their position
in a lattice, is coupled to a thermal radiation field whose spatial in-
tensity is represented by the red shaded areas. The system is initially
prepared in a fully symmetric state, where all atoms are excited.
(a) If the lattice spacing is larger than the typical wave length of
the radiation field, the atoms decay independently under the sponta-
neous emission of photons. At long times, the ensemble settles to a
Gibbs state that is a statistical mixture of many-body quantum states
with all possible permutation symmetry types. (b) When its typical
wave length is comparable to the lattice spacing, the atoms become
indistinguishable to the radiation field. As a result, the permutation
symmetry of the initial state must be preserved during the decay
process, which leads to the collective emission of radiation, i.e.,
superradiance [3]. The ensemble thereby approaches a nonthermal
steady state, which contains only fully symmetric quantum states.

in the context of fundamental questions [8–11] and on the
more applied side, for instance, as a means of enhancing
the performance of quantum heat engines and refrigerators
[12–26] or isothermal machines [27–34]. Studies of devices
featuring strong interparticle interactions [12,13,27–33] are
usually based on specific models, since interacting many-
body systems are notoriously hard to describe on a general
level, especially when coupled to a thermal environment.
Indistinguishability-induced collective thermodynamical ef-
fects can be observed even in noninteracting systems [14–25],
which in many cases admit a comparatively simple theo-
retical description in terms of thermodynamically consistent
quantum master equations [35,36]. This approach, however,
has so far been mostly limited to spin ensembles [19–25],
whose collective behavior is captured by standard Clebsch-
Gordan theory. In developing a systematic generalization of
this theory to arbitrary multilevel systems, our work provides
a universal framework to further investigate the principal role
of collective effects in quantum thermodynamical processes
and to uncover their potential applications.

The quantum states of a permutation-invariant ensemble
are generally not restricted to a specific symmetry type and
span the entire many-body Hilbert space, which renders the
formalism of second quantization inapplicable. Our first ma-
jor aim is to show that such systems nevertheless admit
an efficient theoretical description, which, among other re-
sults, provides explicit means to calculate the expectation
values of permutation-invariant observables. At the heart of
this framework lies Schur-Weyl duality, a powerful tool from
representation theory, which makes it possible to endow the
Hilbert space of a permutation-invariant ensemble with a uni-
versal structure [37,38]. Specifically, this structure consists of
a series of invariant subspaces that are associated with both

the permutation group and the symmetry group generated
by the dynamical variables of the system. For spin systems,
these dynamical variables correspond to angular momentum
degrees of freedom, which generate the quantum rotation
group SU(2). In this special case, which has been studied
before [19–25] and will serve as a reference for our analysis,
the Schur-Weyl decomposition reduces to the conventional
Clebsch-Gordan series [2].

As a consequence of the superselection rules implied by
the indistinguishability principle, permutation-invariant en-
sembles generally do not relax to a Gibbs state in a thermal
environment. Instead, they settle to a nontrivial steady state
that still depends on the initial state in which the ensemble
was originally prepared; see Fig. 1. Our second major aim
is to systematically characterize these steady states, deter-
mine their thermodynamical properties, analyze their internal
structure, and explore how they can be utilized to enhance
the performance of quantum engine cycles. Our mathematical
framework does, however, have a wider scope, which extends
beyond steady states. It thus opens an interesting perspective
for future research.

A second potential area of application for our mathe-
matical framework is quantum information theory, where
permutation-invariant systems have been studied in the con-
text of entanglement and reference frames [39], as well as
for describing hidden degrees of freedom in quantum optics
[40–42]. Similarly, bunching effects in quantum optics have
been shown to have implications for energy transfer between
light and a mechanical oscillator [43,44]. In general, there is
potential for exploring a variety of quantum settings in which
the same permutation-invariant structures arise.

The paper is structured as follows. In Sec. II we outline the
mathematical background necessary for the analysis. Readers
familiar with representation theory may skip this section. In
Sec. III we describe the physical setting and weak-coupling
model of thermalization in open systems, giving the gen-
eral partially thermalized form of the steady state. We give
computable formulas for basic thermodynamical quantities in
Sec. IV and then put these to use in Sec. V by studying a
model of a heat engine, the Otto cycle. Finally, in Sec. VI we
explore the nonclassical implications of higher-order symme-
try groups beyond spins, followed by broader perspectives in
Sec. VII.

II. MATHEMATICAL TOOLS

In this section we introduce the mathematical tools that
will be used in our analysis. We provide a brief guide to
the Lie group SU(d ), its Lie algebra su(d ), and their rep-
resentations. We further discuss Schur-Weyl duality, Young
diagrams, group characters, and Weyl’s character formula. To
illustrate these general concepts, we show how they appear in
the common theory of angular momentum. Readers already
familiar with these mathematical tools may skip to the next
section.

A. The special unitary group

The special unitary group of degree d , denoted by SU(d ),
is the group of unitary d × d matrices with determinant 1.
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Any element u of this group can be written in the form
u = eih, where h is traceless Hermitian d × d matrix. These
matrices form a vector space over the real numbers. Hence,
upon choosing a basis {xa} in this space, we can express any
u ∈ SU(d ) as u = exp(i

∑
a θaxa) with a = 1, . . . , d2 − 1 and

θa ∈ R. The matrices xa are called generators of SU(d ). They
satisfy a set of characteristic commutation relations

[xa, xb] = i
∑

c

f ab
c xc, (1)

which define the Lie algebra su(d ) with the coefficients f ab
c =

− f ba
c ∈ R being called structure constants (taking values de-

pending on the chosen basis).
In practice, it is often convenient to chose a special non-

Hermitian basis for the Lie algebra su(d ), which is known as
the Cartan basis [45]. To construct this basis, we first define a
set of d − 1 diagonal Hermitian generators di, which satisfy

[di, d j] = 0. (2)

These generators form the Cartan subalgebra of su(d ). The
remaining d (d − 1) generators, which we denote by eμ, can
be chosen such that they obey the commutation relations

[di, eμ] = vi
μeμ, (3)

where the constants vi
μ ∈ R form the root vector vμ =

(v1
μ, . . . , vd−1

μ ) associated with the nondiagonal generator eμ.
For simplicity we will often refer to μ as a root.

The nondiagonal generators eμ come in Hermitian con-
jugate pairs. As can be seen from Eq. (3), they obey the
symmetry e†

μ = e−μ with v−μ = −vμ. In the Cartan basis,
the exponential map that connects the group SU(d ) with
its Lie algebra su(d ) reads u = exp[i(

∑
i αidi + ∑

μ γμeμ)],
where αi ∈ R and γ ∗

μ = γ−μ ∈ C. Using the chain rule for the
commutator, one can now derive the remaining commutation
relations

[eμ, eν] = Nμν eμ+ν for ν �= −μ and (4)

[eμ, e−μ] =
∑

i

Mμi di, (5)

which, together with the relations (2) and (3), fully specify
the Lie algebra su(d ) in the Cartan basis. Here μ + ν denotes
a root with corresponding root vector vμ+ν := vμ + vν . The
coefficients Nμν, Mμi ∈ R depend on the normalization of the
generators, where Nμν obey the symmetry Nμν = −Nνμ and
vanish if there exists no generator with the root vector vμ+ν .

The d (d − 1) root vectors vμ are in one-to-one correspon-
dence with the generators eμ and span a (d − 1)-dimensional
vector space and therefore cannot all be linearly independent.
In fact, one can always find a minimal generating set of roots
v̂μ such that any root vector can be decomposed as vμ =∑d−1

ν=1 nμν v̂ν , where the coefficients nμν are integers, which
are either all nonpositive or nonnegative. The vectors v̂μ are
then referred to as simple roots [45]. A complete set of simple
roots has d − 1 elements (and there is in general no unique
choice).

In physics, the Hermitian generators of SU(d ) are related
to the dynamical variables of a d-level system. For example,

a Hermitian basis of su(2) is given by

sx = 1

2

[
0 1
1 0

]
, sy = 1

2

[
0 −i
i 0

]
, sz = 1

2

[
1 0
0 −1

]
.

(6)

These matrices represent, up to a factor h̄, the dynamical
variables of a spin- 1

2 system. Upon setting x1 = sx, x2 = sy,
and x3 = sz, the generators satisfy the commutation relations
(1) with the structure constants f ab

c = εabc, where εabc denotes
the Levi-Civita symbol. The Cartan basis of su(2) is usually
constructed by choosing the diagonal generator as d1 = sz.
The nondiagonal generators are then given by the raising
and lowering operators e± = sx ± isy, which obey the com-
mutation relations (3) with the one-dimensional root vectors
v± = ±1; the coefficients appearing in Eq. (5) are given by
M±1 = ±1/2. Since v− = −v+, either v+ or v− can be chosen
as a simple root of su(2).

As a second example, we consider su(3), whose two diag-
onal generators can be identified with the Gell-Mann matrices

�3 =
⎡
⎣1 0 0

0 −1 0
0 0 0

⎤
⎦, �8 = 1√

3

⎡
⎣1 0 0

0 1 0
0 0 −2

⎤
⎦, (7)

i.e., d1 = �3 and d2 = �8. In relativistic particle physics,
these generators are associated with the dynamical variables
Isospin and Hypercharge. A complete set of simple roots
for su(3) is given by v̂+1 = (2, 0), v̂+2 = (1,

√
3), and the

corresponding nondiagonal generators have the matrix form

e+1 =
⎡
⎣0 1 0

0 0 0
0 0 0

⎤
⎦, e+2 =

⎡
⎣0 0 1

0 0 0
0 0 0

⎤
⎦. (8)

B. Irreducible representations

A unitary representation of SU(d ) on some Hilbert space H
associates every u ∈ SU(d ) with a unitary operator U (u) such
that U (u)U (u′) = U (uu′). If H has no nontrivial subspace
that is invariant under the action of all operators U (u), the
representation is called irreducible. Any reducible, i.e., not
irreducible, representation can be decomposed into a direct
sum of irreducible representations, or irreps. That is, there
exists an orthonormal basis of H, in which U (u) takes the
form

U (u) =
⊕

λ

U λ(u) (9)

with the operators U λ(u) forming irreps of SU(d ) on some
orthogonal subspaces Hλ of H. The label λ thereby represents
an ordered partition of some integer n into d nonnegative inte-
gers λ1 � λ2 � · · · � λd . The decomposition (9) may contain
multiple terms with the same label λ. We note that the natu-
ral representation U (u) = u of SU(d ) on H = Cd is always
irreducible.

The concept of representations naturally extends to
the generators: any U (u) can be expressed as U (u) =
exp(i

∑
a θaXa), where θa ∈ C and the Xa are traceless op-

erators satisfying the same commutation relations as the
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generators xa,

[Xa, Xb] = i
∑

c

f ab
c Xc, (10)

with the same structure constants f ab
c as in Eq. (1). Hence, the

operators Xa form a representation of the Lie algebra su(d ) on
H. These operators can be chosen to be Hermitian, in which
case the coefficients θa must be real. In general, a representa-
tion can be constructed for any basis of su(d ). In particular,
we may pick the Cartan basis, whose representation consists
of d − 1 Hermitian operators Di and d (d − 1) operators Eμ

that come in Hermitian conjugate pairs satisfying E†
μ = E−μ.

Since these operators obey the same commutation relations
as the corresponding generators di and eμ [cf. Eqs. (2)–(5)],
there exists a basis of H, in which Di become diagonal and
Eμ assume the roles of raising and lowering operators.

Any irrep of the group SU(d ) must derive from an irrep
of the Lie algebra su(d ). That is, if the operators U (u) do not
share a nontrivial invariant subspace, the same must be true for
the corresponding representations Xa of the generators. The
converse statement also holds: any irrep Xa of su(d ) gives
rise to an irrep of SU(d ) via the exponential map U (u) =
exp(i

∑
a θaXa). Any reducible representation of SU(d ) must

therefore be associated with a reducible representation of
su(d ), which can be decomposed into a direct sum of irreps.
Specifically, in the basis of H where Eq. (9) holds, we also
have

Xa =
⊕

λ

X λ
a (11)

with the X λ
a forming an irrep of su(d ) on the subspace Hλ.

Since changing the basis of su(d ) is a linear operation on both
the generators and their representations, Eq. (11) holds for any
basis of su(d ).

In the previous section, we have seen that the Hermitian
generators of SU(d ) can be identified with the fundamental
dynamical variables of a physical system. This interpretation
extends also to higher-dimensional representations of these
generators. In particular, a Hermitian irrep of su(2) on C2s+1

describes a spin-s system. For example, the three-dimensional
analogs of the matrices (6),

S1
x = 1√

2

⎡
⎣0 1 0

1 0 1
0 1 0

⎤
⎦, S1

y = 1√
2

⎡
⎣0 −i 0

i 0 −i
0 i 0

⎤
⎦,

S1
z =

⎡
⎣1 0 0

0 0 0
0 0 −1

⎤
⎦, (12)

form an irrep of su(2) on C3 with X1 = S1
x , X2 = S1

y , and X3 =
S1

z and represent the dynamical variables of a spin-1 system.

C. Schur-Weyl duality

We now consider the representations of SU(d ) on the prod-
uct space H(n) = (Cd )⊗n, which is the Hilbert space of an
ensemble of n d-level systems. We will refer to the individual
systems as particles in the following. Extending the natural
representation of SU(d ) to H(n) yields the tensor-product
representation U (n)(u) = u⊗n, which is generally reducible.

Hence, the operators U (n)(u) can be brought to the block-
diagonal form of Eq. (9). A block with dimension dλ =
dim Hλ can thereby appear multiple times, and we denote
its multiplicity by mλ. The basis of H(n) that produces the
decomposition (9) is called the Schur basis. Finding this basis
is generally complicated. However, the dimensions dλ and
multiplicities mλ of the individual irreps can be calculated
without explicit knowledge of the Schur basis, as we will
see in the next section. In this section, we first introduce the
mathematical tool that makes these calculations possible.

Schur-Weyl duality asserts that the tensor-product represen-
tation U (n)(u) of SU(d ) admits the decomposition

U (n)(u) =
⊕

λ

1Kλ ⊗ U λ(u), (13)

where λ stands for an ordered partition of n into d integers,
U λ(u) is an irrep of SU(d ) with dimension dλ, and 1Kλ is
the identity operator on an mλ-dimensional Hilbert space Kλ

[37,38]. As will be explained in Sec. II D, each λ indicates a
different symmetry type of the wave function.

More generally, Schur-Weyl duality states that the product
space H(n) decomposes as

H(n) =
⊕

λ

Kλ ⊗ Hλ, (14)

where Kλ and Hλ carry irreps of the permutation group over n
elements Sn and the unitary group U (d ), respectively [37,38].
In the following, we will therefore refer to Kλ as a permuta-
tion subspace and to Hλ as a unitary subspace. In practical
terms, Schur-Weyl duality implies that any operator O on the
product space H(n) that is invariant under arbitrary particle
permutations takes the form

O =
⊕

λ

1Kλ ⊗ Oλ (15)

in the Schur basis. The identity (13) then follows by noting
that the operators U (n)(u) are permutation-invariant and that
every irrep of U (d ) remains irreducible when being restricted
to SU(d ).

We now consider the Lie algebra su(d ). From a given
basis xa, we can construct the tensor-product representation
X (n)

a = ∑n−1
k=0 1

⊗k
d ⊗ xa ⊗ 1⊗(n−1−k)

d of su(d ) on H(n), where
1d is the identity matrix of dimension d . Since operators X (n)

a ,
which generate the tensor-product representation of SU(d ),
are permutation-invariant, they decompose in the same way
as the operators U (n)(u). Hence, in the Schur basis, we have

X (n)
a =

⊕
λ

1Kλ ⊗ X λ
a , (16)

where the X λ
a form an irrep of su(d ) with dimension dλ.

Before moving on, it is again instructive to consider
the special case of SU(2). The space H(n) is then the
joint Hilbert space of n spin- 1

2 particles. The operators

X (n)
a = S(n)

x,y,z = ∑n−1
k=0 1

⊗k
2 ⊗ sx,y,z ⊗ 1⊗(n−1−k)

2 , which form a
representation of the canonical basis of su(2), correspond
to the collective angular momentum operators of the sys-
tem. Every ordered partition λ = (λ1, λ2) of n can now be
uniquely associated with an eigenvalue [J (J + 1)]

1
2 of the
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total angular momentum operator S(n) = [S(n) · S(n)]
1
2 , where

S(n) = (S(n)
x , S(n)

y , S(n)
z ), via the rule J = (λ1 − λ2)/2. Hence,

the decomposition (16) becomes the usual Clebsch-Gordan
series, where every irrep of su(2) corresponds to a different
value of J .

The Schur basis is given by the collective angular mo-
mentum basis {|J, m, p〉}, where m is an eigenvalue of S(n)

z
and p is an index for the permutation subspace KJ . From
the theory of angular momenta, we know that m takes the
values −J,−J + 1, . . . , J for fixed J [2]. The irrep J thus has
dimension dJ = 2J + 1. The multiplicities can be determined
recursively from the usual rules for the addition of angular
momenta. For n = 1, we trivially have J = 1

2 and m 1
2

= 1. For
two spins, J takes the values 0 and 1 corresponding to singlet
and triplet states; hence, we have m0 = m1 = 1. Adding a
third spin turns the value 0 into 1

2 , while the value 1 branches
into 3

2 and 1
2 , which gives m 3

2
= 1 and m 1

2
= 2. Analogously,

we find m0 = 2, m1 = 3, and m2 = 1 for n = 4. This scheme
can, in principle, be applied arbitrarily often, although it
becomes cumbersome for large n. In the next section, we
describe a more efficient method to calculate the multiplicities
of individual irreps for SU(2) and SU(d ) in general.

D. Young diagrams

An ordered partition λ = (λ1, . . . , λd ) of n can be graph-
ically represented as a set of d left-justified rows made up
of λ1, . . . , λd boxes. This representation is called the Young
diagram Yλ of λ. For instance, the partition λ = (3, 1) has the
Young diagram

(17)

The boxes of a Young diagram can be considered as con-
tainers for indices that label either single-particle states or
particles [37]. In the former case, a so-called semistandard
Young tableau is obtained by filling the numbers 1, . . . , d into
the Young diagram Yλ such that the sequence of numbers in
every row is nondecreasing and the sequence in every column
is strictly increasing. The Young diagram (17) thus admits
three semistandard Young tableaux for d = 2:

(18)

Each Young tableau that is constructed in this way represents a
many-particle state with a specific permutation symmetry pat-
tern, which depends only on λ. All of these states are linearly
independent and states with different symmetry patterns; i.e.,
states belonging to different Young diagrams, are orthogonal
to each other. Since the symmetry patterns are invariant under
the action of the tensor-product operators U (n)(u) [37,46], the
many-particle states derived from a given Young diagram Yλ

span an invariant subspace of the U (n)(u). Moreover, it can
be shown that any invariant subspace of the U (n)(u) can be
constructed in this way. It follows that the dimensions of these
subspaces equal the dimensions dλ of the corresponding irreps
U λ. Thus, dλ can be determined by counting the admissible

Young tableaux for a given Young diagram. This argument
leads to the general formula [38]

dλ = 1

(d − 1)!(d − 2)! · · · 1!

∏
1�i< j�d

(λ̃i − λ̃ j ) with

λ̃ = λ + δ and δ = (d − 1, d − 2, . . . , 0). (19)

For d = 2, we have dλ = λ1 − λ2 + 1, and, upon identifying
J = (λ1 − λ2)/2, we recover the result dJ = 2J + 1.

To determine the multiplicities of the irreps U λ
n , we have

to construct a different set of standard Young tableaux by
filling the Young diagrams with the numbers 1, . . . , n, which
label the particles of the ensemble, such that the sequence
of numbers in every row and column is strictly increasing.
For the Young diagram (17), this rule yields three possible
standard Young tableaux given by

(20)

The number of possible Young tableaux that can be obtained
in this way from a given Young diagram Yλ gives the multi-
plicity of the corresponding irrep U λ

n and can be determined
by combinatorial arguments, which yield the closed-form ex-
pression [38]

mλ = n!

λ̃1! · · · λ̃d !

∏
1�i< j�d

(λ̃i − λ̃ j ). (21)

For the special case d = 2, we thus have, upon substituting
λ1 = n/2 + J and λ2 = n/2 − J ,

mJ = n!(2J + 1)

(n/2 + J )!(n/2 − J )!
. (22)

It is easy to check that this formula reproduces the multiplici-
ties that we found iteratively for n � 4 in the previous section.

E. Characters

The final tool that will become essential to our analysis
is the character associated with an irrep of SU(d ) [47]. In
general, the character χU (u) is a function on the group that
associates with each element u the trace of the corresponding
representation:

χU (u) = TrU (u). (23)

Here we are specifically interested in the characters of the Car-
tan subgroup of SU(d ), whose elements uc can be expressed
solely in terms of the diagonal generators di. That is, we want
to calculate objects of the form

χU λ (uc) = Trei
∑

i αiDλ
i (24)

for an irrep U λ(u) of SU(d ) corresponding to the ordered
partition λ of n.

A general expression for these characters is provided by
Weyl’s character formula [48], which does not require ex-
plicit knowledge of the representation and can be applied
as follows. We first define the d × d matrices ci, whose ith
diagonal element is 1 while all other elements are 0 [49]. The
diagonal generators di can now be expanded in these matrices
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as di = ∑
j qi jc j with

∑
j qi j = 0, since the di are traceless.

Once the coefficients qi j have been determined, we can for-
mally express the representations of the diagonal generators
as Dλ

i = ∑
j qi jCλ

j such that Eq. (24) becomes

χU λ (uc) = Trei
∑

j α̃ jCλ
j , (25)

with α̃ j = ∑
i αiqi j . This quantity can now be calculated by

means of the formula [50]

χU λ (uc) = det A(λ + δ)

det A(δ)
, (26)

where δ was introduced in Eq. (19) and A denotes a d × d
matrix with elements{

A[(r1, . . . , rd )]
}

kl = eiα̃k rl . (27)

To show how this recipe works, we consider again the spe-
cial case of SU(2). With d1 = sz the coefficients qi j become
q11 = 1/2 and q12 = −1/2. Hence, we have α̃1 = α1/2 and
α̃2 = −α1/2 and Eq. (26) gives

χλ(uc) = Treiα1Dλ
1

= det

[
eiα1(λ1+1)/2 eiα1λ2/2

e−iα1(λ1+1)/2 e−iα1λ2/2

]
det

[
eiα1/2 1

e−iα1/2 1

]−1

= sin[α1(2J + 1)/2]

sin(α1/2)
, (28)

where we have substituted J = (λ1 − λ2)/2 in the second line.
We note that this result could have been obtained directly
from Eq. (24) upon recalling that D1 = SJ

z represents the z
component of a spin-J system and thus has the matrix form
SJ

z = diag[J, J − 1, . . . ,−J]. For d > 2, however, such a di-
rect approach is no longer feasible. The character formula (26)
then becomes a valuable tool, as we shall see in the following.

III. SETUP

Permutation-invariant systems encompass all those in
which the dynamics are generated by Hamiltonians that are
unchanged under exchange of any subsystems. Here our main
objects of interest are ensembles of n identical, noninteracting
d-level systems, to which we refer as particles. In the fol-
lowing, we show how the dynamics and stationary states that
emerge when such an ensemble is coupled to a thermal bath
can be systematically described using the tools of the previous
section.

A. Multifrequency systems

1. Dynamics

We assume that the Hamiltonian of a single particle has the
form

h = h̄�
∑

i

aidi, (29)

where � sets the overall energy scale, the ai ∈ R are dimen-
sionless constants and the di are the diagonal generators of
SU(d ). The Hamiltonian of the ensemble is thus given by

H = h̄�
∑

i

aiDi, (30)

with the Di being the diagonal generators of the tensor-
product representation of SU(d ) on the Hilbert space H =
(Cd )⊗n. Note that, from here onward, we drop the index
(n) that was used in Sec. II C to denote the tensor-product
representation unless it is required for clarity.

The ensemble is coupled to a thermal bath at inverse tem-
perature β = 1/kBT , where kB denotes Boltzmann’s constant.
We assume that the bath cannot distinguish between the parti-
cles of the ensemble so that the system-bath coupling can be
described in terms of the collective interaction Hamiltonian

HI = h̄
∑

μ

Eμ ⊗ Bμ. (31)

Here the Eμ are the nondiagonal generators of the tensor-
product representation of SU(d ), the Hermitian operators
Bμ = B−μ correspond to observables of the bath, and 

sets the coupling strength. From the commutation relation
[Di, Eμ] = vi

μEμ, we can now determine the relevant Bohr
frequencies ωμ of the system (i.e., the gaps in its spectrum),
which are defined by the relation

[H, Eμ] = h̄�
∑

i

aiv
i
μEμ = h̄ωμEμ. (32)

Thus, we have ωμ = �
∑

i aiv
i
μ, where vi

μ is the element i of
the root vector associated with the generator eμ.

To describe the dynamics of the ensemble, we apply the
standard weak-coupling, Born-Markov, and secular approxi-
mations. These approximations require that the timescale of
the system-bath interaction, which is determined to be the
inverse coupling strength, is much larger than the relaxation
time of the bath and the timescale of the bare system, which
is determined by its Bohr frequencies [51]. Under these con-
ditions, one can derive the collective weak-coupling master
equation

∂tρt = − i

h̄
[H + HLS, ρt ]

+
∑
〈μ,ν〉

�μν
ω

2
{[Eν, ρt E

†
μ] + [Eνρt , E†

μ]}, (33)

where ρt denotes the state of the ensemble, Eν and E†
μ play

the role of jump operators, and the Lamb shift is given by
HLS = h̄

∑
〈μ,ν〉 sμν

ω E†
μEν , where sμν

ω is the anti-Hermitian
part of the bath correlation matrix [51]. HLS commutes with
the system Hamiltonian H and does not enter into the steady
state. The sum in Eq. (33) runs over all pairs of indices 〈μ, ν〉
for which ωμ = ων = ω. The complex coefficients �μν

ω are
determined by the bath-correlation functions. They form a
positive-semidefinite Hermitian matrix and obey the detailed
balance condition �

μν
−ω = eβ h̄ω�νμ

ω [51]. Here we further as-
sume that the bath couples to all collective modes of the
system independently so that the matrix �μν

ω has full rank for
every ω �= 0.

Schur-Weyl duality now makes it possible to simplify the
dynamics of the system as follows. We first recall that any op-
erator O that is invariant under arbitrary particle permutations
takes the block-diagonal form

O =
⊕

λ

1Kλ ⊗ Oλ (34)
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in the Schur basis, where the index λ corresponds to an
ordered partition of n into d integers, 1Kλ is the identity
operator on the permutation subspace Kλ, and the operator Oλ

acts on the unitary subspace Hλ. This result implies that any
permutation-invariant state of the ensemble can be written as

ρ =
⊕

λ

pλ 1Kλ

mλ

⊗ ρλ. (35)

Here mλ = dim Kλ is the multiplicity of the irrep λ, and we
have applied the normalization condition Trρλ

t = 1 so that the
pλ � 0 add up to 1 and can thus be regarded as the probabil-
ities for the system to occupy the diagonal block λ. Since the
operators H , HLS , and Eμ, which enter the collective master
equation (33), all decompose according to Eq. (34), the block
structure of the state (35) is preserved at any later time. Thus,
if the system is initially in a permutation-invariant state, the
block-occupation probabilities pλ

t = pλ are conserved and the
substates ρλ

t follow the master equation (33) with H , HLS , and
Eμ replaced by Hλ, Hλ

LS , and Eλ
μ, respectively.

It is now convenient to introduce the reduced state

ρ̃t =
⊕

λ

pλρλ
t , (36)

which is obtained by tracing out the permutation subspaces
Kλ. This state lives on the reduced Hilbert space H̃ = ⊕

λ Hλ,
which contains all degrees of freedom that are available to
an observer who has access only to permutation-invariant
observables; the expectation values of such observables are
given by TrOρt = ∑

λ pλTrOλρλ
t . As we will see in Sec. IV,

the reduced state fully determines the operationally accessible
thermodynamical properties of the system. Also note that for
any general state ρt , the reduced state ρ̃t must always be
block-diagonal. That is, there is a superselection rule prevent-
ing the existence of superpositions of different λ on this space.

2. Steady states

In the long-time limit t → ∞, the ensemble settles to a
steady state ρ∞. For n > 1, this state is not unique. It does,
however, admit a universal structure. In Appendix A we prove
a general theorem, which shows that, as long as the dissipative
part of the master equation contains a set of simple roots, the
full-rank condition on the matrix �μν

ω and the detailed-balance
condition �

μν
−ω = eβ h̄ω�μν

ω imply that all steady states take the
block diagonal form

ρ∞ =
⊕

λ

pλσ λ ⊗ γ λ
β (37)

in the Schur basis. Here the operators σλ, which have trace 1,
and the block-occupation probabilities pλ depend on the initial
state [52] and

γ λ
β = e−βHλ

Zλ
β

(38)

is a Gibbs state with respect to the irrep Hλ of H , where the
partial partition function Zλ

β is fixed by the condition Trγ λ
β =

1. That is, every block thermalizes independently, subject to
λ being an effective conserved quantity. We stress that this
result holds for any initial state, regardless of whether it has

the block structure (35). Moreover, our theorem holds more
generally for any permutation-invariant system Hamiltonian,
which may in principle also contain interactions between
particles, and even if the detailed-balance condition does not
hold, in which case the Gibbs state γ λ

β has to be replaced with
some general unique state ρλ; for details see Appendix A.

A natural choice for the initial state of the ensemble, on
which we will focus in the following, is given by the Gibbs
state

γβ0 = e−β0H

Zβ0

=
⊕

λ

mλZλ
β0

Zβ0

1Kλ

mλ

⊗ γ λ
β0

. (39)

Here β0 = 1/kBT0 is the inverse temperature of some envi-
ronment, in which the ensemble has initially thermalized, and
Zβ0 = zn

β0
, where zβ0 = Tre−β0h is the single-particle partition

function. The block-occupation probabilities are now given by
pλ = pλ

β0
= mλZλ

β0
/Zβ0 . The steady state thus becomes

ρ∞ = ρβ,β0 :=
⊕

λ

pλ
β0

1Kλ

mλ

⊗ γ λ
β . (40)

Finally, tracing out the permutation subspaces in Eqs. (39) and
(40), respectively, gives the reduced Gibbs and steady states

γ̃β0 =
⊕

λ

pλ
β0

γ λ
β0

, ρ̃β,β0 =
⊕

λ

pλ
β0

γ λ
β . (41)

We note that, for β = β0, the Gibbs state γβ0 is a station-
ary solution of the master equation (33), which implies that
the ensemble remains in thermal equilibrium, i.e., ρ̃β,β = γ̃β .
However, for β �= β0 the properties of the steady state can
deviate substantially from those of a thermal state, as we will
show in Sec. IV.

B. Spin systems

As a reference for our results, we will consider ensembles
of noninteracting spin-s particles, which have been analyzed
in detail in Ref. [20]. The dynamical variables of a single
spin-s system, Ss

x,y,z, form an irrep of the Lie algebra su(2)
on the Hilbert space C2s+1. The corresponding tensor-product
representation on the ensemble Hilbert space H = (C2s+1)⊗n

is given by

Ss(n)
x,y,z =

n−1∑
k=0

1⊗k
2s+1 ⊗ Ss

x,y,z ⊗ 1⊗(n−1−k)
2s+1 . (42)

Hence, with the single-particle Hamiltonian h = h̄�Ss
z , the

ensemble Hamiltonian is H = h̄�D1 with D1 = Ss(n)
z . Choos-

ing the system and bath to couple instead via a collective spin,

HI = h̄ Ss(n)
x ⊗ B, (43)

the Lamb shift and the jump operators in the master equa-
tion (33) are then given by HLS = h̄(s++

� E−E+ + s−−
−�E+E−)

and E± = Ss(n)
x ± iSs(n)

y . Note that, in contrast to general d-
level systems, spin systems are characterized by a single Bohr
frequency ω± = ±�.

For s > 1/2, the irrep Ss
x,y,z is no longer the natural rep-

resentation of su(2). Therefore, the Schur-Weyl duality does
not apply in this case. Nevertheless, the operators D1 and E±
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still take the block-diagonal form (34) in the collective angular
momentum basis |J, m〉, where J is the total angular momen-
tum quantum number and m is the magnetic quantum number.
However, the blocks corresponding to each J are subdivisions
of those implied by Schur-Weyl duality. Consequently, the
results of Sec. III A equally apply to spin-s particles, where the
irrep index λ has to be replaced with J . The crucial difference
is that we can no longer use the formulas (19) and (22) to
calculate the dimensions and multiplicities of the individual
irreps. Instead, the dimension of an irrep J is now given by
dJ = 2J + 1, and the multiplicities have to be determined
from the standard rules for the addition of angular momenta,
which lead to the recursion relation

mJ (n + 1) =
∑

J ′: |J ′−s|�J�J ′+s,
J ′+s−J ∈Z

mJ ′ (n), (44)

where n is the number of particles. The theorem in
Appendix A also holds for spin systems, giving rise to steady
states of the same form as Eq. (37) but with λ replaced by
J . This also settles a conjecture from Ref. [20] that the off-
diagonal blocks vanish in the steady state.

IV. THERMODYNAMICAL QUANTITIES

In this section we show how the steady-state energy, re-
duced entropy, and reduced nonequilibrium free energy can be
calculated for the setup laid out in the last section. To illustrate
our results, we compare an ensemble of spin-1 particles with
an ensemble of three-level particles with SU(3) symmetry. We
further derive explicit expressions for our thermodynamical
quantities of interest in certain limiting cases as functions
of s and d for spin-s particles and general d-level particles,
respectively.

A. General expressions

For a general state ρ, and some fixed inverse tempera-
ture β, the steady-state energy, reduced entropy, and reduced
nonequilibrium free energy are defined according to the block
structure (36) as

E (ρ) = TrρH =
∑

λ

pλTrρλHλ =
∑

λ

pλE (ρλ), (45)

S̃(ρ) =
∑

λ

pλS(ρλ), (46)

F̃ (ρ) = E (ρ) − S̃(ρ)/β =
∑

λ

pλ[E (ρλ) − S(ρλ)/β], (47)

where S(ρ) = −Trρ ln(ρ) denotes the von Neumann entropy.
The reduced quantities S̃(ρ) and F̃ (ρ) have been constructed
so that they do not contain entropic contributions from the
degeneracy spaces Kλ. This approach is motivated by the
assumption that all degrees of freedom that interact with the
experimenter’s apparatus or the environment are represented
by permutation-invariant observables, which do not give ac-
cess to any information stored in the subspaces Kλ. As a
result, the quantities S̃(ρ) and F̃ (ρ) can, like E (ρ), be ex-
pressed as averages over their respective counterparts on the
individual irreps λ with respect to the probability distribution
pλ. Note that, for steady states of the form

⊕
λ pλσ λ ⊗ ρλ, we

can write the reduced entropy as a difference S̃(ρ) = S(ρ) −
S(ρ̌ ), where ρ̌ = ⊕

λ pλσ λ is obtained from ρ by tracing out
the unitary subspaces.

For the steady state (40), the thermodynamical quantities
(45)–(47) become

E (ρβ,β0 ) = Eβ,β0 = −
∑

λ

pλ
β0

∂β ln(Zλ
β ), (48)

S̃(ρβ,β0 ) = S̃β,β0 = −
∑

λ

pλ
β0

[β∂β ln(Zλ
β ) − ln(Zλ

β )], (49)

F̃ (ρβ,β0 ) = F̃β,β0 = − 1

β

∑
λ

pλ
β0

ln
(
Zλ

β

)
(50)

with pλ
β0

= mλZλ
β0

/Zβ0 . To evaluate these expressions, we have
to calculate the partial partition functions Zλ

β , the total parti-
tion function Zβ , and the multiplicities of the individual irreps
mλ.

To this end, we first observe that Zλ
β can be written as

Zλ
β = Tre−β

∑
i aiDλ

i = Trei
∑

i αiDλ
i , (51)

where we have replaced ai by −iαi/β0 in the second ex-
pression. Since the Dλ

i are diagonal generators of an irrep of
SU(d ), this quantity can be calculated by means of analytic
continuation of Weyl’s character formula, which we have dis-
cussed in Sec. II E. For d = 3, we find [50]

Zλ
β = eβa2(2x1+x2 )/3

×
x1∑

k=0

x2∑
l=0

e−βa2(k+l ) sinh[βa1(k − l + x2 + 1)/2]

sinh(βa1/2)
,

(52)

where x j = λ j − λ j+1 and λ denotes the ordered partition
(λ1, λ2, λ3). Analogous formulas can in principle be derived
for any larger d . The single-particle partition function zβ is
obtained as a special case for λ = (1, 0, . . . , 0). The total par-
tition function is then given by Zβ = (zβ )n. For an ensembles
of spin-s systems the partial partition function over the irrep J
is given by

ZJ
β = sinh[β(2J + 1)/2]

sinh(β/2)
, (53)

as can be easily verified by direct computation.
If the individual particles are described in terms of the

natural representation of SU(d ), the multiplicities mλ can be
obtained from the combinatorial formula (21), which yields

mλ = n!(λ̃1 − λ̃2)(λ̃1 − λ̃3)(λ̃2 − λ̃3)

λ̃1!λ̃2!λ̃3!
(54)

for d = 3 with λ̃ j being defined in Eq. (19). For spin systems
with s > 1/2, the multiplicities can be obtained from the
recursion relation (44). With these prerequisites, the quantities
(48)–(50) are computationally accessible.

B. SU(2) vs SU(3)

As a first application of our theory, we investigate how
the transition from SU(2) to SU(3) changes the thermody-
namical properties of the steady state. For convenience, we
now set Boltzmann’s constant to 1 and rescale all energies
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and temperatures with h̄� so that β, β0 and h, H, Hλ become
dimensionless from here onward.

As the arguably simplest setting in which SU(2) and SU(3)
can be compared, we consider ensembles of three-level sys-
tems with excited, intermediate, and ground states |+〉, |0〉,
and |−〉. To isolate the effect of the symmetry group, we pick
the single-particle Hamiltonian

h = |+〉〈+| − |−〉〈−|. (55)

In an SU(2) description, this Hamiltonian corresponds to a
spin-1 system with h = d1 = S1

z , where S1
z was defined in

Eq. (12). In terms of SU(3), the Hamiltonian (55) describes
a ladder system with h = (d1 + √

3d2)/2 = (�3 + √
3�8)/2,

where we have identified the diagonal generators d1, d2 with
the Gell-Mann matrices from Eq. (7).

Although the single-particle Hamiltonian is identical in
both cases, the steady state (41) is not the same for SU(2) and
SU(3), since different system-bath couplings [Eqs. (43) and
(31)] lead to different dissipation mechanisms. For SU(2), the
ensemble relaxes via a single dissipation channel described by
the Lindblad operators E±, which represent the nondiagonal
generators

e+ = e†
− = 1√

2
(|+〉〈0| + |0〉〈−|). (56)

By contrast, for SU(3), relaxation to the steady state oc-
curs via three dissipation channels, whose Lindblad operators
E1±, E2±, and E3± represent the generators

e1+ = e†
1− = |+〉〈0|, e2+ = e†

2− = |+〉〈−|, (57)

e3+ = e†
3− = |0〉〈−|.

Hence, in the SU(2) case the Lindblad operators induce coher-
ent superpositions of jumps between intermediate and excited
and ground and intermediate states, while for SU(3) all pos-
sible transitions in the single-particle system are addressed
separately by the bath.

This difference changes the structure of the steady state
and thus its thermodynamical properties. In Fig. 2 we plot
the internal energy Eβ,β0 and changes in reduced entropy and
reduced free energy during the relaxation process, which are
given by

S̃β,β0 = S̃β,β0 − S̃β0,β0 ,

F̃β,β0 = F̃β,β0 − F̃β0,β0 . (58)

From these plots, we immediately note two features. First,
as expected, all three quantities deviate from their thermal
equilibrium references in the steady state (40). Second, al-
though we use the same single-particle Hamiltonian for both
symmetry groups, these deviations are typically stronger for
SU(2) than for SU(3). This result suggest that the three-
channel dissipation mechanism, which applies to systems with
SU(3) symmetry, allows the system to come closer to thermal
equilibrium than the single-channel mechanism applying to
spin systems.

C. Limiting cases

We now return to the general case of ensembles with SU(d )
symmetry. In the following, we derive explicit expressions

FIG. 2. Steady-state energy (48), the reduced entropy change
(49), and the change in the reduced free energy (58) (top to bottom)
as functions of the inverse bath temperature β for ensembles of
three-level systems with SU(3) and SU(2) symmetry, starting from
the thermal state (39) at β0. For comparison, the dot-dashed lines
labeled “distinguishable” show the fully thermal state energy Eβ,β

(top) and the changes in entropy (middle) and free energy (bottom)
during a full equilibration process of distinguishable particles from
β0 to β. For all plots we have chosen the single-particle Hamiltonian
(55) and set n = 10 and β0 = 2. Note that, for β = β0, the initial
Gibbs state γβ0 is a stationary state of the master equation (33).
Therefore, all curves intersect at β = 2, and all entropy and free
energy differences are 0 at β = 2 in the lower two plots.

for the thermodynamical quantities (48)–(50) as functions
of d in special limits to show how our theory can be ap-
plied in practice. For comparison, we also analyze spin-s
ensembles.
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1. Low initial and high bath temperature

In the limit β0 � 1, the ensemble will almost exclusively
occupy the trivial symmetric subspace, which is spanned by
permutation-invariant many-particle states. To understand this
effect, we consider the probability pg

β0
= 〈gn|γβ0 |gn〉 of find-

ing the ensemble in its nondegenerate ground state |gn〉 =
⊗n

k=1|g〉(k), where |g〉(k) is the ground state of the particle k.
Since the state |gn〉 belongs to the symmetric subspace, the
probability of finding the system in this subspace is subject
to the bounds 1 � psym

β0
� pg

β0
. Taking the low-temperature

limit β0 → ∞ gives pg
β0

= 1 and thus psym
β0

= 1. Hence, by
continuity, we have psym

β0
 1 for β0 � 1. Since the block

structure (39) of the state γβ0 is conserved by the master equa-
tion (33), so is the probability psym

β0
. Consequently, the steady

state of the ensemble is also nearly confined to the symmetric
subspace, and the thermodynamical quantities (48)–(50) are
dominated by contributions from the symmetric irrep λsym =
(n, 0, . . . , 0). This observation makes it possible to derive
asymptotically exact expressions for these quantities in the
limit β � 1. That is, we consider a situation where the system
is initially thermalized in a low-temperature environment and
then brought into contact with a high-temperature bath.

For an SU(d ) ensemble with single-particle Hamiltonian
h = diag[ε1, . . . , εd ], the partial partition function Zsym

β of the
symmetric subspaces is given by

Zsym
β = dsym

(
1 + β2 n(n + d )

2(d + 1)
〈〈ε2〉〉

)
+ O(β3) (59)

as we prove in Appendix B. Here

dsym =
(

n + d − 1

n

)
(60)

is the dimension of the symmetric subspace, which can be
obtained from Eq. (19), and

〈〈ε2〉〉 = 1

d

d∑
i=1

ε2
i (61)

is the variance of the single-particle energy at infinite tem-
perature. Note that we have 〈ε〉 = 1

d

∑d
i=1 εi = 0, since the

single-particle Hamiltonian is traceless by assumption. Using
the expansions (59) and (66), we find that the quantities (48)–
(50) become

Eβ,∞ = −2βqd
n + O(β2), (62)

S̃β,∞ = ln(dsym) − β2qd
n + O(β3), (63)

F̃β,∞ = − ln(dsym)/β − βqd
n + O(β2) (64)

in the limit β0 → ∞ with

qd
n = n(n + d )〈〈ε2〉〉

2(d + 1)
. (65)

We now consider an ensemble of spin-s particles. By a
similar argument to above, since the ground state belongs
to the subspace of maximal angular momentum J = ns, the
thermal state of such an ensemble will almost exclusively oc-
cupy this subspace in the limit β0 � 1. The dimension of this
subspace is given by dmax = 2ns + 1, which is strictly smaller

than the dimension of the symmetric subspace for s > 1/2
and n > 1. With the single-particle Hamiltonian h = Ss

z , the
corresponding partial partition function becomes [20]

Zns
β = (1 + 2ns)

(
1 + β2 ns(1 + ns)

6

)
+ O(β3) (66)

as can be seen by expanding Eq. (53). The asymptotic expres-
sions for the internal energy, reduced entropy, and reduced
free energy can now be obtained by replacing dsym with dmax

and qd
n with

Qs
n = ns(1 + ns)

6
= n(d − 1)[2 + n(d − 1)]

24
(67)

in Eqs. (62)–(64). Here we have expressed s = (d − 1)/2 in
terms of the dimension d of the single-particle Hilbert space
to facilitate the comparison between SU(d ) and spin-s ensem-
bles.

The expressions (65) and (67) show that, for the SU(d )
ensemble as well as for the spin-s ensemble, the leading-
order corrections in β to the internal energy, reduced entropy,
and reduced free energy of the steady state all feature a
quadratic dependence on n for all d . For a quantitative com-
parison, we choose a ladder Hamiltonian with eigenvalues
εi = −(d + 1)/2 + i for the SU(d ) ensemble, which yields
〈〈ε2〉〉 = (d − 1)(d + 1)/12. We then have

qd
n ∼ n2(d − 1)/24 and Qs

n ∼ n2(d − 1)2/24 (68)

for n � 1. Hence, in the limit of many particles, the mag-
nitudes of the first-order corrections in Eqs. (62)–(64) are
suppressed by a factor (d − 1) in SU(d ) ensemble compared
to the spin-s ensemble. We stress that this effect arises solely
from the different dimensions of the primarily occupied sub-
spaces, which have multiplicity 1 in both cases.

2. High initial temperature and many particles

A second interesting limit is realized when the ensemble
is initially prepared in a high-temperature state, that is, β0 →
0. In the following, we calculate the steady-state energy and
reduced entropy in this limit, respectively, for thermalization
with a low- and a high-temperature bath. To this end, we first
observe that the probability distribution pλ

β0
tends to

pλ
β0

→ mλZλ
β0

Zβ0

= mλdλ

dn
(69)

for β0 → 0. This quantity is known as a Plancherel-type mea-
sure [53]. In the limit of many particles, this measure can be
determined explicitly through methods of asymptotic repre-
sentation theory. Specifically, upon changing variables from
λi to ζi = (λi − n/d )/

√
n, the limiting measure for n → ∞

becomes the function [54,55]

φd (ζ ) = d
d (d−1)+1

2
(

d
2π

) d−1
2

1!2! · · · (d − 1)!

∏
i< j

(ζi − ζ j )
2e− d

2

∑
k ζ 2

k . (70)

One interesting question is how far the mean energy of
an initially hot ensemble can be reduced by thermalizing
with a cold bath. When the bath temperature is low, i.e., if
β → ∞, the partial thermal state γ λ

β becomes a projector on
the ground state within the unitary subspace Hλ. As we show
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FIG. 3. Limiting energy coefficient Ed as defined in Eq. (72) as a
function of d .

in Appendix C, each subspace has a unique ground state with
energy

∑d
i=1 λiεi, where εi are the single-particle energies or-

dered increasingly. Here we assume that ε1 is nondegenerate.
Putting this observation together with the limiting distribution
(70), we obtain the mean energy

E∞,0 →
∫

dζ φd (ζ )

[
d∑

i=1

λ(ζ )iεi

]
(71)

for n → ∞. The integral in this expression runs over all
ζ1, . . . , ζd ∈ R subject to the constraints ζ1 � ζ2 � · · · � ζd

and
∑d

i=1 ζi = 0.
If we choose a ladder Hamiltonian with energy levels

εi = −(d + 1)/2 + i for the single-particle system, this mean
energy takes the form

E∞,0 → −Ed
√

n (72)

for n → ∞. Notably, this result shows that the steady-state
energy of the ensemble is subextensive in the particle number
n. Hence, thermalization is strongly inhibited by the symmetry
constraints of the system; if the system were to instead fully
thermalize to its ground state, its steady-state mean energy
would be trivially given by E∞,∞ = nε1 = −n(d − 1)/2.

For d = 2 and d = 3, the constant Ed in Eq. (72) takes
the values E2 = √

2/π and E3 = 9
√

3/16π ; see Appendix D
for details. For larger dimensions, Ed must be determined
numerically by solving the integral in Eq. (71). These re-
sults are plotted in Fig. 3, which shows a nonlinear increase
of Ed with d for d � 7. For completeness, we may again
compare the SU(3) ensemble with a spin-1 ensemble, for
which we find E∞,0 → −√

16/3π
√

n; see Appendix E. Thus,
low-temperature thermalization through the three-channel
mechanism of the SU(3) case leads to a lower steady-state
energy than single-channel mechanism of the spin-1 case by
a factor of 27/16 ≈ 1.69. In line with our earlier results, this
observation quite naturally suggests that a larger number of
dissipation channels allows the system to relax closer to a
thermal state. Note, however, that the scaling of the steady-
state energy with n is insensitive to the dissipation mechanism.

We now assume that the bath temperature is also high,
i.e., β → 0. The ensemble then remains in a high-temperature

equilibrium state, whose reduced entropy is given by

S̃0,0 =
∑

λ

pλ
0 ln(dλ). (73)

By using the distribution (70) for the many-particle limit, we
prove in Appendix D that

S̃0,0 →
∫

dζ φd (ζ ) ln(dλ(ζ ) )  d (d − 1)

4
ln(n) (74)

to leading order in n for n → ∞. Thus, for d = 3, we find
S̃0,0 → (3/2) ln(n). In comparison, for a spin-1 ensemble, the
reduced entropy is suppressed by a factor 3, that is, we have
S̃0,0 → (1/2) ln(n) to leading order in n. More generally, for
a spin-s ensemble, it is clear that S̃0,0 is upper bounded by the
contribution S(γ ns

β ) = ln(2ns + 1)  ln(n) from the maximal
angular momentum subspace corresponding to J = ns; cf.
Eq. (49). It follows that, compared to spin ensembles, the
reduced entropy S̃0,0 of SU(d ) ensembles is asymptotically
enhanced by a factor that is at least quadratic in the dimension
of the single-particle Hilbert space.

V. ENGINE CYCLES

So far we have analyzed how steady-state thermodynami-
cal quantities are affected by the symmetries of permutation-
invariant ensembles of n indistinguishable and noninteracting
particles. As a next step, we explore in this section what role
these symmetries play in thermodynamical processes. To this
end, we consider a thermodynamical engine cycle that uses a
collective working medium and investigate how the properties
of this medium affect its performance.

A. Protocol and output

For simplicity, we focus on the standard quantum Otto
cycle [56,57]. We begin by stating the 0+4 strokes that the
system undergoes during this cycle. In the zeroth stroke, the
ensemble is initialized in the Gibbs state at the inverse temper-
ature β0, which determines the occupation probabilities pλ

β0
of

the individual irreps; cf. Eq. (39). The ensemble then cycli-
cally undergoes the four strokes of the Otto cycle between a
hot and cold bath at inverse temperatures βh and βc:

(1) Equilibration with the hot bath
(2) Instantaneous change of the Hamiltonian H → H ′
(3) Equilibration with the cold bath
(4) Instantaneous change of the Hamiltonian H ′ → H.

The net extracted work per cycle W , which is our main
quantity of interest, is given by the sum of the work contribu-
tions from the two instantaneous strokes,

W = −Tr[ρβh,β0 (H ′ − H )] − Tr[ρ ′
βc,β0

(H − H ′)]. (75)

Here ρβh,β0 and ρ ′
βc,β0

are the steady states of the system with
Hamiltonian H and H ′, respectively; see Eq. (40). We now
assume that the instantaneous strokes are simple compres-
sion, that is, H ′ = κH , where the compression factor κ must
obey the inequalities βh/βc � κ � 1 to ensure that a positive
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amount of work is generated. Under these conditions, the net
work extraction with a collective medium becomes

W col = (1 − κ )TrH (ρβh,β0 − ρκβc,β0 )

= (1 − κ )(Eβh,β0 − Eκβc,β0 ) (76)

with the internal energies given by Eq. (48). To uncover
the role of collective effects, we compare this quantity with
the work generated in the same cycle with an ensemble of
distinguishable particles, which fully thermalizes during the
isochoric strokes,

W dis = (1 − κ )TrH (γβh − γκβc )

= (1 − κ )(Eβh,βh − Eκβc,κβc ). (77)

B. Collective work enhancement

Two natural questions arise at this point. First, is it pos-
sible to extract more work from the collective medium than
from the distinguishable one, that is, can the ratio W col/W dis

become larger than 1? Second, is there an advantage in
moving from spin ensembles to ensembles with higher-order
symmetry?

Both of these questions can be answered with the help of
Fig. 4, where we plot the ratio W col/W dis against βh for SU(2)-
and SU(3)-symmetric ensembles. To enable a quantitative
comparison, we have chosen the same single-particle Hamil-
tonian h = diag[1, 0,−1] for both cases. We find that, first,
there is indeed a temperature range for which W col/W dis > 1,
meaning that more work can be extracted with the collective
medium than with the distinguishable one; a similar result was
found in Ref. [20] for spin ensembles. Second, Fig. 4(b) shows
a regime where W col/W dis > 1, while the extracted work is
larger for the SU(3)- than for the spin ensemble. An advantage
of SU(3) over SU(2) is also seen in Fig. 4(c), where κβc  β0.
Here, however, W col/W dis < 1, so the higher-order symmetry
group rather mitigates the disadvantageous collective effects.

The first observation can be understood in the limiting
regime where the initial temperature is low and both bath
temperatures are high, that is, β0 � 1 and βh, κβc � 1. Under
these conditions, we can use the asymptotic result (62) for the
steady-state internal energy of an SU(d ) ensemble to evaluate
the work extraction from the collective medium. Using the
formulas (76) and (77), we find

W col

W dis
 n + d

d + 1
. (78)

This result shows that the work advantage grows monotoni-
cally in the number of particles n, but decreases monotonically
with the order of the symmetry group d for n > 1. For the
special case n = 10 and d = 3, we recover the limiting value
W col/W dis  3.25 seen in Fig 4(a). For comparison, the anal-
ogous result for spin-s ensembles derived in Ref. [20] is

W col

W dis
 ns + 1

s + 1
= n(d − 1) + 2

d + 1
. (79)

C. Optimization

Higher-dimensional symmetry groups offer larger free-
dom in modeling the single-particle Hamiltonian as additional

(a)

(b)

(c)

FIG. 4. Work advantage W col/W dis as a function of βh for differ-
ent values of βc. Dashed lines correspond to spin-1 ensembles and
solid lines to SU(3) ensembles. For all plots we have set n = 10.
Bath temperatures adhere to the range βh/βc � κ � 1, where the
compression factor is κ = 1/2 and the initial inverse temperature of
the ensembles is β0 = 5.

diagonal generators become available in the corresponding
Lie algebra; cf. Eq. (29). We will now explore how this
freedom can be exploited to optimize the work output of a
collective quantum Otto cycle. To this end, we let the single-
particle energies εi vary within a bounded range, which we
choose as εmax − εmin = d − 1 to match a ladder Hamiltonian
with unit spacing.

By using the expansion (62), we can find the optimal
spectrum in the limit of low initial temperatures, β0 →
∞, and high bath temperatures, βh, κβc � 1. As shown in
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FIG. 5. Work output of a quantum Otto cycle using a working
medium with single-particle Hamiltonian (82) as a function of the
control parameter δ. Solid lines show the SU(3) collective ensemble,
and dashed lines correspond to the distinguishable ensemble, which
fully thermalizes in the equilibration strokes. We have set n = 7,
β0 = 3, βh = 0.1, κ = 1/2 and two different values βc = 1, 2.

Appendix B, for even d , the optimal spectrum has two lev-
els, which are d/2-fold degenerate with the maximal gap
of d − 1; that is, we have ε1, . . . εd/2 = −(d − 1)/2 and
εd/2+1, . . . , εd = (d − 1)/2. For this spectrum, the optimal
work output of a collective cycle and the work output gen-
erated by an ensemble of distinguishable particles are

W col∗  (1 − κ )(κβc − βh)
n(n + d )(d − 1)2

4(d + 1)
, (80)

W dis∗  d + 1

n + d
W col∗. (81)

Hence, the work-advantage ratio is still given by Eq. (78). For
odd d , there is a small correction, since the remaining energy
level can be either at 0 or d − 1.

For arbitrary temperatures, we approach the optimization
problem numerically for SU(3) ensembles. Normalizing the
difference between ground and excited single-particle ener-
gies to 2, we can parameterize the single-particle Hamiltonian
by the gap δ between the ground and first excited levels. That
is, we make the ansatz

hδ = 2

3
diag

[
2 − δ

2
, δ − 1,−1 − δ

2

]
(82)

= 2(2 − δ)d1 + 2 + δ

2
√

3
d2, δ ∈ [0, 2].

Here we have identified the diagonal generators with the Gell-
Mann matrices (7), i.e., d1 = �3 and d2 = �8. As shown in
Fig. 5, the maximum work output is attained with a doubly
degenerate excited level, corresponding to δ = 2. Notably, the
collective medium outperforms the distinguishable one for
any value of δ.

Our results show that the larger freedom in the choice of the
single-particle Hamiltonian, which comes with higher-order
symmetry groups, can indeed be used to optimize the per-
formance of many-body Otto cycles, in addition to the boost
coming from a collective dissipation mechanism. This can be
done, at least in principle, even outside the regime of extreme

FIG. 6. Free energy change (58) as a function of the inverse bath
temperature β for an ensemble of five particles and initial tempera-
ture β0 = 1 for SU(d ) ensembles with d = 3, 5, 7.

initial and bath temperatures. Furthermore, our analysis seems
to suggest that the optimal single-particle Hamiltonian for
collective quantum Otto cycles should feature two levels with
approximately balanced degeneracy. Corroborating this pre-
sumption with a more systematic investigation is beyond the
scope of our present work, but provides an attractive problem
for future research.

VI. HIGHER-ORDER SYMMETRIES: A CLOSER LOOK

As we have seen in the previous sections, the general
tools developed in this paper can be used to calculate ther-
modynamical quantities for noninteracting spin-s ensembles
and ensembles with arbitrary SU(d ) symmetry. Beyond these
applications, our framework also makes it possible to analyze
the anatomy of the steady states of such ensembles on the level
of individual irreps.

A. Free energy and dimensions

To illustrate this approach, which can provide further
insights into the role of higher-order symmetries, we first
consider the change in the reduced nonequilibrium free energy
as defined in Eq. (58). For a quantitative comparison between
the different symmetry groups, we choose the coefficients ai

in the single-particle Hamiltonian h = ∑
i aidi to reproduce

the ladder spectrum εi = −(d + 1)/2 + i. With this choice we
first plot the nonequilibrium free energy change as a function
of the inverse bath temperature β in Fig. 6. We see that, for
all bath temperatures, |F̃ | increases with the order d of the
applied symmetry group.

To understand this effect better, we now focus on the role
of the individual irreps. In Fig. 7 we decompose F̃β,β0 =∑

λ pλ
β0

F̃λ
β,β0

into contributions from the individual irreps λ;
the size of each dot in these plots indicates the relative prob-
ability of occupying a particular irrep. For spin ensembles,
the maximal angular momentum irrep J = ns, which has the
largest dimension dmax = 2ns + 1, is the predominantly oc-
cupied irrep in the limit β0 → ∞. For SU(d ), the symmetric
irrep, which does not generally have the largest dimension,
is most occupied for large β0. Thus, for spin ensembles, the
dominant contribution to the free energy change must shift
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(a)

(b)

(c)

FIG. 7. Contributions to the free energy change F̃ λ
β,β0

for each
irrep λ, such that F̃β,β0 = ∑

λ pλ
β0

F̃ λ
β,β0

, as functions of the irrep
dimension dλ. The radius of each dot is scaled in proportion with
the corresponding occupation probability pλ

β0
. In the first plot, which

corresponds to an SU(2) ensemble with spin s = 1, the maximal J
irrep is circled. In the middle and bottom plots, which correspond to
SU(3) and SU(6) ensembles, the circle indicates the symmetric irrep.
The system parameters are n = 5, β0 = 1, β = 3.

to a lower-dimensional irrep as β0 decreases to a moderate
value; see Fig. 7. By contrast, for SU(d ) ensembles with
d > 2, one observes a shift towards a higher-dimensional
irrep.

B. Degeneracies

An explanation for the link between thermodynamical
properties and irrep dimension can be given in terms of en-
ergy level degeneracies. Here one finds a notable difference

between SU(2) and higher-order groups. SU(2) irreps are spe-
cial in having nondegenerate energy levels—that is, for each
J , the energy basis |J, M〉 varying over M is nondegenerate.
For SU(3) and above, we observe two sources of degeneracy.
The first is that different sets of occupation numbers ni of
the single-particle energy levels εi may have the same to-
tal energy. This can happen only when the εi are rationally
dependent. For example, with the three-level ladder where
(εi )i = (−1, 0, 1), the occupation numbers (0,2,1) and (1,0,2)
represent three-particle configurations with the same energy
of +1. The ability of the higher-order group dynamics to mix
between such configurations results from the greater number
of dissipation channels, compared with a single channel for
SU(2).

The second type of degeneracy occurs within a given set
of occupation numbers and can be seen by considering Young
tableaux. Referring to the construction described in Sec. II D
of a basis for the SU(d ) irreps, we consider the example d =
3, n = 3 and the irrep for λ = (2, 1, 0). Two of the possible
Young tableaux associated with this irrep are

(83)

These Young tableaux describe two linearly independent,
though nonorthogonal, states in the subspace Hλ. By orthog-
onalizing, one obtains a pair of basis states with the same
occupation numbers (ni )i = (1, 1, 1) but which are still dis-
tinguishable according to the permutation-invariant system
dynamics. It is not hard to see that such situations can oc-
cur only with n > 2 and d > 2. Moreover, only symmetries
other than fully symmetric and antisymmetric can support this
degeneracy: with only a single row or column in the Young
diagram, the filling order is fixed. This is why (as in Fig. 7)
the symmetric irrep is not the one with highest dimension,
other than for SU(2).

This second type of degeneracy is intrinsically nonclassical
in the sense that states of classical indistinguishable particles
are labeled only by their occupation numbers. Thus, for more
than two particles and dynamics generating a higher-order
symmetry group, the effective state space contains degrees of
freedom that do not exist in ensembles of classical indistin-
guishable particles. Notably, the same mechanism underlies
the quantum modification recently found in the well-known
Gibbs paradox [11].

Are these additional degeneracies useful? Whereas the
ground and fully excited states are nondegenerate (see Ap-
pendix C), the degeneracies tend to increase in the middle of
the spectrum. The work output of the Otto cycle in Sec. V is
dictated by the heat capacity C = V (E )/T 2, where V (E ) is
the variance of the energy [21]. This can be seen when κβc is
close to βh by relating the energy difference Eβh,β0 − Eκβc,β0

to its derivative with respect to bath temperature, using C =
∂E/∂T . Thus the work output is proportional to the energy
variance. For high bath temperatures Tc and Th, the popu-
lations are roughly uniform over the energy spectrum, and
so the advantage gained by the SU(2) system is due to its
suppression of degeneracies in the middle of the spectrum,
thus raising the energy variance. In contrast, for low bath
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temperatures, most of the population is in the ground state,
so raising the degeneracy of higher energy states will increase
the variance. Therefore distinguishable particles will perform
better in this case. For an intermediate temperature range, one
expects SU(3) to perform best, since it has degeneracies at
higher energies, though not as many as for distinguishable
particles. These observations thus qualitatively explain the
behavior in Fig. 4.

It remains to be explored whether the additional nonclas-
sical degrees of freedom can be further exploited to gain an
additional advantage in some setting. For example, one could
engineer a Hamiltonian that breaks these degeneracies in or-
der to extract work from them. Unlike superradiance, which
has been argued to exist in classical models [58,59], this effect
would have no classical analog.

VII. PERSPECTIVES

In this paper we have combined methods from represen-
tation theory to build a comprehensive theoretical framework
for the thermodynamical description of noninteracting quan-
tum many-body systems with permutation-invariant observ-
ables. As our main application of this formalism, we have
investigated the structure and properties of steady states that
emerge when such systems are weakly coupled to a thermal
environment. We have further shown that permutation invari-
ance induces collective effects that can in principle be used
to enhance the performance of quantum thermal machines.
At every step of our analysis, we have demonstrated that
altering the constituents of a permutation-invariant ensemble
from spin systems, which are covered by the conventional
Clebsch-Gordan theory, to more general multilevel systems,
for which we have developed a systematic description in this
paper, can lead to qualitative changes in the thermodynamical
properties of these ensembles.

Two possible extensions of our approach appear to be
promising perspectives for future research. First, it would
be interesting to include oscillating driving fields. For fast
driving, this extension can be achieved by replacing steady-
state master equations with thermodynamically consistent
Floquet-Lindblad equations [35,60], which have been used
earlier to study permutation-invariant spin systems [19].
In the slow-driving regime, one can instead employ adia-
batic master equations, whose generators are obtained by
replacing time-independent system parameters with exter-
nal control protocols [36,61–63]. In this way, it would in
particular be possible to explore the role of permutation
invariance in the context of thermodynamic geometry, a
topic that is currently attracting much interest in quantum
thermodynamics [64–71].

From a mathematical perspective, progress in these di-
rections would require an extension of our theorem on
the structure of steady states arising from autonomous
permutation-invariant master equations to periodic limit cy-
cles. Since the generators of Floquet-Lindblad equations be-
come time independent in a rotating basis, this generalization
should be straightforward in the fast-driving regime. For the
adiabatic limit, a counterpart of Spohn’s theorem [72] for
steady states that provides uniqueness conditions for periodic
limit cycles is available [73]. This result will, however, still

have to be generalized to permutation-invariant many-body
systems. Similarly, it is important to generalize the setting
to regimes beyond weak coupling, involving techniques such
as stochastic Liouville equations [74] and the thermal leads
approach [75]. Permutation symmetry can in principle be in-
cluded in such settings, so the main theoretical challenge is to
find simple models under which the steady state is the same
partially thermalized state analyzed here.

A second key problem is to systematically investigate the
role of interactions. Most of our results, in particular our the-
orem on steady states, depend only on permutation invariance
and should therefore be applicable also to interacting systems.
However, since interactions typically lead to a dense energy
spectrum, they render the rotating wave approximation that
underpins the conventional weak-coupling master equation in-
valid. It would thus be necessary to either identify a relevant
class of interacting systems that still feature a spectrum with
well-separated Bohr frequencies, or to employ new types of
recently derived quantum master equations [76–78], whose
thermodynamical consistency is, however, not yet settled. One
class of interacting Hamiltonians which may be most tractable
is those with a product state energy basis, such as pairwise
did j interactions, since the eigenvectors of Hλ can be taken as
the Schur basis.

From an information-theoretical viewpoint, one extension
could involve studying the full work statistics of the Otto cycle
rather than just the mean; due to the conservation law relat-
ing to the symmetry type, each block has its own associated
probability and work output, so one is forced to consider the
work as a fluctuating random variable. The thermodynamical
quantities considered here would then need to be replaced by
single-shot versions [79]. For example: what is the minimal
work output that is guaranteed per cycle with some small
probability of failure? Another line of questioning is what
our results have to say about the thermodynamical processing
of ensembles beyond the “independent and identically dis-
tributed” (i.i.d.) regime, where one typically considers many
independent copies of a state subject to arbitrary operations.
This setting has been used to collapse the many quantum
“second laws” [80] down to just the standard nonequilibrium
free energy [81]. Perhaps collective operations as defined here
may give rise to different laws.

All plotted data were generated from the equations dis-
cussed in the text. No further data were created by the research
presented in this paper.
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APPENDIX A: STEADY STATES OF NONINTERACTING
ENSEMBLES WITH SU(d ) SYMMETRY

The main result of this Appendix is Theorem 1. This the-
orem specifies the structure of the steady states of a class of
collective quantum master equations, which is more general
than the one discussed in the main text.

We consider a permutation-invariant ensemble of n d-
level particles embedded in a large, not necessarily thermal,
bath. The bare ensemble is described by a permutation-
invariant Hamiltonian H , which may in principle also contain
interactions between particles. We further assume that the
system-bath interaction is described by the Hamiltonian HI =
h̄

∑
μ Eμ ⊗ Bμ, where the Eμ are the nondiagonal gen-

erators of the tensor-product representation of SU(d ) on
the ensemble Hilbert space and the Hermitian operators
Bμ = B−μ correspond to bath observables. The operators Eμ

can now be decomposed into Bohr-frequency components
with respect to the ensemble Hamiltonian H , that is, Eμ =∑

ω Eμ(ω) with [H, Eμ(ω)] = h̄ωEμ(ω). Provided that the
conventional weak-coupling, Born-Markov, and rotating wave
approximations are applicable, the time evolution of the state
ρ of the ensemble can then be described in terms of the master
equation ∂tρt = L(ρt ) with the Lindblad generator L being
defined in Eq. (A4).

Before we can move on to the proof of our main theorem,
we need a lemma that characterizes those operators that com-
mute with all Eμ. Note that no information is needed about
the dimensions of multiplicity spaces Kλ, so that the results
below apply not just when Schur-Weyl duality is valid, but
also to spin systems upon replacing λ by J .

Lemma 1. Let {μ} be a set of simple roots of SU(d ). Then
for an operator X it holds that

[X, Eμ] = [X, E−μ] = 0 ∀μ if and only if

X =
⊕

λ

X λ ⊗ 1Hλ , (A1)

where X λ is an arbitrary operator on the multiplicity space Kλ.
Proof. The “if” part is obvious. For the “only if” part, we

make use of the fact that the simple roots plus their negatives
generate the whole root system [see Ref. [82], Eq. (21.20)].
In other words, for any root ν, there exists a sequence of
simple roots or their negatives, μ(1), μ(2), . . . , μ(k) (allowing
for repetitions), such that

Eν ∝ [Eμ(k) , [. . . , [Eμ(2) , Eμ(1) ] . . . ]]. (A2)

If [X, Eμ(i) ] = 0 ∀i, we therefore see that [X, Eν] = 0, as Eν is
constructed from products of operators commuting with X .

For the remaining diagonal generators, we make use of
the commutation relation [Eμ, E−μ] = ∑

i MμiDi. There is a
choice of normalization such that Mμi = vi

μ [45, Chap. VI.3].
Then, for any simple root μ in the set,∑

i

vi
μ[X, Di] = [X, [Eμ, E−μ]]

= [Eμ, [E−μ, X ]] + [E−μ, [X, Eμ]]

= 0, (A3)

having used the Jacobi identity in the second line. Since
the d − 1 simple roots are a linearly independent set, (A3)
can hold for all μ only if all commutators [X, Di] vanish.
Therefore we have found that X must commute with the
representation of SU(d ).

Finally, we decompose the unitary representation as U =⊕
λ 1Kλ ⊗ U λ. Considering any block of X λ,λ′

with re-
spect to the irrep structure, commutation implies (1Kλ ⊗
U λ)X λ,λ′

(1Kλ′ ⊗ U λ′ †
) = X λ,λ′

. Schur’s lemma then tells us
that the off-diagonal blocks vanish, while the diagonal ones
are of the form X λ,λ = X λ ⊗ 1Hλ . �

Theorem 1. Consider the Lindblad generator

L(ρ) = − i

h̄
[H, ρ] +

∑
μ,ν

�μν
ω

[
Eμ(ω)ρEν (ω)†

− 1

2
{Eν (ω)†Eμ(ω), ρ}

]
, (A4)

where the Eμ are the collective representations of the nondiag-
onal generators of the Lie algebra su(d ) in the Cartan basis, H
is any permutation-invariant Hamiltonian and the coefficients
�μν

ω form a Hermitian matrix for each Bohr frequency ω.
Further assume that there exists a set of simple roots R such
that, for each ω, the coefficients �μν

ω form a matrix that has
full rank over those roots μ ∈ R for which the frequency
components Eμ(ω) do not vanish. Then the steady states of
the generator L are all of the form

ρ∞ =
⊕

λ

pλσ λ ⊗ ρλ, (A5)

where the probabilities pλ and the operators σλ are arbitrary,
while the ρλ are unique on each irrep λ.

Proof. We adapt the original proof by Spohn that guar-
antees a single steady state [72], more closely following the
presentation of this proof in Ref. [83]. First, we show that a
set of ρλ exists such that all states of the form (A5) are steady
states. Due to the permutation symmetry of the dynamics, any
such state must evolve in time as ρt = ⊕

λ pλσ λ ⊗ ρλ
t . Since

the irreps Hλ are finite-dimensional, each contains at least one
steady state ρλ.

Next, we still have to prove that this family covers all the
steady states. Initially, we relabel the set {Eμ(ω)}μ,ω as {Ei}i

such that i corresponds to a pair (μi, ωi ). Next we put the gen-
erator into diagonal form by transforming to Fi = ∑

j u jiE j ,
where u ji form a unitary matrix. Then we have Ei = ∑

j u∗
i jFj ,

so

L(ρ) = − i

h̄
[H, ρ]+

∑
i, j

δωi,ω j �
μiμ j
ωi

(
EiρE†

j − 1

2
{E†

j Ei, ρ}
)

= − i

h̄
[H, ρ] +

∑
k,l

Akl

(
FkρF †

l − 1

2
{F †

j Fi, ρ}
)

, (A6)

with Akl = ∑
i, j u∗

ikδωi,ω j �
μiμ j
ωi u jl . Choosing u to diagonalize

the Hermitian matrix A, we obtain

L(ρ) = − i

h̄
[H, ρ] +

∑
k

ak

(
FkρF †

k − 1

2
{F †

k Fk, ρ}
)

. (A7)
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We would like to guarantee that ak > 0. To this end, we note
that A is unitarily equivalent to the matrix

� =
⊕

ω

�ω :=
⊕

ω

∑
μ,ν:

Eμ(ω),Eν (ω)�=0

�μν
ω |ω,μ〉〈ω, ν|. (A8)

Note that we use Dirac notation here for convenience, al-
though the vectors |ω,μ〉 do not represent quantum states.
The aim of this construction is to include only those terms for
which Eμ has a nonzero frequency component Eμ(ω); other-
wise, the full-rank condition would not generally be possible
to satisfy. Thus we see that the positivity of A is guaranteed
by assuming that all �ω have full rank.

We then make a second transformation by expanding Fi =∑p
i=1 fikGk in some operator basis such that Gk are Hermitian

and fik are complex. Gk are chosen to form a basis of the
subspace V = span{Fi}i = span{Eμ}μ with some dimension
p. This substitution results in

L(ρ) := − i

h̄
[H, ρ] +

p∑
k,l=1

Bkl

(
GkρGl − 1

2
{GlGk, ρ}

)
,

(A9)

where Bkl = ∑
i ai fik f ∗

ik . Evidently B = ∑
i ai f i f †

i > 0,
which means we can find some b > 0 smaller than the
smallest eigenvalue of B such that B − b1p > 0. Using this
result, we divide L into two parts:

L := L1 + L2, (A10)

L2(ρ) := b
p∑

k=1

GkρGk − 1

2
{G2

k, ρ}, (A11)

such that both parts are valid Lindblad generators.
We first analyze the spectral properties of L2. For any Her-

mitian operator X , we calculate the superoperator expectation
value

〈L2〉X = Tr[XL2(X )]

= b
∑

k

Tr

[
XGkXGk − 1

2
XG2

kX−1

2
X 2G2

k

]

= b

2

∑
k

Tr[[Gk, X ]2]

= −b

2

∑
k

‖[Gk, X ]‖2
2. (A12)

This quantity is generally negative and vanishes if and only
if [Gk, X ] = 0 ∀i = 1, . . . , p. This condition is equivalent
to [Eμ, X ] = 0 ∀μ, and by Lemma 1 also equivalent to
X = ⊕

λ X λ ⊗ 1Hλ . Let us denote the subspace of such op-

erators by S = {⊕λ X λ ⊗ 1Hλ | X λ† = X λ}; this space has
dimension M = ∑

λ mλ(mλ + 1)/2. We have already found
a space of steady states with this dimension, so our goal is
to show that L has precisely M linearly independent zero
eigenvectors.

Next we divide the vector space of operators into two
orthogonal parts S ⊕ S′. There is then a block decomposition
of L on a suitable basis respecting this structure: representing

the superoperator as a matrix,

L =
(∗ ∗

∗ L′

)
, (A13)

and similarly for L1,2, where ∗ denotes an unspecified block
and L′ is the projection onto S′. From (A12) we see that
〈L2〉X < 0 for all X ∈ S′, so the eigenvalues of L′

2 all have
a strictly negative real part. Similarly, for all X ∈ S′,

〈L′〉X = 〈L′
1〉X + 〈L′

2〉X < 0, (A14)

since L′
1 must have eigenvalues with a nonpositive real part in

order to be a valid Lindblad generator. Therefore L′ also has
eigenvalues with a strictly negative real part.

Finally, to learn about the eigenvalues of L, we use The-
orem 1.4.10 of Ref. [84]. This theorem tells us that if an
eigenvalue λ of some n × n matrix has geometric multiplicity
of at least k + 1, then every (n − k) × (n − k) principal sub-
matrix also has λ as an eigenvalue. Suppose for a contradiction
that L has more than M zero eigenvectors. So we apply this
theorem with λ = 0, k = M and n as the dimension of the full
operator space. This observation implies that L′ has a zero
eigenvector, which contradicts what we have just determined
about the eigenvalues of L′. Therefore L has at most M zero
eigenvectors, and we have already found this many. �

With a thermal environment, one can assume a standard
detailed-balance relation on the bath correlation function and
thereby obtain the following result guaranteeing thermaliza-
tion within each block.

Corollary 1. With the same assumptions as in Theorem 1,
together with �

μν
−ω = eβ h̄ω�νμ

ω , the steady states are all those
of the form

ρ∞ =
⊕

λ

pλσ λ ⊗ γ λ, (A15)

where γ λ = e−βHλ

/tr[e−βHλ

] is the thermal state on each ir-
rep, according to the Hamiltonian H = ⊕

λ 1Kλ ⊗ Hλ.
Proof. This result is an immediate consequence of Theo-

rem 1 followed by applying, to each diagonal block, Spohn’s
result [72] that the condition �

μν
−ω = eβ h̄ω�νμ

ω requires the
steady state ρλ to be the thermal state γ λ. �

APPENDIX B: SYMMETRIC SUBSPACE ENERGIES

Here we study the mean energy for the symmetric subspace
at high bath temperature to first order in β, for general n
and d . We consider an arbitrary set of single-particle en-
ergies εi, i = 1, . . . , d . A natural basis for the symmetric
subspace is given by symmetrizing

⊗d
i=1 |i〉⊗ni for each con-

figuration n = (n1, n2, . . . , nd ),
∑

i ni = n. These are energy
eigenstates with energy εn = ∑

i εini.
The mean energy when confined to the symmetric subspace

is then

E sym
β =

∑
n εne−βεn∑

n e−βεn
, (B1)
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which is, to first order at high temperature,

E sym
β ≈ 1

dsym

∑
n

εn − β

⎡
⎣ 1

dsym

∑
n

ε2
n −

(
1

dsym

∑
n

εn

)2
⎤
⎦

= 〈ε〉n − β〈〈ε2〉〉n, (B2)

where dsym = (n+d−1
n

)
, and 〈ε〉n, 〈〈ε2〉〉n denote the average

and variance of energies, respectively, in a uniform mixture
for n particles. We will express these in terms of their values
for n = 1.

The mean energy is

〈ε〉n =
∑

i

〈ni〉nεi

= 〈n1〉n

∑
i

εi

= n

d

∑
i

εi

= n〈ε〉1, (B3)

having used the fact that the uniform distribution of energies is
symmetric with respect to permutations of the energy levels.
Similarly,

〈ε2〉n =
∑
i, j

〈nin j〉nεiε j

=
∑

i

〈
n2

i

〉
nε

2
i +

∑
i �= j

〈nin j〉nεiε j

= 〈
n2

1

〉
n

∑
i

ε2
i + 〈n1n2〉n

⎛
⎝∑

i, j

εiε j −
∑

i

ε2
i

⎞
⎠

= 〈
n2

1

〉
nd〈ε2〉1 + 〈n1n2〉n

(
d2〈ε〉2

1 − d〈ε2〉1
)
. (B4)

For simplicity, we can take 〈ε〉1 = 0 without loss of general-
ity; then we have

〈〈ε2〉〉n = 〈ε2〉n = 〈ε2〉1 d
(〈

n2
1

〉
n
− 〈n1n2〉n

)
. (B5)

Given that
∑

i ni = n, we have

n2 =
∑
i, j

〈nin j〉n

=
∑

i

〈
n2

i

〉
n +

∑
i �= j

〈nin j〉n

= d
〈
n2

1

〉
n + d (d − 1)〈n1n2〉n. (B6)

Substituting into Eq. (B5), we have

〈〈ε2〉〉n

〈〈ε2〉〉1
= d2

〈
n2

1

〉
n

d − 1
− n2

d − 1
. (B7)

The probability distribution over n1 is found by counting the
number of ways of distributing the remaining n − n1 particles
over the other d − 1 energy levels:

p(n1) =
(n−n1+d−2

d−2

)
(n+d−1

d−1

) , (B8)

from which we get

〈
n2

1

〉
n =

n∑
n1=0

n2
1 p(n1) = n(2n + d − 1)

d (d + 1)
. (B9)

Equation (B7) then gives

〈〈ε2〉〉n

〈〈ε2〉〉1
= n(n + d )

d + 1
. (B10)

This is to be compared with the full (infinite temperature)
thermal state of n particles, which has energy variance n〈〈ε2〉〉1.

We can now ask what set of single-particle energies gives
the maximal variance; due to Eq. (B10), we need to consider
only the case of a single particle. In order to make a well-
posed question, we constrain the εi such that there is at least
one at the minimum energy ε1 = 0 and at least one at the
maximum εd = d − 1. (These values are chosen to match the
spread of the ladder Hamiltonian; note that the overall shift
can be arbitrary.) The variance must always satisfy

〈〈ε2〉〉1 � (εd − ε1)2

4
= (d − 1)2

4
. (B11)

For even d , this can be saturated by taking half the levels at 0
and half at d − 1. For odd d , the optimum is with either d−1

2

at 0 and d+1
2 at d − 1, or the opposite. Hence,

max
{εi}, ε1=0, εd =d−1

〈〈ε2〉〉1 =
{

(d−1)2

4 , d even,

(d−1)2

4

(
1 − 1

d2

)
, d odd.

(B12)

For the evenly spaced ladder, one instead has 〈〈ε2〉〉1 = d2−1
12 –

so the level optimization roughly gains a factor of three.

APPENDIX C: GROUND STATE IN EACH SUBSPACE

Here we argue that each term Hλ of the Hamiltonian has
a unique ground state (on the reduced state space). This is
seen by examining the construction of the irreps of SU(d )
described in Sec. II D. Given a single-particle basis |k〉—
which we take as the single-particle energy eigenbasis—one
can construct a (generally nonorthogonal) basis of the irrep
corresponding to a Young diagram λ by specifying all ways of
filling the boxes of λ according to certain rules. Each box must
be filled with a label k in a way that is weakly increasing (i.e.,
two neighboring elements can be the same) in each row and
strictly increasing in each column. For example, one allowed
tableau with n = 8, d = 3 is

1 1 2 3

2 3 3

3

.
(C1)

Each allowed tableau corresponds to a vector constructed by
taking a product state of each |k〉 per box and applying the
Young symmetrizer, which symmetrizes over each row and
then antisymmetrizes over each column. Each such state is
an energy eigenstate with eigenvalue

∑n
i=1 εki , where ki is the

label of box i in the tableau. It is clear that there is only one
way to construct a state of minimal energy: fill each column
of length l with the labels 1, 2, . . . , l from top to bottom. For
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the above diagram, this gives

1 1 1 1

2 2 2

3

.
(C2)

The unique ground state in the irrep λ has energy

Eλ =
d∑

k=1

λkεk . (C3)

Note that this argument depends crucially on the Hamiltonian
being noninteracting.

APPENDIX D: ASYMPTOTIC ENERGIES AND
ENTROPIES FOR SU(d )

Here we find the mean energy of a state with β0 = 0 in
the limit of large particle number n → ∞. We use the ladder
Hamiltonian with energies

εk = − (d + 1)

2
+ k, k = 1, . . . , d, (D1)

and the limiting probability distribution φd (ζ ) in Eq. (70)
with ζi = λi−n/d√

n
. From Eq. (C3) together with

∑
k ζk = 0 and∑

k εk = 0, we have the ground-state energy in the block λ,

Eλ =
d∑

k=1

(√
nζk + n

d

)
εk

= √
n

d∑
k=1

ζk

(
k − d + 1

2

)

= √
n

d∑
k=1

kζk

= √
n

(
d−1∑
k=1

kζk + dζd

)

= √
n

d−1∑
k=1

(k − d )ζk . (D2)

We have chosen to eliminate ζd because of the constraint∑
k ζk = 0, leaving only the remaining (d − 1) variables in-

dependent. The limiting mean energy is then

E∞,0 = √
n
∫

dd−1ζ φd (ζ )
d−1∑
k=1

(k − d )ζk (D3)

= : −√
nEd , (D4)

where the integral is constrained to ζk � ζk+1 ∀k. We find the
coefficients

E2 =
√

2

π
, E3 = 9

4

√
3

π
. (D5)

Higher dimensions are only numerically tractable; we find

E2 ≈ 0.798, E3 ≈ 2.20, E4 ≈ 4.19, E5 ≈ 6.76,

E6 ≈ 9.91, E7 ≈ 13.6. (D6)

For the entropy S̃0,0, we need to find the average of ln dλ.
Given that λi − λ j = √

n(ζi − ζ j ), one can see from Eq. (19)
that

dλ ∝
∏
i< j

[√
n(ζi − ζ j ) + (i − j)

]
. (D7)

Since the distribution φd (ζ ) is independent of n, the function
to be averaged contains d (d − 1)/2 terms of the order ln

√
n.

We therefore have, to leading order in n,

S̃0,0 = 〈ln dλ〉 ≈ d (d − 1)

4
ln n. (D8)

APPENDIX E: ASYMPTOTICS FOR SU(2), SPIN-1

Here we consider the same limit as above, with an initially
high temperature β0 = 0 in the limit of large n, for d = 3 and
SU(2)-type coupling to the bath. We will find the limiting
distribution pJ . For n particles with general spin s, the thermal
state γ0 on the full Hilbert space is maximally mixed, so one
sees that

pJ = (2J + 1)mJ

(2s + 1)n
. (E1)

We use the recursion relation (44) for mJ to derive a similar
relation for pJ . Writing the probability explicitly as a function
of n, we have

p(n + 1, J ) =
∑

J ′: |J ′−s|�J�J ′+s,
J ′+s−J ∈Z

(2J + 1)

(2s + 1)(2J ′ + 1)
p(n, J ).

(E2)

From now on assuming s = 1, we have

p(n + 1, J )

=
{

p(n,1)
9 , J = 0

2J+1
3

[ p(n,J−1)
2J−1 + p(n,J )

2J+1 + p(n,J+1)
2J+3

]
, J = 1, 2, . . . .

(E3)

with only integer values of J appearing. In the limit of large
n, we make the ansatz that p(n, J ) takes the form

p(n, J ) ≈ 1√
n

f

(
J√
n

)
, (E4)

where f is some smooth function normalized such that∫∞
0 f (x) dx = 1. This guess will be justified by showing that

it approximately satisfies the recursion relation (E3), and we
will determine f . For any J � 1, (E3) reduces to

1√
n + 1

f

(
J√

n + 1

)

= 1

3
√

n

[
f

(
J√
n

)
+
(

2J + 1

2J − 1

)
f

(
J − 1√

n

)

+
(

2J + 1

2J + 3

)
f

(
J + 1√

n

)]
. (E5)
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We write δ = 1/
√

n, x = Jδ, giving

1√
1 + δ2

f

(
x√

1 + δ2

)

= 1

3

[
f (x)+

(
2x + δ

2x − δ

)
f (x − δ) +

(
2x + δ

2x + 3δ

)
f (x + δ)

]
.

(E6)

Since δ � 1, we expand to lowest nonvanishing order in δ:

0 = δ2

3

[
− f ′′(x)+

(
2

x
− 3x

2

)
f ′(x)−

(
2

x2
+3

2

)
f (x)

]
+O(δ3).

(E7)

Hence we obtain the second-order linear differential equation

2 f ′′(x) +
(

3x − 4

x

)
f ′(x) +

(
4

x2
+ 3

)
f (x) = 0. (E8)

The only normalizable solution is found to be f (x) ∝
x2e−3x2/4, resulting in

p(n, J ) ≈ 3
√

3

2
√

π

J2

n
3
2

e− 3J2

4n . (E9)

Since the ground-state energy of the irrep J is −J , we find the
limiting mean energy with β = ∞ as

E∞,0 ≈ −
∫ ∞

0
dJ J p(n, J )

≈ −√
n
∫ ∞

0
dx x f (x)

= − 4√
3π

√
n. (E10)

Similarly, the β = 0 reduced entropy is

S̃0,0 ≈
∫ ∞

0
dx ln(2

√
nx + 1) f (x)

≈ 1

2
ln n. (E11)
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